Hydraulic failure and tree size linked with canopy die-back in eucalypt forest during extreme drought

• Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined. • Wemeasured...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 230; no. 4; pp. 1354 - 1365
Main Authors Nolan, Rachael H., Gauthey, Alice, Losso, Adriano, Medlyn, Belinda E., Smith, Rhiannon, Chhajed, Shubham S., Fuller, Kathryn, Song, Magnolia, Li, Xine, Beaumont, Linda J., Boer, Matthias M., Wright, Ian J., Choat, Brendan
Format Journal Article
LanguageEnglish
Published England Wiley 01.05.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined. • Wemeasured pre-dawn and midday leaf water potential (Ψleaf), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought-induced xylem embolism. Tree size and tree health was also surveyed. • Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78–100%). This is in contrast to trees with partial canopy die-back (30–70% canopy die-back: 72–78% native embolism), or relatively healthy trees (little evidence of canopy die-back: 25–31% native embolism). Midday Ψleaf was significantly more negative in trees exhibiting partial canopy die-back (−2.7 to −6.3 MPa), compared with relatively healthy trees (−2.1 to −4.5 MPa). In two of the species the majority of individuals showing complete canopy die-back were in the small size classes. • Our results indicate that hydraulic failure is strongly associated with canopy die-back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.
AbstractList Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die‐back in eucalypt forests. The role of hydraulic failure and tree size on canopy die‐back in three eucalypt tree species during this drought was examined. We measured pre‐dawn and midday leaf water potential (Ψₗₑₐf), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought‐induced xylem embolism. Tree size and tree health was also surveyed. Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78–100%). This is in contrast to trees with partial canopy die‐back (30–70% canopy die‐back: 72–78% native embolism), or relatively healthy trees (little evidence of canopy die‐back: 25–31% native embolism). Midday Ψₗₑₐf was significantly more negative in trees exhibiting partial canopy die‐back (−2.7 to −6.3 MPa), compared with relatively healthy trees (−2.1 to −4.5 MPa). In two of the species the majority of individuals showing complete canopy die‐back were in the small size classes. Our results indicate that hydraulic failure is strongly associated with canopy die‐back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.
Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die‐back in eucalypt forests. The role of hydraulic failure and tree size on canopy die‐back in three eucalypt tree species during this drought was examined.We measured pre‐dawn and midday leaf water potential (Ψleaf), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought‐induced xylem embolism. Tree size and tree health was also surveyed.Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78–100%). This is in contrast to trees with partial canopy die‐back (30–70% canopy die‐back: 72–78% native embolism), or relatively healthy trees (little evidence of canopy die‐back: 25–31% native embolism). Midday Ψleaf was significantly more negative in trees exhibiting partial canopy die‐back (−2.7 to −6.3 MPa), compared with relatively healthy trees (−2.1 to −4.5 MPa). In two of the species the majority of individuals showing complete canopy die‐back were in the small size classes.Our results indicate that hydraulic failure is strongly associated with canopy die‐back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.
Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined. We measured pre-dawn and midday leaf water potential (Ψleaf ), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought-induced xylem embolism. Tree size and tree health was also surveyed. Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78-100%). This is in contrast to trees with partial canopy die-back (30-70% canopy die-back: 72-78% native embolism), or relatively healthy trees (little evidence of canopy die-back: 25-31% native embolism). Midday Ψleaf was significantly more negative in trees exhibiting partial canopy die-back (-2.7 to -6.3 MPa), compared with relatively healthy trees (-2.1 to -4.5 MPa). In two of the species the majority of individuals showing complete canopy die-back were in the small size classes. Our results indicate that hydraulic failure is strongly associated with canopy die-back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined. We measured pre-dawn and midday leaf water potential (Ψleaf ), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought-induced xylem embolism. Tree size and tree health was also surveyed. Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78-100%). This is in contrast to trees with partial canopy die-back (30-70% canopy die-back: 72-78% native embolism), or relatively healthy trees (little evidence of canopy die-back: 25-31% native embolism). Midday Ψleaf was significantly more negative in trees exhibiting partial canopy die-back (-2.7 to -6.3 MPa), compared with relatively healthy trees (-2.1 to -4.5 MPa). In two of the species the majority of individuals showing complete canopy die-back were in the small size classes. Our results indicate that hydraulic failure is strongly associated with canopy die-back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.
Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined. We measured pre-dawn and midday leaf water potential (Ψ ), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought-induced xylem embolism. Tree size and tree health was also surveyed. Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78-100%). This is in contrast to trees with partial canopy die-back (30-70% canopy die-back: 72-78% native embolism), or relatively healthy trees (little evidence of canopy die-back: 25-31% native embolism). Midday Ψ was significantly more negative in trees exhibiting partial canopy die-back (-2.7 to -6.3 MPa), compared with relatively healthy trees (-2.1 to -4.5 MPa). In two of the species the majority of individuals showing complete canopy die-back were in the small size classes. Our results indicate that hydraulic failure is strongly associated with canopy die-back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.
Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die‐back in eucalypt forests. The role of hydraulic failure and tree size on canopy die‐back in three eucalypt tree species during this drought was examined. We measured pre‐dawn and midday leaf water potential (Ψ leaf ), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought‐induced xylem embolism. Tree size and tree health was also surveyed. Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78–100%). This is in contrast to trees with partial canopy die‐back (30–70% canopy die‐back: 72–78% native embolism), or relatively healthy trees (little evidence of canopy die‐back: 25–31% native embolism). Midday Ψ leaf was significantly more negative in trees exhibiting partial canopy die‐back (−2.7 to −6.3 MPa), compared with relatively healthy trees (−2.1 to −4.5 MPa). In two of the species the majority of individuals showing complete canopy die‐back were in the small size classes. Our results indicate that hydraulic failure is strongly associated with canopy die‐back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.
• Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined. • Wemeasured pre-dawn and midday leaf water potential (Ψleaf), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought-induced xylem embolism. Tree size and tree health was also surveyed. • Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78–100%). This is in contrast to trees with partial canopy die-back (30–70% canopy die-back: 72–78% native embolism), or relatively healthy trees (little evidence of canopy die-back: 25–31% native embolism). Midday Ψleaf was significantly more negative in trees exhibiting partial canopy die-back (−2.7 to −6.3 MPa), compared with relatively healthy trees (−2.1 to −4.5 MPa). In two of the species the majority of individuals showing complete canopy die-back were in the small size classes. • Our results indicate that hydraulic failure is strongly associated with canopy die-back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.
Summary Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die‐back in eucalypt forests. The role of hydraulic failure and tree size on canopy die‐back in three eucalypt tree species during this drought was examined. We measured pre‐dawn and midday leaf water potential (Ψleaf), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought‐induced xylem embolism. Tree size and tree health was also surveyed. Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78–100%). This is in contrast to trees with partial canopy die‐back (30–70% canopy die‐back: 72–78% native embolism), or relatively healthy trees (little evidence of canopy die‐back: 25–31% native embolism). Midday Ψleaf was significantly more negative in trees exhibiting partial canopy die‐back (−2.7 to −6.3 MPa), compared with relatively healthy trees (−2.1 to −4.5 MPa). In two of the species the majority of individuals showing complete canopy die‐back were in the small size classes. Our results indicate that hydraulic failure is strongly associated with canopy die‐back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.
Author Nolan, Rachael H.
Smith, Rhiannon
Wright, Ian J.
Song, Magnolia
Losso, Adriano
Choat, Brendan
Boer, Matthias M.
Li, Xine
Beaumont, Linda J.
Fuller, Kathryn
Medlyn, Belinda E.
Gauthey, Alice
Chhajed, Shubham S.
Author_xml – sequence: 1
  givenname: Rachael H.
  surname: Nolan
  fullname: Nolan, Rachael H.
– sequence: 2
  givenname: Alice
  surname: Gauthey
  fullname: Gauthey, Alice
– sequence: 3
  givenname: Adriano
  surname: Losso
  fullname: Losso, Adriano
– sequence: 4
  givenname: Belinda E.
  surname: Medlyn
  fullname: Medlyn, Belinda E.
– sequence: 5
  givenname: Rhiannon
  surname: Smith
  fullname: Smith, Rhiannon
– sequence: 6
  givenname: Shubham S.
  surname: Chhajed
  fullname: Chhajed, Shubham S.
– sequence: 7
  givenname: Kathryn
  surname: Fuller
  fullname: Fuller, Kathryn
– sequence: 8
  givenname: Magnolia
  surname: Song
  fullname: Song, Magnolia
– sequence: 9
  givenname: Xine
  surname: Li
  fullname: Li, Xine
– sequence: 10
  givenname: Linda J.
  surname: Beaumont
  fullname: Beaumont, Linda J.
– sequence: 11
  givenname: Matthias M.
  surname: Boer
  fullname: Boer, Matthias M.
– sequence: 12
  givenname: Ian J.
  surname: Wright
  fullname: Wright, Ian J.
– sequence: 13
  givenname: Brendan
  surname: Choat
  fullname: Choat, Brendan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33629360$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFBQ8AssQGFmn9FzteVhUwSBWwAImd5dg3HU8z9mAnKuHpyTAzLCoQ3nhzzmff-52hk5giIPSckgs6n8u4XV1QxXTzCC2okLpqKFcnaEEIayop5LdTdFbKmhCia8meoFPOJdNckgWC5eSzHfvgcGdDP2bANno8ZABcwk_AfYh34PF9GFbY2Zi2E_YBqta6OxwihtHZftoOuEsZyoD9mEO8xfBjTtgA9jmNt6vhKXrc2b7As8N9jr6-e_vlelndfHr_4frqpnJC8KbqbA1tJzolal03ljjqiQOlWm2Zd7QR0DnCWmVVTblWDfcKBFecc-tb0Wp-jl7vc7c5fR_n_5hNKA763kZIYzGsZoIpLTX7Pyo0F0IruUNfPUDXacxxHmQOpEwKJevd2y8P1NhuwJttDhubJ3Pc9Qxc7gGXUykZOuPCYIeQ4pDn1RtKzK5NM7dpfrc5G28eGMfQv7GH9PvQw_Rv0Hz8vDwaL_bGugwp_zGYoqrRgvBfTMa3rg
CitedBy_id crossref_primary_10_1007_s00468_023_02482_6
crossref_primary_10_5194_hess_28_1897_2024
crossref_primary_10_1111_geb_13514
crossref_primary_10_1016_j_scitotenv_2023_169401
crossref_primary_10_1093_treephys_tpac119
crossref_primary_10_1111_gcb_16867
crossref_primary_10_1111_geb_13478
crossref_primary_10_1038_s41598_021_97762_x
crossref_primary_10_1080_00049158_2021_2013639
crossref_primary_10_1186_s40317_023_00347_w
crossref_primary_10_3389_ffgc_2023_1018936
crossref_primary_10_1016_j_foreco_2023_121435
crossref_primary_10_1111_plb_13476
crossref_primary_10_1016_j_gecco_2025_e03464
crossref_primary_10_1016_j_jhydrol_2024_132221
crossref_primary_10_1111_gcb_16146
crossref_primary_10_1029_2023EF003780
crossref_primary_10_1016_j_scitotenv_2024_175916
crossref_primary_10_1111_aec_13290
crossref_primary_10_1016_j_biocon_2024_110809
crossref_primary_10_1080_03721426_2023_2200875
crossref_primary_10_1111_geb_13548
crossref_primary_10_1093_treephys_tpac007
crossref_primary_10_1093_aobpla_plad064
crossref_primary_10_1111_gcb_17503
crossref_primary_10_1093_treephys_tpac003
crossref_primary_10_1080_13241583_2023_2179555
crossref_primary_10_1016_j_scitotenv_2024_171174
crossref_primary_10_1111_pce_14639
crossref_primary_10_1016_j_scitotenv_2023_169716
crossref_primary_10_1111_nph_18065
crossref_primary_10_3390_rs17050910
crossref_primary_10_1007_s10980_024_01792_5
crossref_primary_10_1071_BT22119
crossref_primary_10_1002_fee_2482
crossref_primary_10_1016_j_scitotenv_2023_166884
crossref_primary_10_1038_s41598_022_24833_y
crossref_primary_10_1111_plb_13444
crossref_primary_10_1080_00049158_2022_2145722
crossref_primary_10_1016_j_foreco_2024_121741
crossref_primary_10_1111_gcb_15641
crossref_primary_10_1186_s13717_024_00567_9
crossref_primary_10_1016_j_scitotenv_2022_157915
crossref_primary_10_1093_forsci_fxac044
crossref_primary_10_1029_2021AV000469
crossref_primary_10_3389_fpls_2022_1018405
crossref_primary_10_1071_MF24016
crossref_primary_10_1093_treephys_tpae038
crossref_primary_10_3390_fire4040097
crossref_primary_10_1111_aec_13508
crossref_primary_10_1111_gcb_16082
crossref_primary_10_1007_s11258_022_01249_2
crossref_primary_10_1007_s10342_022_01482_4
crossref_primary_10_1111_pce_14176
crossref_primary_10_1093_aob_mcac053
crossref_primary_10_3389_fpls_2022_835921
crossref_primary_10_1111_nph_17448
crossref_primary_10_1111_nph_17888
crossref_primary_10_3390_land12071271
crossref_primary_10_1111_ele_14314
crossref_primary_10_3390_plants12213683
crossref_primary_10_1007_s00468_023_02479_1
crossref_primary_10_3390_f13060909
crossref_primary_10_5194_hess_26_6073_2022
crossref_primary_10_1111_geb_13842
crossref_primary_10_1111_plb_13384
crossref_primary_10_1016_j_agrformet_2023_109329
crossref_primary_10_1093_treephys_tpab096
crossref_primary_10_1111_pce_14788
crossref_primary_10_1016_j_wace_2024_100703
crossref_primary_10_1093_treephys_tpad075
crossref_primary_10_1002_ecy_3997
crossref_primary_10_1080_00049182_2024_2434022
crossref_primary_10_1111_plb_13467
crossref_primary_10_1111_pce_14265
crossref_primary_10_1016_j_dendro_2025_126327
crossref_primary_10_1111_nph_18129
crossref_primary_10_32604_phyton_2022_019386
crossref_primary_10_1098_rspb_2022_0358
crossref_primary_10_1016_j_phytochem_2023_113715
crossref_primary_10_3390_f15040654
crossref_primary_10_3390_f13030400
Cites_doi 10.1038/nmeth.2089
10.1890/06-1046.1
10.1038/nclimate2067
10.1006/anbo.1993.1075
10.1371/journal.pone.0159145
10.1007/s11258-014-0426-8
10.1038/s41558-020-0716-1
10.1111/pce.13121
10.1046/j.1469-8137.2003.00668.x
10.1038/s41559-017-0248-x
10.1038/nature12350
10.1111/nph.16746
10.1071/BT9880233
10.20870/jph.2017.e002
10.1038/s41467-020-17213-5
10.1038/s41561-018-0133-5
10.1007/978-94-007-1242-3_13
10.1071/BT97011
10.1016/j.foreco.2020.118385
10.1111/pce.13781
10.1007/s004420100628
10.1038/s41467-019-12380-6
10.1002/ece3.1344
10.1111/pce.13129
10.1038/nclimate1293
10.1073/pnas.1107891109
10.1007/BF02411394
10.1111/nyas.13912
10.1111/1365-2745.13227
10.1111/pce.12139
10.1111/gcb.15360
10.17632/6j6fp3jhgj.1
10.1080/00049158.2008.10675048
10.1111/nph.12465
10.1104/pp.17.00552
10.1093/oxfordjournals.aob.a087976
10.1071/BT12225
10.1111/j.1469-8137.2009.02830.x
10.1111/j.1469-8137.2005.01349.x
10.1175/2009JCLI2909.1
10.1890/ES15-00203.1
10.1111/j.1469-8137.2006.01712.x
10.1038/nclimate1635
10.1111/gcb.14987
10.1126/science.aat7631
10.1016/j.agrformet.2011.07.019
10.1111/nph.15998
10.1038/nature15539
10.1111/gcb.15215
10.1111/nph.12288
10.1093/treephys/tpt030
10.1093/aob/mct204
10.1073/pnas.1525678113
10.1111/j.1461-0248.2012.01751.x
10.1111/gcb.15037
10.1111/nph.14545
10.1007/s10584-016-1705-2
10.1038/s41586-018-0240-x
10.1111/j.1442-9993.1983.tb01516.x
10.1093/treephys/tpy052
10.1890/080016
10.1038/nplants.2015.139
ContentType Journal Article
Copyright 2020 The Authors © 2020 New Phytologist Foundation
2021 The Authors © 2021 New Phytologist Foundation
2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
Copyright © 2021 New Phytologist Trust
Copyright_xml – notice: 2020 The Authors © 2020 New Phytologist Foundation
– notice: 2021 The Authors © 2021 New Phytologist Foundation
– notice: 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
– notice: Copyright © 2021 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.17298
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
MEDLINE
CrossRef


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1365
ExternalDocumentID 33629360
10_1111_nph_17298
NPH17298
27178940
Genre rapidPublication
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP170100761; FT130101115; LP140400232
– fundername: Austrian Research Agency
  funderid: J‐4300
– fundername: NSW Department of Planning Industry and Environment
– fundername: Austrian Science Fund FWF
  grantid: J 4300
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASGY
AASVR
ABEFU
ABEML
ABXSQ
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4438-fa5ebf4f745958a0c1d0ce77b9a2dc184efc02b7a75139783d7e437333adb4b93
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:38:40 EDT 2025
Fri Jul 11 02:44:24 EDT 2025
Fri Jul 25 12:00:58 EDT 2025
Mon Jul 21 05:35:47 EDT 2025
Tue Jul 01 02:28:37 EDT 2025
Thu Apr 24 23:13:09 EDT 2025
Wed Jan 22 16:30:53 EST 2025
Thu Jul 03 21:34:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Eucalyptus
xylem embolism
water potential
drought
mortality
hydraulic failure
tree size
cavitation
Language English
License 2021 The Authors New Phytologist © 2021 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4438-fa5ebf4f745958a0c1d0ce77b9a2dc184efc02b7a75139783d7e437333adb4b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9105-640X
0000-0003-4123-7170
0000-0001-7839-4941
0000-0001-6362-4572
0000-0001-6512-4248
0000-0002-4432-8249
0000-0001-9277-5142
0000-0001-9100-7635
0000-0001-8338-9143
0000-0002-6375-5684
0000-0001-5728-9827
0000-0002-6958-6252
0000-0001-6307-1680
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.17298
PMID 33629360
PQID 2512647659
PQPubID 2026848
PageCount 12
ParticipantIDs proquest_miscellaneous_2524279692
proquest_miscellaneous_2493449762
proquest_journals_2512647659
pubmed_primary_33629360
crossref_citationtrail_10_1111_nph_17298
crossref_primary_10_1111_nph_17298
wiley_primary_10_1111_nph_17298_NPH17298
jstor_primary_27178940
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210501
May 2021
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 5
  year: 2021
  text: 20210501
  day: 1
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 1
2017; 4
2019; 10
1988; 36
2013; 61
1999; 47
2013; 200
2020; 368
1990; 182
1983; 8
2018; 41
2006; 170
2020; 11
2012; 15
2020; 10
2003; 157
2008; 71
2010; 23
2014; 4
1993; 72
2016; 113
2013; 112
2018b; 38
2018a; 41
2020; 43
2015; 216
2015; 1
2015; 6
2015; 5
2020a; 26
2011; 1
2011
2009; 182
2013; 500
2020; 228
2019; 224
2015; 528
2017; 174
2003
2020b; 474
2021; V1
2020; 108
2001; 126
2017; 215
2016; 11
2019; 1436
2012a; 109
2012; 153
1990; 65
2013; 36
2013; 33
2005; 166
2020
2018; 558
2020; 26
2009; 7
2015
2017; 144
2018; 11
2012b; 3
2007; 88
2012; 9
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Dunn I (e_1_2_8_25_1) 2003
R Development Core Team (e_1_2_8_51_1) 2020
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 36
  start-page: 233
  year: 1988
  end-page: 237
  article-title: Water relations of rural eucalypt dieback
  publication-title: Australian Journal of Botany
– volume: 170
  start-page: 807
  year: 2006
  end-page: 818
  article-title: Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms
  publication-title: New Phytologist
– volume: 88
  start-page: 2259
  year: 2007
  end-page: 2269
  article-title: Mortality of large trees and lianas following experimental drought in an amazon forest
  publication-title: Ecology
– volume: 65
  start-page: 585
  year: 1990
  end-page: 601
  article-title: Seedling growth and storage characteristics of seeder and resprouter species of Mediterranean type ecosystems of SW Australia
  publication-title: Annals of Botany
– volume: 26
  start-page: 7021
  year: 2020
  end-page: 7035
  article-title: Large‐scale early‐wilting response of Central European forests to the 2018 extreme drought
  publication-title: Global Change Biology
– volume: 166
  start-page: 485
  year: 2005
  end-page: 496
  article-title: Assessing the generality of global leaf trait relationships
  publication-title: New Phytologist
– volume: 10
  start-page: 4385
  year: 2019
  article-title: Tree height explains mortality risk during an intense drought
  publication-title: Nature Communications
– volume: 1
  start-page: 1285
  year: 2017
  end-page: 1291
  article-title: A multi‐species synthesis of physiological mechanisms in drought‐induced tree mortality
  publication-title: Nature Ecology & Evolution
– volume: 1
  start-page: 5
  year: 2015
  article-title: Larger trees suffer most during drought in forests worldwide
  publication-title: Nature Plants
– volume: 41
  start-page: 576
  year: 2018
  end-page: 588
  article-title: Co‐occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought
  publication-title: Plant, Cell & Environment
– volume: 33
  start-page: 672
  year: 2013
  end-page: 683
  article-title: Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees
  publication-title: Tree Physiology
– volume: 15
  start-page: 393
  year: 2012
  end-page: 405
  article-title: The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta‐analysis
  publication-title: Ecology Letters
– start-page: 341
  year: 2011
  end-page: 361
– volume: V1
  year: 2021
  article-title: Data for: Hydraulic failure and tree size linked with canopy die‐back in eucalypt forest during extreme drought
  publication-title: Mendeley Data
– volume: 200
  start-page: 322
  year: 2013
  end-page: 329
  article-title: Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought
  publication-title: New Phytologist
– volume: 558
  start-page: 531
  year: 2018
  end-page: 539
  article-title: Triggers of tree mortality under drought
  publication-title: Nature
– volume: 4
  start-page: 17
  year: 2014
  end-page: 22
  article-title: Global warming and changes in drought
  publication-title: Nature Climate Change
– volume: 144
  start-page: 519
  year: 2017
  end-page: 533
  article-title: Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes
  publication-title: Climatic Change
– volume: 113
  start-page: 5024
  year: 2016
  end-page: 5029
  article-title: Meta‐analysis reveals that hydraulic traits explain cross‐species patterns of drought‐induced tree mortality across the globe
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 224
  start-page: 1544
  year: 2019
  end-page: 1556
  article-title: Leaf economics and plant hydraulics drive leaf : wood area ratios
  publication-title: New Phytologist
– volume: 228
  start-page: 884
  year: 2020
  end-page: 897
  article-title: Visual and hydraulic techniques produce similar estimates of cavitation resistance in woody species
  publication-title: New Phytologist
– volume: 215
  start-page: 97
  year: 2017
  end-page: 112
  article-title: Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus
  publication-title: New Phytologist
– volume: 43
  start-page: 1944
  year: 2020
  end-page: 1957
  article-title: Hydraulic and photosynthetic limitations prevail over root non‐structural carbohydrate reserves as drivers of resprouting in two Mediterranean oaks
  publication-title: Plant, Cell & Environment
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nature Methods
– volume: 47
  start-page: 49
  year: 1999
  end-page: 60
  article-title: Relationships between tree cover and grass dominance in a grazed temperate stringybark ( ) open‐forest
  publication-title: Australian Journal of Botany
– volume: 126
  start-page: 457
  year: 2001
  end-page: 461
  article-title: Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure
  publication-title: Oecologia
– volume: 11
  start-page: 405
  year: 2018
  end-page: 409
  article-title: Tall Amazonian forests are less sensitive to precipitation variability
  publication-title: Nature Geoscience
– volume: 26
  start-page: 5716
  year: 2020
  end-page: 5733
  article-title: Identifying areas at risk of drought‐induced tree mortality across South‐Eastern Australia
  publication-title: Global Change Biology
– volume: 3
  start-page: 30
  year: 2012b
  end-page: 36
  article-title: Consequences of widespread tree mortality triggered by drought and temperature stress
  publication-title: Nature Climate Change
– year: 2015
– volume: 4
  year: 2017
  article-title: : An R package to fit hydraulic vulnerability curves
  publication-title: The Journal of Plant Hydraulics
– volume: 200
  start-page: 304
  year: 2013
  end-page: 321
  article-title: Evaluating theories of drought‐induced vegetation mortality using a multimodel–experiment framework
  publication-title: New Phytologist
– volume: 11
  year: 2016
  article-title: Chaparral shrub hydraulic traits, size, and life history types relate to species mortality during California’s historic drought of 2014
  publication-title: PLoS ONE
– volume: 36
  start-page: 1938
  year: 2013
  end-page: 1949
  article-title: Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism
  publication-title: Plant, Cell & Environment
– year: 2003
– volume: 500
  start-page: 287
  year: 2013
  end-page: 295
  article-title: Climate extremes and the carbon cycle
  publication-title: Nature
– volume: 182
  start-page: 565
  year: 2009
  end-page: 588
  article-title: Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis
  publication-title: New Phytologist
– volume: 23
  start-page: 1696
  year: 2010
  end-page: 1718
  article-title: A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index
  publication-title: Journal of Climate
– volume: 174
  start-page: 2054
  year: 2017
  article-title: Optical measurement of stem xylem vulnerability
  publication-title: Plant Physiology
– volume: 8
  start-page: 27
  year: 1983
  end-page: 41
  article-title: Water stress, leaf nutrients and defoliation: a model of dieback of rural eucalypts
  publication-title: Australian Journal of Ecology
– volume: 5
  start-page: 1263
  year: 2015
  end-page: 1270
  article-title: Morphological and moisture availability controls of the leaf area‐to‐sapwood area ratio: analysis of measurements on Australian trees
  publication-title: Ecology and Evolution
– volume: 1
  start-page: 467
  year: 2011
  end-page: 471
  article-title: A drought‐induced pervasive increase in tree mortality across Canada's boreal forests
  publication-title: Nature Climate Change
– volume: 109
  start-page: 233
  year: 2012a
  end-page: 237
  article-title: The roles of hydraulic and carbon stress in a widespread climate‐induced forest die‐off
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 72
  start-page: 7
  year: 1993
  end-page: 16
  article-title: The significance of root starch in post‐fire shoot recovery of the resprouter R. Br. (Proteaceae)
  publication-title: Annals of Botany
– volume: 368
  start-page: 261
  year: 2020
  end-page: 266
  article-title: Hanging by a thread? Forests and drought
  publication-title: Science
– volume: 157
  start-page: 251
  year: 2003
  end-page: 261
  article-title: Plant stored reserves do not drive resprouting of the lignotuberous shrub
  publication-title: New Phytologist
– volume: 153
  start-page: 67
  year: 2012
  end-page: 81
  article-title: Dynamics of carbon exchange in a forest in response to interacting disturbance factors
  publication-title: Agricultural and Forest Meteorology
– volume: 41
  start-page: 646
  year: 2018a
  end-page: 660
  article-title: Tree hydraulic traits are coordinated and strongly linked to climate‐of‐origin across a rainfall gradient
  publication-title: Plant, Cell & Environment
– volume: 38
  start-page: 1193
  year: 2018b
  end-page: 1199
  article-title: Xylem embolism measured retrospectively is linked to canopy dieback in natural populations of following drought
  publication-title: Tree Physiology
– volume: 26
  start-page: 3122
  year: 2020
  end-page: 3133
  article-title: A catastrophic tropical drought kills hydraulically vulnerable tree species
  publication-title: Global Change Biology
– volume: 10
  start-page: 171
  year: 2020
  end-page: 172
  article-title: Unprecedented burn area of Australian mega forest fires
  publication-title: Nature Climate Change
– volume: 528
  start-page: 119
  year: 2015
  end-page: 122
  article-title: Death from drought in tropical forests is triggered by hydraulics not carbon starvation
  publication-title: Nature
– volume: 112
  start-page: 1431
  year: 2013
  end-page: 1437
  article-title: Water stress‐induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar
  publication-title: Annals of Botany
– volume: 474
  start-page: 118385
  year: 2020b
  article-title: Bark attributes determine variation in fire resistance in resprouting tree species
  publication-title: Forest Ecology and Management
– year: 2020
– volume: 108
  start-page: 310
  year: 2020
  end-page: 324
  article-title: Eucalypt forests dominated by epicormic resprouters are resilient to repeated canopy fires
  publication-title: Journal of Ecology
– volume: 1436
  start-page: 19
  year: 2019
  end-page: 35
  article-title: Land‐atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges
  publication-title: Annals of the New York Academy of Sciences
– volume: 6
  start-page: art129
  year: 2015
  article-title: On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene
  publication-title: Ecosphere
– volume: 61
  start-page: 167
  year: 2013
  end-page: 234
  article-title: New handbook for standardised measurement of plant functional traits worldwide
  publication-title: Australian Journal of Botany
– volume: 11
  start-page: 3402
  year: 2020
  article-title: Height‐related changes in forest composition explain increasing tree mortality with height during an extreme drought
  publication-title: Nature Communications
– volume: 71
  start-page: 294
  year: 2008
  end-page: 302
  article-title: Forest canopy health and stand structure associated with bell miners ( ) on the central coast of New South Wales
  publication-title: Australian Forestry
– volume: 216
  start-page: 177
  year: 2015
  end-page: 187
  article-title: The high vulnerability of to drought at its southern margin paves the way for
  publication-title: Plant Ecology
– volume: 26
  start-page: 1039
  year: 2020a
  end-page: 1041
  article-title: Causes and consequences of eastern Australia's 2019–20 season of mega‐fires
  publication-title: Global Change Biology
– volume: 7
  start-page: 185
  year: 2009
  end-page: 189
  article-title: Tree die‐off in response to global change‐type drought: mortality insights from a decade of plant water potential measurements
  publication-title: Frontiers in Ecology and the Environment
– volume: 182
  start-page: 420
  year: 1990
  end-page: 426
  article-title: Water‐storage capacity of , and stems measured by dehydration isotherms
  publication-title: Planta
– ident: e_1_2_8_55_1
  doi: 10.1038/nmeth.2089
– ident: e_1_2_8_41_1
  doi: 10.1890/06-1046.1
– ident: e_1_2_8_61_1
  doi: 10.1038/nclimate2067
– ident: e_1_2_8_12_1
  doi: 10.1006/anbo.1993.1075
– ident: e_1_2_8_65_1
  doi: 10.1371/journal.pone.0159145
– ident: e_1_2_8_63_1
  doi: 10.1007/s11258-014-0426-8
– ident: e_1_2_8_11_1
  doi: 10.1038/s41558-020-0716-1
– ident: e_1_2_8_31_1
  doi: 10.1111/pce.13121
– ident: e_1_2_8_22_1
  doi: 10.1046/j.1469-8137.2003.00668.x
– ident: e_1_2_8_2_1
  doi: 10.1038/s41559-017-0248-x
– ident: e_1_2_8_52_1
  doi: 10.1038/nature12350
– ident: e_1_2_8_27_1
  doi: 10.1111/nph.16746
– volume-title: R: A language and environment for statistical computing
  year: 2020
  ident: e_1_2_8_51_1
– ident: e_1_2_8_21_1
  doi: 10.1071/BT9880233
– ident: e_1_2_8_26_1
  doi: 10.20870/jph.2017.e002
– ident: e_1_2_8_57_1
  doi: 10.1038/s41467-020-17213-5
– ident: e_1_2_8_28_1
  doi: 10.1038/s41561-018-0133-5
– ident: e_1_2_8_56_1
  doi: 10.1007/978-94-007-1242-3_13
– ident: e_1_2_8_29_1
  doi: 10.1071/BT97011
– ident: e_1_2_8_43_1
  doi: 10.1016/j.foreco.2020.118385
– volume-title: The bioregions of New South Wales: their biodiversity, conservation and history
  year: 2003
  ident: e_1_2_8_25_1
– ident: e_1_2_8_53_1
  doi: 10.1111/pce.13781
– ident: e_1_2_8_30_1
  doi: 10.1007/s004420100628
– ident: e_1_2_8_59_1
  doi: 10.1038/s41467-019-12380-6
– ident: e_1_2_8_60_1
  doi: 10.1002/ece3.1344
– ident: e_1_2_8_35_1
  doi: 10.1111/pce.13129
– ident: e_1_2_8_46_1
  doi: 10.1038/nclimate1293
– ident: e_1_2_8_4_1
  doi: 10.1073/pnas.1107891109
– ident: e_1_2_8_62_1
  doi: 10.1007/BF02411394
– ident: e_1_2_8_39_1
  doi: 10.1111/nyas.13912
– ident: e_1_2_8_20_1
  doi: 10.1111/1365-2745.13227
– ident: e_1_2_8_67_1
  doi: 10.1111/pce.12139
– ident: e_1_2_8_16_1
  doi: 10.1111/gcb.15360
– ident: e_1_2_8_44_1
  doi: 10.17632/6j6fp3jhgj.1
– ident: e_1_2_8_58_1
  doi: 10.1080/00049158.2008.10675048
– ident: e_1_2_8_37_1
  doi: 10.1111/nph.12465
– ident: e_1_2_8_14_1
  doi: 10.1104/pp.17.00552
– ident: e_1_2_8_17_1
– ident: e_1_2_8_45_1
  doi: 10.1093/oxfordjournals.aob.a087976
– ident: e_1_2_8_47_1
  doi: 10.1071/BT12225
– ident: e_1_2_8_48_1
  doi: 10.1111/j.1469-8137.2009.02830.x
– ident: e_1_2_8_68_1
  doi: 10.1111/j.1469-8137.2005.01349.x
– ident: e_1_2_8_66_1
  doi: 10.1175/2009JCLI2909.1
– ident: e_1_2_8_3_1
  doi: 10.1890/ES15-00203.1
– ident: e_1_2_8_50_1
  doi: 10.1111/j.1469-8137.2006.01712.x
– ident: e_1_2_8_5_1
  doi: 10.1038/nclimate1635
– ident: e_1_2_8_42_1
  doi: 10.1111/gcb.14987
– ident: e_1_2_8_15_1
  doi: 10.1126/science.aat7631
– ident: e_1_2_8_32_1
  doi: 10.1016/j.agrformet.2011.07.019
– ident: e_1_2_8_38_1
  doi: 10.1111/nph.15998
– ident: e_1_2_8_54_1
  doi: 10.1038/nature15539
– ident: e_1_2_8_7_1
– ident: e_1_2_8_24_1
  doi: 10.1111/gcb.15215
– ident: e_1_2_8_40_1
  doi: 10.1111/nph.12288
– ident: e_1_2_8_64_1
  doi: 10.1093/treephys/tpt030
– ident: e_1_2_8_8_1
  doi: 10.1093/aob/mct204
– ident: e_1_2_8_6_1
  doi: 10.1073/pnas.1525678113
– ident: e_1_2_8_9_1
  doi: 10.1111/j.1461-0248.2012.01751.x
– ident: e_1_2_8_19_1
– ident: e_1_2_8_49_1
  doi: 10.1111/gcb.15037
– ident: e_1_2_8_34_1
  doi: 10.1111/nph.14545
– ident: e_1_2_8_23_1
  doi: 10.1007/s10584-016-1705-2
– ident: e_1_2_8_18_1
  doi: 10.1038/s41586-018-0240-x
– ident: e_1_2_8_33_1
  doi: 10.1111/j.1442-9993.1983.tb01516.x
– ident: e_1_2_8_36_1
  doi: 10.1093/treephys/tpy052
– ident: e_1_2_8_13_1
  doi: 10.1890/080016
– ident: e_1_2_8_10_1
  doi: 10.1038/nplants.2015.139
SSID ssj0009562
Score 2.6078362
Snippet • Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests....
Summary Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die‐back in eucalypt...
Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die‐back in eucalypt forests....
Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests....
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1354
SubjectTerms Australia
Canopies
Canopy
cavitation
dieback
Drought
Droughts
Embolism
Eucalyptus
Extreme drought
Failure
Foliage
Forests
Health risks
hydraulic conductivity
hydraulic failure
Hydraulics
leaf water potential
Leaves
mortality
Mortality risk
Plant Leaves
Plant species
Rapid report
risk
tree health
tree size
Trees
Vulnerability
Water
Water potential
Xylem
xylem embolism
Title Hydraulic failure and tree size linked with canopy die-back in eucalypt forest during extreme drought
URI https://www.jstor.org/stable/27178940
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.17298
https://www.ncbi.nlm.nih.gov/pubmed/33629360
https://www.proquest.com/docview/2512647659
https://www.proquest.com/docview/2493449762
https://www.proquest.com/docview/2524279692
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG5C8ODFd3Q1Sisecpll089pPKkYFsEgYmAPwtBPHRJml-zsYXPyJ_gb_SVW9TxIJIp4G5iapqarq-vrruqvCXkpkaswMVdoKVUhoijB51wqggzMeWdMyBn8D8dqfiLeL-Rih7wazsJ0_BDjhht6Rp6v0cGtW19y8mb1bQrR1-BBX6zVQkD0iV0i3FVsYGBWQi16ViGs4hm_vBKLunLE64DmVdyaA8_RbfJlULmrNzmdblo39Re_sTn-5z_dIbd6QEpfdyPoLtmJzT1y480SQOP2Pvk634ZzuzmrPU22xhJ2aptAMZVN1_VFpJgAjoHidi4FKy1XWxrq-PP7D2f9Ka0bGpHqdrtqKaBj-F3anYukEBNwZ5KGfE1Q-4CcHL37_HZe9HczFF4ImCOTldElkbSQRpZ25g_DzEetnbEseFg2xuRnzGmrJWLMkgcdkUWJcxuccIbvkd1m2cRHhJbMy8SlSPEQ2o68hAai0I57gJre8gk5GKxU-Z64HO_POKuGBQx0W5W7bUJejKKrjq3jOqG9bOpRgsGStjRiNiH7g-2r3pPXFeI_JbSSZkKej6_BBzGxYpu43ICMMFwIAHbsLzISwJA2yoDMw25cjQpwQBGGK1DgII-OP-teHX-c54fH_y76hNxkWIiTqzT3yW57volPAUm17ll2mV-SHRpb
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYIL78JCAYM49JLV1o84lrjwqgK0K4RaaS8o8islapVdtdnD9sRP4DfyS5hxHmpRQYhbpEysicdjfx6PvyHkpUSuwpLZREmZJiKIDHzOlomXnllntfbxBH9vmuYH4uNMztbIq_4uTMsPMQTc0DPifI0OjgHpc15eL76NYfnV2RVyFSt6I3P-uy_sHOVuynoO5lSks45XCPN4hk8vrEZtQuJlUPMico1Lz84t8rVXus04ORovGzt2Z7_xOf7vX90mNztMSl-3g-gOWQv1XXLtzRxw4-oeOcxX_sQsjytHS1NhFjs1tad4mk1Pq7NA8Qw4eIoRXQqGmi9W1Ffh5_cf1rgjWtU0INvtatFQAMjwv7S9GklhWcDgJPWxUlBznxzsvN9_myddeYbECQHTZGlksKUolZBaZmbitv3EBaWsNsw72DmG0k2YVUZJhJkZ9yogkRLnxlthNd8g6_W8Dg8JzZiTJZeiDNvQduAZNBCEstwB2nSGj8hWb6bCddzlWELjuOj3MNBtRey2EXkxiC5awo7LhDairQcJBrvaTIvJiGz2xi86Zz4tEAKmQqVSj8jz4TW4IZ6tmDrMlyAjNBcCsB37i4wEPKR0qkHmQTuwBgU4AAnNU1BgKw6PP-teTD_n8eHRv4s-I9fz_b3dYvfD9NNjcoNhXk5M2twk683JMjwBYNXYp9F_fgEgFR53
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYgL78JCAYM49LKr1M9YnICyWl6rClFpD0iRnxC1ykZt9rA98RP4jfwSxs5DLSoIcYuUiTXxeOzPnvE3CD3nkaswEDOWnIsx8ywHnzNh7LgjxhqlXIrgf5yL2QF7t-CLDfSivwvT8kMMB27RM9J8HR28duGMk1f1twmsviq_hC4zkalYt2HvEznDuCtIT8EsmFh0tEIxjWf49Nxi1OYjXoQ0zwPXtPJMb6Avvc5twsnhZNWYiT39jc7xP3_qJrreIVL8sh1Ct9CGr26jK6-WgBrXd9DX2dod69VRaXHQZcxhx7pyOMay8Ul56nGMAHuH43kuBjMt6zV2pf_5_YfR9hCXFfaR63ZdNxjgMfwubi9GYlgU4tEkdqlOUHMXHUzffH49G3fFGcaWMZgkg-beBBYk44rnOrO7LrNeSqM0cRb2jT7YjBipJY8gM6dO-kijRKl2hhlFt9Bmtaz8fYRzYnmgnAW_C217mkMDnklDLWBNq-kI7fRWKmzHXB4LaBwV_Q4Guq1I3TZCzwbRuqXruEhoK5l6kCCwp80Vy0Zou7d90bnySREBoGBScDVCT4fX4IQxsqIrv1yBDFOUMUB25C8yHNCQVEKBzL12XA0KUIARigpQYCeNjj_rXsz3Z-nhwb-LPkFX9_emxYe38_cP0TUSk3JSxuY22myOV_4RoKrGPE7e8wuz2h0m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydraulic+failure+and+tree+size+linked+with+canopy+die-back+in+eucalypt+forest+during+extreme+drought&rft.jtitle=The+New+phytologist&rft.au=Nolan%2C+Rachael+H&rft.au=Gauthey%2C+Alice&rft.au=Losso%2C+Adriano&rft.au=Medlyn%2C+Belinda+E&rft.date=2021-05-01&rft.eissn=1469-8137&rft.volume=230&rft.issue=4&rft.spage=1354&rft_id=info:doi/10.1111%2Fnph.17298&rft_id=info%3Apmid%2F33629360&rft.externalDocID=33629360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon