Automatic oculomotor nerve identification based on data‐driven fiber clustering

The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The diffusion magnetic resonance imaging (dMRI) tractography is now widely used to describe the trajectory of the OCN. However, the complex cranial stru...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 43; no. 7; pp. 2164 - 2180
Main Authors Huang, Jiahao, Li, Mengjun, Zeng, Qingrun, Xie, Lei, He, Jianzhong, Chen, Ge, Liang, Jiantao, Li, Mingchu, Feng, Yuanjing
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2022
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.25779

Cover

Loading…
Abstract The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The diffusion magnetic resonance imaging (dMRI) tractography is now widely used to describe the trajectory of the OCN. However, the complex cranial structure leads to difficulties in fiber orientation distribution (FOD) modeling, fiber tracking, and region of interest (ROI) selection. Currently, the identification of OCN relies on expert manual operation, resulting in challenges, such as the carries high clinical, time‐consuming, and labor costs. Thus, we propose a method that can automatically identify OCN from dMRI tractography. First, we choose the multi‐shell multi‐tissue constraint spherical deconvolution (MSMT‐CSD) FOD estimation model and deterministic tractography to describe the 3D trajectory of the OCN. Then, we rely on the well‐established computational pipeline and anatomical expertise to create a data‐driven OCN tractography atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus. Finally, we apply the proposed OCN atlas to identify the OCN automatically from 40 new HCP subjects and two patients with brainstem cavernous malformation. In terms of spatial overlap and visualization, experiment results show that the automatically and manually identified OCN fibers are consistent. Our proposed OCN atlas provides an effective tool for identifying OCN by avoiding the traditional selection strategy of ROIs. In this work, we propose an automatic oculomotor nerve (OCN) identification method. We choose the multi‐shell multi‐tissue constraint spherical deconvolution (MSMT‐CSD) FOD estimation model and deterministic tractography to describe the three dimensional trajectory of the OCN after investigation the performance of different tractography methods for the reconstruction of the complete OCN pathway. Then, we rely on the well‐established computational pipeline and anatomical expertise to create a data‐driven OCN fiber clustering atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus.
AbstractList The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The diffusion magnetic resonance imaging (dMRI) tractography is now widely used to describe the trajectory of the OCN. However, the complex cranial structure leads to difficulties in fiber orientation distribution (FOD) modeling, fiber tracking, and region of interest (ROI) selection. Currently, the identification of OCN relies on expert manual operation, resulting in challenges, such as the carries high clinical, time-consuming, and labor costs. Thus, we propose a method that can automatically identify OCN from dMRI tractography. First, we choose the multi-shell multi-tissue constraint spherical deconvolution (MSMT-CSD) FOD estimation model and deterministic tractography to describe the 3D trajectory of the OCN. Then, we rely on the well-established computational pipeline and anatomical expertise to create a data-driven OCN tractography atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus. Finally, we apply the proposed OCN atlas to identify the OCN automatically from 40 new HCP subjects and two patients with brainstem cavernous malformation. In terms of spatial overlap and visualization, experiment results show that the automatically and manually identified OCN fibers are consistent. Our proposed OCN atlas provides an effective tool for identifying OCN by avoiding the traditional selection strategy of ROIs.The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The diffusion magnetic resonance imaging (dMRI) tractography is now widely used to describe the trajectory of the OCN. However, the complex cranial structure leads to difficulties in fiber orientation distribution (FOD) modeling, fiber tracking, and region of interest (ROI) selection. Currently, the identification of OCN relies on expert manual operation, resulting in challenges, such as the carries high clinical, time-consuming, and labor costs. Thus, we propose a method that can automatically identify OCN from dMRI tractography. First, we choose the multi-shell multi-tissue constraint spherical deconvolution (MSMT-CSD) FOD estimation model and deterministic tractography to describe the 3D trajectory of the OCN. Then, we rely on the well-established computational pipeline and anatomical expertise to create a data-driven OCN tractography atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus. Finally, we apply the proposed OCN atlas to identify the OCN automatically from 40 new HCP subjects and two patients with brainstem cavernous malformation. In terms of spatial overlap and visualization, experiment results show that the automatically and manually identified OCN fibers are consistent. Our proposed OCN atlas provides an effective tool for identifying OCN by avoiding the traditional selection strategy of ROIs.
The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The diffusion magnetic resonance imaging (dMRI) tractography is now widely used to describe the trajectory of the OCN. However, the complex cranial structure leads to difficulties in fiber orientation distribution (FOD) modeling, fiber tracking, and region of interest (ROI) selection. Currently, the identification of OCN relies on expert manual operation, resulting in challenges, such as the carries high clinical, time‐consuming, and labor costs. Thus, we propose a method that can automatically identify OCN from dMRI tractography. First, we choose the multi‐shell multi‐tissue constraint spherical deconvolution (MSMT‐CSD) FOD estimation model and deterministic tractography to describe the 3D trajectory of the OCN. Then, we rely on the well‐established computational pipeline and anatomical expertise to create a data‐driven OCN tractography atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus. Finally, we apply the proposed OCN atlas to identify the OCN automatically from 40 new HCP subjects and two patients with brainstem cavernous malformation. In terms of spatial overlap and visualization, experiment results show that the automatically and manually identified OCN fibers are consistent. Our proposed OCN atlas provides an effective tool for identifying OCN by avoiding the traditional selection strategy of ROIs.
The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The diffusion magnetic resonance imaging (dMRI) tractography is now widely used to describe the trajectory of the OCN. However, the complex cranial structure leads to difficulties in fiber orientation distribution (FOD) modeling, fiber tracking, and region of interest (ROI) selection. Currently, the identification of OCN relies on expert manual operation, resulting in challenges, such as the carries high clinical, time‐consuming, and labor costs. Thus, we propose a method that can automatically identify OCN from dMRI tractography. First, we choose the multi‐shell multi‐tissue constraint spherical deconvolution (MSMT‐CSD) FOD estimation model and deterministic tractography to describe the 3D trajectory of the OCN. Then, we rely on the well‐established computational pipeline and anatomical expertise to create a data‐driven OCN tractography atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus. Finally, we apply the proposed OCN atlas to identify the OCN automatically from 40 new HCP subjects and two patients with brainstem cavernous malformation. In terms of spatial overlap and visualization, experiment results show that the automatically and manually identified OCN fibers are consistent. Our proposed OCN atlas provides an effective tool for identifying OCN by avoiding the traditional selection strategy of ROIs. In this work, we propose an automatic oculomotor nerve (OCN) identification method. We choose the multi‐shell multi‐tissue constraint spherical deconvolution (MSMT‐CSD) FOD estimation model and deterministic tractography to describe the three dimensional trajectory of the OCN after investigation the performance of different tractography methods for the reconstruction of the complete OCN pathway. Then, we rely on the well‐established computational pipeline and anatomical expertise to create a data‐driven OCN fiber clustering atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus.
Author Xie, Lei
Chen, Ge
Li, Mingchu
Huang, Jiahao
Li, Mengjun
Zeng, Qingrun
Liang, Jiantao
He, Jianzhong
Feng, Yuanjing
AuthorAffiliation 2 Zhejiang Provincial United Key Laboratory of Embedded Systems Hangzhou China
3 Department of Radiology, Second Xiangya Hospital Central South University Hunan China
1 Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology Hangzhou China
4 Department of Neurosurgery Capital Medical University Xuanwu Hospital Beijing China
AuthorAffiliation_xml – name: 3 Department of Radiology, Second Xiangya Hospital Central South University Hunan China
– name: 4 Department of Neurosurgery Capital Medical University Xuanwu Hospital Beijing China
– name: 2 Zhejiang Provincial United Key Laboratory of Embedded Systems Hangzhou China
– name: 1 Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology Hangzhou China
Author_xml – sequence: 1
  givenname: Jiahao
  orcidid: 0000-0002-3866-8116
  surname: Huang
  fullname: Huang, Jiahao
  organization: Zhejiang Provincial United Key Laboratory of Embedded Systems
– sequence: 2
  givenname: Mengjun
  orcidid: 0000-0003-1674-9369
  surname: Li
  fullname: Li, Mengjun
  organization: Capital Medical University Xuanwu Hospital
– sequence: 3
  givenname: Qingrun
  orcidid: 0000-0001-6485-8178
  surname: Zeng
  fullname: Zeng, Qingrun
  organization: Zhejiang Provincial United Key Laboratory of Embedded Systems
– sequence: 4
  givenname: Lei
  surname: Xie
  fullname: Xie, Lei
  organization: Zhejiang Provincial United Key Laboratory of Embedded Systems
– sequence: 5
  givenname: Jianzhong
  surname: He
  fullname: He, Jianzhong
  organization: Zhejiang Provincial United Key Laboratory of Embedded Systems
– sequence: 6
  givenname: Ge
  surname: Chen
  fullname: Chen, Ge
  organization: Capital Medical University Xuanwu Hospital
– sequence: 7
  givenname: Jiantao
  surname: Liang
  fullname: Liang, Jiantao
  organization: Capital Medical University Xuanwu Hospital
– sequence: 8
  givenname: Mingchu
  surname: Li
  fullname: Li, Mingchu
  email: mingchu_li@xwhosp.org
  organization: Capital Medical University Xuanwu Hospital
– sequence: 9
  givenname: Yuanjing
  surname: Feng
  fullname: Feng, Yuanjing
  email: fyjing@zjut.edu.cn
  organization: Zhejiang Provincial United Key Laboratory of Embedded Systems
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35092135$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1jAQhS1URG8seAEUiQ0s0vqSxPYGqVSFIhWhSu3asp1J6yqxi538qDseoc_IkzDtXyqoBCuPPN8cnZmzTTZiikDIK0b3GKV8_9JNe7yVUj8jW4xqWVOmxcZd3bW1biTbJNulXFHKWEvZC7IpWqo5E-0WOT1Y5jTZOfgq-WVMU5pTriLkFVShhziHIXhsp1g5W6CvsOjtbH_-uO1zWEGshuAgV35cygw5xItd8nywY4GXD-8OOf94dHZ4XJ98_fT58OCk9k0jdC0a1_dWusFa4Rqlu955CXxQzoP3DpdhzDvF2YD_HWVeNwIHpaJMcu6o2CHv17rXi5ug9-g129Fc5zDZfGOSDebvTgyX5iKtjNK6E61CgbcPAjl9W6DMZgrFwzjaCGkphndcKKVa2SL65gl6lZYccT2k0LwS6Bep1386erTy-9oIvFsDPqdSMgyPCKPmLkmDSZr7JJHdf8L6MN8HgcuE8X8T38MIN_-WNscfvqwnfgGIFbGQ
CitedBy_id crossref_primary_10_3389_fmed_2023_1244007
crossref_primary_10_1016_j_media_2023_102766
Cites_doi 10.1371/journal.pone.0135247
10.1227/NEU.0b013e31820c6cbe
10.1016/j.neuroimage.2013.04.127
10.1007/s00429-015-1179-4
10.1016/j.neuroimage.2018.06.019
10.3390/jcm9051340
10.1002/hbm.25472
10.1007/s00062-019-00781-5
10.1007/978-3-642-33454-2_16
10.3171/2016.8.JNS16363
10.1371/journal.pcbi.0010042
10.3389/fnins.2017.00554
10.3171/2014.12.JNS142169
10.1007/s12565-012-0166-6
10.1002/hed.24999
10.1002/hbm.25670
10.1016/j.neuroimage.2014.12.058
10.1016/j.neuroimage.2019.116137
10.1016/j.ajoc.2018.01.048
10.1136/jnnp-2013-305111
10.1016/j.media.2020.101686
10.1038/s41467-017-01285-x
10.1016/j.neuroimage.2014.07.061
10.1002/nbm.4607
10.1002/ima.22005
10.1109/EMBC.2016.7590899
10.1227/01.NEU.0000367613.09324.DA
10.1016/j.jocn.2006.01.046
10.3171/2009.1.JNS081185
10.1001/archneur.1990.00530020149032
10.1016/j.nicl.2019.102160
10.4103/2152-7806.199556
10.1016/j.nicl.2017.07.020
10.5535/arm.2017.41.4.720
10.1093/neuros/nyy229
10.1109/TMI.2007.906785
10.1227/NEU.0000000000001241
10.1016/S0006-3495(94)80775-1
10.1109/TPAMI.2004.1262185
10.1212/WNL.44.11.2032
10.1002/ca.22811
10.1007/s00276-016-1725-7
10.1016/j.neuroimage.2020.117063
10.3171/2019.1.JNS182638
10.1186/s12880-015-0068-x
10.1016/j.nicl.2016.11.023
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2008.03.036
10.2307/1932409
10.1007/s10278-012-9561-8
10.1093/cercor/bhn102
10.1016/j.neuroimage.2012.01.021
10.3171/2017.8.JNS17854
10.1088/1361-6560/ac0d90
10.3174/ajnr.A6706
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
– notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.25779
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database
MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Huang et al
EISSN 1097-0193
EndPage 2180
ExternalDocumentID PMC8996358
35092135
10_1002_hbm_25779
HBM25779
Genre article
Journal Article
GrantInformation_xml – fundername: Key Projects of Natural Science Foundation of Zhejiang Province
  funderid: LZ21F030003
– fundername: Natural Science Foundation of Zhejiang Province
  funderid: LQ21F020017
– fundername: National Natural Science Foundation of China
  funderid: 61976190
– fundername: Key Research and Development Project of Zhejiang Province
  funderid: 2020C03070
– fundername: Key Projects of Natural Science Foundation of Zhejiang Province
  grantid: LZ21F030003
– fundername: Key Research and Development Project of Zhejiang Province
  grantid: 2020C03070
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LQ21F020017
– fundername: National Natural Science Foundation of China
  grantid: 61976190
– fundername: ;
  grantid: 61976190
– fundername: ;
  grantid: LQ21F020017
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4439-34bdda7bfaa3b4896dbc7e2f8bceccb77911cb821fbc7601c9434437801722b03
IEDL.DBID 24P
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 13:44:08 EDT 2025
Fri Jul 11 05:18:41 EDT 2025
Sat Jul 26 02:15:13 EDT 2025
Wed Feb 19 02:27:34 EST 2025
Tue Jul 01 01:11:06 EDT 2025
Thu Apr 24 23:09:58 EDT 2025
Wed Jan 22 16:26:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords diffusion magnetic resonance imaging
tractography
oculomotor nerve
neurosurgery
data-driven
fiber clustering
Language English
License Attribution-NonCommercial
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4439-34bdda7bfaa3b4896dbc7e2f8bceccb77911cb821fbc7601c9434437801722b03
Notes Funding information
Jiahao Huang and Mengjun Li authors contributed equally to this work.
Key Projects of Natural Science Foundation of Zhejiang Province, Grant/Award Number: LZ21F030003; Key Research and Development Project of Zhejiang Province, Grant/Award Number: 2020C03070; National Natural Science Foundation of China, Grant/Award Number: 61976190; Natural Science Foundation of Zhejiang Province, Grant/Award Number: LQ21F020017
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Key Projects of Natural Science Foundation of Zhejiang Province, Grant/Award Number: LZ21F030003; Key Research and Development Project of Zhejiang Province, Grant/Award Number: 2020C03070; National Natural Science Foundation of China, Grant/Award Number: 61976190; Natural Science Foundation of Zhejiang Province, Grant/Award Number: LQ21F020017
ORCID 0000-0003-1674-9369
0000-0001-6485-8178
0000-0002-3866-8116
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25779
PMID 35092135
PQID 2648983779
PQPubID 996345
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8996358
proquest_miscellaneous_2623888575
proquest_journals_2648983779
pubmed_primary_35092135
crossref_primary_10_1002_hbm_25779
crossref_citationtrail_10_1002_hbm_25779
wiley_primary_10_1002_hbm_25779_HBM25779
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 41
2017; 8
2013; 26
2021; 66
2020; 63
2019; 10
2004; 26
1994; 66
2009; 111
2016; 221
2019; 202
2015; 109
2018; 40
2020; 11
2021; 000
2016; 79
2010; 66
2018; 130
2017; 30
2021; 34
1990; 47
2017; 39
2006; 27
2020; 9
1997; 18
2011; 68
2009; 19
2012; 22
2021; 84
2007; 26
2012; 62
2015; 15
2021; 42
2018; 181
2012
2013; 88
2020; 41
2006; 13
2020; 220
2013; 84
2015; 123
2015; 10
1994; 44
2016; 127
2019; 84
2020; 30
2017; 16
2017; 11
1945; 26
2017; 13
2013; 80
2017
2020; 25
2016
2005; 1
2008; 41
2018; 10
2014; 103
2019; 132
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Lazar M. (e_1_2_10_28_1) 2006; 27
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
Inoue H. (e_1_2_10_22_1) 2020; 11
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_32_1
Miller M. J. (e_1_2_10_34_1) 1997; 18
e_1_2_10_30_1
e_1_2_10_51_1
Brazis P. W. (e_1_2_10_6_1) 2012
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_20_1
e_1_2_10_41_1
Sultana S. (e_1_2_10_43_1) 2017
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Muhammad S. (e_1_2_10_35_1) 2019; 10
Condos A. (e_1_2_10_10_1) 2021; 000
e_1_2_10_60_1
e_1_2_10_62_1
Zhao J. (e_1_2_10_63_1) 2021; 84
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 18
  start-page: 111
  issue: 1
  year: 1997
  end-page: 113
  article-title: Anatomic relationship of the oculomotor nuclear complex and medial longitudinal fasciculus in the midbrain
  publication-title: American Journal of Neuroradiology
– volume: 63
  year: 2020
  article-title: Asymmetric fiber trajectory distribution estimation using streamline differential equation
  publication-title: Medical Image Analysis
– volume: 27
  start-page: 1258
  issue: 6
  year: 2006
  end-page: 1271
  article-title: White matter reorganization after surgical resection of brain tumors and vascular malformations
  publication-title: American Journal of Neuroradiology
– volume: 8
  start-page: 20
  year: 2017
  article-title: Delayed and isolated oculomotor nerve palsy following minor head trauma
  publication-title: Surgical Neurology International
– volume: 26
  start-page: 214
  issue: 2
  year: 2004
  end-page: 225
  article-title: Spectral grouping using the Nystrom method
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 15
  start-page: 1
  issue: 1
  year: 2015
  end-page: 28
  article-title: Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool
  publication-title: BMC Medical Imaging
– volume: 10
  start-page: 81
  year: 2018
  end-page: 83
  article-title: MRI findings of contralateral oculomotor nerve palsy in Parry‐Romberg syndrome
  publication-title: American Journal of Ophthalmology Case Reports
– volume: 44
  start-page: 2032
  issue: 11
  year: 1994
  end-page: 2032
  article-title: Pure midbrain infarction: Clinical syndromes, MRI, and etiologic patterns
  publication-title: Neurology
– volume: 19
  start-page: 524
  issue: 3
  year: 2009
  end-page: 536
  article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography
  publication-title: Cerebral Cortex
– volume: 181
  start-page: 16
  year: 2018
  end-page: 29
  article-title: Investigation into local white matter abnormality in emotional processing and sensorimotor areas using an automatically annotated fiber clustering in major depressive disorder
  publication-title: NeuroImage
– volume: 9
  start-page: 1340
  issue: 5
  year: 2020
  article-title: Three‐dimensional identification of the medial longitudinal fasciculus in the human brain: A diffusion tensor imaging study
  publication-title: Journal of Clinical Medicine
– volume: 39
  start-page: 323
  issue: 3
  year: 2017
  end-page: 331
  article-title: The cisternal segments of the oculomotor nerve: A magnetic resonance imaging study
  publication-title: Surgical and Radiologic Anatomy
– volume: 25
  year: 2020
  article-title: Anatomical assessment of trigeminal nerve tractography using diffusion MRI: A comparison of acquisition b‐values and single‐and multi‐fiber tracking strategies
  publication-title: NeuroImage: Clinical
– volume: 34
  issue: 12
  year: 2021
  article-title: Automated facial‐vestibulocochlear nerve complex identification based on data‐driven tractography clustering
  publication-title: NMR in Biomedicine
– volume: 10
  start-page: 1
  issue: 40
  year: 2019
  end-page: 6
  article-title: Management of oculomotor nerve schwannoma: Systematic review of literature and illustrative case
  publication-title: Surgical Neurology International
– volume: 41
  start-page: 1480
  issue: 8
  year: 2020
  end-page: 1486
  article-title: Multishell diffusion MRI‐based tractography of the facial nerve in vestibular schwannoma
  publication-title: American Journal of Neuroradiology
– volume: 42
  start-page: 6070
  year: 2021
  end-page: 6080
  article-title: The trajectory of the medial longitudinal fasciculus in the human brain: A diffusion imaging based tractography study
  publication-title: Human Brain Mapping
– volume: 42
  start-page: 3887
  issue: 12
  year: 2021
  end-page: 3904
  article-title: Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI
  publication-title: Human Brain Mapping
– volume: 10
  issue: 9
  year: 2015
  article-title: Reproducibility of the structural brain connectome derived from diffusion tensor imaging
  publication-title: PLoS One
– volume: 11
  start-page: 554
  year: 2017
  article-title: Comparison of diffusion‐weighted MRI reconstruction methods for visualization of cranial nerves in posterior fossa surgery
  publication-title: Frontiers in Neuroscience
– volume: 68
  start-page: 1077
  issue: 4
  year: 2011
  end-page: 1083
  article-title: Three‐dimensional in vivo modeling of vestibular schwannomas and surrounding cranial nerves with diffusion imaging tractography
  publication-title: Neurosurgery
– volume: 16
  start-page: 222
  year: 2017
  end-page: 233
  article-title: A test‐retest study on Parkinson's PPMI dataset yields statistically significant white matter fascicles
  publication-title: NeuroImage: Clinical
– volume: 13
  start-page: 1019
  issue: 10
  year: 2006
  end-page: 1022
  article-title: Relationship between the posterior cerebral artery and the cisternal segment of the oculomotor nerve
  publication-title: Journal of Clinical Neuroscience
– volume: 84
  start-page: 1073
  issue: 10
  year: 2013
  end-page: 1074
  article-title: Injury of the oculomotor nerve in a patient with traumatic brain injury: Diffusion tensor tractography study
  publication-title: Journal of Neurology, Neurosurgery & Psychiatry
– volume: 1
  issue: 4
  year: 2005
  article-title: The human connectome: A structural description of the human brain
  publication-title: PLoS Computational Biology
– volume: 109
  start-page: 73
  year: 2015
  end-page: 83
  article-title: A new compression format for fiber tracking datasets
  publication-title: NeuroImage
– volume: 40
  start-page: 536
  issue: 3
  year: 2018
  end-page: 543
  article-title: Endoscopic endonasal surgery for pituitary adenomas extending to the oculomotor cistern
  publication-title: Head & Neck
– volume: 88
  start-page: 70
  issue: 2
  year: 2013
  end-page: 82
  article-title: Intramesencephalic course of the oculomotor nerve fibers: Microanatomy and possible clinical significance
  publication-title: Anatomical Science International
– volume: 66
  start-page: 15TR01
  year: 2021
  article-title: Diffusion MRI tractography for neurosurgery: The basics, current state, technical reliability and challenges
  publication-title: Physics in Medicine & Biology
– volume: 000
  start-page: 1
  year: 2021
  end-page: 8
  article-title: Not just down and out: Oculomotor nerve pathologic spectrum. Current problems in diagnostic radiology
  publication-title: Current Problems in Diagnostic Radiology
– volume: 11
  start-page: 1
  issue: 353
  year: 2020
  end-page: 3
  article-title: Unruptured internal carotid‐posterior communicating artery aneurysm splitting the oculomotor nerve: A case report and literature review
  publication-title: Surgical Neurology International
– volume: 84
  start-page: 313
  issue: 2
  year: 2019
  end-page: 325
  article-title: Overcoming challenges of cranial nerve tractography: A targeted review
  publication-title: Neurosurgery
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  article-title: The WU‐Minn human connectome project: An overview
  publication-title: NeuroImage
– volume: 84
  start-page: 1
  issue: 8
  year: 2021
  end-page: 8
  article-title: Diabetic oculomotor nerve palsy displaying enhancement of the oculomotor nerve in the orbit and cavernous sinus on MRI
  publication-title: European Neurology
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  end-page: 781
  article-title: FreeSurfer
  publication-title: Neuroimage
– volume: 130
  start-page: 286
  issue: 1
  year: 2018
  end-page: 301
  article-title: Surgical outcome of motor deficits and neurological status in brainstem cavernous malformations based on preoperative diffusion tensor imaging: A prospective randomized clinical trial
  publication-title: Journal of Neurosurgery
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  end-page: 13
  article-title: The challenge of mapping the human connectome based on diffusion tractography
  publication-title: Nature Communications
– volume: 22
  start-page: 53
  issue: 1
  year: 2012
  end-page: 66
  article-title: MRtrix: Diffusion tractography in crossing fiber regions
  publication-title: International Journal of Imaging Systems and Technology
– volume: 111
  start-page: 1193
  issue: 6
  year: 2009
  end-page: 1200
  article-title: Anatomical features of the cisternal segment of the oculomotor nerve: Neurovascular relationships and abnormal compression on magnetic resonance imaging
  publication-title: Journal of Neurosurgery
– volume: 132
  start-page: 1642
  issue: 5
  year: 2019
  end-page: 1652
  article-title: Full tractography for detecting the position of cranial nerves in preoperative planning for skull base surgery
  publication-title: Journal of Neurosurgery
– volume: 221
  start-page: 4705
  issue: 9
  year: 2016
  end-page: 4721
  article-title: The white matter query language: A novel approach for describing human white matter anatomy
  publication-title: Brain Structure and Function
– volume: 41
  start-page: 1267
  issue: 4
  year: 2008
  end-page: 1277
  article-title: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers
  publication-title: NeuroImage
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
– volume: 13
  start-page: 138
  year: 2017
  end-page: 153
  article-title: Automated white matter fiber tract identification in patients with brain tumors
  publication-title: NeuroImage: Clinical
– year: 2016
– volume: 26
  start-page: 1562
  issue: 11
  year: 2007
  end-page: 1575
  article-title: Automatic tractography segmentation using a high‐dimensional white matter atlas
  publication-title: IEEE Transactions on Medical Imaging
– volume: 47
  start-page: 235
  issue: 2
  year: 1990
  end-page: 237
  article-title: Isolated inferior oblique paresis from brain‐stem infarction: Perspective on oculomotor fascicular organization in the ventral midbrain tegmentum
  publication-title: Archives of Neurology
– volume: 66
  start-page: 788
  issue: 4
  year: 2010
  end-page: 796
  article-title: In vivo visualization of cranial nerve pathways in humans using diffusion‐based tractography
  publication-title: Neurosurgery
– year: 2012
– volume: 220
  year: 2020
  article-title: Creation of a novel trigeminal tractography atlas for automated trigeminal nerve identification
  publication-title: NeuroImage
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  end-page: 302
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 103
  start-page: 411
  year: 2014
  end-page: 426
  article-title: Multi‐tissue constrained spherical deconvolution for improved analysis of multi‐shell diffusion MRI data
  publication-title: NeuroImage
– volume: 79
  start-page: 146
  issue: 1
  year: 2016
  end-page: 165
  article-title: Visualization of cranial nerves using high‐definition fiber tractography
  publication-title: Neurosurgery
– volume: 30
  start-page: 237
  issue: 2
  year: 2020
  end-page: 242
  article-title: Magnetic resonance imaging in 14 patients with congenital oculomotor nerve palsy
  publication-title: Clinical Neuroradiology
– volume: 26
  start-page: 774
  issue: 4
  year: 2013
  end-page: 785
  article-title: Registration of FA and T1‐weighted MRI data of healthy human brain based on template matching and normalized cross‐correlation
  publication-title: Journal of Digital Imaging
– volume: 66
  start-page: 259
  issue: 1
  year: 1994
  end-page: 267
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophysical Journal
– volume: 30
  start-page: 21
  issue: 1
  year: 2017
  end-page: 31
  article-title: Microsurgical anatomy of the oculomotor nerve
  publication-title: Clinical Anatomy
– volume: 202
  year: 2019
  article-title: MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation
  publication-title: NeuroImage
– volume: 127
  start-page: 613
  issue: 3
  year: 2016
  end-page: 621
  article-title: Comparison of probabilistic and deterministic fiber tracking of cranial nerves
  publication-title: Journal of Neurosurgery
– volume: 41
  start-page: 720
  issue: 4
  year: 2017
  article-title: Diffusion tensor tractography for determining injury to the oculomotor nerve in a patient with cerebral infarct
  publication-title: Annals of Rehabilitation Medicine
– year: 2017
– volume: 123
  start-page: 1133
  issue: 5
  year: 2015
  end-page: 1144
  article-title: Longitudinal evaluation of corticospinal tract in patients with resected brainstem cavernous malformations using high‐definition fiber tractography and diffusion connectometry analysis: Preliminary experience
  publication-title: Journal of Neurosurgery
– ident: e_1_2_10_5_1
  doi: 10.1371/journal.pone.0135247
– ident: e_1_2_10_9_1
  doi: 10.1227/NEU.0b013e31820c6cbe
– ident: e_1_2_10_17_1
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: e_1_2_10_53_1
  doi: 10.1007/s00429-015-1179-4
– volume-title: Development of an atlas‐based segmentation of cranial nerves using shape‐aware discrete deformable models for neurosurgical planning and simulation
  year: 2017
  ident: e_1_2_10_43_1
– ident: e_1_2_10_55_1
  doi: 10.1016/j.neuroimage.2018.06.019
– ident: e_1_2_10_59_1
  doi: 10.3390/jcm9051340
– ident: e_1_2_10_20_1
  doi: 10.1002/hbm.25472
– ident: e_1_2_10_57_1
  doi: 10.1007/s00062-019-00781-5
– ident: e_1_2_10_38_1
  doi: 10.1007/978-3-642-33454-2_16
– ident: e_1_2_10_64_1
  doi: 10.3171/2016.8.JNS16363
– ident: e_1_2_10_42_1
  doi: 10.1371/journal.pcbi.0010042
– ident: e_1_2_10_3_1
  doi: 10.3389/fnins.2017.00554
– ident: e_1_2_10_13_1
  doi: 10.3171/2014.12.JNS142169
– ident: e_1_2_10_52_1
  doi: 10.1007/s12565-012-0166-6
– ident: e_1_2_10_46_1
  doi: 10.1002/hed.24999
– ident: e_1_2_10_30_1
  doi: 10.1002/hbm.25670
– ident: e_1_2_10_41_1
  doi: 10.1016/j.neuroimage.2014.12.058
– ident: e_1_2_10_48_1
  doi: 10.1016/j.neuroimage.2019.116137
– volume: 18
  start-page: 111
  issue: 1
  year: 1997
  ident: e_1_2_10_34_1
  article-title: Anatomic relationship of the oculomotor nuclear complex and medial longitudinal fasciculus in the midbrain
  publication-title: American Journal of Neuroradiology
– ident: e_1_2_10_45_1
  doi: 10.1016/j.ajoc.2018.01.048
– ident: e_1_2_10_27_1
  doi: 10.1136/jnnp-2013-305111
– ident: e_1_2_10_14_1
  doi: 10.1016/j.media.2020.101686
– ident: e_1_2_10_32_1
  doi: 10.1038/s41467-017-01285-x
– ident: e_1_2_10_26_1
  doi: 10.1016/j.neuroimage.2014.07.061
– volume: 11
  start-page: 1
  issue: 353
  year: 2020
  ident: e_1_2_10_22_1
  article-title: Unruptured internal carotid‐posterior communicating artery aneurysm splitting the oculomotor nerve: A case report and literature review
  publication-title: Surgical Neurology International
– ident: e_1_2_10_61_1
  doi: 10.1002/nbm.4607
– ident: e_1_2_10_47_1
  doi: 10.1002/ima.22005
– ident: e_1_2_10_19_1
  doi: 10.1109/EMBC.2016.7590899
– volume: 27
  start-page: 1258
  issue: 6
  year: 2006
  ident: e_1_2_10_28_1
  article-title: White matter reorganization after surgical resection of brain tumors and vascular malformations
  publication-title: American Journal of Neuroradiology
– ident: e_1_2_10_21_1
  doi: 10.1227/01.NEU.0000367613.09324.DA
– ident: e_1_2_10_50_1
  doi: 10.1016/j.jocn.2006.01.046
– ident: e_1_2_10_31_1
  doi: 10.3171/2009.1.JNS081185
– volume-title: Localization in clinical neurology
  year: 2012
  ident: e_1_2_10_6_1
– ident: e_1_2_10_8_1
  doi: 10.1001/archneur.1990.00530020149032
– ident: e_1_2_10_56_1
  doi: 10.1016/j.nicl.2019.102160
– ident: e_1_2_10_36_1
  doi: 10.4103/2152-7806.199556
– ident: e_1_2_10_11_1
  doi: 10.1016/j.nicl.2017.07.020
– ident: e_1_2_10_25_1
  doi: 10.5535/arm.2017.41.4.720
– ident: e_1_2_10_23_1
  doi: 10.1093/neuros/nyy229
– ident: e_1_2_10_39_1
  doi: 10.1109/TMI.2007.906785
– ident: e_1_2_10_60_1
  doi: 10.1227/NEU.0000000000001241
– ident: e_1_2_10_2_1
  doi: 10.1016/S0006-3495(94)80775-1
– ident: e_1_2_10_16_1
  doi: 10.1109/TPAMI.2004.1262185
– ident: e_1_2_10_4_1
  doi: 10.1212/WNL.44.11.2032
– ident: e_1_2_10_40_1
  doi: 10.1002/ca.22811
– ident: e_1_2_10_49_1
  doi: 10.1007/s00276-016-1725-7
– ident: e_1_2_10_62_1
  doi: 10.1016/j.neuroimage.2020.117063
– ident: e_1_2_10_24_1
  doi: 10.3171/2019.1.JNS182638
– ident: e_1_2_10_44_1
  doi: 10.1186/s12880-015-0068-x
– ident: e_1_2_10_37_1
  doi: 10.1016/j.nicl.2016.11.023
– ident: e_1_2_10_51_1
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 10
  start-page: 1
  issue: 40
  year: 2019
  ident: e_1_2_10_35_1
  article-title: Management of oculomotor nerve schwannoma: Systematic review of literature and illustrative case
  publication-title: Surgical Neurology International
– ident: e_1_2_10_54_1
  doi: 10.1016/j.neuroimage.2008.03.036
– ident: e_1_2_10_12_1
  doi: 10.2307/1932409
– ident: e_1_2_10_33_1
  doi: 10.1007/s10278-012-9561-8
– ident: e_1_2_10_18_1
  doi: 10.1093/cercor/bhn102
– ident: e_1_2_10_15_1
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 84
  start-page: 1
  issue: 8
  year: 2021
  ident: e_1_2_10_63_1
  article-title: Diabetic oculomotor nerve palsy displaying enhancement of the oculomotor nerve in the orbit and cavernous sinus on MRI
  publication-title: European Neurology
– ident: e_1_2_10_29_1
  doi: 10.3171/2017.8.JNS17854
– ident: e_1_2_10_58_1
  doi: 10.1088/1361-6560/ac0d90
– ident: e_1_2_10_7_1
  doi: 10.3174/ajnr.A6706
– volume: 000
  start-page: 1
  year: 2021
  ident: e_1_2_10_10_1
  article-title: Not just down and out: Oculomotor nerve pathologic spectrum. Current problems in diagnostic radiology
  publication-title: Current Problems in Diagnostic Radiology
SSID ssj0011501
Score 2.403464
Snippet The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2164
SubjectTerms Automation
Brain cancer
Brain stem
Cluster Analysis
Clustering
Computer applications
data‐driven
diffusion magnetic resonance imaging
Diffusion Magnetic Resonance Imaging - methods
Diffusion Tensor Imaging - methods
fiber clustering
Fiber orientation
Fibers
Humans
Identification
Image processing
Image Processing, Computer-Assisted - methods
Labor costs
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Methods
Muscles
neurosurgery
Oculomotor nerve
Oculomotor Nerve - diagnostic imaging
Oculomotor nerves
Patients
Spherical shells
tractography
Tumors
Title Automatic oculomotor nerve identification based on data‐driven fiber clustering
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25779
https://www.ncbi.nlm.nih.gov/pubmed/35092135
https://www.proquest.com/docview/2648983779
https://www.proquest.com/docview/2623888575
https://pubmed.ncbi.nlm.nih.gov/PMC8996358
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL2oA_FF_HZ-jCgivlS3JLUpPk1RhjBRUdhbSdIWhdnJtA---RP8jf4S70276piCLyGQW9rmJrknyckJwB5GvFQlofUwmjc9aUTqhSnJ3aXGkIKaiN3Nc92r4869vOz5vSk4GZ2FKfQhqgU36hluvKYOrs3L0bdo6IN5OsT2FoTTUKOjtdTIubyuthAQ6bjZFsZYL8QheCQr1ORH1aPjwWgCYU4SJX8CWBeBLhZgvoSOrF34ehGmkmwJltsZTpuf3tg-c2ROt0q-BLPdcs98GW7aORqQMCsb2LxP7LvBkGXEdGSPcUkWcv5hFNJihhnijX6-f8RDGgtZSqwSZvs5iSpgqFuB-4vzu7OOV16k4FmJgMMT0sSxDkyqtTBShcexsUHCU2UsetBgRbRa1iiODrLEkbEkGidFoGiCyE1TrMJMNsiSdWA6UKH2uW7FIpS-z5WhjUqtfURqqZG8DgejGo1sqTJOl130o0IfmUdY-ZGr_DrsVqbPhbTGb0ZbI7dEZe96iYiVFyrhineqYuwXtNmhs2SQkw2CEUX3j9ZhrfBi9RaBKIm3BJYEY_6tDEhze7wke3xw2ts4PUWIpvA3XUv4-8OjzmnXZTb-b7oJc5xOVzg-5RbMvA7zZBsxz6tpuLaNadALGlA7Pb-6vm249QNKb_kXCmkDAQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFH4CJgGXidFtdMDwpmniktHaTuNIXMq0qmxNtUkg9RbZTqJWKgkq5LDbfsJ-434J7zlpWFUm7WbJL0riZ_t9tj9_D-ADRrxMpaH1MJp3PGlE5oUZyd1lxpCCmkhc5rlo3Btey68Tf7IB58u7MJU-RLPhRiPDzdc0wGlD-uxRNXRqbj5hhwvCTXgmezygxA1cfm_OEBDquOUWBlkvxDl4qSvU4WfNo6vRaA1irjMl_0awLgQN9uB5jR1Zv3L2C9hI831o9XNcN9_8ZB-ZY3O6bfJ92I7qQ_MW_OiXaEDKrKyw5Zzod8WC5UR1ZLOkZgs5BzGKaQnDAhFH__z6nSxoMmQZ0UqYnZekqoCx7iVcD75cfR56dSYFz0pEHJ6QJkl0YDKthZEq7CXGBinPlLHoQoMN0e1aozh6yBJJxpJqnBSBohUiNx3xCrbyIk8PgOlAhdrnupuIUPo-V4ZOKrX2EaplRvI2nC5bNLa1zDhlu5jHlUAyj7HxY9f4bXjfmN5W2hpPGR0t3RLXw-suJlpeqISrftdU48Cg0w6dp0VJNohGFCUgbcPryovNWwTCJN4VWBOs-LcxINHt1Zp8NnXi27g-RYym8DddT_j3h8fDi8gV3vy_6QnsDK-iUTy6HH87hF1OVy0cufIItu4XZXqMAOjevHX9_AGv1wIO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RkFAvVfkqW2hxUYW4pOzaDnHU09Ky2rYsAgkkbpE_YoG0m10t5NAbP4HfyC9hxsmmXdFK3Cx5oiQe2_PseX4G-IwRz6s8tRFG83YkjfBR6knuzhtDCmrChZvnBqeH_Uv58yq-WoCvs7MwlT5Es-FGIyPM1zTAJ84f_BENvTajL9jfkvQVLFGyj7o3l2dNCgGRTlhtYYyNUpyCZ7JCbX7QPDofjJ4hzOdEyb8BbIhAvbfwpoaOrFv5egUW8mIV1roFLptHv9keC2TOsEu-CsuDOme-BufdEg1ImJWNbTkk9t14ygpiOrIbV5OFgn8YhTTHsEC80cf7BzeluZB5YpUwOyxJVAFD3Tpc9o4vvvWj-iKFyEoEHJGQxjmdGK-1MFKlh87YJOdeGYseNNgQnY41iqODLHFkLInGSZEoWiBy0xYbsFiMi3wTmE5UqmOuO06kMo65MpSo1DpGpOaN5C3Yn7VoZmuVcbrsYphV-sg8w8bPQuO3YLcxnVTSGv8y2p65JatH121GrLxUiVD9qanGcUHJDl3k45JsEIwoun-0Be8qLzZvEYiSeEdgTTLn38aANLfna4qb66C9jctThGgKfzP0hP9_eNY_GoTC-5eb7sDy2fdedvLj9NcWvOZ00CJQK7dh8W5a5h8Q_tyZj6GbPwExUQFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+oculomotor+nerve+identification+based+on+data%E2%80%90driven+fiber+clustering&rft.jtitle=Human+brain+mapping&rft.au=Huang%2C+Jiahao&rft.au=Li%2C+Mengjun&rft.au=Zeng%2C+Qingrun&rft.au=Xie%2C+Lei&rft.date=2022-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=43&rft.issue=7&rft.spage=2164&rft.epage=2180&rft_id=info:doi/10.1002%2Fhbm.25779&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon