Inter‐subject alignment of MEG datasets in a common representational space

Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in t...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 38; no. 9; pp. 4287 - 4301
Main Authors Zhang, Qiong, Borst, Jelmer P., Kass, Robert E., Anderson, John R.
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.09.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in the brains. It is possible to achieve alignment by assuming that the same regions of different brains correspond across subjects. However, this relies on both the assumption that brain anatomy and function are well correlated, and the strong assumptions that go into solving the under‐determined inverse problem given the high‐dimensional source space. In this article, we investigated an alternative method that bypasses source‐localization. Instead, it analyzes the sensor recordings themselves and aligns their temporal signatures across subjects. We used a multivariate approach, multiset canonical correlation analysis (M‐CCA), to transform individual subject data to a low‐dimensional common representational space. We evaluated the robustness of this approach over a synthetic dataset, by examining the effect of different factors that add to the noise and individual differences in the data. On an MEG dataset, we demonstrated that M‐CCA performs better than a method that assumes perfect sensor correspondence and a method that applies source localization. Last, we described how the standard M‐CCA algorithm could be further improved with a regularization term that incorporates spatial sensor information. Hum Brain Mapp 38:4287–4301, 2017. © 2017 Wiley Periodicals, Inc.
AbstractList Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in the brains. It is possible to achieve alignment by assuming that the same regions of different brains correspond across subjects. However, this relies on both the assumption that brain anatomy and function are well correlated, and the strong assumptions that go into solving the under-determined inverse problem given the high-dimensional source space. In this article, we investigated an alternative method that bypasses source-localization. Instead, it analyzes the sensor recordings themselves and aligns their temporal signatures across subjects. We used a multivariate approach, multiset canonical correlation analysis (M-CCA), to transform individual subject data to a low-dimensional common representational space. We evaluated the robustness of this approach over a synthetic dataset, by examining the effect of different factors that add to the noise and individual differences in the data. On an MEG dataset, we demonstrated that M-CCA performs better than a method that assumes perfect sensor correspondence and a method that applies source localization. Last, we described how the standard M-CCA algorithm could be further improved with a regularization term that incorporates spatial sensor information. Hum Brain Mapp 38:4287-4301, 2017. © 2017 Wiley Periodicals, Inc.Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in the brains. It is possible to achieve alignment by assuming that the same regions of different brains correspond across subjects. However, this relies on both the assumption that brain anatomy and function are well correlated, and the strong assumptions that go into solving the under-determined inverse problem given the high-dimensional source space. In this article, we investigated an alternative method that bypasses source-localization. Instead, it analyzes the sensor recordings themselves and aligns their temporal signatures across subjects. We used a multivariate approach, multiset canonical correlation analysis (M-CCA), to transform individual subject data to a low-dimensional common representational space. We evaluated the robustness of this approach over a synthetic dataset, by examining the effect of different factors that add to the noise and individual differences in the data. On an MEG dataset, we demonstrated that M-CCA performs better than a method that assumes perfect sensor correspondence and a method that applies source localization. Last, we described how the standard M-CCA algorithm could be further improved with a regularization term that incorporates spatial sensor information. Hum Brain Mapp 38:4287-4301, 2017. © 2017 Wiley Periodicals, Inc.
Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in the brains. It is possible to achieve alignment by assuming that the same regions of different brains correspond across subjects. However, this relies on both the assumption that brain anatomy and function are well correlated, and the strong assumptions that go into solving the under‐determined inverse problem given the high‐dimensional source space. In this article, we investigated an alternative method that bypasses source‐localization. Instead, it analyzes the sensor recordings themselves and aligns their temporal signatures across subjects. We used a multivariate approach, multiset canonical correlation analysis (M‐CCA), to transform individual subject data to a low‐dimensional common representational space. We evaluated the robustness of this approach over a synthetic dataset, by examining the effect of different factors that add to the noise and individual differences in the data. On an MEG dataset, we demonstrated that M‐CCA performs better than a method that assumes perfect sensor correspondence and a method that applies source localization. Last, we described how the standard M‐CCA algorithm could be further improved with a regularization term that incorporates spatial sensor information. Hum Brain Mapp 38:4287–4301, 2017. © 2017 Wiley Periodicals, Inc.
Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in the brains. It is possible to achieve alignment by assuming that the same regions of different brains correspond across subjects. However, this relies on both the assumption that brain anatomy and function are well correlated, and the strong assumptions that go into solving the under‐determined inverse problem given the high‐dimensional source space. In this article, we investigated an alternative method that bypasses source‐localization. Instead, it analyzes the sensor recordings themselves and aligns their temporal signatures across subjects. We used a multivariate approach, multiset canonical correlation analysis (M‐CCA), to transform individual subject data to a low‐dimensional common representational space. We evaluated the robustness of this approach over a synthetic dataset, by examining the effect of different factors that add to the noise and individual differences in the data. On an MEG dataset, we demonstrated that M‐CCA performs better than a method that assumes perfect sensor correspondence and a method that applies source localization. Last, we described how the standard M‐CCA algorithm could be further improved with a regularization term that incorporates spatial sensor information. Hum Brain Mapp 38:4287–4301, 2017 . © 2017 Wiley Periodicals, Inc.
Author Kass, Robert E.
Anderson, John R.
Zhang, Qiong
Borst, Jelmer P.
AuthorAffiliation 2 Center for the Neural Basis of Cognition Pittsburgh Pennsylvania
3 Department of Artificial Intelligence University of Groningen Groningen the Netherlands
5 Department of Psychology Carnegie Mellon University Pittsburgh Pennsylvania
4 Department of Statistics Carnegie Mellon University Pittsburgh Pennsylvania
1 Machine Learning Department Carnegie Mellon University Pittsburgh Pennsylvania
AuthorAffiliation_xml – name: 2 Center for the Neural Basis of Cognition Pittsburgh Pennsylvania
– name: 5 Department of Psychology Carnegie Mellon University Pittsburgh Pennsylvania
– name: 1 Machine Learning Department Carnegie Mellon University Pittsburgh Pennsylvania
– name: 4 Department of Statistics Carnegie Mellon University Pittsburgh Pennsylvania
– name: 3 Department of Artificial Intelligence University of Groningen Groningen the Netherlands
Author_xml – sequence: 1
  givenname: Qiong
  orcidid: 0000-0001-9062-9571
  surname: Zhang
  fullname: Zhang, Qiong
  email: qiongz@andrew.cmu.edu
  organization: Center for the Neural Basis of Cognition
– sequence: 2
  givenname: Jelmer P.
  surname: Borst
  fullname: Borst, Jelmer P.
  organization: University of Groningen
– sequence: 3
  givenname: Robert E.
  surname: Kass
  fullname: Kass, Robert E.
  organization: Carnegie Mellon University
– sequence: 4
  givenname: John R.
  surname: Anderson
  fullname: Anderson, John R.
  organization: Carnegie Mellon University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28643879$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS3Uiv7AghdAltjAIq3_4tgbJFqVttJUbGBt3ThO61FiD3ZC1R2P0Gfsk-BhphVUsLqW7neOju85QDshBofQG0qOKCHs-KYdjxiXSr9A-5TopiJU8531W9aVFg3dQwc5LwmhtCb0JdpjSgquGr2PFpdhcunh532e26WzE4bBX4fRhQnHHl-dneMOJshuytgHDNjGcYwBJ7dKLhcKJh8DDDivwLpXaLeHIbvX23mIvn0--3p6US2-nF-eflpUVgiuKw6c9KBdzxh1pFW1tKpWGggBbVuma-iUsKID3XRMC9k7wohsFLREciUYP0QfN76ruR1dZ0uOBINZJT9CujMRvPl7E_yNuY4_jFRSKk6LwfutQYrfZ5cnM_ps3TBAcHHOhmrKudYNbQr67hm6jHMqX15TTAohiVonevtnoqcoj4cuwPEGsCnmnFxvrN8crwT0g6HErKs0pUrzu8qi-PBM8Wj6L3brfusHd_d_0FycXG0UvwDN2K3c
CitedBy_id crossref_primary_10_1093_scan_nsaa061
crossref_primary_10_1016_j_bandc_2021_105786
crossref_primary_10_1162_jocn_a_01663
crossref_primary_10_1016_j_neuroimage_2018_03_039
crossref_primary_10_1016_j_neuroimage_2023_120079
crossref_primary_10_1109_TNSRE_2021_3129790
crossref_primary_10_1177_0956797618774526
crossref_primary_10_1002_hbm_25090
crossref_primary_10_1093_bjps_axz027
crossref_primary_10_1016_j_neuroimage_2018_11_026
crossref_primary_10_1093_cercor_bhae125
crossref_primary_10_1049_ccs2_12111
Cites_doi 10.1103/RevModPhys.65.413
10.1109/10.16463
10.1109/10.19859
10.1037/rev0000030
10.1016/j.neuroimage.2012.01.021
10.1007/s10548-016-0523-1
10.1007/BF02512476
10.1186/1475-925X-9-45
10.1162/jocn_a_00457
10.1016/j.neuron.2011.08.026
10.1016/0168-5597(85)90033-4
10.1007/s11265-010-0572-8
10.1006/nimg.1998.0395
10.1093/biomet/58.3.433
10.1155/2011/156869
10.1006/nimg.2001.0915
10.1109/TSP.2009.2021636
10.1016/j.neunet.2006.09.011
10.1016/j.neuroimage.2012.11.047
10.1016/j.neuroimage.2007.12.026
10.1016/j.neuroimage.2013.10.027
10.1111/1469-8986.3720127
10.1016/j.tics.2006.07.005
10.1016/j.neuroimage.2016.08.002
10.1109/10.748978
10.1016/j.clinph.2012.03.080
10.1109/MSP.2010.936725
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.23689
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Inter‐subject Alignment of MEG Datasets
EISSN 1097-0193
EndPage 4301
ExternalDocumentID PMC6866831
28643879
10_1002_hbm_23689
HBM23689
Genre shortCommunication
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: James S. McDonnell Foundation Scholar Award
  funderid: 220020162
– fundername: Office of Naval Research
  funderid: N00014‐15‐1‐2151
– fundername: National Science Foundation
  funderid: 1420009
– fundername: National Institute of Mental Health
  funderid: 064537
– fundername: Netherlands Organisation for Scientific Research
  funderid: 451‐15‐040
– fundername: ;
  grantid: 1420009
– fundername: ;
  grantid: 220020162
– fundername: ;
  grantid: N00014‐15‐1‐2151
– fundername: ;
  grantid: 451‐15‐040
– fundername: ;
  grantid: 064537
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4439-3a30fa9ef221e0b856c8589a00a9cb295ad84c4da97d2946fe020678ab0638423
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:07:31 EDT 2025
Fri Jul 11 10:07:17 EDT 2025
Sat Jul 26 02:16:57 EDT 2025
Wed Feb 19 02:41:45 EST 2025
Tue Jul 01 01:10:47 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Wed Jan 22 16:40:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords common representational space
canonical correlation analysis
magnetoencephalography
subject alignment
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4439-3a30fa9ef221e0b856c8589a00a9cb295ad84c4da97d2946fe020678ab0638423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9062-9571
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.23689
PMID 28643879
PQID 1926446082
PQPubID 996345
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6866831
proquest_miscellaneous_1913399717
proquest_journals_1926446082
pubmed_primary_28643879
crossref_citationtrail_10_1002_hbm_23689
crossref_primary_10_1002_hbm_23689
wiley_primary_10_1002_hbm_23689_HBM23689
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2017
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2017
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2013; 25
2012; 123
2006; 10
2013; 68
1993; 65
1998
1999; 46
2009
2016; 123
2016; 30
1985; 62
2005
2002
2016; 141
1999; 9
2014; 86
2011; 2011
2009; 57
2010; 27
2000; 37
2011; 72
1971; 58
2007; 20
2012; 68
2008; 40
1989; 36
2001; 14
2010; 9
1994; 32
2012; 62
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 57
  start-page: 3918
  year: 2009
  end-page: 3929
  article-title: Joint blind source separation by Multi‐set Canonical Correlation analysis
  publication-title: IEEE Trans Signal Process
– volume: 123
  start-page: 2180
  year: 2012
  end-page: 2191
  article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography
  publication-title: Clin Neurophysiol
– volume: 62
  start-page: 32
  year: 1985
  end-page: 44
  article-title: Two bilateral sources of the late aep as identified by a spatio‐temporal dipole model
  publication-title: Electroencephalogr Clin Neurophysiol Evoked Potent Sect
– year: 2009
– volume: 9
  start-page: 45
  year: 2010
  article-title: Openmeeg: Opensource software for quasistatic bioelectromagnetics
  publication-title: BioMed Eng Online
– volume: 14
  start-page: 1424
  year: 2001
  end-page: 1431
  article-title: Detecting and correcting for head movements in neuromagnetic measurements
  publication-title: NeuroImage
– volume: 37
  start-page: 127
  year: 2000
  end-page: 152
  article-title: Guidelines for using human event‐related potentials to study cognition: Recording standards and publication criteria
  publication-title: Psychophysiology
– volume: 27
  start-page: 39
  year: 2010
  end-page: 50
  article-title: Canonical correlation analysis for data fusion and group inferences: Examining applications of medical imaging data
  publication-title: IEEE Signal Process Magaz
– volume: 20
  start-page: 139
  year: 2007
  end-page: 152
  article-title: A learning algorithm for adaptive canonical correlation analysis of several data sets
  publication-title: Neural Networks
– year: 2005
– volume: 86
  start-page: 446
  year: 2014
  end-page: 460
  article-title: MNE software for processing MEG and EEG data
  publication-title: NeuroImage
– volume: 10
  start-page: 424
  year: 2006
  end-page: 430
  article-title: Beyond mind‐reading: Multi‐voxel pattern analysis of fMRI data
  publication-title: Trends Cogn Sci
– volume: 141
  start-page: 416
  year: 2016
  end-page: 430
  article-title: Tracking cognitive processing stages with meg: A spatio‐temporal model of associative recognition in the brain
  publication-title: NeuroImage
– volume: 40
  start-page: 541
  year: 2008
  end-page: 550
  article-title: Head movements of children in meg: Quantification, effects on source estimation, and compensation
  publication-title: NeuroImage
– volume: 123
  start-page: 481
  year: 2016
  end-page: 509
  article-title: The discovery of processing stages: Extension of sternberg's method
  publication-title: Psychol Rev
– volume: 68
  start-page: 39
  year: 2013
  end-page: 48
  article-title: Online and offline tools for head movement compensation in meg
  publication-title: NeuroImage
– volume: 72
  start-page: 404
  year: 2011
  end-page: 416
  article-title: A common, high‐dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
– volume: 46
  start-page: 245
  year: 1999
  end-page: 259
  article-title: Eeg and meg: Forward solutions for inverse methods
  publication-title: IEEE Trans Biomed Eng
– volume: 9
  start-page: 179
  year: 1999
  end-page: 194
  article-title: Cortical surface‐based analysis: I. segmentation and surface reconstruction
  publication-title: NeuroImage
– volume: 36
  start-page: 165
  year: 1989
  end-page: 171
  article-title: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data
  publication-title: IEEE Trans Biomed Eng
– volume: 32
  start-page: 35
  year: 1994
  end-page: 42
  article-title: Interpreting magnetic fields of the brain: Minimum norm estimates
  publication-title: Med Biol Eng Comput
– year: 1998
– volume: 68
  start-page: 31
  year: 2012
  end-page: 48
  article-title: Group study of simulated driving fMRI data by multiset canonical correlation analysis
  publication-title: J Signal Process Syst
– year: 2002
– volume: 58
  start-page: 433
  year: 1971
  end-page: 451
  article-title: Canonical analysis of several sets of variables
  publication-title: Biometrika
– volume: 25
  start-page: 2151
  year: 2013
  end-page: 2166
  article-title: Stages of processing in associative recognition: Evidence from behavior, eeg, and classification
  publication-title: J Cogn Neurosci
– volume: 30
  start-page: 172
  year: 2016
  end-page: 181
  article-title: The importance of properly compensating for head movements during meg acquisition across different age groups
  publication-title: Brain Topogr
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 9
  article-title: Fieldtrip: Open source software for advanced analysis of meg, eeg, and invasive electrophysiological data
  publication-title: Comput Intell Neurosci
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  article-title: Freesurfer
  publication-title: NeuroImage
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev Mod Phys
– volume: 36
  start-page: 382
  year: 1989
  end-page: 391
  article-title: Source parameter estimation in inhomogeneous volume conductors of arbitrary shape
  publication-title: IEEE Trans Biomed Eng
– ident: e_1_2_7_12_1
  doi: 10.1103/RevModPhys.65.413
– ident: e_1_2_7_13_1
  doi: 10.1109/10.16463
– ident: e_1_2_7_23_1
  doi: 10.1109/10.19859
– ident: e_1_2_7_2_1
  doi: 10.1037/rev0000030
– ident: e_1_2_7_8_1
  doi: 10.1016/j.neuroimage.2012.01.021
– ident: e_1_2_7_3_1
– ident: e_1_2_7_17_1
  doi: 10.1007/s10548-016-0523-1
– ident: e_1_2_7_11_1
– ident: e_1_2_7_14_1
  doi: 10.1007/BF02512476
– ident: e_1_2_7_10_1
  doi: 10.1186/1475-925X-9-45
– ident: e_1_2_7_5_1
  doi: 10.1162/jocn_a_00457
– ident: e_1_2_7_15_1
  doi: 10.1016/j.neuron.2011.08.026
– ident: e_1_2_7_27_1
  doi: 10.1016/0168-5597(85)90033-4
– ident: e_1_2_7_19_1
  doi: 10.1007/s11265-010-0572-8
– ident: e_1_2_7_7_1
  doi: 10.1006/nimg.1998.0395
– ident: e_1_2_7_16_1
  doi: 10.1093/biomet/58.3.433
– ident: e_1_2_7_24_1
  doi: 10.1155/2011/156869
– ident: e_1_2_7_29_1
  doi: 10.1006/nimg.2001.0915
– ident: e_1_2_7_18_1
  doi: 10.1109/TSP.2009.2021636
– ident: e_1_2_7_30_1
– ident: e_1_2_7_31_1
  doi: 10.1016/j.neunet.2006.09.011
– ident: e_1_2_7_28_1
  doi: 10.1016/j.neuroimage.2012.11.047
– ident: e_1_2_7_32_1
  doi: 10.1016/j.neuroimage.2007.12.026
– ident: e_1_2_7_9_1
  doi: 10.1016/j.neuroimage.2013.10.027
– ident: e_1_2_7_25_1
  doi: 10.1111/1469-8986.3720127
– ident: e_1_2_7_22_1
  doi: 10.1016/j.tics.2006.07.005
– ident: e_1_2_7_26_1
– ident: e_1_2_7_4_1
  doi: 10.1016/j.neuroimage.2016.08.002
– ident: e_1_2_7_20_1
  doi: 10.1109/10.748978
– ident: e_1_2_7_21_1
  doi: 10.1016/j.clinph.2012.03.080
– ident: e_1_2_7_6_1
  doi: 10.1109/MSP.2010.936725
SSID ssj0011501
Score 2.316692
Snippet Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4287
SubjectTerms Algorithms
Alignment
Anatomy
Brain
Brain - physiology
Brain Mapping - methods
Bypasses
canonical correlation analysis
common representational space
Computer Simulation
Correlation analysis
Humans
Inverse problems
Localization
Magnetoencephalography
Magnetoencephalography - methods
Multivariate Analysis
Neuroimaging
Position (location)
Principal Component Analysis
Regularization
Sensors
Structure-function relationships
subject alignment
Title Inter‐subject alignment of MEG datasets in a common representational space
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23689
https://www.ncbi.nlm.nih.gov/pubmed/28643879
https://www.proquest.com/docview/1926446082
https://www.proquest.com/docview/1913399717
https://pubmed.ncbi.nlm.nih.gov/PMC6866831
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPVRcgLY8lhZkEEJcsvU6tmOLU0EtK8RyQFTqASmyHbutoFlEdg_tqT-B38gvYew8YClIiFskTxI_Zsaf7ZnPAE-Z1cIy5zLEBirjlaCZCnmeeTmRYVI5Y1LW--ydnB7xN8fieA1e9LkwLT_EsOEWLSP562jgxjZ7P0lDT-35mOVSxeS9GKsVAdH7gToqAp202MIpNtPogXtWIcr2hjdX56JrAPN6nOSv-DVNQIe34GNf9Tbu5NN4ubBjd_kbq-N_tu023OyAKdlvNWkT1ny9Bdv7NS7Kzy_IM5JCRdMe_BZszLoT-W14m7YUv199a5Y2bukQxPUnKcKAzAOZHbwmMQa18YuGnNXEEKwJKj5JXJp93lP8Lzo25-_A0eHBh1fTrLuhIXMckUyWm5wGo31gbOKpVUI6JZQ2lBrtLNPCVIo7XhldVExzGTyNdPHK2IiUEMndhfV6Xvv7QFBIsFBwh96XB2GULJhUVARfUFblfATP-7EqXUdfHm_R-Fy2xMusxE4rU6eN4Mkg-qXl7PiT0G4_4GVntk2JcBfxoURYNILHQzEaXDxFMbWfL6MMLuu1xmXwCO61-jH8hSkEeKrAjxcrmjMIRDLv1ZL67DSRekslpcon2MykGH-veDl9OUsPD_5ddAdusAhHUmzcLqwvvi79QwRTC_soWc0PSogbNw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qWgnYUGh5DBQwCBCbTB3HcZwFi0JbpnTSBWql7oLjOG1VmqmajFBZ8Ql8CL_CT_AlXDsPGAoSmy7YRfJV_LqPY_v6GOApy-IwY1p7iA2kx_OQerIIAs8IXxR-rpVyt96THTHa42_3w_05-NrdhWn4IfoNN2sZzl9bA7cb0qs_WUMPs5MhC4SM25TKbXP-ERds1cutdZzdZ4xtbuy-HnntmwKe5hh7vUAFtFCxKRjzDc1kKLQMZawoVbHOWByqXHLNcxVHOYu5KAy1BOdSZTa2c0tzgA5_wb4gbpn619_1ZFUWWrnlHQZ1L0af3_EYUbbaN3U2-l2AtBczM39FzC7kbS7Ct26wmkyX4-G0zob60288kv_LaN6A6y32JmuNsdyEOVMuwfJaqerJyTl5Tlw2rDtmWIIrSZt0sAxjt2v6_fOXaprZXSuCS5cDl0RBJgVJNt4Qm2ZbmboiRyVRBLuOtk0cXWh3tcvWi75bm1uwdyldvA3z5aQ0d4GgUMiKiGsMMLwIlRQRE5KGhYkoywM-gBedcqS6ZWi3D4V8SBtuaZbiJKVukgbwpBc9bWhJ_iS00mlY2nqmKkVEjxBYIPIbwOO-GH2KPShSpZlMrYwfIHDFlf4A7jQK2dfCJGJYGeHPoxlV7QUsX_lsSXl06HjLhRRCBj5202ni3xuejl4l7uPev4s-gquj3WScjrd2tu_DNWbRl0sFXIH5-mxqHiB2rLOHzmQJvL9srf4Brrd3XQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qilSx4dHymFLAIEBsMk0cx7EXLArTYUo7FUJU6i51HJtWtJmKyQiVFZ_Af_ArfAVfwrXzgKEgsemCXSRfxa_7OLavjwEe0VwmOdU6QGwgAlYkYSBsHAeGR9xGhVbK33of7_LRHnu1n-wvwNf2LkzND9FtuDnL8P7aGfhpYdd_koYe5id9GnMhm4zKbXP2Eddr02dbA5zcx5QON9--GAXNkwKBZhh6g1jFoVXSWEojE-Yi4VokQqowVFLnVCaqEEyzQsm0oJJxa0LHby5U7kI7cywH6O8vMR5K907E4E3HVeWQlV_dYUwPJLr8lsYopOtdU-eD3zlEez4x81fA7CPe8Cp8a8eqTnR5359VeV9_-o1G8j8ZzGtwpUHeZKM2leuwYMplWNkoVTU5OSNPiM-F9YcMy7A0blIOVmDH75l-__xlOsvdnhXBhcs7n0JBJpaMN18Sl2Q7NdWUHJVEEew5WjbxZKHtxS5XL3pubW7A3oV08SYslpPS3AaCQgm1KdMYXphNlOAp5SJMrElDWsSsB09b3ch0w8_ungk5zmpmaZrhJGV-knrwsBM9rUlJ_iS01ipY1vilaYZ4HgEwR9zXgwddMXoUd0ykSjOZOZkoRtiK6_we3Kr1sauFCkSwIsWfp3Oa2gk4tvL5kvLo0LOWc8G5iCPsplfEvzc8Gz0f-4_Vfxe9D0uvB8NsZ2t3-w5cpg56-TzANVisPszMXQSOVX7PGyyBg4tW6h-9YXYM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-subject+alignment+of+MEG+datasets+in+a+common+representational+space&rft.jtitle=Human+brain+mapping&rft.au=Zhang%2C+Qiong&rft.au=Borst%2C+Jelmer+P&rft.au=Kass%2C+Robert+E&rft.au=Anderson%2C+John+R&rft.date=2017-09-01&rft.eissn=1097-0193&rft.volume=38&rft.issue=9&rft.spage=4287&rft_id=info:doi/10.1002%2Fhbm.23689&rft_id=info%3Apmid%2F28643879&rft.externalDocID=28643879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon