McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data
Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional hete...
Saved in:
Published in | Frontiers in genetics Vol. 10; p. 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-8021 1664-8021 |
DOI | 10.3389/fgene.2019.00009 |
Cover
Loading…
Abstract | Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional heterogeneity in normal and diseased tissues under various conditions. It also sheds light on the development or emergence of specific cell populations and phenotypes. However, owing to the paucity of input RNA, a typical single cell RNA sequencing data features a high number of dropout events where transcripts fail to get amplified.
We introduce mcImpute, a low-rank matrix completion based technique to impute dropouts in single cell expression data. On a number of real datasets, application of mcImpute yields significant improvements in the separation of true zeros from dropouts, cell-clustering, differential expression analysis, cell type separability, the performance of dimensionality reduction techniques for cell visualization, and gene distribution.
https://github.com/aanchalMongia/McImpute_scRNAseq. |
---|---|
AbstractList | Motivation:
Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional heterogeneity in normal and diseased tissues under various conditions. It also sheds light on the development or emergence of specific cell populations and phenotypes. However, owing to the paucity of input RNA, a typical single cell RNA sequencing data features a high number of dropout events where transcripts fail to get amplified.
Results:
We introduce mcImpute, a low-rank matrix completion based technique to impute dropouts in single cell expression data. On a number of real datasets, application of mcImpute yields significant improvements in the separation of true zeros from dropouts, cell-clustering, differential expression analysis, cell type separability, the performance of dimensionality reduction techniques for cell visualization, and gene distribution.
Availability and Implementation:
https://github.com/aanchalMongia/McImpute_scRNAseq Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional heterogeneity in normal and diseased tissues under various conditions. It also sheds light on the development or emergence of specific cell populations and phenotypes. However, owing to the paucity of input RNA, a typical single cell RNA sequencing data features a high number of dropout events where transcripts fail to get amplified. We introduce mcImpute, a low-rank matrix completion based technique to impute dropouts in single cell expression data. On a number of real datasets, application of mcImpute yields significant improvements in the separation of true zeros from dropouts, cell-clustering, differential expression analysis, cell type separability, the performance of dimensionality reduction techniques for cell visualization, and gene distribution. https://github.com/aanchalMongia/McImpute_scRNAseq. Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional heterogeneity in normal and diseased tissues under various conditions. It also sheds light on the development or emergence of specific cell populations and phenotypes. However, owing to the paucity of input RNA, a typical single cell RNA sequencing data features a high number of dropout events where transcripts fail to get amplified. Results: We introduce mcImpute, a low-rank matrix completion based technique to impute dropouts in single cell expression data. On a number of real datasets, application of mcImpute yields significant improvements in the separation of true zeros from dropouts, cell-clustering, differential expression analysis, cell type separability, the performance of dimensionality reduction techniques for cell visualization, and gene distribution. Availability and Implementation: https://github.com/aanchalMongia/McImpute_scRNAseq.Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional heterogeneity in normal and diseased tissues under various conditions. It also sheds light on the development or emergence of specific cell populations and phenotypes. However, owing to the paucity of input RNA, a typical single cell RNA sequencing data features a high number of dropout events where transcripts fail to get amplified. Results: We introduce mcImpute, a low-rank matrix completion based technique to impute dropouts in single cell expression data. On a number of real datasets, application of mcImpute yields significant improvements in the separation of true zeros from dropouts, cell-clustering, differential expression analysis, cell type separability, the performance of dimensionality reduction techniques for cell visualization, and gene distribution. Availability and Implementation: https://github.com/aanchalMongia/McImpute_scRNAseq. Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional heterogeneity in normal and diseased tissues under various conditions. It also sheds light on the development or emergence of specific cell populations and phenotypes. However, owing to the paucity of input RNA, a typical single cell RNA sequencing data features a high number of dropout events where transcripts fail to get amplified.Results: We introduce mcImpute, a low-rank matrix completion based technique to impute dropouts in single cell expression data. On a number of real datasets, application of mcImpute yields significant improvements in the separation of true zeros from dropouts, cell-clustering, differential expression analysis, cell type separability, the performance of dimensionality reduction techniques for cell visualization, and gene distribution.Availability and Implementation:https://github.com/aanchalMongia/McImpute_scRNAseq |
Author | Majumdar, Angshul Mongia, Aanchal Sengupta, Debarka |
AuthorAffiliation | 3 Department of Electronics and Communications Engineering, Indraprastha Institute of Information Technology Delhi , New Delhi , India 2 Center for Computational Biology, Indraprastha Institute of Information Technology Delhi , New Delhi , India 1 Department of Computer Science and Engineering, Indraprastha Institute of Information Technology Delhi , New Delhi , India |
AuthorAffiliation_xml | – name: 2 Center for Computational Biology, Indraprastha Institute of Information Technology Delhi , New Delhi , India – name: 3 Department of Electronics and Communications Engineering, Indraprastha Institute of Information Technology Delhi , New Delhi , India – name: 1 Department of Computer Science and Engineering, Indraprastha Institute of Information Technology Delhi , New Delhi , India |
Author_xml | – sequence: 1 givenname: Aanchal surname: Mongia fullname: Mongia, Aanchal – sequence: 2 givenname: Debarka surname: Sengupta fullname: Sengupta, Debarka – sequence: 3 givenname: Angshul surname: Majumdar fullname: Majumdar, Angshul |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30761179$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1v3CAQxVGVqEnT3HuqfOzFWzAYQw-Vku1HVkpaqR9nNMbDlsg2G_BW7X9f1ptESaRyAc28-T007wU5GMOIhLxidMG50m_dGkdcVJTpBc1HPyPHTEpRKlqxgwfvI3Ka0vVOIjTnXDwnR5w2krFGH5PVlV0Nm-2E74ormKL_UyzDsOlx8mEsziFhV8x9mAsuxOK7H9c9Fkvs--Lbl7My4U3xASZ4SQ4d9AlPb-8T8vPTxx_Li_Ly6-fV8uyytEJwXXItES2ITnTIgelacLSsgla7ugPtIH8ZVMMa22jnWk0571TNwFaqbTjr-AlZ7bldgGuziX6A-NcE8GYuhLg2ECdvezStwkp2DJRwSkirNHIqZAVcC5RNLTPr_Z612bYDdhbHKUL_CPq4M_pfZh1-G8klU4xmwJtbQAw3W0yTGXyyeTUwYtgmUzHFpWgqVmfp64de9yZ3WWSB3AtsDClFdMb6_d6zte8No2aXu5lzN7vczZx7HqRPBu_Y_x35B4ELr6I |
CitedBy_id | crossref_primary_10_3390_app122010684 crossref_primary_10_1038_s41467_021_25725_x crossref_primary_10_1038_s41467_022_34567_0 crossref_primary_10_1093_bioinformatics_btaa139 crossref_primary_10_1007_s11427_024_2770_x crossref_primary_10_1016_j_sciaf_2023_e01832 crossref_primary_10_1093_bib_bbae148 crossref_primary_10_1016_j_isci_2024_109027 crossref_primary_10_1093_bib_bbaa222 crossref_primary_10_1093_bib_bbac223 crossref_primary_10_1093_bioinformatics_btaa450 crossref_primary_10_1142_S0219720023500294 crossref_primary_10_1186_s13059_022_02601_5 crossref_primary_10_1038_s41588_023_01558_w crossref_primary_10_2174_1574893617666220330151024 crossref_primary_10_1371_journal_pcbi_1012339 crossref_primary_10_1016_j_csbj_2020_09_004 crossref_primary_10_1080_15476286_2021_1960688 crossref_primary_10_1002_aenm_201902463 crossref_primary_10_1016_j_csbj_2020_10_016 crossref_primary_10_1016_j_crmeth_2021_100133 crossref_primary_10_1021_acs_analchem_0c04850 crossref_primary_10_1049_nbt2_12115 crossref_primary_10_1186_s13059_020_02132_x crossref_primary_10_1093_bioinformatics_btaa109 crossref_primary_10_1016_j_knosys_2023_110965 crossref_primary_10_1016_j_tibtech_2020_02_013 crossref_primary_10_1038_s41467_022_34595_w crossref_primary_10_1186_s12864_021_08101_3 crossref_primary_10_1371_journal_pone_0289568 crossref_primary_10_1002_widm_1414 crossref_primary_10_1038_s41592_022_01459_6 crossref_primary_10_1038_s41598_021_88153_3 crossref_primary_10_1093_bioinformatics_btac300 crossref_primary_10_1111_biom_13645 crossref_primary_10_1093_bib_bbae031 crossref_primary_10_1186_s12859_023_05250_y crossref_primary_10_1016_j_compbiomed_2022_105697 crossref_primary_10_1093_bib_bbab479 crossref_primary_10_1145_3641284 crossref_primary_10_1186_s12859_022_04814_8 crossref_primary_10_1093_bib_bbaa289 crossref_primary_10_1109_TCBB_2022_3170587 crossref_primary_10_1109_TCBB_2021_3110850 crossref_primary_10_1186_s12859_024_05944_x crossref_primary_10_1038_s41467_021_27729_z crossref_primary_10_1371_journal_pcbi_1010129 |
Cites_doi | 10.1038/nmeth.2967 10.1038/s41467-018-03405-7 10.1126/science.aaa1934 10.1038/nn.3881 10.1101/gr.177725.114 10.1093/bioinformatics/bty623 10.1186/1471-2105-11-95 10.1126/science.aad0501 10.1214/07-AOAS120 10.1109/TVCG.2016.2640960 10.1007/s10208-009-9045-5 10.1109/TSP.2012.2212015 10.1038/nsmb.2660 10.1073/pnas.0303415101 10.1145/1273496.1273499 10.1038/nmeth.2930 10.1016/j.stem.2010.03.015 10.1101/111591 10.1109/TIT.2010.2046205 10.1101/181479 10.1109/MC.2009.263 10.1101/025528 10.1016/j.cell.2015.04.044 10.1126/science.1254257 10.1101/049734 10.1371/journal.pgen.1003939 10.1038/nbt.2859 10.1038/ng.3818 10.1109/9.554402 10.1016/j.cell.2015.05.002 10.1038/ncomms14049 10.1101/361980 10.1109/JPROC.2009.2035722 10.3389/fgene.2013.00289 10.1038/nbt.3711 10.1371/journal.pone.0024828 10.1186/s12859-016-1106-6 10.1109/TIT.2010.2044061 10.1109/TSP.2016.2601299 10.1093/nar/gku310 10.1371/journal.pone.0082146 10.1016/j.sigpro.2010.12.005 10.1016/j.febslet.2005.08.058 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Mongia, Sengupta and Majumdar. 2019 Mongia, Sengupta and Majumdar |
Copyright_xml | – notice: Copyright © 2019 Mongia, Sengupta and Majumdar. 2019 Mongia, Sengupta and Majumdar |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fgene.2019.00009 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-8021 |
ExternalDocumentID | oai_doaj_org_article_b8e26d1a84f846c89e30462a394e6756 PMC6361810 30761179 10_3389_fgene_2019_00009 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M~E OK1 PGMZT RNS RPM IPNFZ M48 NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c4439-396eeca4d4de3a19543ec12ab9f5da9fa802a8717c79ffb9033d851ac28b731d3 |
IEDL.DBID | M48 |
ISSN | 1664-8021 |
IngestDate | Wed Aug 27 01:12:20 EDT 2025 Thu Aug 21 17:54:48 EDT 2025 Fri Sep 05 05:12:06 EDT 2025 Mon Jul 21 06:04:50 EDT 2025 Tue Jul 01 00:46:58 EDT 2025 Thu Apr 24 22:58:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | dropouts scRNA-seq Nuclear norm minization imputation matrix completion |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4439-396eeca4d4de3a19543ec12ab9f5da9fa802a8717c79ffb9033d851ac28b731d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reviewed by: Kumardeep Chaudhary, Icahn School of Medicine at Mount Sinai, United States; Sumit Kumar Bag, National Botanical Research Institute (CSIR), India; Yuriy L. Orlov, Russian Academy of Sciences, Russia; Shaoli Das, National Institutes of Health (NIH), United States This article was submitted to Bioinformatics and Computational Biology, a section of the journal Frontiers in Genetics Edited by: Indrajit Saha, National Institute of Technical Teachers' Training and Research, India |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fgene.2019.00009 |
PMID | 30761179 |
PQID | 2183647215 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b8e26d1a84f846c89e30462a394e6756 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361810 proquest_miscellaneous_2183647215 pubmed_primary_30761179 crossref_citationtrail_10_3389_fgene_2019_00009 crossref_primary_10_3389_fgene_2019_00009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-00-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in genetics |
PublicationTitleAlternate | Front Genet |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Tang (B40) 2010; 6 Amit (B2) 2007 Trapnell (B43) 2014; 32 Zheng (B52) 2017; 8 Argyriou (B3) 2007 Holland (B14) 2008 Kapur (B15) 2016; 17 Ye (B50) 2013 Hicks (B13) 2015 Tirosh (B41) 2016; 352 Li (B23) 2017; 49 Usoskin (B44) 2015; 18 Maaten (B26) 2008; 9 Koren (B20) 2009; 8 Patel (B33) 2014; 344 Bennett (B5) 2007 Abernethy (B1) 2006 Majumdar (B28) 2011; 91 Zhou (B53) 2014; 42 van Dijk (B45) 2017 Weckwerth (B47) 2004; 101 Biase (B6) 2014; 24 Gill (B10) 2010; 11 Yan (B49) 2013; 20 Keshavan (B16) 2010; 56 Zeisel (B51) 2015; 347 Bell (B4) 2007 Macosko (B27) 2015; 161 Tomasi (B42) 1992; 9 Mongia (B31) 2018 Candes (B8) 2009; 9 Candès (B7) 2010; 98 Sengupta (B35) 2016 Liu (B25) 2017; 23 (B36) 2007 Wagner (B46) 2016; 34 Xiong (B48) 2005; 579 Sun (B39) 2017; 65 Mesbahi (B30) 1997; 42 Li (B24) 2018; 9 Grün (B11) 2014; 11 Reynier (B34) 2011; 6 Staiger (B38) 2013; 4 Klein (B19) 2015; 161 Silver (B37) 2013; 9 Klebanov (B18) 2007; 1 Najafov (B32) 2018; 35 Kharchenko (B17) 2014; 11 Kwak (B21) 2017 Candès (B9) 2010; 56 Marjanovic (B29) 2012; 60 Lee (B22) 2001 Hastie (B12) 2015; 16 |
References_xml | – start-page: 30602 volume-title: Principal Components Analysis (pca). year: 2008 ident: B14 – volume: 11 start-page: 740 year: 2014 ident: B17 article-title: Bayesian approach to single-cell differential expression analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2967 – volume: 49 start-page: 708 year: 2017 ident: B23 article-title: Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors publication-title: Nat. Genet doi: 10.1038/s41467-018-03405-7 – volume: 347 start-page: 1138 year: 2015 ident: B51 article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell rna-seq publication-title: Science doi: 10.1126/science.aaa1934 – volume: 18 start-page: 145 year: 2015 ident: B44 article-title: Unbiased classification of sensory neuron types by large-scale single-cell rna sequencing publication-title: Nat. Neurosci. doi: 10.1038/nn.3881 – volume: 24 start-page: 1787 year: 2014 ident: B6 article-title: Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell rna sequencing publication-title: Gen. Res. doi: 10.1101/gr.177725.114 – start-page: 556 volume-title: Advances in Neural Information Processing Systems 13 year: 2001 ident: B22 article-title: Algorithms for non-negative matrix factorization – volume: 35 start-page: 156 year: 2018 ident: B32 article-title: GECO: gene expression correlation analysis after genetic algorithm-driven deconvolution publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty623 – volume: 11 start-page: 95 year: 2010 ident: B10 article-title: A statistical framework for differential network analysis from microarray data publication-title: BMC Bioinform. doi: 10.1186/1471-2105-11-95 – volume: 352 start-page: 189 year: 2016 ident: B41 article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell rna-seq publication-title: Science doi: 10.1126/science.aad0501 – volume: 1 start-page: 538 year: 2007 ident: B18 article-title: Diverse correlation structures in gene expression data and their utility in improving statistical inference publication-title: Ann. Appl. Stat. doi: 10.1214/07-AOAS120 – volume: 9 start-page: 2579 year: 2008 ident: B26 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 137 year: 1992 ident: B42 article-title: Shape and motion from image streams under orthography: a factorization method publication-title: Int. J. Comp. Vis. doi: 10.1126/science.aad0501 – volume: 23 start-page: 1249 year: 2017 ident: B25 article-title: Visualizing high-dimensional data: Advances in the past decade publication-title: IEEE Trans. Visual. Comp. Grap. doi: 10.1109/TVCG.2016.2640960 – year: 2006 ident: B1 article-title: Low-rank matrix factorization with attributes publication-title: arXiv preprint cs/0611124 – volume: 9 start-page: 717 year: 2009 ident: B8 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. doi: 10.1007/s10208-009-9045-5 – volume: 60 start-page: 5714 year: 2012 ident: B29 article-title: On lq optimization and matrix completion publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2212015 – volume: 20 start-page: 1131 year: 2013 ident: B49 article-title: Single-cell rna-seq profiling of human preimplantation embryos and embryonic stem cells publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2660 – start-page: 41 volume-title: Advances in Neural Information Processing Systems year: 2007 ident: B3 article-title: Multi-task feature learning – volume: 101 start-page: 7809 year: 2004 ident: B47 article-title: Differential metabolic networks unravel the effects of silent plant phenotypes publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0303415101 – start-page: 17 volume-title: Proceedings of the 24th International Conference on Machine Learning year: 2007 ident: B2 article-title: Uncovering shared structures in multiclass classification doi: 10.1145/1273496.1273499 – volume: 11 start-page: 637 year: 2014 ident: B11 article-title: Validation of noise models for single-cell transcriptomics publication-title: Nat. Methods doi: 10.1038/nmeth.2930 – volume: 6 start-page: 468 year: 2010 ident: B40 article-title: Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell rna-seq analysis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.03.015 – year: 2017 ident: B45 article-title: Magic: a diffusion-based imputation method reveals gene-gene interactions in single-cell rna-sequencing data publication-title: BioRxiv [preprint] doi: 10.1101/111591 – volume: 56 start-page: 2980 year: 2010 ident: B16 article-title: Matrix completion from a few entries publication-title: IEEE Trans. Inf. Theor. doi: 10.1109/TIT.2010.2046205 – year: 2017 ident: B21 article-title: Drimpute: imputing dropout events in single cell rna sequencing data publication-title: bioRxiv [preprint] doi: 10.1101/181479 – volume: 8 start-page: 30 year: 2009 ident: B20 article-title: Matrix factorization techniques for recommender systems publication-title: Computer doi: 10.1109/MC.2009.263 – year: 2015 ident: B13 article-title: On the widespread and critical impact of systematic bias and batch effects in single-cell rna-seq data publication-title: bioRxiv [preprint] doi: 10.1101/025528 – volume: 161 start-page: 1187 year: 2015 ident: B19 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 344 start-page: 1396 year: 2014 ident: B33 article-title: Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma publication-title: Science doi: 10.1126/science.1254257 – year: 2016 ident: B35 article-title: Fast, scalable and accurate differential expression analysis for single cells publication-title: bioRxiv [preprint] doi: 10.1101/049734 – volume: 9 start-page: e1003939 year: 2013 ident: B37 article-title: Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two asian cohorts publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1003939 – volume: 32 start-page: 381 year: 2014 ident: B43 article-title: Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions publication-title: Nat. Biotech. doi: 10.1038/nbt.2859 – volume: 9 start-page: 997 year: 2018 ident: B24 article-title: An accurate and robust imputation method scimpute for single-cell rna-seq data publication-title: Nat. Commun. doi: 10.1038/ng.3818 – volume: 42 start-page: 239 year: 1997 ident: B30 article-title: On the rank minimization problem over a positive semidefinite linear matrix inequality publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.554402 – volume: 16 start-page: 3367 year: 2015 ident: B12 article-title: Matrix completion and low-rank svd via fast alternating least squares publication-title: J. Mach. Learn. Res. – start-page: 7 volume-title: KDD Cup and Workshop at the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2007 ident: B4 article-title: Improved neighborhood-based collaborative filtering – volume: 161 start-page: 1202 year: 2015 ident: B27 article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 8 start-page: 14049 year: 2017 ident: B52 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat. Commun. doi: 10.1038/ncomms14049 – year: 2018 ident: B31 article-title: Mcimpute: matrix completion based imputation for single cell rna-seq data publication-title: bioRxiv [preprint] doi: 10.1101/361980 – volume-title: Kdd Cup 2007 year: 2007 ident: B36 – volume: 98 start-page: 925 year: 2010 ident: B7 article-title: Matrix completion with noise publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2035722 – volume: 4 start-page: 289 year: 2013 ident: B38 article-title: Current composite-feature classification methods do not outperform simples single-genes classifiers in breast cancer prognosis publication-title: Front. Genet. doi: 10.3389/fgene.2013.00289 – volume: 34 start-page: 1145 year: 2016 ident: B46 article-title: Revealing the vectors of cellular identity with single-cell genomics publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3711 – volume: 6 start-page: e24828 year: 2011 ident: B34 article-title: Importance of correlation between gene expression levels: application to the type i interferon signature in rheumatoid arthritis publication-title: PLoS ONE doi: 10.1371/journal.pone.0024828 – volume: 17 start-page: 243 year: 2016 ident: B15 article-title: Gene expression prediction using low-rank matrix completion publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1106-6 – volume: 56 start-page: 2053 year: 2010 ident: B9 article-title: The power of convex relaxation: Near-optimal matrix completion publication-title: IEEE Trans. Inf. Theor. doi: 10.1109/TIT.2010.2044061 – volume: 65 start-page: 794 year: 2017 ident: B39 article-title: Majorization-minimization algorithms in signal processing, communications, and machine learning publication-title: Trans. Sig. Proc. doi: 10.1109/TSP.2016.2601299 – volume: 42 start-page: e91 year: 2014 ident: B53 article-title: Robustly detecting differential expression in rna sequencing data using observation weights publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku310 – start-page: 35 volume-title: Proceedings of KDD Cup and Workshop year: 2007 ident: B5 article-title: The netflix prize – year: 2013 ident: B50 article-title: Low-rank regularization for learning gene expression programs publication-title: PLoS ONE doi: 10.1371/journal.pone.0082146 – volume: 91 start-page: 1334 year: 2011 ident: B28 article-title: Some empirical advances in matrix completion publication-title: Signal Process doi: 10.1016/j.sigpro.2010.12.005 – volume: 579 start-page: 5325 year: 2005 ident: B48 article-title: A systems biology approach to genetic studies of complex diseases publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.08.058 |
SSID | ssj0000493334 |
Score | 2.3894098 |
Snippet | Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at... Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression... Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 9 |
SubjectTerms | dropouts Genetics imputation matrix completion Nuclear norm minization scRNA-seq |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA-lIPRF_Ki69YMIfenDcrs72Y_41lZLK1wfqoW-hXxMUDn2WnsF_e-dSa7HnYi--LpJ2PCbSeY3SfiNEPut6mITrS9p7TSlckqV1gEROeda6F1ATHIM0_Pu9FJ9vGqv1kp98ZuwLA-cgZu4AZsu1HZQkUKlHzTyXV5jQSskspvEtitdrSVT3zLvBQCV7yUpC9OTSPZgWcxaJ8lCvRGHklz_nzjm708l12LPySPxcEka5WGe7GOxheMT8SCXkfz5VJxN_VmqzfBOTllx_4fkVc6q2vNRHlGYCjK1JyNIYqnyEwWsGcpjnM3kxflheYs38r1d2F1xefLh8_FpuSyRUHpFVKIE3SF6q4IKCJbV2wB93VinYxusjnaoGks5Ue97HaPTFUAgjmV9M7ge6gDPxPY4H_GFkH3wHe18bWTFOEJ58A6jtjUMVrWgQiEm94AZv9QP5zIWM0N5BENsEsSGITYJ4kIcrEZcZ-2Mv_Q9Yhus-rHqdfpAvmCWvmD-5QuFeHtvQUOrhK8-7Ijzu1vDRJCF8uu2EM-zRVe_Aj7KoX2pEP2GrTfmstkyfv2SlLg76IghVXv_Y_IvxQ7DkY93Xontxfc7fE2EZ-HeJN_-BSu6_Rk priority: 102 providerName: Directory of Open Access Journals |
Title | McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30761179 https://www.proquest.com/docview/2183647215 https://pubmed.ncbi.nlm.nih.gov/PMC6361810 https://doaj.org/article/b8e26d1a84f846c89e30462a394e6756 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEagXxJvwqIzEhUNoHTtOjIRQWygt0vYArLS3yE8eirJ0dyu1_54ZJ7t00cIlh8RxnBmP5xs_vgF4WUoVi2hcjrZT5NJKmRsrEMhZW4rK-hASHcPoVB2P5adJOflzPHoQ4HxjaEf5pMaz9vXF2eU7NPi3FHGiv92NKGpivOQ6sRHq63AD_ZKiUGw0gP2fPRYWol9mVkri0Fzwft1yYyXbcEtQjM9pk9cVl5WY_TfB0b93VV5xU0d34PaAL9l-3yHuwrXQ3YObfcbJy_twMnInKY3DGzYicv4LRgMCEXBPO3aAHs2z9DzpiyGgZV_Qt7WBHYa2ZZ9P9_N5OGPvzcI8gPHRh6-Hx_mQTSF3ElFHLrQKwRnppQ_CENGbCI4XxupYeqOjQYEYDJ8qV-kYrd4TwiMcM66obSW4Fw9hq5t24TGwyjuFg2QZiVxOB1E7G6I2XNRGlkL6DHaXAmvcQDVOGS_aBkMOknaTpN2QtJsk7Qxerd741dNs_KfsAelgVY4IstON6exbM9hbY-tQKM9NLSMiLFdjK-kYrhFaBoyRVAYvlhps0KBolcR0YXo-bwgzEqc-LzN41Gt09allj8igWtP1WlvWn3Q_vifSbiUUgqm9J_-s8yls0z_20zvPYGsxOw_PEfAs7E6aKMDrxwnfSX36NwzC_KA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=McImpute%3A+Matrix+Completion+Based+Imputation+for+Single+Cell+RNA-seq+Data&rft.jtitle=Frontiers+in+genetics&rft.au=Mongia%2C+Aanchal&rft.au=Sengupta%2C+Debarka&rft.au=Majumdar%2C+Angshul&rft.date=2019&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=10&rft.spage=9&rft_id=info:doi/10.3389%2Ffgene.2019.00009&rft_id=info%3Apmid%2F30761179&rft.externalDocID=30761179 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon |