Differential mechanisms of adenosine‐ and ATPγS‐induced microvascular endothelial barrier strengthening
Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the process...
Saved in:
Published in | Journal of cellular physiology Vol. 234; no. 5; pp. 5863 - 5879 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the processes regulating the preservation/restoration of the EC barrier remain poorly understood. Herein we show that the extracellular purines, adenosine (Ado) and adenosine 5′‐[γ‐thio]‐triphosphate (ATPγS) can strengthen the barrier function of human lung microvascular EC (HLMVEC). This ability involves protein kinase A (PKA) activation and decreases in myosin light chain 20 (MLC20) phosphorylation secondary to the involvement of MLC phosphatase (MLCP). In contrast to Ado, ATPγS‐induced PKA activation is accompanied by a modest, but significant decrease in cyclic adenosine monophosphate (cAMP) levels supporting the existence of an unconventional cAMP‐independent pathway of PKA activation. Furthermore, ATPγS‐induced EC barrier strengthening does not involve the Rap guanine nucleotide exchange factor 3 (EPAC1) which is directly activated by cAMP but is instead dependent upon PKA‐anchor protein 2 (AKAP2) expression. We also found that AKAP2 can directly interact with the myosin phosphatase‐targeting protein MYPT1 and that depletion of AKAP2 abolished ATPγS‐induced increases in transendothelial electrical resistance. Ado‐induced strengthening of the HLMVEC barrier required the coordinated activation of PKA and EPAC1 in a cAMP‐dependent manner. In summary, ATPγS‐induced enhancement of the EC barrier is EPAC1‐independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP‐independent mechanism, to activate MLCP which dephosphorylates MLC20 resulting in reduced EC contraction and preservation.
In the present study we define and compare the molecular mechanisms linking adenosine‐ and ATPγ‐induced purinergic receptor activation and barrier strengthening in HLMVECs. We found that ATPγS‐induced EC barrier enhancement is EPAC1‐independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP‐independent mechanism, to activate MLCP and dephosphorylate MLC20 resulting in reduced EC contraction. |
---|---|
AbstractList | Abstract Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the processes regulating the preservation/restoration of the EC barrier remain poorly understood. Herein we show that the extracellular purines, adenosine (Ado) and adenosine 5′‐[γ‐thio]‐triphosphate (ATPγS) can strengthen the barrier function of human lung microvascular EC (HLMVEC). This ability involves protein kinase A (PKA) activation and decreases in myosin light chain 20 (MLC20) phosphorylation secondary to the involvement of MLC phosphatase (MLCP). In contrast to Ado, ATPγS‐induced PKA activation is accompanied by a modest, but significant decrease in cyclic adenosine monophosphate (cAMP) levels supporting the existence of an unconventional cAMP‐independent pathway of PKA activation. Furthermore, ATPγS‐induced EC barrier strengthening does not involve the Rap guanine nucleotide exchange factor 3 (EPAC1) which is directly activated by cAMP but is instead dependent upon PKA‐anchor protein 2 (AKAP2) expression. We also found that AKAP2 can directly interact with the myosin phosphatase‐targeting protein MYPT1 and that depletion of AKAP2 abolished ATPγS‐induced increases in transendothelial electrical resistance. Ado‐induced strengthening of the HLMVEC barrier required the coordinated activation of PKA and EPAC1 in a cAMP‐dependent manner. In summary, ATPγS‐induced enhancement of the EC barrier is EPAC1‐independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP‐independent mechanism, to activate MLCP which dephosphorylates MLC20 resulting in reduced EC contraction and preservation. Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the processes regulating the preservation/restoration of the EC barrier remain poorly understood. Herein we show that the extracellular purines, adenosine (Ado) and adenosine 5′‐[γ‐thio]‐triphosphate (ATPγS) can strengthen the barrier function of human lung microvascular EC (HLMVEC). This ability involves protein kinase A (PKA) activation and decreases in myosin light chain 20 (MLC20) phosphorylation secondary to the involvement of MLC phosphatase (MLCP). In contrast to Ado, ATPγS‐induced PKA activation is accompanied by a modest, but significant decrease in cyclic adenosine monophosphate (cAMP) levels supporting the existence of an unconventional cAMP‐independent pathway of PKA activation. Furthermore, ATPγS‐induced EC barrier strengthening does not involve the Rap guanine nucleotide exchange factor 3 (EPAC1) which is directly activated by cAMP but is instead dependent upon PKA‐anchor protein 2 (AKAP2) expression. We also found that AKAP2 can directly interact with the myosin phosphatase‐targeting protein MYPT1 and that depletion of AKAP2 abolished ATPγS‐induced increases in transendothelial electrical resistance. Ado‐induced strengthening of the HLMVEC barrier required the coordinated activation of PKA and EPAC1 in a cAMP‐dependent manner. In summary, ATPγS‐induced enhancement of the EC barrier is EPAC1‐independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP‐independent mechanism, to activate MLCP which dephosphorylates MLC20 resulting in reduced EC contraction and preservation. In the present study we define and compare the molecular mechanisms linking adenosine‐ and ATPγ‐induced purinergic receptor activation and barrier strengthening in HLMVECs. We found that ATPγS‐induced EC barrier enhancement is EPAC1‐independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP‐independent mechanism, to activate MLCP and dephosphorylate MLC20 resulting in reduced EC contraction. Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the processes regulating the preservation/restoration of the EC barrier remain poorly understood. Herein we show that the extracellular purines, adenosine (Ado) and adenosine 5'-[γ-thio]-triphosphate (ATPγS) can strengthen the barrier function of human lung microvascular EC (HLMVEC). This ability involves protein kinase A (PKA) activation and decreases in myosin light chain 20 (MLC20) phosphorylation secondary to the involvement of MLC phosphatase (MLCP). In contrast to Ado, ATPγS-induced PKA activation is accompanied by a modest, but significant decrease in cyclic adenosine monophosphate (cAMP) levels supporting the existence of an unconventional cAMP-independent pathway of PKA activation. Furthermore, ATPγS-induced EC barrier strengthening does not involve the Rap guanine nucleotide exchange factor 3 (EPAC1) which is directly activated by cAMP but is instead dependent upon PKA-anchor protein 2 (AKAP2) expression. We also found that AKAP2 can directly interact with the myosin phosphatase-targeting protein MYPT1 and that depletion of AKAP2 abolished ATPγS-induced increases in transendothelial electrical resistance. Ado-induced strengthening of the HLMVEC barrier required the coordinated activation of PKA and EPAC1 in a cAMP-dependent manner. In summary, ATPγS-induced enhancement of the EC barrier is EPAC1-independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP-independent mechanism, to activate MLCP which dephosphorylates MLC20 resulting in reduced EC contraction and preservation. |
Author | Bátori, Róbert Kovács‐Kása, Anita Erdődi, Ferenc Verin, Alexander D. Kumar, Sanjiv Bordán, Zsuzsanna Fulton, David J. R. MacDonald, Justin A. Cherian‐Shaw, Mary |
AuthorAffiliation | 3 Department of Pharmacology, Augusta University, Augusta, Georgia 5 MTA-DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary 6 Department of Medicine, Augusta University, Augusta, Georgia 2 Department of Biochemistry & Molecular Biology, Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada 1 Vascular Biology Center, Augusta University, Augusta, Georgia 4 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary |
AuthorAffiliation_xml | – name: 2 Department of Biochemistry & Molecular Biology, Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada – name: 3 Department of Pharmacology, Augusta University, Augusta, Georgia – name: 6 Department of Medicine, Augusta University, Augusta, Georgia – name: 1 Vascular Biology Center, Augusta University, Augusta, Georgia – name: 4 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary – name: 5 MTA-DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary |
Author_xml | – sequence: 1 givenname: Róbert orcidid: 0000-0002-1400-6732 surname: Bátori fullname: Bátori, Róbert organization: Vascular Biology Center, Augusta University – sequence: 2 givenname: Sanjiv surname: Kumar fullname: Kumar, Sanjiv organization: Vascular Biology Center, Augusta University – sequence: 3 givenname: Zsuzsanna surname: Bordán fullname: Bordán, Zsuzsanna organization: Vascular Biology Center, Augusta University – sequence: 4 givenname: Mary surname: Cherian‐Shaw fullname: Cherian‐Shaw, Mary organization: Vascular Biology Center, Augusta University – sequence: 5 givenname: Anita orcidid: 0000-0001-7244-5517 surname: Kovács‐Kása fullname: Kovács‐Kása, Anita organization: Vascular Biology Center, Augusta University – sequence: 6 givenname: Justin A. surname: MacDonald fullname: MacDonald, Justin A. organization: University of Calgary – sequence: 7 givenname: David J. R. surname: Fulton fullname: Fulton, David J. R. organization: Augusta University – sequence: 8 givenname: Ferenc surname: Erdődi fullname: Erdődi, Ferenc organization: MTA‐DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen – sequence: 9 givenname: Alexander D. surname: Verin fullname: Verin, Alexander D. email: averin@augusta.edu organization: Augusta University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29271489$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtOHDEQhq0IFIYhi1wgaikbsmjwq8ftTSQ0eQBCChKwtoxdPeOR257Y00TscoTcJffgEJwkHgZQEomVVa5Pn6rq30VbIQZA6C3BBwRjergwywM64US-QiOCpaj5pKFbaFR6pJYNJztoN-cFxlhKxl6jHSqpILyVI-Q_ua6DBGHltK96MHMdXO5zFbtKWwgxuwD3P39VOtjq6PL87vdFqVywgwFb9c6keKOzGbxOFQQbV3Pwa9O1TslBqvKquGflN7gw20PbnfYZ3jy-Y3T15fPl9Lg--_b1ZHp0VhvOmazbxra2kVJw4JSVORkWnBBOoGu0aa0gTGLDSSNFx-SEthQwlaWlu8YSCWyMPm68y-G6B2vKdkl7tUyu1-lWRe3Uv53g5moWb5SgogjbIth_FKT4fYC8Ur3LBrzXAeKQFZFCFq5la_T9f-giDimU9RQlk3JnzMtSY_RhQ5V75Zygex6GYLXOUJUM1UOGhX339_TP5FNoBTjcAD-ch9uXTep0er5R_gH46qty |
CitedBy_id | crossref_primary_10_1016_j_ajo_2023_12_017 crossref_primary_10_1016_j_jtct_2023_03_020 crossref_primary_10_1152_ajpcell_00505_2019 crossref_primary_10_3390_biomedicines11061638 crossref_primary_10_3390_cells11152315 crossref_primary_10_3390_ijms21186855 crossref_primary_10_3390_ijerph182111009 crossref_primary_10_1111_apha_14006 crossref_primary_10_3390_antiox10060904 crossref_primary_10_1038_s41598_020_75224_0 crossref_primary_10_1126_scisignal_aba2940 crossref_primary_10_3389_fimmu_2023_1217366 |
Cites_doi | 10.2174/1568026043451014 10.1074/jbc.M112.398479 10.1002/jcp.24878 10.1007/s11302‐007‐9078‐7 10.1016/S1040‐7952(97)80019‐5 10.1152/ajpcell.00327.2015 10.1016/j.celrep.2016.12.092 10.1124/mol.112.081034 10.1074/jbc.M110.205062 10.1016/S0962‐8924(99)01558‐5 10.1042/BJ20071299 10.1096/fj.13‐238741 10.1083/jcb.130.3.613 10.1152/ajpheart.1997.273.5.H2304 10.1016/j.febslet.2005.10.055 10.4049/jimmunol.1002907 10.1016/S0006‐2952(00)00570‐0 10.1006/bbrc.2001.4683 10.4103/0975‐3583.78582 10.1016/j.it.2003.11.003 10.1074/jbc.M405957200 10.1016/j.mvr.2009.11.007 10.3390/ijms15022024 10.1038/nrd2605 10.1074/jbc.M109.016501 10.1002/jcp.22894 10.1016/S0960‐9822(01)00530‐9 10.1002/(ISSN)1097‐4652 10.1165/rcmb.2008‐0391OC 10.1074/jbc.M412595200 10.1124/pr.113.008029 10.1210/endo.142.3.8023 10.3109/10623320009072215 10.1152/ajplung.00283.2007 10.1002/wmts.v1.6 10.1161/01.RES.0000012203.21416.14 10.3389/fimmu.2013.00085 10.14814/phy2.12175 10.1074/jbc.271.9.4733 10.1016/j.abb.2010.05.001 10.1152/ajplung.00330.2009 10.1165/rcmb.F305 10.1152/physrev.00012.2005 10.1152/ajpgi.00465.2002 10.1038/cddis.2014.576 10.1161/ATVBAHA.114.303678 10.1161/01.RES.0000175561.55761.69 10.1152/ajplung.00086.2013 10.1002/jcp.21913 10.1074/jbc.R400018200 10.1038/sj.bjp.0701880 10.1016/S0898‐6568(01)00235‐2 10.1074/jbc.M110352200 10.1016/j.vph.2009.12.008 10.1074/jbc.M010398200 10.1016/j.abb.2011.01.018 10.1038/sj.bjp.0705043 10.1038/srep44698 10.1097/00001721‐199402000‐00010 10.1182/blood‐2010‐02‐268870 10.1074/jbc.M109.019729 10.1073/pnas.222659799 10.1126/science.273.5272.245 10.1136/gut.2008.151134 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/jcp.26419 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 5879 |
ExternalDocumentID | 10_1002_jcp_26419 29271489 JCP26419 |
Genre | article Comparative Study Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Canadian Institutes of Health Research funderid: MOP‐133494 – fundername: National Heart, Lung, and Blood Institute funderid: HL101902 – fundername: NHLBI NIH HHS grantid: P01 HL101902 – fundername: CIHR grantid: MOP-133494 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AETEA AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N G8K GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4439-85d8d59974e42314830741141ef5ac8d71390c41597f396282e0295acaf5d19e3 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 |
IngestDate | Tue Sep 17 21:27:57 EDT 2024 Sat Aug 17 00:21:09 EDT 2024 Sat Oct 26 05:54:47 EDT 2024 Thu Sep 26 21:08:40 EDT 2024 Sat Sep 28 08:29:12 EDT 2024 Sat Aug 24 01:03:17 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | adenosine myosin light chain ATPγS endothelial barrier protection PKA |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4439-85d8d59974e42314830741141ef5ac8d71390c41597f396282e0295acaf5d19e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1400-6732 0000-0001-7244-5517 |
OpenAccessLink | https://europepmc.org/articles/pmc7273968?pdf=render |
PMID | 29271489 |
PQID | 2169270444 |
PQPubID | 1006363 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7273968 proquest_miscellaneous_1979968838 proquest_journals_2169270444 crossref_primary_10_1002_jcp_26419 pubmed_primary_29271489 wiley_primary_10_1002_jcp_26419_JCP26419 |
PublicationCentury | 2000 |
PublicationDate | May 2019 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_7_1_55_1 e_1_2_7_1_11_1 e_1_2_7_1_32_1 e_1_2_7_1_57_1 e_1_2_7_1_13_1 e_1_2_7_1_34_1 e_1_2_7_1_51_1 Ralevic V. (e_1_2_7_1_49_1) 1998; 50 e_1_2_7_1_30_1 e_1_2_7_1_53_1 e_1_2_7_1_5_1 e_1_2_7_1_7_1 e_1_2_7_1_25_1 e_1_2_7_1_48_1 e_1_2_7_1_3_1 e_1_2_7_1_27_1 e_1_2_7_1_21_1 e_1_2_7_1_44_1 e_1_2_7_1_67_1 e_1_2_7_1_23_1 e_1_2_7_1_46_1 e_1_2_7_1_65_1 e_1_2_7_1_9_1 e_1_2_7_1_40_1 e_1_2_7_1_63_1 e_1_2_7_1_42_1 e_1_2_7_1_61_1 e_1_2_7_1_18_1 e_1_2_7_1_14_1 e_1_2_7_1_37_1 e_1_2_7_1_16_1 e_1_2_7_1_39_1 e_1_2_7_1_58_1 e_1_2_7_1_10_1 e_1_2_7_1_33_1 e_1_2_7_1_54_1 e_1_2_7_1_12_1 e_1_2_7_1_35_1 e_1_2_7_1_56_1 e_1_2_7_1_50_1 e_1_2_7_1_31_1 e_1_2_7_1_52_1 e_1_2_7_1_6_1 e_1_2_7_1_8_1 e_1_2_7_1_2_1 e_1_2_7_1_26_1 e_1_2_7_1_47_1 e_1_2_7_1_4_1 e_1_2_7_1_28_1 e_1_2_7_1_22_1 e_1_2_7_1_43_1 e_1_2_7_1_24_1 e_1_2_7_1_45_1 e_1_2_7_1_66_1 e_1_2_7_1_64_1 e_1_2_7_1_20_1 e_1_2_7_1_41_1 e_1_2_7_1_62_1 e_1_2_7_1_60_1 e_1_2_7_1_19_1 Kennedy C. (e_1_2_7_1_29_1) 2000; 57 e_1_2_7_1_15_1 e_1_2_7_1_36_1 e_1_2_7_1_17_1 e_1_2_7_1_38_1 e_1_2_7_1_59_1 |
References_xml | – ident: e_1_2_7_1_9_1 doi: 10.2174/1568026043451014 – volume: 50 start-page: 413 issue: 3 year: 1998 ident: e_1_2_7_1_49_1 article-title: Receptors for purines and pyrimidines publication-title: Pharmacological Reviews contributor: fullname: Ralevic V. – ident: e_1_2_7_1_24_1 doi: 10.1074/jbc.M112.398479 – ident: e_1_2_7_1_53_1 doi: 10.1002/jcp.24878 – ident: e_1_2_7_1_15_1 doi: 10.1007/s11302‐007‐9078‐7 – ident: e_1_2_7_1_57_1 doi: 10.1016/S1040‐7952(97)80019‐5 – ident: e_1_2_7_1_56_1 doi: 10.1152/ajpcell.00327.2015 – ident: e_1_2_7_1_54_1 doi: 10.1016/j.celrep.2016.12.092 – ident: e_1_2_7_1_44_1 doi: 10.1124/mol.112.081034 – ident: e_1_2_7_1_66_1 doi: 10.1074/jbc.M110.205062 – ident: e_1_2_7_1_13_1 doi: 10.1016/S0962‐8924(99)01558‐5 – ident: e_1_2_7_1_55_1 doi: 10.1042/BJ20071299 – ident: e_1_2_7_1_60_1 doi: 10.1096/fj.13‐238741 – ident: e_1_2_7_1_21_1 doi: 10.1083/jcb.130.3.613 – ident: e_1_2_7_1_46_1 doi: 10.1152/ajpheart.1997.273.5.H2304 – ident: e_1_2_7_1_41_1 doi: 10.1016/j.febslet.2005.10.055 – ident: e_1_2_7_1_65_1 doi: 10.4049/jimmunol.1002907 – ident: e_1_2_7_1_19_1 doi: 10.1016/S0006‐2952(00)00570‐0 – volume: 57 start-page: 926 issue: 5 year: 2000 ident: e_1_2_7_1_29_1 article-title: ATP, an agonist at the rat P2Y(4) receptor, is an antagonist at the human P2Y(4) receptor publication-title: Molecular Pharmacology contributor: fullname: Kennedy C. – ident: e_1_2_7_1_67_1 doi: 10.1006/bbrc.2001.4683 – ident: e_1_2_7_1_64_1 doi: 10.4103/0975‐3583.78582 – ident: e_1_2_7_1_27_1 doi: 10.1016/j.it.2003.11.003 – ident: e_1_2_7_1_62_1 doi: 10.1074/jbc.M405957200 – ident: e_1_2_7_1_6_1 doi: 10.1016/j.mvr.2009.11.007 – ident: e_1_2_7_1_52_1 doi: 10.3390/ijms15022024 – ident: e_1_2_7_1_11_1 doi: 10.1038/nrd2605 – ident: e_1_2_7_1_43_1 doi: 10.1074/jbc.M109.016501 – ident: e_1_2_7_1_31_1 doi: 10.1002/jcp.22894 – ident: e_1_2_7_1_45_1 doi: 10.1016/S0960‐9822(01)00530‐9 – ident: e_1_2_7_1_20_1 doi: 10.1002/(ISSN)1097‐4652 – ident: e_1_2_7_1_63_1 doi: 10.1165/rcmb.2008‐0391OC – ident: e_1_2_7_1_61_1 doi: 10.1074/jbc.M412595200 – ident: e_1_2_7_1_12_1 doi: 10.1124/pr.113.008029 – ident: e_1_2_7_1_37_1 doi: 10.1210/endo.142.3.8023 – ident: e_1_2_7_1_48_1 doi: 10.3109/10623320009072215 – ident: e_1_2_7_1_35_1 doi: 10.1152/ajplung.00283.2007 – ident: e_1_2_7_1_14_1 doi: 10.1002/wmts.v1.6 – ident: e_1_2_7_1_16_1 doi: 10.1161/01.RES.0000012203.21416.14 – ident: e_1_2_7_1_26_1 doi: 10.3389/fimmu.2013.00085 – ident: e_1_2_7_1_2_1 doi: 10.14814/phy2.12175 – ident: e_1_2_7_1_28_1 doi: 10.1074/jbc.271.9.4733 – ident: e_1_2_7_1_5_1 doi: 10.1016/j.abb.2010.05.001 – ident: e_1_2_7_1_38_1 doi: 10.1152/ajplung.00330.2009 – ident: e_1_2_7_1_39_1 doi: 10.1165/rcmb.F305 – ident: e_1_2_7_1_40_1 doi: 10.1152/physrev.00012.2005 – ident: e_1_2_7_1_42_1 doi: 10.1152/ajpgi.00465.2002 – ident: e_1_2_7_1_3_1 doi: 10.1038/cddis.2014.576 – ident: e_1_2_7_1_36_1 doi: 10.1161/ATVBAHA.114.303678 – ident: e_1_2_7_1_34_1 doi: 10.1161/01.RES.0000175561.55761.69 – ident: e_1_2_7_1_22_1 doi: 10.1152/ajplung.00086.2013 – ident: e_1_2_7_1_7_1 doi: 10.1002/jcp.21913 – ident: e_1_2_7_1_25_1 doi: 10.1074/jbc.R400018200 – ident: e_1_2_7_1_8_1 doi: 10.1038/sj.bjp.0701880 – ident: e_1_2_7_1_33_1 doi: 10.1016/S0898‐6568(01)00235‐2 – ident: e_1_2_7_1_58_1 doi: 10.1074/jbc.M110352200 – ident: e_1_2_7_1_59_1 doi: 10.1016/j.vph.2009.12.008 – ident: e_1_2_7_1_50_1 doi: 10.1074/jbc.M010398200 – ident: e_1_2_7_1_23_1 doi: 10.1016/j.abb.2011.01.018 – ident: e_1_2_7_1_18_1 doi: 10.1038/sj.bjp.0705043 – ident: e_1_2_7_1_4_1 doi: 10.1038/srep44698 – ident: e_1_2_7_1_47_1 doi: 10.1097/00001721‐199402000‐00010 – ident: e_1_2_7_1_51_1 doi: 10.1182/blood‐2010‐02‐268870 – ident: e_1_2_7_1_30_1 doi: 10.1074/jbc.M109.019729 – ident: e_1_2_7_1_17_1 doi: 10.1073/pnas.222659799 – ident: e_1_2_7_1_32_1 doi: 10.1126/science.273.5272.245 – ident: e_1_2_7_1_10_1 doi: 10.1136/gut.2008.151134 |
SSID | ssj0009933 |
Score | 2.4051156 |
Snippet | Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular... Abstract Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 5863 |
SubjectTerms | A Kinase Anchor Proteins - genetics A Kinase Anchor Proteins - metabolism Activation Adenosine Adenosine monophosphate Adenosine Triphosphate - analogs & derivatives Adenosine Triphosphate - pharmacology ATP ATPγS Capillary Permeability - drug effects Contraction Cyclic AMP Cyclic AMP - metabolism Cyclic AMP-Dependent Protein Kinases - genetics Cyclic AMP-Dependent Protein Kinases - metabolism Depletion Electric Impedance endothelial barrier protection Endothelial cells Guanine Guanine nucleotide exchange factor Guanine Nucleotide Exchange Factors - genetics Guanine Nucleotide Exchange Factors - metabolism HEK293 Cells Homeostasis Humans Kinases Lungs Membrane Proteins - genetics Membrane Proteins - metabolism Microvasculature Microvessels - drug effects Microvessels - metabolism Myosin myosin light chain Myosin Light Chains - metabolism Myosin-Light-Chain Phosphatase - genetics Myosin-Light-Chain Phosphatase - metabolism Myosin-light-chain-phosphatase Permeability Phosphatase Phosphorylation PKA Preservation Protein kinase A Proteins Purinergic P1 Receptor Agonists - pharmacology Purines Receptors, Purinergic P1 - drug effects Receptors, Purinergic P1 - genetics Receptors, Purinergic P1 - metabolism Restoration Signal Transduction |
Title | Differential mechanisms of adenosine‐ and ATPγS‐induced microvascular endothelial barrier strengthening |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.26419 https://www.ncbi.nlm.nih.gov/pubmed/29271489 https://www.proquest.com/docview/2169270444 https://search.proquest.com/docview/1979968838 https://pubmed.ncbi.nlm.nih.gov/PMC7273968 |
Volume | 234 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1VlZB4gdJySSmVQQjxku06di4WT6teVFUCVdBKfUCKfAss7HqrZvehPPEJ_Av_wUf0Szp2LmWpkBBviRw7TjyTOePMnAF4STOda5OYWNI8ixGB81gJpmLExhItFDdD7rOR377LDk_50Vl6tgJvulyYhh-i33DzmhG-117Bpap3bkhDv-jzAVrzQPlJWe7Dufbe31BHibaMfAhBSDntWIWGyU7fc9kW3QKYt-Mkf8evwQAd3IeP3dSbuJOvg8VcDfS3P1gd__PZ1uBeC0zJqJGkB7Bi3TpsjBw65dNL8oqEUNGwB78Od5oKlpcbMNlrC6zgh2JCptbnEY_raU1mFZHGE5HjXK6-_yDSGTI6Of718wOejZ1BiTJk6qMBu1hYYp3x6WATP5KSF76UHvGpLO6TZ2hAE_sQTg_2T3YP47aAQ6w5Ap24SE1hUoEui0XUho4X8wCGcmqrVOrCoIMshhohhMgrJjL0_uwwEdgkq9RQYdkjWHUzZ58ASbXMK8OVqDR6tFooRTX6gqlinDErRAQvuqUszxuejrJhZE5KfJtleJsRbHWLXLaqWpcJzUSSe9q8CJ73zahk_s-JdHa2qEvqf35mRcGKCB43MtHfJcHe-Gg4eL4kLf0FnsB7ucWNPwcib48dcdgIXgdh-PvEy6Pd43Cw-e-XPoW7CO5EE5y5Bavzi4V9hgBqrraDplwDfkQarQ |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRQguFFooKQUMQohLtpvY-bHEZdVSLaWtKthKvaAosR1Y2PVW3d1De-oj8C68Bw_BkzDj_JSlQkLcEjlx7GQm84098w3AiyBWidKh9vMgiX1E4MIvJC98xMY5Wiihu4KykQ8O4_6x2DuJTpbgdZMLU_FDtAtupBnuf00KTgvSW1esoV_UaQfNOXF-3kB151S4Yef9FXmUrAvJuyCESAQNr1A33GpvXbRG1yDm9UjJ3xGsM0G7K_CxGXwVefK1M58VHXXxB6_j_87uLtypsSnrVcJ0D5aMXYW1nkW_fHzOXjIXLeqW4VfhZlXE8nwNRjt1jRX8V4zY2FAq8XA6nrJJyXJNXOQ4mJ-X31huNesNjn58_4BnQ6tRqDQbU0BgEw7LjNWUETainor8jKrpMcpmsZ-IpAGt7H043n0z2O77dQ0HXwnEOn4a6VRHEr0Wg8ANfS9OGCYQgSmjXKUafWTZVYgiZFJyGaMDaLqhxKa8jHQgDX8Ay3ZizUNgkcqTUotClgqdWiWLIlDoDkYFF5wbKT143nzL7LSi6sgqUuYww7eZubfpwWbzlbNaW6dZGMQyTIg5z4NnbTPqGW2e5NZM5tMsoP3POE156sF6JRTtU0K8G6eGnScL4tJeQBzeiy12-NlxeRN8xG49eOWk4e8Dz_a2j9zBxr9f-hRu9QcH-9n-28N3j-A2Yj1ZxWpuwvLsbG4eI56aFU-c2vwC9iMexQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRSAuQFsogVIMQohLtpvE-bE4rVpWpUC1glbqASlybAcWdr2r7u6hPfUReBfeg4fgSZhxfspSISFuiRw7TjyT-caZ-QbgWZCoVOlQ-zJIEx8ROPcLERU-YmOJForrLqds5HeHyf4xPziJT1bgZZMLU_FDtBtupBnue00KPtXlziVp6Bc17aA1J8rPazxB5EuI6P0ld5So68i7GISYBw2tUDfcabsuG6MrCPNqoOTvANZZoP5t-NjMvQo8-dpZzIuOOv-D1vE_H-4O3KqRKetVorQGK8auw0bPolc-PmPPmYsVdZvw63C9KmF5tgGjvbrCCn4pRmxsKJF4OBvP2KRkUhMTOc7l58U3Jq1mvaPBj-8f8GxoNYqUZmMKB2yCYZmxmvLBRjRSIU-plh6jXBb7iSga0MbeheP-q6Pdfb-u4OArjkjHz2Kd6Vigz2IQtqHnFRGCCXhgyliqTKOHLLoKMYRIy0gk6P6ZbiiwSZaxDoSJ7sGqnVhzH1isZFpqXohSoUurRFEECp3BuIh4FBkhPHjaLGU-rYg68oqSOczxbebubXqw1SxyXuvqLA-DRIQp8eZ58KRtRi2jXyfSmslilgf09zPJsijzYLOSifYuIfbGR8PB0yVpaS8gBu_lFjv87Ji8CTzisB68cMLw94nnB7sDd_Dg3y99DDcGe_387evDNw_hJgI9UQVqbsHq_HRhHiGYmhfbTml-AZOsHXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+mechanisms+of+adenosine%E2%80%90+and+ATP%CE%B3S%E2%80%90induced+microvascular+endothelial+barrier+strengthening&rft.jtitle=Journal+of+cellular+physiology&rft.au=B%C3%A1tori%2C+R%C3%B3bert&rft.au=Kumar%2C+Sanjiv&rft.au=Bord%C3%A1n%2C+Zsuzsanna&rft.au=Cherian%E2%80%90Shaw%2C+Mary&rft.date=2019-05-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=234&rft.issue=5&rft.spage=5863&rft.epage=5879&rft_id=info:doi/10.1002%2Fjcp.26419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcp_26419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |