Differential mechanisms of adenosine‐ and ATPγS‐induced microvascular endothelial barrier strengthening

Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the process...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 234; no. 5; pp. 5863 - 5879
Main Authors Bátori, Róbert, Kumar, Sanjiv, Bordán, Zsuzsanna, Cherian‐Shaw, Mary, Kovács‐Kása, Anita, MacDonald, Justin A., Fulton, David J. R., Erdődi, Ferenc, Verin, Alexander D.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the processes regulating the preservation/restoration of the EC barrier remain poorly understood. Herein we show that the extracellular purines, adenosine (Ado) and adenosine 5′‐[γ‐thio]‐triphosphate (ATPγS) can strengthen the barrier function of human lung microvascular EC (HLMVEC). This ability involves protein kinase A (PKA) activation and decreases in myosin light chain 20 (MLC20) phosphorylation secondary to the involvement of MLC phosphatase (MLCP). In contrast to Ado, ATPγS‐induced PKA activation is accompanied by a modest, but significant decrease in cyclic adenosine monophosphate (cAMP) levels supporting the existence of an unconventional cAMP‐independent pathway of PKA activation. Furthermore, ATPγS‐induced EC barrier strengthening does not involve the Rap guanine nucleotide exchange factor 3 (EPAC1) which is directly activated by cAMP but is instead dependent upon PKA‐anchor protein 2 (AKAP2) expression. We also found that AKAP2 can directly interact with the myosin phosphatase‐targeting protein MYPT1 and that depletion of AKAP2 abolished ATPγS‐induced increases in transendothelial electrical resistance. Ado‐induced strengthening of the HLMVEC barrier required the coordinated activation of PKA and EPAC1 in a cAMP‐dependent manner. In summary, ATPγS‐induced enhancement of the EC barrier is EPAC1‐independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP‐independent mechanism, to activate MLCP which dephosphorylates MLC20 resulting in reduced EC contraction and preservation. In the present study we define and compare the molecular mechanisms linking adenosine‐ and ATPγ‐induced purinergic receptor activation and barrier strengthening in HLMVECs. We found that ATPγS‐induced EC barrier enhancement is EPAC1‐independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP‐independent mechanism, to activate MLCP and dephosphorylate MLC20 resulting in reduced EC contraction.
AbstractList Abstract Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the processes regulating the preservation/restoration of the EC barrier remain poorly understood. Herein we show that the extracellular purines, adenosine (Ado) and adenosine 5′‐[γ‐thio]‐triphosphate (ATPγS) can strengthen the barrier function of human lung microvascular EC (HLMVEC). This ability involves protein kinase A (PKA) activation and decreases in myosin light chain 20 (MLC20) phosphorylation secondary to the involvement of MLC phosphatase (MLCP). In contrast to Ado, ATPγS‐induced PKA activation is accompanied by a modest, but significant decrease in cyclic adenosine monophosphate (cAMP) levels supporting the existence of an unconventional cAMP‐independent pathway of PKA activation. Furthermore, ATPγS‐induced EC barrier strengthening does not involve the Rap guanine nucleotide exchange factor 3 (EPAC1) which is directly activated by cAMP but is instead dependent upon PKA‐anchor protein 2 (AKAP2) expression. We also found that AKAP2 can directly interact with the myosin phosphatase‐targeting protein MYPT1 and that depletion of AKAP2 abolished ATPγS‐induced increases in transendothelial electrical resistance. Ado‐induced strengthening of the HLMVEC barrier required the coordinated activation of PKA and EPAC1 in a cAMP‐dependent manner. In summary, ATPγS‐induced enhancement of the EC barrier is EPAC1‐independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP‐independent mechanism, to activate MLCP which dephosphorylates MLC20 resulting in reduced EC contraction and preservation.
Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the processes regulating the preservation/restoration of the EC barrier remain poorly understood. Herein we show that the extracellular purines, adenosine (Ado) and adenosine 5′‐[γ‐thio]‐triphosphate (ATPγS) can strengthen the barrier function of human lung microvascular EC (HLMVEC). This ability involves protein kinase A (PKA) activation and decreases in myosin light chain 20 (MLC20) phosphorylation secondary to the involvement of MLC phosphatase (MLCP). In contrast to Ado, ATPγS‐induced PKA activation is accompanied by a modest, but significant decrease in cyclic adenosine monophosphate (cAMP) levels supporting the existence of an unconventional cAMP‐independent pathway of PKA activation. Furthermore, ATPγS‐induced EC barrier strengthening does not involve the Rap guanine nucleotide exchange factor 3 (EPAC1) which is directly activated by cAMP but is instead dependent upon PKA‐anchor protein 2 (AKAP2) expression. We also found that AKAP2 can directly interact with the myosin phosphatase‐targeting protein MYPT1 and that depletion of AKAP2 abolished ATPγS‐induced increases in transendothelial electrical resistance. Ado‐induced strengthening of the HLMVEC barrier required the coordinated activation of PKA and EPAC1 in a cAMP‐dependent manner. In summary, ATPγS‐induced enhancement of the EC barrier is EPAC1‐independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP‐independent mechanism, to activate MLCP which dephosphorylates MLC20 resulting in reduced EC contraction and preservation. In the present study we define and compare the molecular mechanisms linking adenosine‐ and ATPγ‐induced purinergic receptor activation and barrier strengthening in HLMVECs. We found that ATPγS‐induced EC barrier enhancement is EPAC1‐independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP‐independent mechanism, to activate MLCP and dephosphorylate MLC20 resulting in reduced EC contraction.
Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular permeability. While the mechanisms that govern increased EC permeability have been under intense investigation over the past several decades, the processes regulating the preservation/restoration of the EC barrier remain poorly understood. Herein we show that the extracellular purines, adenosine (Ado) and adenosine 5'-[γ-thio]-triphosphate (ATPγS) can strengthen the barrier function of human lung microvascular EC (HLMVEC). This ability involves protein kinase A (PKA) activation and decreases in myosin light chain 20 (MLC20) phosphorylation secondary to the involvement of MLC phosphatase (MLCP). In contrast to Ado, ATPγS-induced PKA activation is accompanied by a modest, but significant decrease in cyclic adenosine monophosphate (cAMP) levels supporting the existence of an unconventional cAMP-independent pathway of PKA activation. Furthermore, ATPγS-induced EC barrier strengthening does not involve the Rap guanine nucleotide exchange factor 3 (EPAC1) which is directly activated by cAMP but is instead dependent upon PKA-anchor protein 2 (AKAP2) expression. We also found that AKAP2 can directly interact with the myosin phosphatase-targeting protein MYPT1 and that depletion of AKAP2 abolished ATPγS-induced increases in transendothelial electrical resistance. Ado-induced strengthening of the HLMVEC barrier required the coordinated activation of PKA and EPAC1 in a cAMP-dependent manner. In summary, ATPγS-induced enhancement of the EC barrier is EPAC1-independent and is instead mediated by activation of PKA which is then guided by AKAP2, in a cAMP-independent mechanism, to activate MLCP which dephosphorylates MLC20 resulting in reduced EC contraction and preservation.
Author Bátori, Róbert
Kovács‐Kása, Anita
Erdődi, Ferenc
Verin, Alexander D.
Kumar, Sanjiv
Bordán, Zsuzsanna
Fulton, David J. R.
MacDonald, Justin A.
Cherian‐Shaw, Mary
AuthorAffiliation 3 Department of Pharmacology, Augusta University, Augusta, Georgia
5 MTA-DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
6 Department of Medicine, Augusta University, Augusta, Georgia
2 Department of Biochemistry & Molecular Biology, Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
1 Vascular Biology Center, Augusta University, Augusta, Georgia
4 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
AuthorAffiliation_xml – name: 2 Department of Biochemistry & Molecular Biology, Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
– name: 3 Department of Pharmacology, Augusta University, Augusta, Georgia
– name: 6 Department of Medicine, Augusta University, Augusta, Georgia
– name: 1 Vascular Biology Center, Augusta University, Augusta, Georgia
– name: 4 Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
– name: 5 MTA-DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
Author_xml – sequence: 1
  givenname: Róbert
  orcidid: 0000-0002-1400-6732
  surname: Bátori
  fullname: Bátori, Róbert
  organization: Vascular Biology Center, Augusta University
– sequence: 2
  givenname: Sanjiv
  surname: Kumar
  fullname: Kumar, Sanjiv
  organization: Vascular Biology Center, Augusta University
– sequence: 3
  givenname: Zsuzsanna
  surname: Bordán
  fullname: Bordán, Zsuzsanna
  organization: Vascular Biology Center, Augusta University
– sequence: 4
  givenname: Mary
  surname: Cherian‐Shaw
  fullname: Cherian‐Shaw, Mary
  organization: Vascular Biology Center, Augusta University
– sequence: 5
  givenname: Anita
  orcidid: 0000-0001-7244-5517
  surname: Kovács‐Kása
  fullname: Kovács‐Kása, Anita
  organization: Vascular Biology Center, Augusta University
– sequence: 6
  givenname: Justin A.
  surname: MacDonald
  fullname: MacDonald, Justin A.
  organization: University of Calgary
– sequence: 7
  givenname: David J. R.
  surname: Fulton
  fullname: Fulton, David J. R.
  organization: Augusta University
– sequence: 8
  givenname: Ferenc
  surname: Erdődi
  fullname: Erdődi, Ferenc
  organization: MTA‐DE Cell Biology and Signalling Research Group, Faculty of Medicine, University of Debrecen
– sequence: 9
  givenname: Alexander D.
  surname: Verin
  fullname: Verin, Alexander D.
  email: averin@augusta.edu
  organization: Augusta University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29271489$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtOHDEQhq0IFIYhi1wgaikbsmjwq8ftTSQ0eQBCChKwtoxdPeOR257Y00TscoTcJffgEJwkHgZQEomVVa5Pn6rq30VbIQZA6C3BBwRjergwywM64US-QiOCpaj5pKFbaFR6pJYNJztoN-cFxlhKxl6jHSqpILyVI-Q_ua6DBGHltK96MHMdXO5zFbtKWwgxuwD3P39VOtjq6PL87vdFqVywgwFb9c6keKOzGbxOFQQbV3Pwa9O1TslBqvKquGflN7gw20PbnfYZ3jy-Y3T15fPl9Lg--_b1ZHp0VhvOmazbxra2kVJw4JSVORkWnBBOoGu0aa0gTGLDSSNFx-SEthQwlaWlu8YSCWyMPm68y-G6B2vKdkl7tUyu1-lWRe3Uv53g5moWb5SgogjbIth_FKT4fYC8Ur3LBrzXAeKQFZFCFq5la_T9f-giDimU9RQlk3JnzMtSY_RhQ5V75Zygex6GYLXOUJUM1UOGhX339_TP5FNoBTjcAD-ch9uXTep0er5R_gH46qty
CitedBy_id crossref_primary_10_1016_j_ajo_2023_12_017
crossref_primary_10_1016_j_jtct_2023_03_020
crossref_primary_10_1152_ajpcell_00505_2019
crossref_primary_10_3390_biomedicines11061638
crossref_primary_10_3390_cells11152315
crossref_primary_10_3390_ijms21186855
crossref_primary_10_3390_ijerph182111009
crossref_primary_10_1111_apha_14006
crossref_primary_10_3390_antiox10060904
crossref_primary_10_1038_s41598_020_75224_0
crossref_primary_10_1126_scisignal_aba2940
crossref_primary_10_3389_fimmu_2023_1217366
Cites_doi 10.2174/1568026043451014
10.1074/jbc.M112.398479
10.1002/jcp.24878
10.1007/s11302‐007‐9078‐7
10.1016/S1040‐7952(97)80019‐5
10.1152/ajpcell.00327.2015
10.1016/j.celrep.2016.12.092
10.1124/mol.112.081034
10.1074/jbc.M110.205062
10.1016/S0962‐8924(99)01558‐5
10.1042/BJ20071299
10.1096/fj.13‐238741
10.1083/jcb.130.3.613
10.1152/ajpheart.1997.273.5.H2304
10.1016/j.febslet.2005.10.055
10.4049/jimmunol.1002907
10.1016/S0006‐2952(00)00570‐0
10.1006/bbrc.2001.4683
10.4103/0975‐3583.78582
10.1016/j.it.2003.11.003
10.1074/jbc.M405957200
10.1016/j.mvr.2009.11.007
10.3390/ijms15022024
10.1038/nrd2605
10.1074/jbc.M109.016501
10.1002/jcp.22894
10.1016/S0960‐9822(01)00530‐9
10.1002/(ISSN)1097‐4652
10.1165/rcmb.2008‐0391OC
10.1074/jbc.M412595200
10.1124/pr.113.008029
10.1210/endo.142.3.8023
10.3109/10623320009072215
10.1152/ajplung.00283.2007
10.1002/wmts.v1.6
10.1161/01.RES.0000012203.21416.14
10.3389/fimmu.2013.00085
10.14814/phy2.12175
10.1074/jbc.271.9.4733
10.1016/j.abb.2010.05.001
10.1152/ajplung.00330.2009
10.1165/rcmb.F305
10.1152/physrev.00012.2005
10.1152/ajpgi.00465.2002
10.1038/cddis.2014.576
10.1161/ATVBAHA.114.303678
10.1161/01.RES.0000175561.55761.69
10.1152/ajplung.00086.2013
10.1002/jcp.21913
10.1074/jbc.R400018200
10.1038/sj.bjp.0701880
10.1016/S0898‐6568(01)00235‐2
10.1074/jbc.M110352200
10.1016/j.vph.2009.12.008
10.1074/jbc.M010398200
10.1016/j.abb.2011.01.018
10.1038/sj.bjp.0705043
10.1038/srep44698
10.1097/00001721‐199402000‐00010
10.1182/blood‐2010‐02‐268870
10.1074/jbc.M109.019729
10.1073/pnas.222659799
10.1126/science.273.5272.245
10.1136/gut.2008.151134
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1002/jcp.26419
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 5879
ExternalDocumentID 10_1002_jcp_26419
29271489
JCP26419
Genre article
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Canadian Institutes of Health Research
  funderid: MOP‐133494
– fundername: National Heart, Lung, and Blood Institute
  funderid: HL101902
– fundername: NHLBI NIH HHS
  grantid: P01 HL101902
– fundername: CIHR
  grantid: MOP-133494
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
G8K
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4439-85d8d59974e42314830741141ef5ac8d71390c41597f396282e0295acaf5d19e3
IEDL.DBID DR2
ISSN 0021-9541
IngestDate Tue Sep 17 21:27:57 EDT 2024
Sat Aug 17 00:21:09 EDT 2024
Sat Oct 26 05:54:47 EDT 2024
Thu Sep 26 21:08:40 EDT 2024
Sat Sep 28 08:29:12 EDT 2024
Sat Aug 24 01:03:17 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords adenosine
myosin light chain
ATPγS
endothelial barrier protection
PKA
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4439-85d8d59974e42314830741141ef5ac8d71390c41597f396282e0295acaf5d19e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1400-6732
0000-0001-7244-5517
OpenAccessLink https://europepmc.org/articles/pmc7273968?pdf=render
PMID 29271489
PQID 2169270444
PQPubID 1006363
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7273968
proquest_miscellaneous_1979968838
proquest_journals_2169270444
crossref_primary_10_1002_jcp_26419
pubmed_primary_29271489
wiley_primary_10_1002_jcp_26419_JCP26419
PublicationCentury 2000
PublicationDate May 2019
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_1_55_1
e_1_2_7_1_11_1
e_1_2_7_1_32_1
e_1_2_7_1_57_1
e_1_2_7_1_13_1
e_1_2_7_1_34_1
e_1_2_7_1_51_1
Ralevic V. (e_1_2_7_1_49_1) 1998; 50
e_1_2_7_1_30_1
e_1_2_7_1_53_1
e_1_2_7_1_5_1
e_1_2_7_1_7_1
e_1_2_7_1_25_1
e_1_2_7_1_48_1
e_1_2_7_1_3_1
e_1_2_7_1_27_1
e_1_2_7_1_21_1
e_1_2_7_1_44_1
e_1_2_7_1_67_1
e_1_2_7_1_23_1
e_1_2_7_1_46_1
e_1_2_7_1_65_1
e_1_2_7_1_9_1
e_1_2_7_1_40_1
e_1_2_7_1_63_1
e_1_2_7_1_42_1
e_1_2_7_1_61_1
e_1_2_7_1_18_1
e_1_2_7_1_14_1
e_1_2_7_1_37_1
e_1_2_7_1_16_1
e_1_2_7_1_39_1
e_1_2_7_1_58_1
e_1_2_7_1_10_1
e_1_2_7_1_33_1
e_1_2_7_1_54_1
e_1_2_7_1_12_1
e_1_2_7_1_35_1
e_1_2_7_1_56_1
e_1_2_7_1_50_1
e_1_2_7_1_31_1
e_1_2_7_1_52_1
e_1_2_7_1_6_1
e_1_2_7_1_8_1
e_1_2_7_1_2_1
e_1_2_7_1_26_1
e_1_2_7_1_47_1
e_1_2_7_1_4_1
e_1_2_7_1_28_1
e_1_2_7_1_22_1
e_1_2_7_1_43_1
e_1_2_7_1_24_1
e_1_2_7_1_45_1
e_1_2_7_1_66_1
e_1_2_7_1_64_1
e_1_2_7_1_20_1
e_1_2_7_1_41_1
e_1_2_7_1_62_1
e_1_2_7_1_60_1
e_1_2_7_1_19_1
Kennedy C. (e_1_2_7_1_29_1) 2000; 57
e_1_2_7_1_15_1
e_1_2_7_1_36_1
e_1_2_7_1_17_1
e_1_2_7_1_38_1
e_1_2_7_1_59_1
References_xml – ident: e_1_2_7_1_9_1
  doi: 10.2174/1568026043451014
– volume: 50
  start-page: 413
  issue: 3
  year: 1998
  ident: e_1_2_7_1_49_1
  article-title: Receptors for purines and pyrimidines
  publication-title: Pharmacological Reviews
  contributor:
    fullname: Ralevic V.
– ident: e_1_2_7_1_24_1
  doi: 10.1074/jbc.M112.398479
– ident: e_1_2_7_1_53_1
  doi: 10.1002/jcp.24878
– ident: e_1_2_7_1_15_1
  doi: 10.1007/s11302‐007‐9078‐7
– ident: e_1_2_7_1_57_1
  doi: 10.1016/S1040‐7952(97)80019‐5
– ident: e_1_2_7_1_56_1
  doi: 10.1152/ajpcell.00327.2015
– ident: e_1_2_7_1_54_1
  doi: 10.1016/j.celrep.2016.12.092
– ident: e_1_2_7_1_44_1
  doi: 10.1124/mol.112.081034
– ident: e_1_2_7_1_66_1
  doi: 10.1074/jbc.M110.205062
– ident: e_1_2_7_1_13_1
  doi: 10.1016/S0962‐8924(99)01558‐5
– ident: e_1_2_7_1_55_1
  doi: 10.1042/BJ20071299
– ident: e_1_2_7_1_60_1
  doi: 10.1096/fj.13‐238741
– ident: e_1_2_7_1_21_1
  doi: 10.1083/jcb.130.3.613
– ident: e_1_2_7_1_46_1
  doi: 10.1152/ajpheart.1997.273.5.H2304
– ident: e_1_2_7_1_41_1
  doi: 10.1016/j.febslet.2005.10.055
– ident: e_1_2_7_1_65_1
  doi: 10.4049/jimmunol.1002907
– ident: e_1_2_7_1_19_1
  doi: 10.1016/S0006‐2952(00)00570‐0
– volume: 57
  start-page: 926
  issue: 5
  year: 2000
  ident: e_1_2_7_1_29_1
  article-title: ATP, an agonist at the rat P2Y(4) receptor, is an antagonist at the human P2Y(4) receptor
  publication-title: Molecular Pharmacology
  contributor:
    fullname: Kennedy C.
– ident: e_1_2_7_1_67_1
  doi: 10.1006/bbrc.2001.4683
– ident: e_1_2_7_1_64_1
  doi: 10.4103/0975‐3583.78582
– ident: e_1_2_7_1_27_1
  doi: 10.1016/j.it.2003.11.003
– ident: e_1_2_7_1_62_1
  doi: 10.1074/jbc.M405957200
– ident: e_1_2_7_1_6_1
  doi: 10.1016/j.mvr.2009.11.007
– ident: e_1_2_7_1_52_1
  doi: 10.3390/ijms15022024
– ident: e_1_2_7_1_11_1
  doi: 10.1038/nrd2605
– ident: e_1_2_7_1_43_1
  doi: 10.1074/jbc.M109.016501
– ident: e_1_2_7_1_31_1
  doi: 10.1002/jcp.22894
– ident: e_1_2_7_1_45_1
  doi: 10.1016/S0960‐9822(01)00530‐9
– ident: e_1_2_7_1_20_1
  doi: 10.1002/(ISSN)1097‐4652
– ident: e_1_2_7_1_63_1
  doi: 10.1165/rcmb.2008‐0391OC
– ident: e_1_2_7_1_61_1
  doi: 10.1074/jbc.M412595200
– ident: e_1_2_7_1_12_1
  doi: 10.1124/pr.113.008029
– ident: e_1_2_7_1_37_1
  doi: 10.1210/endo.142.3.8023
– ident: e_1_2_7_1_48_1
  doi: 10.3109/10623320009072215
– ident: e_1_2_7_1_35_1
  doi: 10.1152/ajplung.00283.2007
– ident: e_1_2_7_1_14_1
  doi: 10.1002/wmts.v1.6
– ident: e_1_2_7_1_16_1
  doi: 10.1161/01.RES.0000012203.21416.14
– ident: e_1_2_7_1_26_1
  doi: 10.3389/fimmu.2013.00085
– ident: e_1_2_7_1_2_1
  doi: 10.14814/phy2.12175
– ident: e_1_2_7_1_28_1
  doi: 10.1074/jbc.271.9.4733
– ident: e_1_2_7_1_5_1
  doi: 10.1016/j.abb.2010.05.001
– ident: e_1_2_7_1_38_1
  doi: 10.1152/ajplung.00330.2009
– ident: e_1_2_7_1_39_1
  doi: 10.1165/rcmb.F305
– ident: e_1_2_7_1_40_1
  doi: 10.1152/physrev.00012.2005
– ident: e_1_2_7_1_42_1
  doi: 10.1152/ajpgi.00465.2002
– ident: e_1_2_7_1_3_1
  doi: 10.1038/cddis.2014.576
– ident: e_1_2_7_1_36_1
  doi: 10.1161/ATVBAHA.114.303678
– ident: e_1_2_7_1_34_1
  doi: 10.1161/01.RES.0000175561.55761.69
– ident: e_1_2_7_1_22_1
  doi: 10.1152/ajplung.00086.2013
– ident: e_1_2_7_1_7_1
  doi: 10.1002/jcp.21913
– ident: e_1_2_7_1_25_1
  doi: 10.1074/jbc.R400018200
– ident: e_1_2_7_1_8_1
  doi: 10.1038/sj.bjp.0701880
– ident: e_1_2_7_1_33_1
  doi: 10.1016/S0898‐6568(01)00235‐2
– ident: e_1_2_7_1_58_1
  doi: 10.1074/jbc.M110352200
– ident: e_1_2_7_1_59_1
  doi: 10.1016/j.vph.2009.12.008
– ident: e_1_2_7_1_50_1
  doi: 10.1074/jbc.M010398200
– ident: e_1_2_7_1_23_1
  doi: 10.1016/j.abb.2011.01.018
– ident: e_1_2_7_1_18_1
  doi: 10.1038/sj.bjp.0705043
– ident: e_1_2_7_1_4_1
  doi: 10.1038/srep44698
– ident: e_1_2_7_1_47_1
  doi: 10.1097/00001721‐199402000‐00010
– ident: e_1_2_7_1_51_1
  doi: 10.1182/blood‐2010‐02‐268870
– ident: e_1_2_7_1_30_1
  doi: 10.1074/jbc.M109.019729
– ident: e_1_2_7_1_17_1
  doi: 10.1073/pnas.222659799
– ident: e_1_2_7_1_32_1
  doi: 10.1126/science.273.5272.245
– ident: e_1_2_7_1_10_1
  doi: 10.1136/gut.2008.151134
SSID ssj0009933
Score 2.4051156
Snippet Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular...
Abstract Maintenance of the endothelial cell (EC) barrier is critical to vascular homeostasis and a loss of barrier integrity results in increased vascular...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 5863
SubjectTerms A Kinase Anchor Proteins - genetics
A Kinase Anchor Proteins - metabolism
Activation
Adenosine
Adenosine monophosphate
Adenosine Triphosphate - analogs & derivatives
Adenosine Triphosphate - pharmacology
ATP
ATPγS
Capillary Permeability - drug effects
Contraction
Cyclic AMP
Cyclic AMP - metabolism
Cyclic AMP-Dependent Protein Kinases - genetics
Cyclic AMP-Dependent Protein Kinases - metabolism
Depletion
Electric Impedance
endothelial barrier protection
Endothelial cells
Guanine
Guanine nucleotide exchange factor
Guanine Nucleotide Exchange Factors - genetics
Guanine Nucleotide Exchange Factors - metabolism
HEK293 Cells
Homeostasis
Humans
Kinases
Lungs
Membrane Proteins - genetics
Membrane Proteins - metabolism
Microvasculature
Microvessels - drug effects
Microvessels - metabolism
Myosin
myosin light chain
Myosin Light Chains - metabolism
Myosin-Light-Chain Phosphatase - genetics
Myosin-Light-Chain Phosphatase - metabolism
Myosin-light-chain-phosphatase
Permeability
Phosphatase
Phosphorylation
PKA
Preservation
Protein kinase A
Proteins
Purinergic P1 Receptor Agonists - pharmacology
Purines
Receptors, Purinergic P1 - drug effects
Receptors, Purinergic P1 - genetics
Receptors, Purinergic P1 - metabolism
Restoration
Signal Transduction
Title Differential mechanisms of adenosine‐ and ATPγS‐induced microvascular endothelial barrier strengthening
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.26419
https://www.ncbi.nlm.nih.gov/pubmed/29271489
https://www.proquest.com/docview/2169270444
https://search.proquest.com/docview/1979968838
https://pubmed.ncbi.nlm.nih.gov/PMC7273968
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1VlZB4gdJySSmVQQjxku06di4WT6teVFUCVdBKfUCKfAss7HqrZvehPPEJ_Av_wUf0Szp2LmWpkBBviRw7TjyTOePMnAF4STOda5OYWNI8ixGB81gJpmLExhItFDdD7rOR377LDk_50Vl6tgJvulyYhh-i33DzmhG-117Bpap3bkhDv-jzAVrzQPlJWe7Dufbe31BHibaMfAhBSDntWIWGyU7fc9kW3QKYt-Mkf8evwQAd3IeP3dSbuJOvg8VcDfS3P1gd__PZ1uBeC0zJqJGkB7Bi3TpsjBw65dNL8oqEUNGwB78Od5oKlpcbMNlrC6zgh2JCptbnEY_raU1mFZHGE5HjXK6-_yDSGTI6Of718wOejZ1BiTJk6qMBu1hYYp3x6WATP5KSF76UHvGpLO6TZ2hAE_sQTg_2T3YP47aAQ6w5Ap24SE1hUoEui0XUho4X8wCGcmqrVOrCoIMshhohhMgrJjL0_uwwEdgkq9RQYdkjWHUzZ58ASbXMK8OVqDR6tFooRTX6gqlinDErRAQvuqUszxuejrJhZE5KfJtleJsRbHWLXLaqWpcJzUSSe9q8CJ73zahk_s-JdHa2qEvqf35mRcGKCB43MtHfJcHe-Gg4eL4kLf0FnsB7ucWNPwcib48dcdgIXgdh-PvEy6Pd43Cw-e-XPoW7CO5EE5y5Bavzi4V9hgBqrraDplwDfkQarQ
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRQguFFooKQUMQohLtpvY-bHEZdVSLaWtKthKvaAosR1Y2PVW3d1De-oj8C68Bw_BkzDj_JSlQkLcEjlx7GQm84098w3AiyBWidKh9vMgiX1E4MIvJC98xMY5Wiihu4KykQ8O4_6x2DuJTpbgdZMLU_FDtAtupBnuf00KTgvSW1esoV_UaQfNOXF-3kB151S4Yef9FXmUrAvJuyCESAQNr1A33GpvXbRG1yDm9UjJ3xGsM0G7K_CxGXwVefK1M58VHXXxB6_j_87uLtypsSnrVcJ0D5aMXYW1nkW_fHzOXjIXLeqW4VfhZlXE8nwNRjt1jRX8V4zY2FAq8XA6nrJJyXJNXOQ4mJ-X31huNesNjn58_4BnQ6tRqDQbU0BgEw7LjNWUETainor8jKrpMcpmsZ-IpAGt7H043n0z2O77dQ0HXwnEOn4a6VRHEr0Wg8ANfS9OGCYQgSmjXKUafWTZVYgiZFJyGaMDaLqhxKa8jHQgDX8Ay3ZizUNgkcqTUotClgqdWiWLIlDoDkYFF5wbKT143nzL7LSi6sgqUuYww7eZubfpwWbzlbNaW6dZGMQyTIg5z4NnbTPqGW2e5NZM5tMsoP3POE156sF6JRTtU0K8G6eGnScL4tJeQBzeiy12-NlxeRN8xG49eOWk4e8Dz_a2j9zBxr9f-hRu9QcH-9n-28N3j-A2Yj1ZxWpuwvLsbG4eI56aFU-c2vwC9iMexQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRSAuQFsogVIMQohLtpvE-bE4rVpWpUC1glbqASlybAcWdr2r7u6hPfUReBfeg4fgSZhxfspSISFuiRw7TjyT-caZ-QbgWZCoVOlQ-zJIEx8ROPcLERU-YmOJForrLqds5HeHyf4xPziJT1bgZZMLU_FDtBtupBnue00KPtXlziVp6Bc17aA1J8rPazxB5EuI6P0ld5So68i7GISYBw2tUDfcabsuG6MrCPNqoOTvANZZoP5t-NjMvQo8-dpZzIuOOv-D1vE_H-4O3KqRKetVorQGK8auw0bPolc-PmPPmYsVdZvw63C9KmF5tgGjvbrCCn4pRmxsKJF4OBvP2KRkUhMTOc7l58U3Jq1mvaPBj-8f8GxoNYqUZmMKB2yCYZmxmvLBRjRSIU-plh6jXBb7iSga0MbeheP-q6Pdfb-u4OArjkjHz2Kd6Vigz2IQtqHnFRGCCXhgyliqTKOHLLoKMYRIy0gk6P6ZbiiwSZaxDoSJ7sGqnVhzH1isZFpqXohSoUurRFEECp3BuIh4FBkhPHjaLGU-rYg68oqSOczxbebubXqw1SxyXuvqLA-DRIQp8eZ58KRtRi2jXyfSmslilgf09zPJsijzYLOSifYuIfbGR8PB0yVpaS8gBu_lFjv87Ji8CTzisB68cMLw94nnB7sDd_Dg3y99DDcGe_387evDNw_hJgI9UQVqbsHq_HRhHiGYmhfbTml-AZOsHXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+mechanisms+of+adenosine%E2%80%90+and+ATP%CE%B3S%E2%80%90induced+microvascular+endothelial+barrier+strengthening&rft.jtitle=Journal+of+cellular+physiology&rft.au=B%C3%A1tori%2C+R%C3%B3bert&rft.au=Kumar%2C+Sanjiv&rft.au=Bord%C3%A1n%2C+Zsuzsanna&rft.au=Cherian%E2%80%90Shaw%2C+Mary&rft.date=2019-05-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=234&rft.issue=5&rft.spage=5863&rft.epage=5879&rft_id=info:doi/10.1002%2Fjcp.26419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcp_26419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon