Compact wide single‐/dual‐band bandpass filter with equal inductance configuration in thin film IPD technology
Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are proposed. The configuration of equal inductance in a circuit contributes to reducing variables, sim...
Saved in:
Published in | Electronics letters Vol. 60; no. 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Wiley
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are proposed. The configuration of equal inductance in a circuit contributes to reducing variables, simplifying the physical structure, and shortening the debugging time in the TF‐IPD design process. Despite all the inductors being equal in value, a wide passband can still be achieved. The measured results show that the centre frequency of UBW BPF is 11.43 GHz, and the 3‐dB fractional bandwidth (FBW) is 133% (3.87–18.99 GHz). And the 3‐dB FBWs of DBBPF centred at 6.5 GHz and 16.2 GHz are 92% (3.51–9.49 GHz) and 35% (13.33–18.98 GHz), respectively. The stopband of UBW BPF and DBBPF can be extended to 47.7 GHz and 44.8 GHz in sizes of 321 µm × 856 µm and 235 µm × 846 µm, respectively (excluding measuring pads).
In this paper, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are designed. This kind of filter with equal inductance is helpful to reduce the variable, simplify the physical structure and shorten the debugging period. Even if all inductance values are equal, wide passband can still be achieved. |
---|---|
AbstractList | Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are proposed. The configuration of equal inductance in a circuit contributes to reducing variables, simplifying the physical structure, and shortening the debugging time in the TF‐IPD design process. Despite all the inductors being equal in value, a wide passband can still be achieved. The measured results show that the centre frequency of UBW BPF is 11.43 GHz, and the 3‐dB fractional bandwidth (FBW) is 133% (3.87–18.99 GHz). And the 3‐dB FBWs of DBBPF centred at 6.5 GHz and 16.2 GHz are 92% (3.51–9.49 GHz) and 35% (13.33–18.98 GHz), respectively. The stopband of UBW BPF and DBBPF can be extended to 47.7 GHz and 44.8 GHz in sizes of 321 µm × 856 µm and 235 µm × 846 µm, respectively (excluding measuring pads).
In this paper, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are designed. This kind of filter with equal inductance is helpful to reduce the variable, simplify the physical structure and shorten the debugging period. Even if all inductance values are equal, wide passband can still be achieved. Abstract Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are proposed. The configuration of equal inductance in a circuit contributes to reducing variables, simplifying the physical structure, and shortening the debugging time in the TF‐IPD design process. Despite all the inductors being equal in value, a wide passband can still be achieved. The measured results show that the centre frequency of UBW BPF is 11.43 GHz, and the 3‐dB fractional bandwidth (FBW) is 133% (3.87–18.99 GHz). And the 3‐dB FBWs of DBBPF centred at 6.5 GHz and 16.2 GHz are 92% (3.51–9.49 GHz) and 35% (13.33–18.98 GHz), respectively. The stopband of UBW BPF and DBBPF can be extended to 47.7 GHz and 44.8 GHz in sizes of 321 µm × 856 µm and 235 µm × 846 µm, respectively (excluding measuring pads). Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter (DBBPF) with equal inductance configuration are proposed. The configuration of equal inductance in a circuit contributes to reducing variables, simplifying the physical structure, and shortening the debugging time in the TF‐IPD design process. Despite all the inductors being equal in value, a wide passband can still be achieved. The measured results show that the centre frequency of UBW BPF is 11.43 GHz, and the 3‐dB fractional bandwidth (FBW) is 133% (3.87–18.99 GHz). And the 3‐dB FBWs of DBBPF centred at 6.5 GHz and 16.2 GHz are 92% (3.51–9.49 GHz) and 35% (13.33–18.98 GHz), respectively. The stopband of UBW BPF and DBBPF can be extended to 47.7 GHz and 44.8 GHz in sizes of 321 µm × 856 µm and 235 µm × 846 µm, respectively (excluding measuring pads). |
Author | Cheng, Yong Cheng, Chong‐Hu Liu, Zhi‐Hao Liu, Bao‐Guang |
Author_xml | – sequence: 1 givenname: Zhi‐Hao orcidid: 0000-0002-2264-4064 surname: Liu fullname: Liu, Zhi‐Hao organization: Nanjing University of Post and Telecommunications – sequence: 2 givenname: Bao‐Guang surname: Liu fullname: Liu, Bao‐Guang organization: Nanjing University of Post and Telecommunications – sequence: 3 givenname: Chong‐Hu surname: Cheng fullname: Cheng, Chong‐Hu organization: Nanjing University of Post and Telecommunications – sequence: 4 givenname: Yong surname: Cheng fullname: Cheng, Yong email: lzh_njupt@163.com, chengy@njupt.edu.cn organization: Nanjing University of Post and Telecommunications |
BookMark | eNp9kM1uEzEUha2qSKSlG57Aa6Rp_TOeGS-rUCBSJFiA1J11x75OXDl28ExUZddH4Bl5EpwGsWRzj-693zmLc0UuU05IyHvObjlr9R3GKG65FFpfkAWXijWa88dLsmCMy0Zx3b4lV9P0VNfK9AtSlnm3BzvT5-CQTiFtIv5--XXnDhCrjpAcPY09TBP1Ic5YKjpvKf6sBA3JHewMySK1OfmwORSYQ071QedtHdWyo6tvH-mMdptyzJvjO_LGQ5zw5q9ekx-fHr4vvzTrr59Xy_t1Y9tW6kYKVIMSQotRWcmUH7rece9l12kcfccH6FCrvmuddoPwVrXgR5Rs7LXU2slrsjrnugxPZl_CDsrRZAjm9ZDLxkCZg41oul5x36u-H8C2AmBkHaDnUI9a1UfN-nDOsiVPU0H_L48zc2renJo3r81XmJ_h5xDx-B_SPKzX4uz5A8yFipU |
Cites_doi | 10.1109/TMTT.1969.1127055 10.1109/TMTT.2019.2898197 10.1002/mop.33735 10.1109/LED.2023.3254459 10.1109/LED.2022.3176051 10.1109/TCPMT.2017.2708704 10.1109/LED.2010.2057405 10.1109/LMWC.2013.2285285 10.1109/LMWC.2017.2691059 10.1109/TED.2019.2895161 10.1109/LED.2021.3089656 10.1109/LMWC.2019.2936688 10.1002/mop.34030 10.1109/LED.2020.3027734 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
DBID | 24P AAYXX CITATION DOA |
DOI | 10.1049/ell2.13299 |
DatabaseName | Wiley Online Library Journals (Open Access) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1350-911X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_6751f75778ac42aab06aef1a1f795f75 10_1049_ell2_13299 ELL213299 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: the Natural Science Research Start‐up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications funderid: NY221120 – fundername: Jiangsu Graduate Research Innovation Program funderid: KYCX22_0929 – fundername: National Natural Science Foundation of China funderid: 62201278 |
GroupedDBID | -4A -~X .DC 0R~ 0ZK 1OC 24P 29G 2QL 3EH 4.4 4IJ 5GY 6IK 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACGFS ACIWK ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AENEX AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU CS3 DU5 EBS EJD ELQJU ESX F5P F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX IFIPE IPLJI ITC JAVBF K1G K7- L6V LAI LXO LXU M43 M7S MCNEO MS~ NADUK NXXTH O9- OCL OK1 P0- P2P P62 PTHSS QWB R4Z RIE RIG RNS RUI TN5 U5U UNMZH VH1 WH7 ZL0 ~ZZ AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN PUEGO |
ID | FETCH-LOGICAL-c4439-32e5852292b5c305f867d1ff3669ebf618a6e95764d9d82fc54afbe30b79399d3 |
IEDL.DBID | 24P |
ISSN | 0013-5194 |
IngestDate | Wed Aug 27 01:12:02 EDT 2025 Tue Aug 05 12:00:11 EDT 2025 Wed Jan 22 17:15:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4439-32e5852292b5c305f867d1ff3669ebf618a6e95764d9d82fc54afbe30b79399d3 |
ORCID | 0000-0002-2264-4064 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.13299 |
PageCount | 4 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6751f75778ac42aab06aef1a1f795f75 crossref_primary_10_1049_ell2_13299 wiley_primary_10_1049_ell2_13299_ELL213299 |
PublicationCentury | 2000 |
PublicationDate | August 2024 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationTitle | Electronics letters |
PublicationYear | 2024 |
Publisher | Wiley |
Publisher_xml | – name: Wiley |
References | 2023; 65 2017; 7 2010; 31 2021; 42 2023; 44 2020; 41 2019; 66 2017; 27 2019; 67 2022; 69 2019; 29 2014; 24 2024; 66 2022; 43 1969; 17 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_11_1 Jiang Y. (e_1_2_10_7_1) 2022; 69 Hao L. (e_1_2_10_12_1) 2022; 69 Xu Y. (e_1_2_10_6_1) 2022; 69 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_15_1 |
References_xml | – volume: 65 start-page: 2494 issue: 9 year: 2023 end-page: 2499 article-title: Compact LTCC filter with wide stopband for 5G applications publication-title: Microwave Opt. Technol. Lett. – volume: 66 start-page: 1174 issue: 3 year: 2019 end-page: 1181 article-title: Design of millimeter‐wave bandpass filters with broad bandwidth in Si‐based technology publication-title: IEEE Trans. Electron. Devices – volume: 43 start-page: 1009 issue: 7 year: 2022 end-page: 1012 article-title: An on‐chip ultra‐wideband bandpass filter in 0.18‐µm SiGe BiCMOS technology publication-title: IEEE Electron. Device Lett. – volume: 69 start-page: 4273 issue: 11 year: 2022 end-page: 4277 article-title: Wideband high selectivity filter chips with adjustable bandwidth based on IPD technology publication-title: IEEE Trans. Circuits Syst. II – volume: 31 start-page: 933 issue: 9 year: 2010 end-page: 935 article-title: Frequency‐independent T equivalent circuit for on‐chip spiral inductors publication-title: IEEE Electron. Device Lett. – volume: 27 start-page: 431 issue: 5 year: 2017 end-page: 433 article-title: Modeling and parameter extract‐ion of CMOS on‐chip spiral inductors with ground shields publication-title: IEEE Microwave Wireless Compon. Lett. – volume: 69 start-page: 389 issue: 2 year: 2022 end-page: 393 article-title: Bandpass filter with ultra‐wide upper stopband on GaAs IPD technology publication-title: IEEE Trans. Circuits Syst. II – volume: 66 issue: 1 year: 2024 article-title: Miniaturized IPD bandpass filter design with high out‐of‐band rejection for 5G applications publication-title: Microwave Opt. Technol. Lett. – volume: 69 start-page: 959 issue: 3 year: 2022 end-page: 963 article-title: Design of on‐chip dual‐band bandpass filter using lumped elements in LTCC technology publication-title: IEEE Trans. Circuits Syst. II – volume: 67 start-page: 1441 issue: 4 year: 2019 end-page: 1451 article-title: Design of compact dual‐band LTCC second‐order Chebyshev bandpass filters using a direct synthesis approach publication-title: IEEE Trans. Microwave Theory Tech. – volume: 17 start-page: 753 issue: 10 year: 1969 end-page: 759 article-title: Coupled transmission line networks in an inhomogeneous dielectric medium publication-title: IEEE Trans. Microwave Theory Tech. – volume: 44 start-page: 729 issue: 5 year: 2023 end-page: 732 article-title: High selectivity millimeter‐wave on‐chip band‐pass filter with semi‐lumped dual‐mode resonator by using GaAs technology publication-title: IEEE Electron. Device Lett. – volume: 42 start-page: 1244 issue: 8 year: 2021 end-page: 1247 article-title: Wideband bandpass filter for 5G millimeter‐ Wave application in 45‐nm CMOS silicon‐on‐insulator publication-title: IEEE Electron. Device Lett. – volume: 29 start-page: 638 issue: 10 year: 2019 end-page: 640 article-title: Compact mm‐wave bandpass filters using silicon integrated passive device technology publication-title: IEEE Microwave Wireless Compon. Lett. – volume: 24 start-page: 8 issue: 1 year: 2014 end-page: 10 article-title: A 3‐D miniaturized high selectivity bandpass filter in LTCC technology publication-title: IEEE Microwave Wireless Compon. Lett. – volume: 41 start-page: 1617 issue: 11 year: 2020 end-page: 1620 article-title: A broadband on‐chip bandpass filter using shunt dual‐layer meander‐line resonators publication-title: IEEE Electron. Device Lett. – volume: 7 start-page: 1410 issue: 9 year: 2017 end-page: 1418 article-title: Miniaturized bandpass filters as ultrathin 3‐D IPDs and embedded thinfilms in 3D glass modules publication-title: IEEE Trans. Compon. Packag. Manuf. Technol. – volume: 69 start-page: 389 issue: 2 year: 2022 ident: e_1_2_10_7_1 article-title: Bandpass filter with ultra‐wide upper stopband on GaAs IPD technology publication-title: IEEE Trans. Circuits Syst. II – ident: e_1_2_10_18_1 doi: 10.1109/TMTT.1969.1127055 – ident: e_1_2_10_13_1 doi: 10.1109/TMTT.2019.2898197 – ident: e_1_2_10_15_1 doi: 10.1002/mop.33735 – ident: e_1_2_10_8_1 doi: 10.1109/LED.2023.3254459 – ident: e_1_2_10_3_1 doi: 10.1109/LED.2022.3176051 – ident: e_1_2_10_11_1 doi: 10.1109/TCPMT.2017.2708704 – ident: e_1_2_10_17_1 doi: 10.1109/LED.2010.2057405 – ident: e_1_2_10_14_1 doi: 10.1109/LMWC.2013.2285285 – ident: e_1_2_10_16_1 doi: 10.1109/LMWC.2017.2691059 – ident: e_1_2_10_5_1 doi: 10.1109/TED.2019.2895161 – ident: e_1_2_10_2_1 doi: 10.1109/LED.2021.3089656 – volume: 69 start-page: 4273 issue: 11 year: 2022 ident: e_1_2_10_6_1 article-title: Wideband high selectivity filter chips with adjustable bandwidth based on IPD technology publication-title: IEEE Trans. Circuits Syst. II – ident: e_1_2_10_9_1 doi: 10.1109/LMWC.2019.2936688 – ident: e_1_2_10_10_1 doi: 10.1002/mop.34030 – ident: e_1_2_10_4_1 doi: 10.1109/LED.2020.3027734 – volume: 69 start-page: 959 issue: 3 year: 2022 ident: e_1_2_10_12_1 article-title: Design of on‐chip dual‐band bandpass filter using lumped elements in LTCC technology publication-title: IEEE Trans. Circuits Syst. II |
SSID | ssj0012997 |
Score | 2.4372258 |
Snippet | Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass filter... Abstract Here, based on thin film integrated passive device (TF‐IPD) technology, compact ultra‐wideband (UWB) bandpass filter (BPF) and dual‐band bandpass... |
SourceID | doaj crossref wiley |
SourceType | Open Website Index Database Publisher |
SubjectTerms | band‐pass filters filters microwave circuits |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXAT0Ja7vZPDZHHy1Vqniw0NuSpxZqLWWLV3-Cv9Ff4iTblvaiFy_ZJdklYSaTfJPJzCB0nnqrMkPyxBkvEqodSZQgNsmZMRnX3hgR_J0fHnmnR-_7rL-U6ivcCavCA1eEawCgTb1gQuTKUKKUbnLlfKqgUjJoCKsv7HlzZWpmP4BFVsxzFwBGofPApFQ23HBILkN6dbmyFcWI_asINW4x7S20OcOG-Koa0zZac6MdtLEUMXAXTaL8mhJ_DKzDQc8fuu_Pr0bwqIKnViOLQzEGTIz9IJjCcThqxS54T2JQwKemDIzGoAf7wcu0mgDQgMtXKOCXN3z3dIvLxZH7Huq1W883nWSWNiExFOBFkhEHOgAhkmhmQJx9zoVNvc84l057nuaKOwl6BrXS5sQbRpXXLmtqkFUpbbaPaqP3kTtAWAvbJJZ4WDI1JYYBHGc6Z05xngvHfB2dzSlYjKvoGEW0alNZBDoXkc51dB2Iu_giRLSOFcDnYsbn4i8-19FFZM0v_RStbpfEt8P_6PEIrRNAMNVtv2NUKydTdwIIpNSncbL9AG4G2mk priority: 102 providerName: Directory of Open Access Journals |
Title | Compact wide single‐/dual‐band bandpass filter with equal inductance configuration in thin film IPD technology |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fell2.13299 https://doaj.org/article/6751f75778ac42aab06aef1a1f795f75 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB4S-9IcSh8pdR9G0JwKm3i1eqygl7RNSItTfKhD6GXRMzG4TjBreu1P6G_sL-mM1naaS6GX3UUPFmY00vdJmhmAgzIFW3leF9EnXQgXeWE1D0Utva-US95r8nc-_6LOpuLzpbzcgXcbX5guPsR2w40sI8_XZODWdVlIENSSEudzfkhp0s0u9Mm3li70cTHZniFgjd7kL0CcIjbBSYU5uut7bznKUfvvo9S8zJw-godrfMiOO4U-hp24eAJ7f0UNfArLbMO-ZT9mITLi-vP4--evI_Kqwrezi8DocYu4mKUZHYcz2m5lkTwoGZLwlW9J2Qy5cJpdrbpBgBWsvcYHdvnOPk0-sna77b4P09OTrx_OinXqhMILhBhFxSPyAM4Nd9KjSada6VCmVCllokuqrK2KBrmGCCbUPHkpbHKxGjm0V2NC9Qx6i5tFfA7M6TDigSecNp3gXiIkl66W0SpV6yjTAN5sJNjcdhEymnyyLUxDcm6ynAfwnoS7bUFRrXPBzfKqWRtJg-SlTFpqXVsvuLVupGxMpcVCI7FiAG-zav7xn-ZkPOb568X_NH4JDziile5m3yvotctVfI1oo3XDPKiG0D--mH6bDjNn_wMmutU4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYoHCgHREsr0hZqqT1VWsh6_VgfKQ8FGlAPBCEuKz8hUggo2qjX_gR-I7-EGe8mwAWJi3flhyyNPfb3jT1jQn7m0ZvCsTILLqqM28Ayo5jPSuFcIW10TqG_88mp7A348YW4aO_moC9MEx9ibnBDzUjrNSo4GqQbwskxSGYYjdg2vpOu35ElhDUwqZd2zweXg_kxApSp2RMGAFX4LD4p1ztPrV_sSClw_0ugmnaawzWy2kJEutuM6QeyEMYfycqzwIHrZJLU2NX039AHinR_FB7-3--gYxV8rRl7iskdQGMah3giTtHiSgM6UVLg4VNX43hToMNxeDVt5gEU0PoaEmhyQ4_-7tN6bnn_RAaHB2d7vax9PSFzHFBGVrAAVIAxzaxwoNWxlMrnMRZS6mCjzEsjgwa6wb32JYtOcBNtKLoWVFZrX3wmi-Pbcdgg1CrfZZ5FWDktZ04AKhe2FMFIWaogYof8mEmwumuCZFTpcJvrCuVcJTl3yG8U7rwGBrZOGbeTq6rVkwr4Sx6VUKo0jjNjbFeaEHMDmVpAQYf8SkPzSj_VQb_P0t-Xt1T-TpZ7Zyf9qn90-ucrec8AvDQX_b6RxXoyDZsAPmq71U6xRxcp18A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbhMxFL0KqYToApWXSKFgia4qDcl4_BhLbAJt1EKoumiqis3IzxApTaJoom75BL6RL-HakwSyQWLjGfmhka597XPsuccAx3lwurC0zLwNMmPG00xL6rKSW1sIE6yVMd7566U4H7HPt_y2BR82sTCNPsR2wy16Rpqvo4MvXGj4JosamX46pe_jNenqAexxXJZ6bdjr34y-jbanCFgmNzcYIFJhG3lSprp_Wu8sSEm3fxenpoVmcACP1wiR9JsufQItP3sK-3_pBj6DZfJiW5P7ifMksv2p__XjZzfGVeHT6JkjMVkgMiZhEg_ESdxwJT7GUBKk4Stbx-4myIbDZLxqhgEWkPo7JtjkjlxcnZJ6u_H-HEaDs-tP59n68oTMMgQZWUE9MgFKFTXcolOHUkiXh1AIobwJIi-18ArZBnPKlTRYznQwvugZ9FilXPEC2rP5zL8EYqTrUUcDTpyGUcsRlHNTcq-FKKXnoQPvNhasFo1GRpXOtpmqop2rZOcOfIzG3daIutYpY74cV2s3qZC-5EFyKUttGdXa9IT2IdeYqTgWdOAkdc0_vlOdDYc0vR3-T-W38PDqdFANLy6_vIJHFKFL85vfa2jXy5U_QuhRmzfrEfYbz-fW4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compact+wide+single%E2%80%90%2Fdual%E2%80%90band+bandpass+filter+with+equal+inductance+configuration+in+thin+film+IPD+technology&rft.jtitle=Electronics+letters&rft.au=Liu%2C+Zhi%E2%80%90Hao&rft.au=Liu%2C+Bao%E2%80%90Guang&rft.au=Cheng%2C+Chong%E2%80%90Hu&rft.au=Cheng%2C+Yong&rft.date=2024-08-01&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=60&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1049%2Fell2.13299&rft.externalDBID=10.1049%252Fell2.13299&rft.externalDocID=ELL213299 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |