McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data

Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional hete...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in genetics Vol. 10; p. 9
Main Authors Mongia, Aanchal, Sengupta, Debarka, Majumdar, Angshul
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 2019
Subjects
Online AccessGet full text
ISSN1664-8021
1664-8021
DOI10.3389/fgene.2019.00009

Cover

Loading…
Abstract Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional heterogeneity in normal and diseased tissues under various conditions. It also sheds light on the development or emergence of specific cell populations and phenotypes. However, owing to the paucity of input RNA, a typical single cell RNA sequencing data features a high number of dropout events where transcripts fail to get amplified. We introduce mcImpute, a low-rank matrix completion based technique to impute dropouts in single cell expression data. On a number of real datasets, application of mcImpute yields significant improvements in the separation of true zeros from dropouts, cell-clustering, differential expression analysis, cell type separability, the performance of dimensionality reduction techniques for cell visualization, and gene distribution. https://github.com/aanchalMongia/McImpute_scRNAseq.
AbstractList Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional heterogeneity in normal and diseased tissues under various conditions. It also sheds light on the development or emergence of specific cell populations and phenotypes. However, owing to the paucity of input RNA, a typical single cell RNA sequencing data features a high number of dropout events where transcripts fail to get amplified. Results: We introduce mcImpute, a low-rank matrix completion based technique to impute dropouts in single cell expression data. On a number of real datasets, application of mcImpute yields significant improvements in the separation of true zeros from dropouts, cell-clustering, differential expression analysis, cell type separability, the performance of dimensionality reduction techniques for cell visualization, and gene distribution. Availability and Implementation: https://github.com/aanchalMongia/McImpute_scRNAseq
Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional heterogeneity in normal and diseased tissues under various conditions. It also sheds light on the development or emergence of specific cell populations and phenotypes. However, owing to the paucity of input RNA, a typical single cell RNA sequencing data features a high number of dropout events where transcripts fail to get amplified. We introduce mcImpute, a low-rank matrix completion based technique to impute dropouts in single cell expression data. On a number of real datasets, application of mcImpute yields significant improvements in the separation of true zeros from dropouts, cell-clustering, differential expression analysis, cell type separability, the performance of dimensionality reduction techniques for cell visualization, and gene distribution. https://github.com/aanchalMongia/McImpute_scRNAseq.
Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional heterogeneity in normal and diseased tissues under various conditions. It also sheds light on the development or emergence of specific cell populations and phenotypes. However, owing to the paucity of input RNA, a typical single cell RNA sequencing data features a high number of dropout events where transcripts fail to get amplified. Results: We introduce mcImpute, a low-rank matrix completion based technique to impute dropouts in single cell expression data. On a number of real datasets, application of mcImpute yields significant improvements in the separation of true zeros from dropouts, cell-clustering, differential expression analysis, cell type separability, the performance of dimensionality reduction techniques for cell visualization, and gene distribution. Availability and Implementation: https://github.com/aanchalMongia/McImpute_scRNAseq.Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional heterogeneity in normal and diseased tissues under various conditions. It also sheds light on the development or emergence of specific cell populations and phenotypes. However, owing to the paucity of input RNA, a typical single cell RNA sequencing data features a high number of dropout events where transcripts fail to get amplified. Results: We introduce mcImpute, a low-rank matrix completion based technique to impute dropouts in single cell expression data. On a number of real datasets, application of mcImpute yields significant improvements in the separation of true zeros from dropouts, cell-clustering, differential expression analysis, cell type separability, the performance of dimensionality reduction techniques for cell visualization, and gene distribution. Availability and Implementation: https://github.com/aanchalMongia/McImpute_scRNAseq.
Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at single-cell resolution provides a window into dynamics of cellular phenotypes. This facilitates the characterization of transcriptional heterogeneity in normal and diseased tissues under various conditions. It also sheds light on the development or emergence of specific cell populations and phenotypes. However, owing to the paucity of input RNA, a typical single cell RNA sequencing data features a high number of dropout events where transcripts fail to get amplified.Results: We introduce mcImpute, a low-rank matrix completion based technique to impute dropouts in single cell expression data. On a number of real datasets, application of mcImpute yields significant improvements in the separation of true zeros from dropouts, cell-clustering, differential expression analysis, cell type separability, the performance of dimensionality reduction techniques for cell visualization, and gene distribution.Availability and Implementation:https://github.com/aanchalMongia/McImpute_scRNAseq
Author Majumdar, Angshul
Mongia, Aanchal
Sengupta, Debarka
AuthorAffiliation 3 Department of Electronics and Communications Engineering, Indraprastha Institute of Information Technology Delhi , New Delhi , India
2 Center for Computational Biology, Indraprastha Institute of Information Technology Delhi , New Delhi , India
1 Department of Computer Science and Engineering, Indraprastha Institute of Information Technology Delhi , New Delhi , India
AuthorAffiliation_xml – name: 2 Center for Computational Biology, Indraprastha Institute of Information Technology Delhi , New Delhi , India
– name: 3 Department of Electronics and Communications Engineering, Indraprastha Institute of Information Technology Delhi , New Delhi , India
– name: 1 Department of Computer Science and Engineering, Indraprastha Institute of Information Technology Delhi , New Delhi , India
Author_xml – sequence: 1
  givenname: Aanchal
  surname: Mongia
  fullname: Mongia, Aanchal
– sequence: 2
  givenname: Debarka
  surname: Sengupta
  fullname: Sengupta, Debarka
– sequence: 3
  givenname: Angshul
  surname: Majumdar
  fullname: Majumdar, Angshul
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30761179$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1v3CAQxVGVqEnT3HuqfOzFWzAYQw-Vku1HVkpaqR9nNMbDlsg2G_BW7X9f1ptESaRyAc28-T007wU5GMOIhLxidMG50m_dGkdcVJTpBc1HPyPHTEpRKlqxgwfvI3Ka0vVOIjTnXDwnR5w2krFGH5PVlV0Nm-2E74ormKL_UyzDsOlx8mEsziFhV8x9mAsuxOK7H9c9Fkvs--Lbl7My4U3xASZ4SQ4d9AlPb-8T8vPTxx_Li_Ly6-fV8uyytEJwXXItES2ITnTIgelacLSsgla7ugPtIH8ZVMMa22jnWk0571TNwFaqbTjr-AlZ7bldgGuziX6A-NcE8GYuhLg2ECdvezStwkp2DJRwSkirNHIqZAVcC5RNLTPr_Z612bYDdhbHKUL_CPq4M_pfZh1-G8klU4xmwJtbQAw3W0yTGXyyeTUwYtgmUzHFpWgqVmfp64de9yZ3WWSB3AtsDClFdMb6_d6zte8No2aXu5lzN7vczZx7HqRPBu_Y_x35B4ELr6I
CitedBy_id crossref_primary_10_3390_app122010684
crossref_primary_10_1038_s41467_021_25725_x
crossref_primary_10_1038_s41467_022_34567_0
crossref_primary_10_1093_bioinformatics_btaa139
crossref_primary_10_1007_s11427_024_2770_x
crossref_primary_10_1016_j_sciaf_2023_e01832
crossref_primary_10_1093_bib_bbae148
crossref_primary_10_1016_j_isci_2024_109027
crossref_primary_10_1093_bib_bbaa222
crossref_primary_10_1093_bib_bbac223
crossref_primary_10_1093_bioinformatics_btaa450
crossref_primary_10_1142_S0219720023500294
crossref_primary_10_1186_s13059_022_02601_5
crossref_primary_10_1038_s41588_023_01558_w
crossref_primary_10_2174_1574893617666220330151024
crossref_primary_10_1371_journal_pcbi_1012339
crossref_primary_10_1016_j_csbj_2020_09_004
crossref_primary_10_1080_15476286_2021_1960688
crossref_primary_10_1002_aenm_201902463
crossref_primary_10_1016_j_csbj_2020_10_016
crossref_primary_10_1016_j_crmeth_2021_100133
crossref_primary_10_1021_acs_analchem_0c04850
crossref_primary_10_1049_nbt2_12115
crossref_primary_10_1186_s13059_020_02132_x
crossref_primary_10_1093_bioinformatics_btaa109
crossref_primary_10_1016_j_knosys_2023_110965
crossref_primary_10_1016_j_tibtech_2020_02_013
crossref_primary_10_1038_s41467_022_34595_w
crossref_primary_10_1186_s12864_021_08101_3
crossref_primary_10_1371_journal_pone_0289568
crossref_primary_10_1002_widm_1414
crossref_primary_10_1038_s41592_022_01459_6
crossref_primary_10_1038_s41598_021_88153_3
crossref_primary_10_1093_bioinformatics_btac300
crossref_primary_10_1111_biom_13645
crossref_primary_10_1093_bib_bbae031
crossref_primary_10_1186_s12859_023_05250_y
crossref_primary_10_1016_j_compbiomed_2022_105697
crossref_primary_10_1093_bib_bbab479
crossref_primary_10_1145_3641284
crossref_primary_10_1186_s12859_022_04814_8
crossref_primary_10_1093_bib_bbaa289
crossref_primary_10_1109_TCBB_2022_3170587
crossref_primary_10_1109_TCBB_2021_3110850
crossref_primary_10_1186_s12859_024_05944_x
crossref_primary_10_1038_s41467_021_27729_z
crossref_primary_10_1371_journal_pcbi_1010129
Cites_doi 10.1038/nmeth.2967
10.1038/s41467-018-03405-7
10.1126/science.aaa1934
10.1038/nn.3881
10.1101/gr.177725.114
10.1093/bioinformatics/bty623
10.1186/1471-2105-11-95
10.1126/science.aad0501
10.1214/07-AOAS120
10.1109/TVCG.2016.2640960
10.1007/s10208-009-9045-5
10.1109/TSP.2012.2212015
10.1038/nsmb.2660
10.1073/pnas.0303415101
10.1145/1273496.1273499
10.1038/nmeth.2930
10.1016/j.stem.2010.03.015
10.1101/111591
10.1109/TIT.2010.2046205
10.1101/181479
10.1109/MC.2009.263
10.1101/025528
10.1016/j.cell.2015.04.044
10.1126/science.1254257
10.1101/049734
10.1371/journal.pgen.1003939
10.1038/nbt.2859
10.1038/ng.3818
10.1109/9.554402
10.1016/j.cell.2015.05.002
10.1038/ncomms14049
10.1101/361980
10.1109/JPROC.2009.2035722
10.3389/fgene.2013.00289
10.1038/nbt.3711
10.1371/journal.pone.0024828
10.1186/s12859-016-1106-6
10.1109/TIT.2010.2044061
10.1109/TSP.2016.2601299
10.1093/nar/gku310
10.1371/journal.pone.0082146
10.1016/j.sigpro.2010.12.005
10.1016/j.febslet.2005.08.058
ContentType Journal Article
Copyright Copyright © 2019 Mongia, Sengupta and Majumdar. 2019 Mongia, Sengupta and Majumdar
Copyright_xml – notice: Copyright © 2019 Mongia, Sengupta and Majumdar. 2019 Mongia, Sengupta and Majumdar
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fgene.2019.00009
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-8021
ExternalDocumentID oai_doaj_org_article_b8e26d1a84f846c89e30462a394e6756
PMC6361810
30761179
10_3389_fgene_2019_00009
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M~E
OK1
PGMZT
RNS
RPM
IPNFZ
M48
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c4439-396eeca4d4de3a19543ec12ab9f5da9fa802a8717c79ffb9033d851ac28b731d3
IEDL.DBID M48
ISSN 1664-8021
IngestDate Wed Aug 27 01:12:20 EDT 2025
Thu Aug 21 17:54:48 EDT 2025
Fri Sep 05 05:12:06 EDT 2025
Mon Jul 21 06:04:50 EDT 2025
Tue Jul 01 00:46:58 EDT 2025
Thu Apr 24 22:58:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords dropouts
scRNA-seq
Nuclear norm minization
imputation
matrix completion
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4439-396eeca4d4de3a19543ec12ab9f5da9fa802a8717c79ffb9033d851ac28b731d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Kumardeep Chaudhary, Icahn School of Medicine at Mount Sinai, United States; Sumit Kumar Bag, National Botanical Research Institute (CSIR), India; Yuriy L. Orlov, Russian Academy of Sciences, Russia; Shaoli Das, National Institutes of Health (NIH), United States
This article was submitted to Bioinformatics and Computational Biology, a section of the journal Frontiers in Genetics
Edited by: Indrajit Saha, National Institute of Technical Teachers' Training and Research, India
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fgene.2019.00009
PMID 30761179
PQID 2183647215
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b8e26d1a84f846c89e30462a394e6756
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6361810
proquest_miscellaneous_2183647215
pubmed_primary_30761179
crossref_citationtrail_10_3389_fgene_2019_00009
crossref_primary_10_3389_fgene_2019_00009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in genetics
PublicationTitleAlternate Front Genet
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Tang (B40) 2010; 6
Amit (B2) 2007
Trapnell (B43) 2014; 32
Zheng (B52) 2017; 8
Argyriou (B3) 2007
Holland (B14) 2008
Kapur (B15) 2016; 17
Ye (B50) 2013
Hicks (B13) 2015
Tirosh (B41) 2016; 352
Li (B23) 2017; 49
Usoskin (B44) 2015; 18
Maaten (B26) 2008; 9
Koren (B20) 2009; 8
Patel (B33) 2014; 344
Bennett (B5) 2007
Abernethy (B1) 2006
Majumdar (B28) 2011; 91
Zhou (B53) 2014; 42
van Dijk (B45) 2017
Weckwerth (B47) 2004; 101
Biase (B6) 2014; 24
Gill (B10) 2010; 11
Yan (B49) 2013; 20
Keshavan (B16) 2010; 56
Zeisel (B51) 2015; 347
Bell (B4) 2007
Macosko (B27) 2015; 161
Tomasi (B42) 1992; 9
Mongia (B31) 2018
Candes (B8) 2009; 9
Candès (B7) 2010; 98
Sengupta (B35) 2016
Liu (B25) 2017; 23
(B36) 2007
Wagner (B46) 2016; 34
Xiong (B48) 2005; 579
Sun (B39) 2017; 65
Mesbahi (B30) 1997; 42
Li (B24) 2018; 9
Grün (B11) 2014; 11
Reynier (B34) 2011; 6
Staiger (B38) 2013; 4
Klein (B19) 2015; 161
Silver (B37) 2013; 9
Klebanov (B18) 2007; 1
Najafov (B32) 2018; 35
Kharchenko (B17) 2014; 11
Kwak (B21) 2017
Candès (B9) 2010; 56
Marjanovic (B29) 2012; 60
Lee (B22) 2001
Hastie (B12) 2015; 16
References_xml – start-page: 30602
  volume-title: Principal Components Analysis (pca).
  year: 2008
  ident: B14
– volume: 11
  start-page: 740
  year: 2014
  ident: B17
  article-title: Bayesian approach to single-cell differential expression analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2967
– volume: 49
  start-page: 708
  year: 2017
  ident: B23
  article-title: Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors
  publication-title: Nat. Genet
  doi: 10.1038/s41467-018-03405-7
– volume: 347
  start-page: 1138
  year: 2015
  ident: B51
  article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell rna-seq
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 18
  start-page: 145
  year: 2015
  ident: B44
  article-title: Unbiased classification of sensory neuron types by large-scale single-cell rna sequencing
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3881
– volume: 24
  start-page: 1787
  year: 2014
  ident: B6
  article-title: Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell rna sequencing
  publication-title: Gen. Res.
  doi: 10.1101/gr.177725.114
– start-page: 556
  volume-title: Advances in Neural Information Processing Systems 13
  year: 2001
  ident: B22
  article-title: Algorithms for non-negative matrix factorization
– volume: 35
  start-page: 156
  year: 2018
  ident: B32
  article-title: GECO: gene expression correlation analysis after genetic algorithm-driven deconvolution
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty623
– volume: 11
  start-page: 95
  year: 2010
  ident: B10
  article-title: A statistical framework for differential network analysis from microarray data
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-11-95
– volume: 352
  start-page: 189
  year: 2016
  ident: B41
  article-title: Dissecting the multicellular ecosystem of metastatic melanoma by single-cell rna-seq
  publication-title: Science
  doi: 10.1126/science.aad0501
– volume: 1
  start-page: 538
  year: 2007
  ident: B18
  article-title: Diverse correlation structures in gene expression data and their utility in improving statistical inference
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/07-AOAS120
– volume: 9
  start-page: 2579
  year: 2008
  ident: B26
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 137
  year: 1992
  ident: B42
  article-title: Shape and motion from image streams under orthography: a factorization method
  publication-title: Int. J. Comp. Vis.
  doi: 10.1126/science.aad0501
– volume: 23
  start-page: 1249
  year: 2017
  ident: B25
  article-title: Visualizing high-dimensional data: Advances in the past decade
  publication-title: IEEE Trans. Visual. Comp. Grap.
  doi: 10.1109/TVCG.2016.2640960
– year: 2006
  ident: B1
  article-title: Low-rank matrix factorization with attributes
  publication-title: arXiv preprint cs/0611124
– volume: 9
  start-page: 717
  year: 2009
  ident: B8
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-009-9045-5
– volume: 60
  start-page: 5714
  year: 2012
  ident: B29
  article-title: On lq optimization and matrix completion
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2212015
– volume: 20
  start-page: 1131
  year: 2013
  ident: B49
  article-title: Single-cell rna-seq profiling of human preimplantation embryos and embryonic stem cells
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2660
– start-page: 41
  volume-title: Advances in Neural Information Processing Systems
  year: 2007
  ident: B3
  article-title: Multi-task feature learning
– volume: 101
  start-page: 7809
  year: 2004
  ident: B47
  article-title: Differential metabolic networks unravel the effects of silent plant phenotypes
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0303415101
– start-page: 17
  volume-title: Proceedings of the 24th International Conference on Machine Learning
  year: 2007
  ident: B2
  article-title: Uncovering shared structures in multiclass classification
  doi: 10.1145/1273496.1273499
– volume: 11
  start-page: 637
  year: 2014
  ident: B11
  article-title: Validation of noise models for single-cell transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2930
– volume: 6
  start-page: 468
  year: 2010
  ident: B40
  article-title: Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell rna-seq analysis
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.03.015
– year: 2017
  ident: B45
  article-title: Magic: a diffusion-based imputation method reveals gene-gene interactions in single-cell rna-sequencing data
  publication-title: BioRxiv [preprint]
  doi: 10.1101/111591
– volume: 56
  start-page: 2980
  year: 2010
  ident: B16
  article-title: Matrix completion from a few entries
  publication-title: IEEE Trans. Inf. Theor.
  doi: 10.1109/TIT.2010.2046205
– year: 2017
  ident: B21
  article-title: Drimpute: imputing dropout events in single cell rna sequencing data
  publication-title: bioRxiv [preprint]
  doi: 10.1101/181479
– volume: 8
  start-page: 30
  year: 2009
  ident: B20
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– year: 2015
  ident: B13
  article-title: On the widespread and critical impact of systematic bias and batch effects in single-cell rna-seq data
  publication-title: bioRxiv [preprint]
  doi: 10.1101/025528
– volume: 161
  start-page: 1187
  year: 2015
  ident: B19
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 344
  start-page: 1396
  year: 2014
  ident: B33
  article-title: Single-cell rna-seq highlights intratumoral heterogeneity in primary glioblastoma
  publication-title: Science
  doi: 10.1126/science.1254257
– year: 2016
  ident: B35
  article-title: Fast, scalable and accurate differential expression analysis for single cells
  publication-title: bioRxiv [preprint]
  doi: 10.1101/049734
– volume: 9
  start-page: e1003939
  year: 2013
  ident: B37
  article-title: Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two asian cohorts
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003939
– volume: 32
  start-page: 381
  year: 2014
  ident: B43
  article-title: Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions
  publication-title: Nat. Biotech.
  doi: 10.1038/nbt.2859
– volume: 9
  start-page: 997
  year: 2018
  ident: B24
  article-title: An accurate and robust imputation method scimpute for single-cell rna-seq data
  publication-title: Nat. Commun.
  doi: 10.1038/ng.3818
– volume: 42
  start-page: 239
  year: 1997
  ident: B30
  article-title: On the rank minimization problem over a positive semidefinite linear matrix inequality
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.554402
– volume: 16
  start-page: 3367
  year: 2015
  ident: B12
  article-title: Matrix completion and low-rank svd via fast alternating least squares
  publication-title: J. Mach. Learn. Res.
– start-page: 7
  volume-title: KDD Cup and Workshop at the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2007
  ident: B4
  article-title: Improved neighborhood-based collaborative filtering
– volume: 161
  start-page: 1202
  year: 2015
  ident: B27
  article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 8
  start-page: 14049
  year: 2017
  ident: B52
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
– year: 2018
  ident: B31
  article-title: Mcimpute: matrix completion based imputation for single cell rna-seq data
  publication-title: bioRxiv [preprint]
  doi: 10.1101/361980
– volume-title: Kdd Cup 2007
  year: 2007
  ident: B36
– volume: 98
  start-page: 925
  year: 2010
  ident: B7
  article-title: Matrix completion with noise
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2035722
– volume: 4
  start-page: 289
  year: 2013
  ident: B38
  article-title: Current composite-feature classification methods do not outperform simples single-genes classifiers in breast cancer prognosis
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2013.00289
– volume: 34
  start-page: 1145
  year: 2016
  ident: B46
  article-title: Revealing the vectors of cellular identity with single-cell genomics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3711
– volume: 6
  start-page: e24828
  year: 2011
  ident: B34
  article-title: Importance of correlation between gene expression levels: application to the type i interferon signature in rheumatoid arthritis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0024828
– volume: 17
  start-page: 243
  year: 2016
  ident: B15
  article-title: Gene expression prediction using low-rank matrix completion
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1106-6
– volume: 56
  start-page: 2053
  year: 2010
  ident: B9
  article-title: The power of convex relaxation: Near-optimal matrix completion
  publication-title: IEEE Trans. Inf. Theor.
  doi: 10.1109/TIT.2010.2044061
– volume: 65
  start-page: 794
  year: 2017
  ident: B39
  article-title: Majorization-minimization algorithms in signal processing, communications, and machine learning
  publication-title: Trans. Sig. Proc.
  doi: 10.1109/TSP.2016.2601299
– volume: 42
  start-page: e91
  year: 2014
  ident: B53
  article-title: Robustly detecting differential expression in rna sequencing data using observation weights
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku310
– start-page: 35
  volume-title: Proceedings of KDD Cup and Workshop
  year: 2007
  ident: B5
  article-title: The netflix prize
– year: 2013
  ident: B50
  article-title: Low-rank regularization for learning gene expression programs
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0082146
– volume: 91
  start-page: 1334
  year: 2011
  ident: B28
  article-title: Some empirical advances in matrix completion
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2010.12.005
– volume: 579
  start-page: 5325
  year: 2005
  ident: B48
  article-title: A systems biology approach to genetic studies of complex diseases
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.08.058
SSID ssj0000493334
Score 2.3894098
Snippet Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression analysis at...
Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression...
Motivation: Single-cell RNA sequencing has been proved to be revolutionary for its potential of zooming into complex biological systems. Genome-wide expression...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 9
SubjectTerms dropouts
Genetics
imputation
matrix completion
Nuclear norm minization
scRNA-seq
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA-lIPRF_Ki69YMIfenDcrs72Y_41lZLK1wfqoW-hXxMUDn2WnsF_e-dSa7HnYi--LpJ2PCbSeY3SfiNEPut6mITrS9p7TSlckqV1gEROeda6F1ATHIM0_Pu9FJ9vGqv1kp98ZuwLA-cgZu4AZsu1HZQkUKlHzTyXV5jQSskspvEtitdrSVT3zLvBQCV7yUpC9OTSPZgWcxaJ8lCvRGHklz_nzjm708l12LPySPxcEka5WGe7GOxheMT8SCXkfz5VJxN_VmqzfBOTllx_4fkVc6q2vNRHlGYCjK1JyNIYqnyEwWsGcpjnM3kxflheYs38r1d2F1xefLh8_FpuSyRUHpFVKIE3SF6q4IKCJbV2wB93VinYxusjnaoGks5Ue97HaPTFUAgjmV9M7ge6gDPxPY4H_GFkH3wHe18bWTFOEJ58A6jtjUMVrWgQiEm94AZv9QP5zIWM0N5BENsEsSGITYJ4kIcrEZcZ-2Mv_Q9Yhus-rHqdfpAvmCWvmD-5QuFeHtvQUOrhK8-7Ijzu1vDRJCF8uu2EM-zRVe_Aj7KoX2pEP2GrTfmstkyfv2SlLg76IghVXv_Y_IvxQ7DkY93Xontxfc7fE2EZ-HeJN_-BSu6_Rk
  priority: 102
  providerName: Directory of Open Access Journals
Title McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data
URI https://www.ncbi.nlm.nih.gov/pubmed/30761179
https://www.proquest.com/docview/2183647215
https://pubmed.ncbi.nlm.nih.gov/PMC6361810
https://doaj.org/article/b8e26d1a84f846c89e30462a394e6756
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEagXxJvwqIzEhUNoHTtOjIRQWygt0vYArLS3yE8eirJ0dyu1_54ZJ7t00cIlh8RxnBmP5xs_vgF4WUoVi2hcjrZT5NJKmRsrEMhZW4rK-hASHcPoVB2P5adJOflzPHoQ4HxjaEf5pMaz9vXF2eU7NPi3FHGiv92NKGpivOQ6sRHq63AD_ZKiUGw0gP2fPRYWol9mVkri0Fzwft1yYyXbcEtQjM9pk9cVl5WY_TfB0b93VV5xU0d34PaAL9l-3yHuwrXQ3YObfcbJy_twMnInKY3DGzYicv4LRgMCEXBPO3aAHs2z9DzpiyGgZV_Qt7WBHYa2ZZ9P9_N5OGPvzcI8gPHRh6-Hx_mQTSF3ElFHLrQKwRnppQ_CENGbCI4XxupYeqOjQYEYDJ8qV-kYrd4TwiMcM66obSW4Fw9hq5t24TGwyjuFg2QZiVxOB1E7G6I2XNRGlkL6DHaXAmvcQDVOGS_aBkMOknaTpN2QtJsk7Qxerd741dNs_KfsAelgVY4IstON6exbM9hbY-tQKM9NLSMiLFdjK-kYrhFaBoyRVAYvlhps0KBolcR0YXo-bwgzEqc-LzN41Gt09allj8igWtP1WlvWn3Q_vifSbiUUgqm9J_-s8yls0z_20zvPYGsxOw_PEfAs7E6aKMDrxwnfSX36NwzC_KA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=McImpute%3A+Matrix+Completion+Based+Imputation+for+Single+Cell+RNA-seq+Data&rft.jtitle=Frontiers+in+genetics&rft.au=Mongia%2C+Aanchal&rft.au=Sengupta%2C+Debarka&rft.au=Majumdar%2C+Angshul&rft.date=2019&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=10&rft.spage=9&rft_id=info:doi/10.3389%2Ffgene.2019.00009&rft_id=info%3Apmid%2F30761179&rft.externalDocID=30761179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon