Inter‐subject alignment of MEG datasets in a common representational space
Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in t...
Saved in:
Published in | Human brain mapping Vol. 38; no. 9; pp. 4287 - 4301 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.09.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in the brains. It is possible to achieve alignment by assuming that the same regions of different brains correspond across subjects. However, this relies on both the assumption that brain anatomy and function are well correlated, and the strong assumptions that go into solving the under‐determined inverse problem given the high‐dimensional source space. In this article, we investigated an alternative method that bypasses source‐localization. Instead, it analyzes the sensor recordings themselves and aligns their temporal signatures across subjects. We used a multivariate approach, multiset canonical correlation analysis (M‐CCA), to transform individual subject data to a low‐dimensional common representational space. We evaluated the robustness of this approach over a synthetic dataset, by examining the effect of different factors that add to the noise and individual differences in the data. On an MEG dataset, we demonstrated that M‐CCA performs better than a method that assumes perfect sensor correspondence and a method that applies source localization. Last, we described how the standard M‐CCA algorithm could be further improved with a regularization term that incorporates spatial sensor information. Hum Brain Mapp 38:4287–4301, 2017. © 2017 Wiley Periodicals, Inc. |
---|---|
AbstractList | Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in the brains. It is possible to achieve alignment by assuming that the same regions of different brains correspond across subjects. However, this relies on both the assumption that brain anatomy and function are well correlated, and the strong assumptions that go into solving the under-determined inverse problem given the high-dimensional source space. In this article, we investigated an alternative method that bypasses source-localization. Instead, it analyzes the sensor recordings themselves and aligns their temporal signatures across subjects. We used a multivariate approach, multiset canonical correlation analysis (M-CCA), to transform individual subject data to a low-dimensional common representational space. We evaluated the robustness of this approach over a synthetic dataset, by examining the effect of different factors that add to the noise and individual differences in the data. On an MEG dataset, we demonstrated that M-CCA performs better than a method that assumes perfect sensor correspondence and a method that applies source localization. Last, we described how the standard M-CCA algorithm could be further improved with a regularization term that incorporates spatial sensor information. Hum Brain Mapp 38:4287-4301, 2017. © 2017 Wiley Periodicals, Inc.Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in the brains. It is possible to achieve alignment by assuming that the same regions of different brains correspond across subjects. However, this relies on both the assumption that brain anatomy and function are well correlated, and the strong assumptions that go into solving the under-determined inverse problem given the high-dimensional source space. In this article, we investigated an alternative method that bypasses source-localization. Instead, it analyzes the sensor recordings themselves and aligns their temporal signatures across subjects. We used a multivariate approach, multiset canonical correlation analysis (M-CCA), to transform individual subject data to a low-dimensional common representational space. We evaluated the robustness of this approach over a synthetic dataset, by examining the effect of different factors that add to the noise and individual differences in the data. On an MEG dataset, we demonstrated that M-CCA performs better than a method that assumes perfect sensor correspondence and a method that applies source localization. Last, we described how the standard M-CCA algorithm could be further improved with a regularization term that incorporates spatial sensor information. Hum Brain Mapp 38:4287-4301, 2017. © 2017 Wiley Periodicals, Inc. Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in the brains. It is possible to achieve alignment by assuming that the same regions of different brains correspond across subjects. However, this relies on both the assumption that brain anatomy and function are well correlated, and the strong assumptions that go into solving the under‐determined inverse problem given the high‐dimensional source space. In this article, we investigated an alternative method that bypasses source‐localization. Instead, it analyzes the sensor recordings themselves and aligns their temporal signatures across subjects. We used a multivariate approach, multiset canonical correlation analysis (M‐CCA), to transform individual subject data to a low‐dimensional common representational space. We evaluated the robustness of this approach over a synthetic dataset, by examining the effect of different factors that add to the noise and individual differences in the data. On an MEG dataset, we demonstrated that M‐CCA performs better than a method that assumes perfect sensor correspondence and a method that applies source localization. Last, we described how the standard M‐CCA algorithm could be further improved with a regularization term that incorporates spatial sensor information. Hum Brain Mapp 38:4287–4301, 2017. © 2017 Wiley Periodicals, Inc. Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in the brains. It is possible to achieve alignment by assuming that the same regions of different brains correspond across subjects. However, this relies on both the assumption that brain anatomy and function are well correlated, and the strong assumptions that go into solving the under‐determined inverse problem given the high‐dimensional source space. In this article, we investigated an alternative method that bypasses source‐localization. Instead, it analyzes the sensor recordings themselves and aligns their temporal signatures across subjects. We used a multivariate approach, multiset canonical correlation analysis (M‐CCA), to transform individual subject data to a low‐dimensional common representational space. We evaluated the robustness of this approach over a synthetic dataset, by examining the effect of different factors that add to the noise and individual differences in the data. On an MEG dataset, we demonstrated that M‐CCA performs better than a method that assumes perfect sensor correspondence and a method that applies source localization. Last, we described how the standard M‐CCA algorithm could be further improved with a regularization term that incorporates spatial sensor information. Hum Brain Mapp 38:4287–4301, 2017 . © 2017 Wiley Periodicals, Inc. |
Author | Kass, Robert E. Anderson, John R. Zhang, Qiong Borst, Jelmer P. |
AuthorAffiliation | 2 Center for the Neural Basis of Cognition Pittsburgh Pennsylvania 3 Department of Artificial Intelligence University of Groningen Groningen the Netherlands 5 Department of Psychology Carnegie Mellon University Pittsburgh Pennsylvania 4 Department of Statistics Carnegie Mellon University Pittsburgh Pennsylvania 1 Machine Learning Department Carnegie Mellon University Pittsburgh Pennsylvania |
AuthorAffiliation_xml | – name: 2 Center for the Neural Basis of Cognition Pittsburgh Pennsylvania – name: 5 Department of Psychology Carnegie Mellon University Pittsburgh Pennsylvania – name: 1 Machine Learning Department Carnegie Mellon University Pittsburgh Pennsylvania – name: 4 Department of Statistics Carnegie Mellon University Pittsburgh Pennsylvania – name: 3 Department of Artificial Intelligence University of Groningen Groningen the Netherlands |
Author_xml | – sequence: 1 givenname: Qiong orcidid: 0000-0001-9062-9571 surname: Zhang fullname: Zhang, Qiong email: qiongz@andrew.cmu.edu organization: Center for the Neural Basis of Cognition – sequence: 2 givenname: Jelmer P. surname: Borst fullname: Borst, Jelmer P. organization: University of Groningen – sequence: 3 givenname: Robert E. surname: Kass fullname: Kass, Robert E. organization: Carnegie Mellon University – sequence: 4 givenname: John R. surname: Anderson fullname: Anderson, John R. organization: Carnegie Mellon University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28643879$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAUhS3Uiv7AghdAltjAIq3_4tgbJFqVttJUbGBt3ThO61FiD3ZC1R2P0Gfsk-BhphVUsLqW7neOju85QDshBofQG0qOKCHs-KYdjxiXSr9A-5TopiJU8531W9aVFg3dQwc5LwmhtCb0JdpjSgquGr2PFpdhcunh532e26WzE4bBX4fRhQnHHl-dneMOJshuytgHDNjGcYwBJ7dKLhcKJh8DDDivwLpXaLeHIbvX23mIvn0--3p6US2-nF-eflpUVgiuKw6c9KBdzxh1pFW1tKpWGggBbVuma-iUsKID3XRMC9k7wohsFLREciUYP0QfN76ruR1dZ0uOBINZJT9CujMRvPl7E_yNuY4_jFRSKk6LwfutQYrfZ5cnM_ps3TBAcHHOhmrKudYNbQr67hm6jHMqX15TTAohiVonevtnoqcoj4cuwPEGsCnmnFxvrN8crwT0g6HErKs0pUrzu8qi-PBM8Wj6L3brfusHd_d_0FycXG0UvwDN2K3c |
CitedBy_id | crossref_primary_10_1093_scan_nsaa061 crossref_primary_10_1016_j_bandc_2021_105786 crossref_primary_10_1162_jocn_a_01663 crossref_primary_10_1016_j_neuroimage_2018_03_039 crossref_primary_10_1016_j_neuroimage_2023_120079 crossref_primary_10_1109_TNSRE_2021_3129790 crossref_primary_10_1177_0956797618774526 crossref_primary_10_1002_hbm_25090 crossref_primary_10_1093_bjps_axz027 crossref_primary_10_1016_j_neuroimage_2018_11_026 crossref_primary_10_1093_cercor_bhae125 crossref_primary_10_1049_ccs2_12111 |
Cites_doi | 10.1103/RevModPhys.65.413 10.1109/10.16463 10.1109/10.19859 10.1037/rev0000030 10.1016/j.neuroimage.2012.01.021 10.1007/s10548-016-0523-1 10.1007/BF02512476 10.1186/1475-925X-9-45 10.1162/jocn_a_00457 10.1016/j.neuron.2011.08.026 10.1016/0168-5597(85)90033-4 10.1007/s11265-010-0572-8 10.1006/nimg.1998.0395 10.1093/biomet/58.3.433 10.1155/2011/156869 10.1006/nimg.2001.0915 10.1109/TSP.2009.2021636 10.1016/j.neunet.2006.09.011 10.1016/j.neuroimage.2012.11.047 10.1016/j.neuroimage.2007.12.026 10.1016/j.neuroimage.2013.10.027 10.1111/1469-8986.3720127 10.1016/j.tics.2006.07.005 10.1016/j.neuroimage.2016.08.002 10.1109/10.748978 10.1016/j.clinph.2012.03.080 10.1109/MSP.2010.936725 |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.23689 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Inter‐subject Alignment of MEG Datasets |
EISSN | 1097-0193 |
EndPage | 4301 |
ExternalDocumentID | PMC6866831 28643879 10_1002_hbm_23689 HBM23689 |
Genre | shortCommunication Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: James S. McDonnell Foundation Scholar Award funderid: 220020162 – fundername: Office of Naval Research funderid: N00014‐15‐1‐2151 – fundername: National Science Foundation funderid: 1420009 – fundername: National Institute of Mental Health funderid: 064537 – fundername: Netherlands Organisation for Scientific Research funderid: 451‐15‐040 – fundername: ; grantid: 1420009 – fundername: ; grantid: 220020162 – fundername: ; grantid: N00014‐15‐1‐2151 – fundername: ; grantid: 451‐15‐040 – fundername: ; grantid: 064537 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4439-3a30fa9ef221e0b856c8589a00a9cb295ad84c4da97d2946fe020678ab0638423 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:07:31 EDT 2025 Fri Jul 11 10:07:17 EDT 2025 Sat Jul 26 02:16:57 EDT 2025 Wed Feb 19 02:41:45 EST 2025 Tue Jul 01 01:10:47 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Wed Jan 22 16:40:15 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | common representational space canonical correlation analysis magnetoencephalography subject alignment |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4439-3a30fa9ef221e0b856c8589a00a9cb295ad84c4da97d2946fe020678ab0638423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9062-9571 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.23689 |
PMID | 28643879 |
PQID | 1926446082 |
PQPubID | 996345 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6866831 proquest_miscellaneous_1913399717 proquest_journals_1926446082 pubmed_primary_28643879 crossref_citationtrail_10_1002_hbm_23689 crossref_primary_10_1002_hbm_23689 wiley_primary_10_1002_hbm_23689_HBM23689 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2017 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: September 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2013; 25 2012; 123 2006; 10 2013; 68 1993; 65 1998 1999; 46 2009 2016; 123 2016; 30 1985; 62 2005 2002 2016; 141 1999; 9 2014; 86 2011; 2011 2009; 57 2010; 27 2000; 37 2011; 72 1971; 58 2007; 20 2012; 68 2008; 40 1989; 36 2001; 14 2010; 9 1994; 32 2012; 62 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 57 start-page: 3918 year: 2009 end-page: 3929 article-title: Joint blind source separation by Multi‐set Canonical Correlation analysis publication-title: IEEE Trans Signal Process – volume: 123 start-page: 2180 year: 2012 end-page: 2191 article-title: Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography publication-title: Clin Neurophysiol – volume: 62 start-page: 32 year: 1985 end-page: 44 article-title: Two bilateral sources of the late aep as identified by a spatio‐temporal dipole model publication-title: Electroencephalogr Clin Neurophysiol Evoked Potent Sect – year: 2009 – volume: 9 start-page: 45 year: 2010 article-title: Openmeeg: Opensource software for quasistatic bioelectromagnetics publication-title: BioMed Eng Online – volume: 14 start-page: 1424 year: 2001 end-page: 1431 article-title: Detecting and correcting for head movements in neuromagnetic measurements publication-title: NeuroImage – volume: 37 start-page: 127 year: 2000 end-page: 152 article-title: Guidelines for using human event‐related potentials to study cognition: Recording standards and publication criteria publication-title: Psychophysiology – volume: 27 start-page: 39 year: 2010 end-page: 50 article-title: Canonical correlation analysis for data fusion and group inferences: Examining applications of medical imaging data publication-title: IEEE Signal Process Magaz – volume: 20 start-page: 139 year: 2007 end-page: 152 article-title: A learning algorithm for adaptive canonical correlation analysis of several data sets publication-title: Neural Networks – year: 2005 – volume: 86 start-page: 446 year: 2014 end-page: 460 article-title: MNE software for processing MEG and EEG data publication-title: NeuroImage – volume: 10 start-page: 424 year: 2006 end-page: 430 article-title: Beyond mind‐reading: Multi‐voxel pattern analysis of fMRI data publication-title: Trends Cogn Sci – volume: 141 start-page: 416 year: 2016 end-page: 430 article-title: Tracking cognitive processing stages with meg: A spatio‐temporal model of associative recognition in the brain publication-title: NeuroImage – volume: 40 start-page: 541 year: 2008 end-page: 550 article-title: Head movements of children in meg: Quantification, effects on source estimation, and compensation publication-title: NeuroImage – volume: 123 start-page: 481 year: 2016 end-page: 509 article-title: The discovery of processing stages: Extension of sternberg's method publication-title: Psychol Rev – volume: 68 start-page: 39 year: 2013 end-page: 48 article-title: Online and offline tools for head movement compensation in meg publication-title: NeuroImage – volume: 72 start-page: 404 year: 2011 end-page: 416 article-title: A common, high‐dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron – volume: 46 start-page: 245 year: 1999 end-page: 259 article-title: Eeg and meg: Forward solutions for inverse methods publication-title: IEEE Trans Biomed Eng – volume: 9 start-page: 179 year: 1999 end-page: 194 article-title: Cortical surface‐based analysis: I. segmentation and surface reconstruction publication-title: NeuroImage – volume: 36 start-page: 165 year: 1989 end-page: 171 article-title: Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data publication-title: IEEE Trans Biomed Eng – volume: 32 start-page: 35 year: 1994 end-page: 42 article-title: Interpreting magnetic fields of the brain: Minimum norm estimates publication-title: Med Biol Eng Comput – year: 1998 – volume: 68 start-page: 31 year: 2012 end-page: 48 article-title: Group study of simulated driving fMRI data by multiset canonical correlation analysis publication-title: J Signal Process Syst – year: 2002 – volume: 58 start-page: 433 year: 1971 end-page: 451 article-title: Canonical analysis of several sets of variables publication-title: Biometrika – volume: 25 start-page: 2151 year: 2013 end-page: 2166 article-title: Stages of processing in associative recognition: Evidence from behavior, eeg, and classification publication-title: J Cogn Neurosci – volume: 30 start-page: 172 year: 2016 end-page: 181 article-title: The importance of properly compensating for head movements during meg acquisition across different age groups publication-title: Brain Topogr – volume: 2011 start-page: 1 year: 2011 end-page: 9 article-title: Fieldtrip: Open source software for advanced analysis of meg, eeg, and invasive electrophysiological data publication-title: Comput Intell Neurosci – volume: 62 start-page: 774 year: 2012 end-page: 781 article-title: Freesurfer publication-title: NeuroImage – volume: 65 start-page: 413 year: 1993 end-page: 497 article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev Mod Phys – volume: 36 start-page: 382 year: 1989 end-page: 391 article-title: Source parameter estimation in inhomogeneous volume conductors of arbitrary shape publication-title: IEEE Trans Biomed Eng – ident: e_1_2_7_12_1 doi: 10.1103/RevModPhys.65.413 – ident: e_1_2_7_13_1 doi: 10.1109/10.16463 – ident: e_1_2_7_23_1 doi: 10.1109/10.19859 – ident: e_1_2_7_2_1 doi: 10.1037/rev0000030 – ident: e_1_2_7_8_1 doi: 10.1016/j.neuroimage.2012.01.021 – ident: e_1_2_7_3_1 – ident: e_1_2_7_17_1 doi: 10.1007/s10548-016-0523-1 – ident: e_1_2_7_11_1 – ident: e_1_2_7_14_1 doi: 10.1007/BF02512476 – ident: e_1_2_7_10_1 doi: 10.1186/1475-925X-9-45 – ident: e_1_2_7_5_1 doi: 10.1162/jocn_a_00457 – ident: e_1_2_7_15_1 doi: 10.1016/j.neuron.2011.08.026 – ident: e_1_2_7_27_1 doi: 10.1016/0168-5597(85)90033-4 – ident: e_1_2_7_19_1 doi: 10.1007/s11265-010-0572-8 – ident: e_1_2_7_7_1 doi: 10.1006/nimg.1998.0395 – ident: e_1_2_7_16_1 doi: 10.1093/biomet/58.3.433 – ident: e_1_2_7_24_1 doi: 10.1155/2011/156869 – ident: e_1_2_7_29_1 doi: 10.1006/nimg.2001.0915 – ident: e_1_2_7_18_1 doi: 10.1109/TSP.2009.2021636 – ident: e_1_2_7_30_1 – ident: e_1_2_7_31_1 doi: 10.1016/j.neunet.2006.09.011 – ident: e_1_2_7_28_1 doi: 10.1016/j.neuroimage.2012.11.047 – ident: e_1_2_7_32_1 doi: 10.1016/j.neuroimage.2007.12.026 – ident: e_1_2_7_9_1 doi: 10.1016/j.neuroimage.2013.10.027 – ident: e_1_2_7_25_1 doi: 10.1111/1469-8986.3720127 – ident: e_1_2_7_22_1 doi: 10.1016/j.tics.2006.07.005 – ident: e_1_2_7_26_1 – ident: e_1_2_7_4_1 doi: 10.1016/j.neuroimage.2016.08.002 – ident: e_1_2_7_20_1 doi: 10.1109/10.748978 – ident: e_1_2_7_21_1 doi: 10.1016/j.clinph.2012.03.080 – ident: e_1_2_7_6_1 doi: 10.1109/MSP.2010.936725 |
SSID | ssj0011501 |
Score | 2.316692 |
Snippet | Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4287 |
SubjectTerms | Algorithms Alignment Anatomy Brain Brain - physiology Brain Mapping - methods Bypasses canonical correlation analysis common representational space Computer Simulation Correlation analysis Humans Inverse problems Localization Magnetoencephalography Magnetoencephalography - methods Multivariate Analysis Neuroimaging Position (location) Principal Component Analysis Regularization Sensors Structure-function relationships subject alignment |
Title | Inter‐subject alignment of MEG datasets in a common representational space |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23689 https://www.ncbi.nlm.nih.gov/pubmed/28643879 https://www.proquest.com/docview/1926446082 https://www.proquest.com/docview/1913399717 https://pubmed.ncbi.nlm.nih.gov/PMC6866831 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VPVRcgLY8lhZkEEJcsvU6tmOLU0EtK8RyQFTqASmyHbutoFlEdg_tqT-B38gvYew8YClIiFskTxI_Zsaf7ZnPAE-Z1cIy5zLEBirjlaCZCnmeeTmRYVI5Y1LW--ydnB7xN8fieA1e9LkwLT_EsOEWLSP562jgxjZ7P0lDT-35mOVSxeS9GKsVAdH7gToqAp202MIpNtPogXtWIcr2hjdX56JrAPN6nOSv-DVNQIe34GNf9Tbu5NN4ubBjd_kbq-N_tu023OyAKdlvNWkT1ny9Bdv7NS7Kzy_IM5JCRdMe_BZszLoT-W14m7YUv199a5Y2bukQxPUnKcKAzAOZHbwmMQa18YuGnNXEEKwJKj5JXJp93lP8Lzo25-_A0eHBh1fTrLuhIXMckUyWm5wGo31gbOKpVUI6JZQ2lBrtLNPCVIo7XhldVExzGTyNdPHK2IiUEMndhfV6Xvv7QFBIsFBwh96XB2GULJhUVARfUFblfATP-7EqXUdfHm_R-Fy2xMusxE4rU6eN4Mkg-qXl7PiT0G4_4GVntk2JcBfxoURYNILHQzEaXDxFMbWfL6MMLuu1xmXwCO61-jH8hSkEeKrAjxcrmjMIRDLv1ZL67DSRekslpcon2MykGH-veDl9OUsPD_5ddAdusAhHUmzcLqwvvi79QwRTC_soWc0PSogbNw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qWgnYUGh5DBQwCBCbTB3HcZwFi0JbpnTSBWql7oLjOG1VmqmajFBZ8Ql8CL_CT_AlXDsPGAoSmy7YRfJV_LqPY_v6GOApy-IwY1p7iA2kx_OQerIIAs8IXxR-rpVyt96THTHa42_3w_05-NrdhWn4IfoNN2sZzl9bA7cb0qs_WUMPs5MhC4SM25TKbXP-ERds1cutdZzdZ4xtbuy-HnntmwKe5hh7vUAFtFCxKRjzDc1kKLQMZawoVbHOWByqXHLNcxVHOYu5KAy1BOdSZTa2c0tzgA5_wb4gbpn619_1ZFUWWrnlHQZ1L0af3_EYUbbaN3U2-l2AtBczM39FzC7kbS7Ct26wmkyX4-G0zob60288kv_LaN6A6y32JmuNsdyEOVMuwfJaqerJyTl5Tlw2rDtmWIIrSZt0sAxjt2v6_fOXaprZXSuCS5cDl0RBJgVJNt4Qm2ZbmboiRyVRBLuOtk0cXWh3tcvWi75bm1uwdyldvA3z5aQ0d4GgUMiKiGsMMLwIlRQRE5KGhYkoywM-gBedcqS6ZWi3D4V8SBtuaZbiJKVukgbwpBc9bWhJ_iS00mlY2nqmKkVEjxBYIPIbwOO-GH2KPShSpZlMrYwfIHDFlf4A7jQK2dfCJGJYGeHPoxlV7QUsX_lsSXl06HjLhRRCBj5202ni3xuejl4l7uPev4s-gquj3WScjrd2tu_DNWbRl0sFXIH5-mxqHiB2rLOHzmQJvL9srf4Brrd3XQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qilSx4dHymFLAIEBsMk0cx7EXLArTYUo7FUJU6i51HJtWtJmKyQiVFZ_Af_ArfAVfwrXzgKEgsemCXSRfxa_7OLavjwEe0VwmOdU6QGwgAlYkYSBsHAeGR9xGhVbK33of7_LRHnu1n-wvwNf2LkzND9FtuDnL8P7aGfhpYdd_koYe5id9GnMhm4zKbXP2Eddr02dbA5zcx5QON9--GAXNkwKBZhh6g1jFoVXSWEojE-Yi4VokQqowVFLnVCaqEEyzQsm0oJJxa0LHby5U7kI7cywH6O8vMR5K907E4E3HVeWQlV_dYUwPJLr8lsYopOtdU-eD3zlEez4x81fA7CPe8Cp8a8eqTnR5359VeV9_-o1G8j8ZzGtwpUHeZKM2leuwYMplWNkoVTU5OSNPiM-F9YcMy7A0blIOVmDH75l-__xlOsvdnhXBhcs7n0JBJpaMN18Sl2Q7NdWUHJVEEew5WjbxZKHtxS5XL3pubW7A3oV08SYslpPS3AaCQgm1KdMYXphNlOAp5SJMrElDWsSsB09b3ch0w8_ungk5zmpmaZrhJGV-knrwsBM9rUlJ_iS01ipY1vilaYZ4HgEwR9zXgwddMXoUd0ykSjOZOZkoRtiK6_we3Kr1sauFCkSwIsWfp3Oa2gk4tvL5kvLo0LOWc8G5iCPsplfEvzc8Gz0f-4_Vfxe9D0uvB8NsZ2t3-w5cpg56-TzANVisPszMXQSOVX7PGyyBg4tW6h-9YXYM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-subject+alignment+of+MEG+datasets+in+a+common+representational+space&rft.jtitle=Human+brain+mapping&rft.au=Zhang%2C+Qiong&rft.au=Borst%2C+Jelmer+P&rft.au=Kass%2C+Robert+E&rft.au=Anderson%2C+John+R&rft.date=2017-09-01&rft.eissn=1097-0193&rft.volume=38&rft.issue=9&rft.spage=4287&rft_id=info:doi/10.1002%2Fhbm.23689&rft_id=info%3Apmid%2F28643879&rft.externalDocID=28643879 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |