Compact wide single‐/dual‐band bandpass filter with equal inductance configuration in thin film IPD technology

Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are proposed. The configuration of equal inductance in a circuit contributes to reducing variables, sim...

Full description

Saved in:
Bibliographic Details
Published inElectronics letters Vol. 60; no. 15
Main Authors Liu, Zhi‐Hao, Liu, Bao‐Guang, Cheng, Chong‐Hu, Cheng, Yong
Format Journal Article
LanguageEnglish
Published Wiley 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are proposed. The configuration of equal inductance in a circuit contributes to reducing variables, simplifying the physical structure, and shortening the debugging time in the TF‐IPD design process. Despite all the inductors being equal in value, a wide passband can still be achieved. The measured results show that the centre frequency of UBW BPF is 11.43 GHz, and the 3‐dB fractional bandwidth (FBW) is 133% (3.87–18.99 GHz). And the 3‐dB FBWs of DBBPF centred at 6.5 GHz and 16.2 GHz are 92% (3.51–9.49 GHz) and 35% (13.33–18.98 GHz), respectively. The stopband of UBW BPF and DBBPF can be extended to 47.7 GHz and 44.8 GHz in sizes of 321 µm × 856 µm and 235 µm × 846 µm, respectively (excluding measuring pads). In this paper, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are designed. This kind of filter with equal inductance is helpful to reduce the variable, simplify the physical structure and shorten the debugging period. Even if all inductance values are equal, wide passband can still be achieved.
AbstractList Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are proposed. The configuration of equal inductance in a circuit contributes to reducing variables, simplifying the physical structure, and shortening the debugging time in the TF‐IPD design process. Despite all the inductors being equal in value, a wide passband can still be achieved. The measured results show that the centre frequency of UBW BPF is 11.43 GHz, and the 3‐dB fractional bandwidth (FBW) is 133% (3.87–18.99 GHz). And the 3‐dB FBWs of DBBPF centred at 6.5 GHz and 16.2 GHz are 92% (3.51–9.49 GHz) and 35% (13.33–18.98 GHz), respectively. The stopband of UBW BPF and DBBPF can be extended to 47.7 GHz and 44.8 GHz in sizes of 321 µm × 856 µm and 235 µm × 846 µm, respectively (excluding measuring pads). In this paper, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are designed. This kind of filter with equal inductance is helpful to reduce the variable, simplify the physical structure and shorten the debugging period. Even if all inductance values are equal, wide passband can still be achieved.
Abstract Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are proposed. The configuration of equal inductance in a circuit contributes to reducing variables, simplifying the physical structure, and shortening the debugging time in the TF‐IPD design process. Despite all the inductors being equal in value, a wide passband can still be achieved. The measured results show that the centre frequency of UBW BPF is 11.43 GHz, and the 3‐dB fractional bandwidth (FBW) is 133% (3.87–18.99 GHz). And the 3‐dB FBWs of DBBPF centred at 6.5 GHz and 16.2 GHz are 92% (3.51–9.49 GHz) and 35% (13.33–18.98 GHz), respectively. The stopband of UBW BPF and DBBPF can be extended to 47.7 GHz and 44.8 GHz in sizes of 321 µm × 856 µm and 235 µm × 846 µm, respectively (excluding measuring pads).
Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are proposed. The configuration of equal inductance in a circuit contributes to reducing variables, simplifying the physical structure, and shortening the debugging time in the TF‐IPD design process. Despite all the inductors being equal in value, a wide passband can still be achieved. The measured results show that the centre frequency of UBW BPF is 11.43 GHz, and the 3‐dB fractional bandwidth (FBW) is 133% (3.87–18.99 GHz). And the 3‐dB FBWs of DBBPF centred at 6.5 GHz and 16.2 GHz are 92% (3.51–9.49 GHz) and 35% (13.33–18.98 GHz), respectively. The stopband of UBW BPF and DBBPF can be extended to 47.7 GHz and 44.8 GHz in sizes of 321 µm × 856 µm and 235 µm × 846 µm, respectively (excluding measuring pads).
Author Cheng, Yong
Cheng, Chong‐Hu
Liu, Zhi‐Hao
Liu, Bao‐Guang
Author_xml – sequence: 1
  givenname: Zhi‐Hao
  orcidid: 0000-0002-2264-4064
  surname: Liu
  fullname: Liu, Zhi‐Hao
  organization: Nanjing University of Post and Telecommunications
– sequence: 2
  givenname: Bao‐Guang
  surname: Liu
  fullname: Liu, Bao‐Guang
  organization: Nanjing University of Post and Telecommunications
– sequence: 3
  givenname: Chong‐Hu
  surname: Cheng
  fullname: Cheng, Chong‐Hu
  organization: Nanjing University of Post and Telecommunications
– sequence: 4
  givenname: Yong
  surname: Cheng
  fullname: Cheng, Yong
  email: lzh_njupt@163.com, chengy@njupt.edu.cn
  organization: Nanjing University of Post and Telecommunications
BookMark eNp9kM1uEzEUha2qSKSlG57Aa6Rp_TOeGS-rUCBSJFiA1J11x75OXDl28ExUZddH4Bl5EpwGsWRzj-693zmLc0UuU05IyHvObjlr9R3GKG65FFpfkAWXijWa88dLsmCMy0Zx3b4lV9P0VNfK9AtSlnm3BzvT5-CQTiFtIv5--XXnDhCrjpAcPY09TBP1Ic5YKjpvKf6sBA3JHewMySK1OfmwORSYQ071QedtHdWyo6tvH-mMdptyzJvjO_LGQ5zw5q9ekx-fHr4vvzTrr59Xy_t1Y9tW6kYKVIMSQotRWcmUH7rece9l12kcfccH6FCrvmuddoPwVrXgR5Rs7LXU2slrsjrnugxPZl_CDsrRZAjm9ZDLxkCZg41oul5x36u-H8C2AmBkHaDnUI9a1UfN-nDOsiVPU0H_L48zc2renJo3r81XmJ_h5xDx-B_SPKzX4uz5A8yFipU
Cites_doi 10.1109/TMTT.1969.1127055
10.1109/TMTT.2019.2898197
10.1002/mop.33735
10.1109/LED.2023.3254459
10.1109/LED.2022.3176051
10.1109/TCPMT.2017.2708704
10.1109/LED.2010.2057405
10.1109/LMWC.2013.2285285
10.1109/LMWC.2017.2691059
10.1109/TED.2019.2895161
10.1109/LED.2021.3089656
10.1109/LMWC.2019.2936688
10.1002/mop.34030
10.1109/LED.2020.3027734
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ell2.13299
DatabaseName Wiley Online Library Journals (Open Access)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_6751f75778ac42aab06aef1a1f795f75
10_1049_ell2_13299
ELL213299
Genre shortCommunication
GrantInformation_xml – fundername: the Natural Science Research Start‐up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications
  funderid: NY221120
– fundername: Jiangsu Graduate Research Innovation Program
  funderid: KYCX22_0929
– fundername: National Natural Science Foundation of China
  funderid: 62201278
GroupedDBID -4A
-~X
.DC
0R~
0ZK
1OC
24P
29G
2QL
3EH
4.4
4IJ
5GY
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ELQJU
ESX
F5P
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
IFIPE
IPLJI
ITC
JAVBF
K1G
K7-
L6V
LAI
LXO
LXU
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P0-
P2P
P62
PTHSS
QWB
R4Z
RIE
RIG
RNS
RUI
TN5
U5U
UNMZH
VH1
WH7
ZL0
~ZZ
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
PUEGO
ID FETCH-LOGICAL-c4439-32e5852292b5c305f867d1ff3669ebf618a6e95764d9d82fc54afbe30b79399d3
IEDL.DBID 24P
ISSN 0013-5194
IngestDate Wed Aug 27 01:12:02 EDT 2025
Tue Aug 05 12:00:11 EDT 2025
Wed Jan 22 17:15:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4439-32e5852292b5c305f867d1ff3669ebf618a6e95764d9d82fc54afbe30b79399d3
ORCID 0000-0002-2264-4064
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.13299
PageCount 4
ParticipantIDs doaj_primary_oai_doaj_org_article_6751f75778ac42aab06aef1a1f795f75
crossref_primary_10_1049_ell2_13299
wiley_primary_10_1049_ell2_13299_ELL213299
PublicationCentury 2000
PublicationDate August 2024
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Electronics letters
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2023; 65
2017; 7
2010; 31
2021; 42
2023; 44
2020; 41
2019; 66
2017; 27
2019; 67
2022; 69
2019; 29
2014; 24
2024; 66
2022; 43
1969; 17
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
Jiang Y. (e_1_2_10_7_1) 2022; 69
Hao L. (e_1_2_10_12_1) 2022; 69
Xu Y. (e_1_2_10_6_1) 2022; 69
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_15_1
References_xml – volume: 65
  start-page: 2494
  issue: 9
  year: 2023
  end-page: 2499
  article-title: Compact LTCC filter with wide stopband for 5G applications
  publication-title: Microwave Opt. Technol. Lett.
– volume: 66
  start-page: 1174
  issue: 3
  year: 2019
  end-page: 1181
  article-title: Design of millimeter‐wave bandpass filters with broad bandwidth in Si‐based technology
  publication-title: IEEE Trans. Electron. Devices
– volume: 43
  start-page: 1009
  issue: 7
  year: 2022
  end-page: 1012
  article-title: An on‐chip ultra‐wideband bandpass filter in 0.18‐µm SiGe BiCMOS technology
  publication-title: IEEE Electron. Device Lett.
– volume: 69
  start-page: 4273
  issue: 11
  year: 2022
  end-page: 4277
  article-title: Wideband high selectivity filter chips with adjustable bandwidth based on IPD technology
  publication-title: IEEE Trans. Circuits Syst. II
– volume: 31
  start-page: 933
  issue: 9
  year: 2010
  end-page: 935
  article-title: Frequency‐independent T equivalent circuit for on‐chip spiral inductors
  publication-title: IEEE Electron. Device Lett.
– volume: 27
  start-page: 431
  issue: 5
  year: 2017
  end-page: 433
  article-title: Modeling and parameter extract‐ion of CMOS on‐chip spiral inductors with ground shields
  publication-title: IEEE Microwave Wireless Compon. Lett.
– volume: 69
  start-page: 389
  issue: 2
  year: 2022
  end-page: 393
  article-title: Bandpass filter with ultra‐wide upper stopband on GaAs IPD technology
  publication-title: IEEE Trans. Circuits Syst. II
– volume: 66
  issue: 1
  year: 2024
  article-title: Miniaturized IPD bandpass filter design with high out‐of‐band rejection for 5G applications
  publication-title: Microwave Opt. Technol. Lett.
– volume: 69
  start-page: 959
  issue: 3
  year: 2022
  end-page: 963
  article-title: Design of on‐chip dual‐band bandpass filter using lumped elements in LTCC technology
  publication-title: IEEE Trans. Circuits Syst. II
– volume: 67
  start-page: 1441
  issue: 4
  year: 2019
  end-page: 1451
  article-title: Design of compact dual‐band LTCC second‐order Chebyshev bandpass filters using a direct synthesis approach
  publication-title: IEEE Trans. Microwave Theory Tech.
– volume: 17
  start-page: 753
  issue: 10
  year: 1969
  end-page: 759
  article-title: Coupled transmission line networks in an inhomogeneous dielectric medium
  publication-title: IEEE Trans. Microwave Theory Tech.
– volume: 44
  start-page: 729
  issue: 5
  year: 2023
  end-page: 732
  article-title: High selectivity millimeter‐wave on‐chip band‐pass filter with semi‐lumped dual‐mode resonator by using GaAs technology
  publication-title: IEEE Electron. Device Lett.
– volume: 42
  start-page: 1244
  issue: 8
  year: 2021
  end-page: 1247
  article-title: Wideband bandpass filter for 5G millimeter‐ Wave application in 45‐nm CMOS silicon‐on‐insulator
  publication-title: IEEE Electron. Device Lett.
– volume: 29
  start-page: 638
  issue: 10
  year: 2019
  end-page: 640
  article-title: Compact mm‐wave bandpass filters using silicon integrated passive device technology
  publication-title: IEEE Microwave Wireless Compon. Lett.
– volume: 24
  start-page: 8
  issue: 1
  year: 2014
  end-page: 10
  article-title: A 3‐D miniaturized high selectivity bandpass filter in LTCC technology
  publication-title: IEEE Microwave Wireless Compon. Lett.
– volume: 41
  start-page: 1617
  issue: 11
  year: 2020
  end-page: 1620
  article-title: A broadband on‐chip bandpass filter using shunt dual‐layer meander‐line resonators
  publication-title: IEEE Electron. Device Lett.
– volume: 7
  start-page: 1410
  issue: 9
  year: 2017
  end-page: 1418
  article-title: Miniaturized bandpass filters as ultrathin 3‐D IPDs and embedded thinfilms in 3D glass modules
  publication-title: IEEE Trans. Compon. Packag. Manuf. Technol.
– volume: 69
  start-page: 389
  issue: 2
  year: 2022
  ident: e_1_2_10_7_1
  article-title: Bandpass filter with ultra‐wide upper stopband on GaAs IPD technology
  publication-title: IEEE Trans. Circuits Syst. II
– ident: e_1_2_10_18_1
  doi: 10.1109/TMTT.1969.1127055
– ident: e_1_2_10_13_1
  doi: 10.1109/TMTT.2019.2898197
– ident: e_1_2_10_15_1
  doi: 10.1002/mop.33735
– ident: e_1_2_10_8_1
  doi: 10.1109/LED.2023.3254459
– ident: e_1_2_10_3_1
  doi: 10.1109/LED.2022.3176051
– ident: e_1_2_10_11_1
  doi: 10.1109/TCPMT.2017.2708704
– ident: e_1_2_10_17_1
  doi: 10.1109/LED.2010.2057405
– ident: e_1_2_10_14_1
  doi: 10.1109/LMWC.2013.2285285
– ident: e_1_2_10_16_1
  doi: 10.1109/LMWC.2017.2691059
– ident: e_1_2_10_5_1
  doi: 10.1109/TED.2019.2895161
– ident: e_1_2_10_2_1
  doi: 10.1109/LED.2021.3089656
– volume: 69
  start-page: 4273
  issue: 11
  year: 2022
  ident: e_1_2_10_6_1
  article-title: Wideband high selectivity filter chips with adjustable bandwidth based on IPD technology
  publication-title: IEEE Trans. Circuits Syst. II
– ident: e_1_2_10_9_1
  doi: 10.1109/LMWC.2019.2936688
– ident: e_1_2_10_10_1
  doi: 10.1002/mop.34030
– ident: e_1_2_10_4_1
  doi: 10.1109/LED.2020.3027734
– volume: 69
  start-page: 959
  issue: 3
  year: 2022
  ident: e_1_2_10_12_1
  article-title: Design of on‐chip dual‐band bandpass filter using lumped elements in LTCC technology
  publication-title: IEEE Trans. Circuits Syst. II
SSID ssj0012997
Score 2.4372258
Snippet Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter...
Abstract Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms band‐pass filters
filters
microwave circuits
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXAT0Ja7vZPDZHHy1Vqniw0NuSpxZqLWWLV3-Cv9Ff4iTblvaiFy_ZJdklYSaTfJPJzCB0nnqrMkPyxBkvEqodSZQgNsmZMRnX3hgR_J0fHnmnR-_7rL-U6ivcCavCA1eEawCgTb1gQuTKUKKUbnLlfKqgUjJoCKsv7HlzZWpmP4BFVsxzFwBGofPApFQ23HBILkN6dbmyFcWI_asINW4x7S20OcOG-Koa0zZac6MdtLEUMXAXTaL8mhJ_DKzDQc8fuu_Pr0bwqIKnViOLQzEGTIz9IJjCcThqxS54T2JQwKemDIzGoAf7wcu0mgDQgMtXKOCXN3z3dIvLxZH7Huq1W883nWSWNiExFOBFkhEHOgAhkmhmQJx9zoVNvc84l057nuaKOwl6BrXS5sQbRpXXLmtqkFUpbbaPaqP3kTtAWAvbJJZ4WDI1JYYBHGc6Z05xngvHfB2dzSlYjKvoGEW0alNZBDoXkc51dB2Iu_giRLSOFcDnYsbn4i8-19FFZM0v_RStbpfEt8P_6PEIrRNAMNVtv2NUKydTdwIIpNSncbL9AG4G2mk
  priority: 102
  providerName: Directory of Open Access Journals
Title Compact wide single‐/dual‐band bandpass filter with equal inductance configuration in thin film IPD technology
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.13299
https://doaj.org/article/6751f75778ac42aab06aef1a1f795f75
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB4S-9IcSh8pdR9G0JwKm3i1eqygl7RNSItTfKhD6GXRMzG4TjBreu1P6G_sL-mM1naaS6GX3UUPFmY00vdJmhmAgzIFW3leF9EnXQgXeWE1D0Utva-US95r8nc-_6LOpuLzpbzcgXcbX5guPsR2w40sI8_XZODWdVlIENSSEudzfkhp0s0u9Mm3li70cTHZniFgjd7kL0CcIjbBSYU5uut7bznKUfvvo9S8zJw-godrfMiOO4U-hp24eAJ7f0UNfArLbMO-ZT9mITLi-vP4--evI_Kqwrezi8DocYu4mKUZHYcz2m5lkTwoGZLwlW9J2Qy5cJpdrbpBgBWsvcYHdvnOPk0-sna77b4P09OTrx_OinXqhMILhBhFxSPyAM4Nd9KjSada6VCmVCllokuqrK2KBrmGCCbUPHkpbHKxGjm0V2NC9Qx6i5tFfA7M6TDigSecNp3gXiIkl66W0SpV6yjTAN5sJNjcdhEymnyyLUxDcm6ynAfwnoS7bUFRrXPBzfKqWRtJg-SlTFpqXVsvuLVupGxMpcVCI7FiAG-zav7xn-ZkPOb568X_NH4JDziile5m3yvotctVfI1oo3XDPKiG0D--mH6bDjNn_wMmutU4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYoHCgHREsr0hZqqT1VWsh6_VgfKQ8FGlAPBCEuKz8hUggo2qjX_gR-I7-EGe8mwAWJi3flhyyNPfb3jT1jQn7m0ZvCsTILLqqM28Ayo5jPSuFcIW10TqG_88mp7A348YW4aO_moC9MEx9ibnBDzUjrNSo4GqQbwskxSGYYjdg2vpOu35ElhDUwqZd2zweXg_kxApSp2RMGAFX4LD4p1ztPrV_sSClw_0ugmnaawzWy2kJEutuM6QeyEMYfycqzwIHrZJLU2NX039AHinR_FB7-3--gYxV8rRl7iskdQGMah3giTtHiSgM6UVLg4VNX43hToMNxeDVt5gEU0PoaEmhyQ4_-7tN6bnn_RAaHB2d7vax9PSFzHFBGVrAAVIAxzaxwoNWxlMrnMRZS6mCjzEsjgwa6wb32JYtOcBNtKLoWVFZrX3wmi-Pbcdgg1CrfZZ5FWDktZ04AKhe2FMFIWaogYof8mEmwumuCZFTpcJvrCuVcJTl3yG8U7rwGBrZOGbeTq6rVkwr4Sx6VUKo0jjNjbFeaEHMDmVpAQYf8SkPzSj_VQb_P0t-Xt1T-TpZ7Zyf9qn90-ucrec8AvDQX_b6RxXoyDZsAPmq71U6xRxcp18A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFL0KqYToApWXSKFgia4qDcl4_BhLbAJt1EKoumiqis3IzxApTaJoom75BL6RL-HakwSyQWLjGfmhka597XPsuccAx3lwurC0zLwNMmPG00xL6rKSW1sIE6yVMd7566U4H7HPt_y2BR82sTCNPsR2wy16Rpqvo4MvXGj4JosamX46pe_jNenqAexxXJZ6bdjr34y-jbanCFgmNzcYIFJhG3lSprp_Wu8sSEm3fxenpoVmcACP1wiR9JsufQItP3sK-3_pBj6DZfJiW5P7ifMksv2p__XjZzfGVeHT6JkjMVkgMiZhEg_ESdxwJT7GUBKk4Stbx-4myIbDZLxqhgEWkPo7JtjkjlxcnZJ6u_H-HEaDs-tP59n68oTMMgQZWUE9MgFKFTXcolOHUkiXh1AIobwJIi-18ArZBnPKlTRYznQwvugZ9FilXPEC2rP5zL8EYqTrUUcDTpyGUcsRlHNTcq-FKKXnoQPvNhasFo1GRpXOtpmqop2rZOcOfIzG3daIutYpY74cV2s3qZC-5EFyKUttGdXa9IT2IdeYqTgWdOAkdc0_vlOdDYc0vR3-T-W38PDqdFANLy6_vIJHFKFL85vfa2jXy5U_QuhRmzfrEfYbz-fW4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compact+wide+single%E2%80%90%2Fdual%E2%80%90band+bandpass+filter+with+equal+inductance+configuration+in+thin+film+IPD+technology&rft.jtitle=Electronics+letters&rft.au=Liu%2C+Zhi%E2%80%90Hao&rft.au=Liu%2C+Bao%E2%80%90Guang&rft.au=Cheng%2C+Chong%E2%80%90Hu&rft.au=Cheng%2C+Yong&rft.date=2024-08-01&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=60&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1049%2Fell2.13299&rft.externalDBID=10.1049%252Fell2.13299&rft.externalDocID=ELL213299
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon