Automatic oculomotor nerve identification based on data‐driven fiber clustering
The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The diffusion magnetic resonance imaging (dMRI) tractography is now widely used to describe the trajectory of the OCN. However, the complex cranial stru...
Saved in:
Published in | Human brain mapping Vol. 43; no. 7; pp. 2164 - 2180 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.25779 |
Cover
Loading…
Abstract | The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The diffusion magnetic resonance imaging (dMRI) tractography is now widely used to describe the trajectory of the OCN. However, the complex cranial structure leads to difficulties in fiber orientation distribution (FOD) modeling, fiber tracking, and region of interest (ROI) selection. Currently, the identification of OCN relies on expert manual operation, resulting in challenges, such as the carries high clinical, time‐consuming, and labor costs. Thus, we propose a method that can automatically identify OCN from dMRI tractography. First, we choose the multi‐shell multi‐tissue constraint spherical deconvolution (MSMT‐CSD) FOD estimation model and deterministic tractography to describe the 3D trajectory of the OCN. Then, we rely on the well‐established computational pipeline and anatomical expertise to create a data‐driven OCN tractography atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus. Finally, we apply the proposed OCN atlas to identify the OCN automatically from 40 new HCP subjects and two patients with brainstem cavernous malformation. In terms of spatial overlap and visualization, experiment results show that the automatically and manually identified OCN fibers are consistent. Our proposed OCN atlas provides an effective tool for identifying OCN by avoiding the traditional selection strategy of ROIs.
In this work, we propose an automatic oculomotor nerve (OCN) identification method. We choose the multi‐shell multi‐tissue constraint spherical deconvolution (MSMT‐CSD) FOD estimation model and deterministic tractography to describe the three dimensional trajectory of the OCN after investigation the performance of different tractography methods for the reconstruction of the complete OCN pathway. Then, we rely on the well‐established computational pipeline and anatomical expertise to create a data‐driven OCN fiber clustering atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus. |
---|---|
AbstractList | The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The diffusion magnetic resonance imaging (dMRI) tractography is now widely used to describe the trajectory of the OCN. However, the complex cranial structure leads to difficulties in fiber orientation distribution (FOD) modeling, fiber tracking, and region of interest (ROI) selection. Currently, the identification of OCN relies on expert manual operation, resulting in challenges, such as the carries high clinical, time-consuming, and labor costs. Thus, we propose a method that can automatically identify OCN from dMRI tractography. First, we choose the multi-shell multi-tissue constraint spherical deconvolution (MSMT-CSD) FOD estimation model and deterministic tractography to describe the 3D trajectory of the OCN. Then, we rely on the well-established computational pipeline and anatomical expertise to create a data-driven OCN tractography atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus. Finally, we apply the proposed OCN atlas to identify the OCN automatically from 40 new HCP subjects and two patients with brainstem cavernous malformation. In terms of spatial overlap and visualization, experiment results show that the automatically and manually identified OCN fibers are consistent. Our proposed OCN atlas provides an effective tool for identifying OCN by avoiding the traditional selection strategy of ROIs.The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The diffusion magnetic resonance imaging (dMRI) tractography is now widely used to describe the trajectory of the OCN. However, the complex cranial structure leads to difficulties in fiber orientation distribution (FOD) modeling, fiber tracking, and region of interest (ROI) selection. Currently, the identification of OCN relies on expert manual operation, resulting in challenges, such as the carries high clinical, time-consuming, and labor costs. Thus, we propose a method that can automatically identify OCN from dMRI tractography. First, we choose the multi-shell multi-tissue constraint spherical deconvolution (MSMT-CSD) FOD estimation model and deterministic tractography to describe the 3D trajectory of the OCN. Then, we rely on the well-established computational pipeline and anatomical expertise to create a data-driven OCN tractography atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus. Finally, we apply the proposed OCN atlas to identify the OCN automatically from 40 new HCP subjects and two patients with brainstem cavernous malformation. In terms of spatial overlap and visualization, experiment results show that the automatically and manually identified OCN fibers are consistent. Our proposed OCN atlas provides an effective tool for identifying OCN by avoiding the traditional selection strategy of ROIs. The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The diffusion magnetic resonance imaging (dMRI) tractography is now widely used to describe the trajectory of the OCN. However, the complex cranial structure leads to difficulties in fiber orientation distribution (FOD) modeling, fiber tracking, and region of interest (ROI) selection. Currently, the identification of OCN relies on expert manual operation, resulting in challenges, such as the carries high clinical, time‐consuming, and labor costs. Thus, we propose a method that can automatically identify OCN from dMRI tractography. First, we choose the multi‐shell multi‐tissue constraint spherical deconvolution (MSMT‐CSD) FOD estimation model and deterministic tractography to describe the 3D trajectory of the OCN. Then, we rely on the well‐established computational pipeline and anatomical expertise to create a data‐driven OCN tractography atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus. Finally, we apply the proposed OCN atlas to identify the OCN automatically from 40 new HCP subjects and two patients with brainstem cavernous malformation. In terms of spatial overlap and visualization, experiment results show that the automatically and manually identified OCN fibers are consistent. Our proposed OCN atlas provides an effective tool for identifying OCN by avoiding the traditional selection strategy of ROIs. The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The diffusion magnetic resonance imaging (dMRI) tractography is now widely used to describe the trajectory of the OCN. However, the complex cranial structure leads to difficulties in fiber orientation distribution (FOD) modeling, fiber tracking, and region of interest (ROI) selection. Currently, the identification of OCN relies on expert manual operation, resulting in challenges, such as the carries high clinical, time‐consuming, and labor costs. Thus, we propose a method that can automatically identify OCN from dMRI tractography. First, we choose the multi‐shell multi‐tissue constraint spherical deconvolution (MSMT‐CSD) FOD estimation model and deterministic tractography to describe the 3D trajectory of the OCN. Then, we rely on the well‐established computational pipeline and anatomical expertise to create a data‐driven OCN tractography atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus. Finally, we apply the proposed OCN atlas to identify the OCN automatically from 40 new HCP subjects and two patients with brainstem cavernous malformation. In terms of spatial overlap and visualization, experiment results show that the automatically and manually identified OCN fibers are consistent. Our proposed OCN atlas provides an effective tool for identifying OCN by avoiding the traditional selection strategy of ROIs. In this work, we propose an automatic oculomotor nerve (OCN) identification method. We choose the multi‐shell multi‐tissue constraint spherical deconvolution (MSMT‐CSD) FOD estimation model and deterministic tractography to describe the three dimensional trajectory of the OCN after investigation the performance of different tractography methods for the reconstruction of the complete OCN pathway. Then, we rely on the well‐established computational pipeline and anatomical expertise to create a data‐driven OCN fiber clustering atlas from 40 HCP data. We identify six clusters belonging to the OCN from the atlas, including the structures of three kinds of positional relationships (pass between, pass through, and go around) with the red nuclei and two kinds of positional relationships with medial longitudinal fasciculus. |
Author | Xie, Lei Chen, Ge Li, Mingchu Huang, Jiahao Li, Mengjun Zeng, Qingrun Liang, Jiantao He, Jianzhong Feng, Yuanjing |
AuthorAffiliation | 2 Zhejiang Provincial United Key Laboratory of Embedded Systems Hangzhou China 3 Department of Radiology, Second Xiangya Hospital Central South University Hunan China 1 Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology Hangzhou China 4 Department of Neurosurgery Capital Medical University Xuanwu Hospital Beijing China |
AuthorAffiliation_xml | – name: 3 Department of Radiology, Second Xiangya Hospital Central South University Hunan China – name: 4 Department of Neurosurgery Capital Medical University Xuanwu Hospital Beijing China – name: 2 Zhejiang Provincial United Key Laboratory of Embedded Systems Hangzhou China – name: 1 Institute of Information Processing and Automation, College of Information Engineering, Zhejiang University of Technology Hangzhou China |
Author_xml | – sequence: 1 givenname: Jiahao orcidid: 0000-0002-3866-8116 surname: Huang fullname: Huang, Jiahao organization: Zhejiang Provincial United Key Laboratory of Embedded Systems – sequence: 2 givenname: Mengjun orcidid: 0000-0003-1674-9369 surname: Li fullname: Li, Mengjun organization: Capital Medical University Xuanwu Hospital – sequence: 3 givenname: Qingrun orcidid: 0000-0001-6485-8178 surname: Zeng fullname: Zeng, Qingrun organization: Zhejiang Provincial United Key Laboratory of Embedded Systems – sequence: 4 givenname: Lei surname: Xie fullname: Xie, Lei organization: Zhejiang Provincial United Key Laboratory of Embedded Systems – sequence: 5 givenname: Jianzhong surname: He fullname: He, Jianzhong organization: Zhejiang Provincial United Key Laboratory of Embedded Systems – sequence: 6 givenname: Ge surname: Chen fullname: Chen, Ge organization: Capital Medical University Xuanwu Hospital – sequence: 7 givenname: Jiantao surname: Liang fullname: Liang, Jiantao organization: Capital Medical University Xuanwu Hospital – sequence: 8 givenname: Mingchu surname: Li fullname: Li, Mingchu email: mingchu_li@xwhosp.org organization: Capital Medical University Xuanwu Hospital – sequence: 9 givenname: Yuanjing surname: Feng fullname: Feng, Yuanjing email: fyjing@zjut.edu.cn organization: Zhejiang Provincial United Key Laboratory of Embedded Systems |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35092135$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1jAQhS1URG8seAEUiQ0s0vqSxPYGqVSFIhWhSu3asp1J6yqxi538qDseoc_IkzDtXyqoBCuPPN8cnZmzTTZiikDIK0b3GKV8_9JNe7yVUj8jW4xqWVOmxcZd3bW1biTbJNulXFHKWEvZC7IpWqo5E-0WOT1Y5jTZOfgq-WVMU5pTriLkFVShhziHIXhsp1g5W6CvsOjtbH_-uO1zWEGshuAgV35cygw5xItd8nywY4GXD-8OOf94dHZ4XJ98_fT58OCk9k0jdC0a1_dWusFa4Rqlu955CXxQzoP3DpdhzDvF2YD_HWVeNwIHpaJMcu6o2CHv17rXi5ug9-g129Fc5zDZfGOSDebvTgyX5iKtjNK6E61CgbcPAjl9W6DMZgrFwzjaCGkphndcKKVa2SL65gl6lZYccT2k0LwS6Bep1386erTy-9oIvFsDPqdSMgyPCKPmLkmDSZr7JJHdf8L6MN8HgcuE8X8T38MIN_-WNscfvqwnfgGIFbGQ |
CitedBy_id | crossref_primary_10_3389_fmed_2023_1244007 crossref_primary_10_1016_j_media_2023_102766 |
Cites_doi | 10.1371/journal.pone.0135247 10.1227/NEU.0b013e31820c6cbe 10.1016/j.neuroimage.2013.04.127 10.1007/s00429-015-1179-4 10.1016/j.neuroimage.2018.06.019 10.3390/jcm9051340 10.1002/hbm.25472 10.1007/s00062-019-00781-5 10.1007/978-3-642-33454-2_16 10.3171/2016.8.JNS16363 10.1371/journal.pcbi.0010042 10.3389/fnins.2017.00554 10.3171/2014.12.JNS142169 10.1007/s12565-012-0166-6 10.1002/hed.24999 10.1002/hbm.25670 10.1016/j.neuroimage.2014.12.058 10.1016/j.neuroimage.2019.116137 10.1016/j.ajoc.2018.01.048 10.1136/jnnp-2013-305111 10.1016/j.media.2020.101686 10.1038/s41467-017-01285-x 10.1016/j.neuroimage.2014.07.061 10.1002/nbm.4607 10.1002/ima.22005 10.1109/EMBC.2016.7590899 10.1227/01.NEU.0000367613.09324.DA 10.1016/j.jocn.2006.01.046 10.3171/2009.1.JNS081185 10.1001/archneur.1990.00530020149032 10.1016/j.nicl.2019.102160 10.4103/2152-7806.199556 10.1016/j.nicl.2017.07.020 10.5535/arm.2017.41.4.720 10.1093/neuros/nyy229 10.1109/TMI.2007.906785 10.1227/NEU.0000000000001241 10.1016/S0006-3495(94)80775-1 10.1109/TPAMI.2004.1262185 10.1212/WNL.44.11.2032 10.1002/ca.22811 10.1007/s00276-016-1725-7 10.1016/j.neuroimage.2020.117063 10.3171/2019.1.JNS182638 10.1186/s12880-015-0068-x 10.1016/j.nicl.2016.11.023 10.1016/j.neuroimage.2013.05.041 10.1016/j.neuroimage.2008.03.036 10.2307/1932409 10.1007/s10278-012-9561-8 10.1093/cercor/bhn102 10.1016/j.neuroimage.2012.01.021 10.3171/2017.8.JNS17854 10.1088/1361-6560/ac0d90 10.3174/ajnr.A6706 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Wiley Periodicals LLC. 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC. – notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.25779 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Huang et al |
EISSN | 1097-0193 |
EndPage | 2180 |
ExternalDocumentID | PMC8996358 35092135 10_1002_hbm_25779 HBM25779 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Key Projects of Natural Science Foundation of Zhejiang Province funderid: LZ21F030003 – fundername: Natural Science Foundation of Zhejiang Province funderid: LQ21F020017 – fundername: National Natural Science Foundation of China funderid: 61976190 – fundername: Key Research and Development Project of Zhejiang Province funderid: 2020C03070 – fundername: Key Projects of Natural Science Foundation of Zhejiang Province grantid: LZ21F030003 – fundername: Key Research and Development Project of Zhejiang Province grantid: 2020C03070 – fundername: Natural Science Foundation of Zhejiang Province grantid: LQ21F020017 – fundername: National Natural Science Foundation of China grantid: 61976190 – fundername: ; grantid: 61976190 – fundername: ; grantid: LQ21F020017 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4439-34bdda7bfaa3b4896dbc7e2f8bceccb77911cb821fbc7601c9434437801722b03 |
IEDL.DBID | 24P |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 13:44:08 EDT 2025 Fri Jul 11 05:18:41 EDT 2025 Sat Jul 26 02:15:13 EDT 2025 Wed Feb 19 02:27:34 EST 2025 Tue Jul 01 01:11:06 EDT 2025 Thu Apr 24 23:09:58 EDT 2025 Wed Jan 22 16:26:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | diffusion magnetic resonance imaging tractography oculomotor nerve neurosurgery data-driven fiber clustering |
Language | English |
License | Attribution-NonCommercial 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4439-34bdda7bfaa3b4896dbc7e2f8bceccb77911cb821fbc7601c9434437801722b03 |
Notes | Funding information Jiahao Huang and Mengjun Li authors contributed equally to this work. Key Projects of Natural Science Foundation of Zhejiang Province, Grant/Award Number: LZ21F030003; Key Research and Development Project of Zhejiang Province, Grant/Award Number: 2020C03070; National Natural Science Foundation of China, Grant/Award Number: 61976190; Natural Science Foundation of Zhejiang Province, Grant/Award Number: LQ21F020017 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Key Projects of Natural Science Foundation of Zhejiang Province, Grant/Award Number: LZ21F030003; Key Research and Development Project of Zhejiang Province, Grant/Award Number: 2020C03070; National Natural Science Foundation of China, Grant/Award Number: 61976190; Natural Science Foundation of Zhejiang Province, Grant/Award Number: LQ21F020017 |
ORCID | 0000-0003-1674-9369 0000-0001-6485-8178 0000-0002-3866-8116 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25779 |
PMID | 35092135 |
PQID | 2648983779 |
PQPubID | 996345 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8996358 proquest_miscellaneous_2623888575 proquest_journals_2648983779 pubmed_primary_35092135 crossref_primary_10_1002_hbm_25779 crossref_citationtrail_10_1002_hbm_25779 wiley_primary_10_1002_hbm_25779_HBM25779 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 41 2017; 8 2013; 26 2021; 66 2020; 63 2019; 10 2004; 26 1994; 66 2009; 111 2016; 221 2019; 202 2015; 109 2018; 40 2020; 11 2021; 000 2016; 79 2010; 66 2018; 130 2017; 30 2021; 34 1990; 47 2017; 39 2006; 27 2020; 9 1997; 18 2011; 68 2009; 19 2012; 22 2021; 84 2007; 26 2012; 62 2015; 15 2021; 42 2018; 181 2012 2013; 88 2020; 41 2006; 13 2020; 220 2013; 84 2015; 123 2015; 10 1994; 44 2016; 127 2019; 84 2020; 30 2017; 16 2017; 11 1945; 26 2017; 13 2013; 80 2017 2020; 25 2016 2005; 1 2008; 41 2018; 10 2014; 103 2019; 132 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Lazar M. (e_1_2_10_28_1) 2006; 27 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 Inoue H. (e_1_2_10_22_1) 2020; 11 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_32_1 Miller M. J. (e_1_2_10_34_1) 1997; 18 e_1_2_10_30_1 e_1_2_10_51_1 Brazis P. W. (e_1_2_10_6_1) 2012 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_20_1 e_1_2_10_41_1 Sultana S. (e_1_2_10_43_1) 2017 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Muhammad S. (e_1_2_10_35_1) 2019; 10 Condos A. (e_1_2_10_10_1) 2021; 000 e_1_2_10_60_1 e_1_2_10_62_1 Zhao J. (e_1_2_10_63_1) 2021; 84 e_1_2_10_64_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 18 start-page: 111 issue: 1 year: 1997 end-page: 113 article-title: Anatomic relationship of the oculomotor nuclear complex and medial longitudinal fasciculus in the midbrain publication-title: American Journal of Neuroradiology – volume: 63 year: 2020 article-title: Asymmetric fiber trajectory distribution estimation using streamline differential equation publication-title: Medical Image Analysis – volume: 27 start-page: 1258 issue: 6 year: 2006 end-page: 1271 article-title: White matter reorganization after surgical resection of brain tumors and vascular malformations publication-title: American Journal of Neuroradiology – volume: 8 start-page: 20 year: 2017 article-title: Delayed and isolated oculomotor nerve palsy following minor head trauma publication-title: Surgical Neurology International – volume: 26 start-page: 214 issue: 2 year: 2004 end-page: 225 article-title: Spectral grouping using the Nystrom method publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 15 start-page: 1 issue: 1 year: 2015 end-page: 28 article-title: Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool publication-title: BMC Medical Imaging – volume: 10 start-page: 81 year: 2018 end-page: 83 article-title: MRI findings of contralateral oculomotor nerve palsy in Parry‐Romberg syndrome publication-title: American Journal of Ophthalmology Case Reports – volume: 44 start-page: 2032 issue: 11 year: 1994 end-page: 2032 article-title: Pure midbrain infarction: Clinical syndromes, MRI, and etiologic patterns publication-title: Neurology – volume: 19 start-page: 524 issue: 3 year: 2009 end-page: 536 article-title: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography publication-title: Cerebral Cortex – volume: 181 start-page: 16 year: 2018 end-page: 29 article-title: Investigation into local white matter abnormality in emotional processing and sensorimotor areas using an automatically annotated fiber clustering in major depressive disorder publication-title: NeuroImage – volume: 9 start-page: 1340 issue: 5 year: 2020 article-title: Three‐dimensional identification of the medial longitudinal fasciculus in the human brain: A diffusion tensor imaging study publication-title: Journal of Clinical Medicine – volume: 39 start-page: 323 issue: 3 year: 2017 end-page: 331 article-title: The cisternal segments of the oculomotor nerve: A magnetic resonance imaging study publication-title: Surgical and Radiologic Anatomy – volume: 25 year: 2020 article-title: Anatomical assessment of trigeminal nerve tractography using diffusion MRI: A comparison of acquisition b‐values and single‐and multi‐fiber tracking strategies publication-title: NeuroImage: Clinical – volume: 34 issue: 12 year: 2021 article-title: Automated facial‐vestibulocochlear nerve complex identification based on data‐driven tractography clustering publication-title: NMR in Biomedicine – volume: 10 start-page: 1 issue: 40 year: 2019 end-page: 6 article-title: Management of oculomotor nerve schwannoma: Systematic review of literature and illustrative case publication-title: Surgical Neurology International – volume: 41 start-page: 1480 issue: 8 year: 2020 end-page: 1486 article-title: Multishell diffusion MRI‐based tractography of the facial nerve in vestibular schwannoma publication-title: American Journal of Neuroradiology – volume: 42 start-page: 6070 year: 2021 end-page: 6080 article-title: The trajectory of the medial longitudinal fasciculus in the human brain: A diffusion imaging based tractography study publication-title: Human Brain Mapping – volume: 42 start-page: 3887 issue: 12 year: 2021 end-page: 3904 article-title: Comparison of multiple tractography methods for reconstruction of the retinogeniculate visual pathway using diffusion MRI publication-title: Human Brain Mapping – volume: 10 issue: 9 year: 2015 article-title: Reproducibility of the structural brain connectome derived from diffusion tensor imaging publication-title: PLoS One – volume: 11 start-page: 554 year: 2017 article-title: Comparison of diffusion‐weighted MRI reconstruction methods for visualization of cranial nerves in posterior fossa surgery publication-title: Frontiers in Neuroscience – volume: 68 start-page: 1077 issue: 4 year: 2011 end-page: 1083 article-title: Three‐dimensional in vivo modeling of vestibular schwannomas and surrounding cranial nerves with diffusion imaging tractography publication-title: Neurosurgery – volume: 16 start-page: 222 year: 2017 end-page: 233 article-title: A test‐retest study on Parkinson's PPMI dataset yields statistically significant white matter fascicles publication-title: NeuroImage: Clinical – volume: 13 start-page: 1019 issue: 10 year: 2006 end-page: 1022 article-title: Relationship between the posterior cerebral artery and the cisternal segment of the oculomotor nerve publication-title: Journal of Clinical Neuroscience – volume: 84 start-page: 1073 issue: 10 year: 2013 end-page: 1074 article-title: Injury of the oculomotor nerve in a patient with traumatic brain injury: Diffusion tensor tractography study publication-title: Journal of Neurology, Neurosurgery & Psychiatry – volume: 1 issue: 4 year: 2005 article-title: The human connectome: A structural description of the human brain publication-title: PLoS Computational Biology – volume: 109 start-page: 73 year: 2015 end-page: 83 article-title: A new compression format for fiber tracking datasets publication-title: NeuroImage – volume: 40 start-page: 536 issue: 3 year: 2018 end-page: 543 article-title: Endoscopic endonasal surgery for pituitary adenomas extending to the oculomotor cistern publication-title: Head & Neck – volume: 88 start-page: 70 issue: 2 year: 2013 end-page: 82 article-title: Intramesencephalic course of the oculomotor nerve fibers: Microanatomy and possible clinical significance publication-title: Anatomical Science International – volume: 66 start-page: 15TR01 year: 2021 article-title: Diffusion MRI tractography for neurosurgery: The basics, current state, technical reliability and challenges publication-title: Physics in Medicine & Biology – volume: 000 start-page: 1 year: 2021 end-page: 8 article-title: Not just down and out: Oculomotor nerve pathologic spectrum. Current problems in diagnostic radiology publication-title: Current Problems in Diagnostic Radiology – volume: 11 start-page: 1 issue: 353 year: 2020 end-page: 3 article-title: Unruptured internal carotid‐posterior communicating artery aneurysm splitting the oculomotor nerve: A case report and literature review publication-title: Surgical Neurology International – volume: 84 start-page: 313 issue: 2 year: 2019 end-page: 325 article-title: Overcoming challenges of cranial nerve tractography: A targeted review publication-title: Neurosurgery – volume: 80 start-page: 62 year: 2013 end-page: 79 article-title: The WU‐Minn human connectome project: An overview publication-title: NeuroImage – volume: 84 start-page: 1 issue: 8 year: 2021 end-page: 8 article-title: Diabetic oculomotor nerve palsy displaying enhancement of the oculomotor nerve in the orbit and cavernous sinus on MRI publication-title: European Neurology – volume: 62 start-page: 774 issue: 2 year: 2012 end-page: 781 article-title: FreeSurfer publication-title: Neuroimage – volume: 130 start-page: 286 issue: 1 year: 2018 end-page: 301 article-title: Surgical outcome of motor deficits and neurological status in brainstem cavernous malformations based on preoperative diffusion tensor imaging: A prospective randomized clinical trial publication-title: Journal of Neurosurgery – volume: 8 start-page: 1 issue: 1 year: 2017 end-page: 13 article-title: The challenge of mapping the human connectome based on diffusion tractography publication-title: Nature Communications – volume: 22 start-page: 53 issue: 1 year: 2012 end-page: 66 article-title: MRtrix: Diffusion tractography in crossing fiber regions publication-title: International Journal of Imaging Systems and Technology – volume: 111 start-page: 1193 issue: 6 year: 2009 end-page: 1200 article-title: Anatomical features of the cisternal segment of the oculomotor nerve: Neurovascular relationships and abnormal compression on magnetic resonance imaging publication-title: Journal of Neurosurgery – volume: 132 start-page: 1642 issue: 5 year: 2019 end-page: 1652 article-title: Full tractography for detecting the position of cranial nerves in preoperative planning for skull base surgery publication-title: Journal of Neurosurgery – volume: 221 start-page: 4705 issue: 9 year: 2016 end-page: 4721 article-title: The white matter query language: A novel approach for describing human white matter anatomy publication-title: Brain Structure and Function – volume: 41 start-page: 1267 issue: 4 year: 2008 end-page: 1277 article-title: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers publication-title: NeuroImage – volume: 80 start-page: 105 year: 2013 end-page: 124 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage – volume: 13 start-page: 138 year: 2017 end-page: 153 article-title: Automated white matter fiber tract identification in patients with brain tumors publication-title: NeuroImage: Clinical – year: 2016 – volume: 26 start-page: 1562 issue: 11 year: 2007 end-page: 1575 article-title: Automatic tractography segmentation using a high‐dimensional white matter atlas publication-title: IEEE Transactions on Medical Imaging – volume: 47 start-page: 235 issue: 2 year: 1990 end-page: 237 article-title: Isolated inferior oblique paresis from brain‐stem infarction: Perspective on oculomotor fascicular organization in the ventral midbrain tegmentum publication-title: Archives of Neurology – volume: 66 start-page: 788 issue: 4 year: 2010 end-page: 796 article-title: In vivo visualization of cranial nerve pathways in humans using diffusion‐based tractography publication-title: Neurosurgery – year: 2012 – volume: 220 year: 2020 article-title: Creation of a novel trigeminal tractography atlas for automated trigeminal nerve identification publication-title: NeuroImage – volume: 26 start-page: 297 issue: 3 year: 1945 end-page: 302 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – volume: 103 start-page: 411 year: 2014 end-page: 426 article-title: Multi‐tissue constrained spherical deconvolution for improved analysis of multi‐shell diffusion MRI data publication-title: NeuroImage – volume: 79 start-page: 146 issue: 1 year: 2016 end-page: 165 article-title: Visualization of cranial nerves using high‐definition fiber tractography publication-title: Neurosurgery – volume: 30 start-page: 237 issue: 2 year: 2020 end-page: 242 article-title: Magnetic resonance imaging in 14 patients with congenital oculomotor nerve palsy publication-title: Clinical Neuroradiology – volume: 26 start-page: 774 issue: 4 year: 2013 end-page: 785 article-title: Registration of FA and T1‐weighted MRI data of healthy human brain based on template matching and normalized cross‐correlation publication-title: Journal of Digital Imaging – volume: 66 start-page: 259 issue: 1 year: 1994 end-page: 267 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophysical Journal – volume: 30 start-page: 21 issue: 1 year: 2017 end-page: 31 article-title: Microsurgical anatomy of the oculomotor nerve publication-title: Clinical Anatomy – volume: 202 year: 2019 article-title: MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation publication-title: NeuroImage – volume: 127 start-page: 613 issue: 3 year: 2016 end-page: 621 article-title: Comparison of probabilistic and deterministic fiber tracking of cranial nerves publication-title: Journal of Neurosurgery – volume: 41 start-page: 720 issue: 4 year: 2017 article-title: Diffusion tensor tractography for determining injury to the oculomotor nerve in a patient with cerebral infarct publication-title: Annals of Rehabilitation Medicine – year: 2017 – volume: 123 start-page: 1133 issue: 5 year: 2015 end-page: 1144 article-title: Longitudinal evaluation of corticospinal tract in patients with resected brainstem cavernous malformations using high‐definition fiber tractography and diffusion connectometry analysis: Preliminary experience publication-title: Journal of Neurosurgery – ident: e_1_2_10_5_1 doi: 10.1371/journal.pone.0135247 – ident: e_1_2_10_9_1 doi: 10.1227/NEU.0b013e31820c6cbe – ident: e_1_2_10_17_1 doi: 10.1016/j.neuroimage.2013.04.127 – ident: e_1_2_10_53_1 doi: 10.1007/s00429-015-1179-4 – volume-title: Development of an atlas‐based segmentation of cranial nerves using shape‐aware discrete deformable models for neurosurgical planning and simulation year: 2017 ident: e_1_2_10_43_1 – ident: e_1_2_10_55_1 doi: 10.1016/j.neuroimage.2018.06.019 – ident: e_1_2_10_59_1 doi: 10.3390/jcm9051340 – ident: e_1_2_10_20_1 doi: 10.1002/hbm.25472 – ident: e_1_2_10_57_1 doi: 10.1007/s00062-019-00781-5 – ident: e_1_2_10_38_1 doi: 10.1007/978-3-642-33454-2_16 – ident: e_1_2_10_64_1 doi: 10.3171/2016.8.JNS16363 – ident: e_1_2_10_42_1 doi: 10.1371/journal.pcbi.0010042 – ident: e_1_2_10_3_1 doi: 10.3389/fnins.2017.00554 – ident: e_1_2_10_13_1 doi: 10.3171/2014.12.JNS142169 – ident: e_1_2_10_52_1 doi: 10.1007/s12565-012-0166-6 – ident: e_1_2_10_46_1 doi: 10.1002/hed.24999 – ident: e_1_2_10_30_1 doi: 10.1002/hbm.25670 – ident: e_1_2_10_41_1 doi: 10.1016/j.neuroimage.2014.12.058 – ident: e_1_2_10_48_1 doi: 10.1016/j.neuroimage.2019.116137 – volume: 18 start-page: 111 issue: 1 year: 1997 ident: e_1_2_10_34_1 article-title: Anatomic relationship of the oculomotor nuclear complex and medial longitudinal fasciculus in the midbrain publication-title: American Journal of Neuroradiology – ident: e_1_2_10_45_1 doi: 10.1016/j.ajoc.2018.01.048 – ident: e_1_2_10_27_1 doi: 10.1136/jnnp-2013-305111 – ident: e_1_2_10_14_1 doi: 10.1016/j.media.2020.101686 – ident: e_1_2_10_32_1 doi: 10.1038/s41467-017-01285-x – ident: e_1_2_10_26_1 doi: 10.1016/j.neuroimage.2014.07.061 – volume: 11 start-page: 1 issue: 353 year: 2020 ident: e_1_2_10_22_1 article-title: Unruptured internal carotid‐posterior communicating artery aneurysm splitting the oculomotor nerve: A case report and literature review publication-title: Surgical Neurology International – ident: e_1_2_10_61_1 doi: 10.1002/nbm.4607 – ident: e_1_2_10_47_1 doi: 10.1002/ima.22005 – ident: e_1_2_10_19_1 doi: 10.1109/EMBC.2016.7590899 – volume: 27 start-page: 1258 issue: 6 year: 2006 ident: e_1_2_10_28_1 article-title: White matter reorganization after surgical resection of brain tumors and vascular malformations publication-title: American Journal of Neuroradiology – ident: e_1_2_10_21_1 doi: 10.1227/01.NEU.0000367613.09324.DA – ident: e_1_2_10_50_1 doi: 10.1016/j.jocn.2006.01.046 – ident: e_1_2_10_31_1 doi: 10.3171/2009.1.JNS081185 – volume-title: Localization in clinical neurology year: 2012 ident: e_1_2_10_6_1 – ident: e_1_2_10_8_1 doi: 10.1001/archneur.1990.00530020149032 – ident: e_1_2_10_56_1 doi: 10.1016/j.nicl.2019.102160 – ident: e_1_2_10_36_1 doi: 10.4103/2152-7806.199556 – ident: e_1_2_10_11_1 doi: 10.1016/j.nicl.2017.07.020 – ident: e_1_2_10_25_1 doi: 10.5535/arm.2017.41.4.720 – ident: e_1_2_10_23_1 doi: 10.1093/neuros/nyy229 – ident: e_1_2_10_39_1 doi: 10.1109/TMI.2007.906785 – ident: e_1_2_10_60_1 doi: 10.1227/NEU.0000000000001241 – ident: e_1_2_10_2_1 doi: 10.1016/S0006-3495(94)80775-1 – ident: e_1_2_10_16_1 doi: 10.1109/TPAMI.2004.1262185 – ident: e_1_2_10_4_1 doi: 10.1212/WNL.44.11.2032 – ident: e_1_2_10_40_1 doi: 10.1002/ca.22811 – ident: e_1_2_10_49_1 doi: 10.1007/s00276-016-1725-7 – ident: e_1_2_10_62_1 doi: 10.1016/j.neuroimage.2020.117063 – ident: e_1_2_10_24_1 doi: 10.3171/2019.1.JNS182638 – ident: e_1_2_10_44_1 doi: 10.1186/s12880-015-0068-x – ident: e_1_2_10_37_1 doi: 10.1016/j.nicl.2016.11.023 – ident: e_1_2_10_51_1 doi: 10.1016/j.neuroimage.2013.05.041 – volume: 10 start-page: 1 issue: 40 year: 2019 ident: e_1_2_10_35_1 article-title: Management of oculomotor nerve schwannoma: Systematic review of literature and illustrative case publication-title: Surgical Neurology International – ident: e_1_2_10_54_1 doi: 10.1016/j.neuroimage.2008.03.036 – ident: e_1_2_10_12_1 doi: 10.2307/1932409 – ident: e_1_2_10_33_1 doi: 10.1007/s10278-012-9561-8 – ident: e_1_2_10_18_1 doi: 10.1093/cercor/bhn102 – ident: e_1_2_10_15_1 doi: 10.1016/j.neuroimage.2012.01.021 – volume: 84 start-page: 1 issue: 8 year: 2021 ident: e_1_2_10_63_1 article-title: Diabetic oculomotor nerve palsy displaying enhancement of the oculomotor nerve in the orbit and cavernous sinus on MRI publication-title: European Neurology – ident: e_1_2_10_29_1 doi: 10.3171/2017.8.JNS17854 – ident: e_1_2_10_58_1 doi: 10.1088/1361-6560/ac0d90 – ident: e_1_2_10_7_1 doi: 10.3174/ajnr.A6706 – volume: 000 start-page: 1 year: 2021 ident: e_1_2_10_10_1 article-title: Not just down and out: Oculomotor nerve pathologic spectrum. Current problems in diagnostic radiology publication-title: Current Problems in Diagnostic Radiology |
SSID | ssj0011501 |
Score | 2.403464 |
Snippet | The oculomotor nerve (OCN) is the main motor nerve innervating eye muscles and can be involved in multiple flammatory, compressive, or pathologies. The... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2164 |
SubjectTerms | Automation Brain cancer Brain stem Cluster Analysis Clustering Computer applications data‐driven diffusion magnetic resonance imaging Diffusion Magnetic Resonance Imaging - methods Diffusion Tensor Imaging - methods fiber clustering Fiber orientation Fibers Humans Identification Image processing Image Processing, Computer-Assisted - methods Labor costs Magnetic resonance imaging Magnetic Resonance Imaging - methods Methods Muscles neurosurgery Oculomotor nerve Oculomotor Nerve - diagnostic imaging Oculomotor nerves Patients Spherical shells tractography Tumors |
Title | Automatic oculomotor nerve identification based on data‐driven fiber clustering |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25779 https://www.ncbi.nlm.nih.gov/pubmed/35092135 https://www.proquest.com/docview/2648983779 https://www.proquest.com/docview/2623888575 https://pubmed.ncbi.nlm.nih.gov/PMC8996358 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL2oA_FF_HZ-jCgivlS3JLUpPk1RhjBRUdhbSdIWhdnJtA---RP8jf4S70276piCLyGQW9rmJrknyckJwB5GvFQlofUwmjc9aUTqhSnJ3aXGkIKaiN3Nc92r4869vOz5vSk4GZ2FKfQhqgU36hluvKYOrs3L0bdo6IN5OsT2FoTTUKOjtdTIubyuthAQ6bjZFsZYL8QheCQr1ORH1aPjwWgCYU4SJX8CWBeBLhZgvoSOrF34ehGmkmwJltsZTpuf3tg-c2ROt0q-BLPdcs98GW7aORqQMCsb2LxP7LvBkGXEdGSPcUkWcv5hFNJihhnijX6-f8RDGgtZSqwSZvs5iSpgqFuB-4vzu7OOV16k4FmJgMMT0sSxDkyqtTBShcexsUHCU2UsetBgRbRa1iiODrLEkbEkGidFoGiCyE1TrMJMNsiSdWA6UKH2uW7FIpS-z5WhjUqtfURqqZG8DgejGo1sqTJOl130o0IfmUdY-ZGr_DrsVqbPhbTGb0ZbI7dEZe96iYiVFyrhineqYuwXtNmhs2SQkw2CEUX3j9ZhrfBi9RaBKIm3BJYEY_6tDEhze7wke3xw2ts4PUWIpvA3XUv4-8OjzmnXZTb-b7oJc5xOVzg-5RbMvA7zZBsxz6tpuLaNadALGlA7Pb-6vm249QNKb_kXCmkDAQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFH4CJgGXidFtdMDwpmniktHaTuNIXMq0qmxNtUkg9RbZTqJWKgkq5LDbfsJ-434J7zlpWFUm7WbJL0riZ_t9tj9_D-ADRrxMpaH1MJp3PGlE5oUZyd1lxpCCmkhc5rlo3Btey68Tf7IB58u7MJU-RLPhRiPDzdc0wGlD-uxRNXRqbj5hhwvCTXgmezygxA1cfm_OEBDquOUWBlkvxDl4qSvU4WfNo6vRaA1irjMl_0awLgQN9uB5jR1Zv3L2C9hI831o9XNcN9_8ZB-ZY3O6bfJ92I7qQ_MW_OiXaEDKrKyw5Zzod8WC5UR1ZLOkZgs5BzGKaQnDAhFH__z6nSxoMmQZ0UqYnZekqoCx7iVcD75cfR56dSYFz0pEHJ6QJkl0YDKthZEq7CXGBinPlLHoQoMN0e1aozh6yBJJxpJqnBSBohUiNx3xCrbyIk8PgOlAhdrnupuIUPo-V4ZOKrX2EaplRvI2nC5bNLa1zDhlu5jHlUAyj7HxY9f4bXjfmN5W2hpPGR0t3RLXw-suJlpeqISrftdU48Cg0w6dp0VJNohGFCUgbcPryovNWwTCJN4VWBOs-LcxINHt1Zp8NnXi27g-RYym8DddT_j3h8fDi8gV3vy_6QnsDK-iUTy6HH87hF1OVy0cufIItu4XZXqMAOjevHX9_AGv1wIO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1RkFAvVfkqW2hxUYW4pOzaDnHU09Ky2rYsAgkkbpE_YoG0m10t5NAbP4HfyC9hxsmmXdFK3Cx5oiQe2_PseX4G-IwRz6s8tRFG83YkjfBR6knuzhtDCmrChZvnBqeH_Uv58yq-WoCvs7MwlT5Es-FGIyPM1zTAJ84f_BENvTajL9jfkvQVLFGyj7o3l2dNCgGRTlhtYYyNUpyCZ7JCbX7QPDofjJ4hzOdEyb8BbIhAvbfwpoaOrFv5egUW8mIV1roFLptHv9keC2TOsEu-CsuDOme-BufdEg1ImJWNbTkk9t14ygpiOrIbV5OFgn8YhTTHsEC80cf7BzeluZB5YpUwOyxJVAFD3Tpc9o4vvvWj-iKFyEoEHJGQxjmdGK-1MFKlh87YJOdeGYseNNgQnY41iqODLHFkLInGSZEoWiBy0xYbsFiMi3wTmE5UqmOuO06kMo65MpSo1DpGpOaN5C3Yn7VoZmuVcbrsYphV-sg8w8bPQuO3YLcxnVTSGv8y2p65JatH121GrLxUiVD9qanGcUHJDl3k45JsEIwoun-0Be8qLzZvEYiSeEdgTTLn38aANLfna4qb66C9jctThGgKfzP0hP9_eNY_GoTC-5eb7sDy2fdedvLj9NcWvOZ00CJQK7dh8W5a5h8Q_tyZj6GbPwExUQFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+oculomotor+nerve+identification+based+on+data%E2%80%90driven+fiber+clustering&rft.jtitle=Human+brain+mapping&rft.au=Huang%2C+Jiahao&rft.au=Li%2C+Mengjun&rft.au=Zeng%2C+Qingrun&rft.au=Xie%2C+Lei&rft.date=2022-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=43&rft.issue=7&rft.spage=2164&rft.epage=2180&rft_id=info:doi/10.1002%2Fhbm.25779&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |