Image classification and reconstruction from low-density EEG
Recent advances in visual decoding have enabled the classification and reconstruction of perceived images from the brain. However, previous approaches have predominantly relied on stationary, costly equipment like fMRI or high-density EEG, limiting the real-world availability and applicability of su...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 16436 - 14 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advances in visual decoding have enabled the classification and reconstruction of perceived images from the brain. However, previous approaches have predominantly relied on stationary, costly equipment like fMRI or high-density EEG, limiting the real-world availability and applicability of such projects. Additionally, several EEG-based paradigms have utilized artifactual, rather than stimulus-related information yielding flawed classification and reconstruction results. Our goal was to reduce the cost of the decoding paradigm, while increasing its flexibility. Therefore, we investigated whether the classification of an image category and the reconstruction of the image itself is possible from the visually evoked brain activity measured by a portable, 8-channel EEG. To compensate for the low electrode count and to avoid flawed predictions, we designed a theory-guided EEG setup and created a new experiment to obtain a dataset from 9 subjects. We compared five contemporary classification models with our setup reaching an average accuracy of 34.4% for 20 image classes on hold-out test recordings. For the reconstruction, the top-performing model was used as an EEG-encoder which was combined with a pretrained latent diffusion model via double-conditioning. After fine-tuning, we reconstructed images from the test set with a 1000 trial 50-class top-1 accuracy of 35.3%. While not reaching the same performance as MRI-based paradigms on unseen stimuli, our approach greatly improved the affordability and mobility of the visual decoding technology. |
---|---|
AbstractList | Recent advances in visual decoding have enabled the classification and reconstruction of perceived images from the brain. However, previous approaches have predominantly relied on stationary, costly equipment like fMRI or high-density EEG, limiting the real-world availability and applicability of such projects. Additionally, several EEG-based paradigms have utilized artifactual, rather than stimulus-related information yielding flawed classification and reconstruction results. Our goal was to reduce the cost of the decoding paradigm, while increasing its flexibility. Therefore, we investigated whether the classification of an image category and the reconstruction of the image itself is possible from the visually evoked brain activity measured by a portable, 8-channel EEG. To compensate for the low electrode count and to avoid flawed predictions, we designed a theory-guided EEG setup and created a new experiment to obtain a dataset from 9 subjects. We compared five contemporary classification models with our setup reaching an average accuracy of 34.4% for 20 image classes on hold-out test recordings. For the reconstruction, the top-performing model was used as an EEG-encoder which was combined with a pretrained latent diffusion model via double-conditioning. After fine-tuning, we reconstructed images from the test set with a 1000 trial 50-class top-1 accuracy of 35.3%. While not reaching the same performance as MRI-based paradigms on unseen stimuli, our approach greatly improved the affordability and mobility of the visual decoding technology. Recent advances in visual decoding have enabled the classification and reconstruction of perceived images from the brain. However, previous approaches have predominantly relied on stationary, costly equipment like fMRI or high-density EEG, limiting the real-world availability and applicability of such projects. Additionally, several EEG-based paradigms have utilized artifactual, rather than stimulus-related information yielding flawed classification and reconstruction results. Our goal was to reduce the cost of the decoding paradigm, while increasing its flexibility. Therefore, we investigated whether the classification of an image category and the reconstruction of the image itself is possible from the visually evoked brain activity measured by a portable, 8-channel EEG. To compensate for the low electrode count and to avoid flawed predictions, we designed a theory-guided EEG setup and created a new experiment to obtain a dataset from 9 subjects. We compared five contemporary classification models with our setup reaching an average accuracy of 34.4% for 20 image classes on hold-out test recordings. For the reconstruction, the top-performing model was used as an EEG-encoder which was combined with a pretrained latent diffusion model via double-conditioning. After fine-tuning, we reconstructed images from the test set with a 1000 trial 50-class top-1 accuracy of 35.3%. While not reaching the same performance as MRI-based paradigms on unseen stimuli, our approach greatly improved the affordability and mobility of the visual decoding technology.Recent advances in visual decoding have enabled the classification and reconstruction of perceived images from the brain. However, previous approaches have predominantly relied on stationary, costly equipment like fMRI or high-density EEG, limiting the real-world availability and applicability of such projects. Additionally, several EEG-based paradigms have utilized artifactual, rather than stimulus-related information yielding flawed classification and reconstruction results. Our goal was to reduce the cost of the decoding paradigm, while increasing its flexibility. Therefore, we investigated whether the classification of an image category and the reconstruction of the image itself is possible from the visually evoked brain activity measured by a portable, 8-channel EEG. To compensate for the low electrode count and to avoid flawed predictions, we designed a theory-guided EEG setup and created a new experiment to obtain a dataset from 9 subjects. We compared five contemporary classification models with our setup reaching an average accuracy of 34.4% for 20 image classes on hold-out test recordings. For the reconstruction, the top-performing model was used as an EEG-encoder which was combined with a pretrained latent diffusion model via double-conditioning. After fine-tuning, we reconstructed images from the test set with a 1000 trial 50-class top-1 accuracy of 35.3%. While not reaching the same performance as MRI-based paradigms on unseen stimuli, our approach greatly improved the affordability and mobility of the visual decoding technology. Abstract Recent advances in visual decoding have enabled the classification and reconstruction of perceived images from the brain. However, previous approaches have predominantly relied on stationary, costly equipment like fMRI or high-density EEG, limiting the real-world availability and applicability of such projects. Additionally, several EEG-based paradigms have utilized artifactual, rather than stimulus-related information yielding flawed classification and reconstruction results. Our goal was to reduce the cost of the decoding paradigm, while increasing its flexibility. Therefore, we investigated whether the classification of an image category and the reconstruction of the image itself is possible from the visually evoked brain activity measured by a portable, 8-channel EEG. To compensate for the low electrode count and to avoid flawed predictions, we designed a theory-guided EEG setup and created a new experiment to obtain a dataset from 9 subjects. We compared five contemporary classification models with our setup reaching an average accuracy of 34.4% for 20 image classes on hold-out test recordings. For the reconstruction, the top-performing model was used as an EEG-encoder which was combined with a pretrained latent diffusion model via double-conditioning. After fine-tuning, we reconstructed images from the test set with a 1000 trial 50-class top-1 accuracy of 35.3%. While not reaching the same performance as MRI-based paradigms on unseen stimuli, our approach greatly improved the affordability and mobility of the visual decoding technology. |
ArticleNumber | 16436 |
Author | Guenther, Sven Kosmyna, Nataliya Maes, Pattie |
Author_xml | – sequence: 1 givenname: Sven surname: Guenther fullname: Guenther, Sven email: sven.guenther@tum.de organization: School of Computation, Information and Technology, Technical University of Munich – sequence: 2 givenname: Nataliya surname: Kosmyna fullname: Kosmyna, Nataliya organization: Media Lab, Massachusetts Institute of Technology – sequence: 3 givenname: Pattie surname: Maes fullname: Maes, Pattie organization: Media Lab, Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39013929$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vFSEUhompsR_2D7gwk7hxM8oBho_ExJjmWm_SxI2uCcPAlZsZqDCj6b-X3mlr60I2kMPzvucE3lN0FFN0CL0C_A4wle8Lg07JFhPWck6IbOEZOiGYdS2hhBw9Oh-j81L2uK6OKAbqBTqmCgNVRJ2gD9vJ7FxjR1NK8MGaOaTYmDg02dkUy5wXeyj5nKZmTL_bwcUS5ptms7l8iZ57MxZ3frefoe-fN98uvrRXXy-3F5-uWssYla31ynoOvFNCKmYUk144wR3hgg5Cit72mAxSSg-ccsNBWcM6InsBjmHp6Rnarr5DMnt9ncNk8o1OJuhDIeWdNnkOdnS69wSsAtED7hhV0DOBAZsOD5YwZXn1-rh6XS_95Abr4pzN-MT06U0MP_Qu_dIApCNEsOrw9s4hp5-LK7OeQrFuHE10aSmaYglCYAW3zd78g-7TkmN9qwPFhAKFK_X68UgPs9z_UgXICticSsnOPyCA9W0a9JoGXdOgD2nQUEV0FZUKx53Lf3v_R_UHweG0Cw |
Cites_doi | 10.1109/CVPR.2017.479 10.1371/journal.pone.0135697 10.1016/j.bspc.2020.102174 10.1109/CVPR46437.2021.01268 10.1016/j.conb.2019.09.009 10.1038/s41597-021-01102-7 10.1016/j.neuropsychologia.2017.02.0110.1016/j.neuropsychologia.2017.02.0110.1016/j.neuropsychologia.2017.02.013 10.1109/CVPR.2015.7298594 10.1109/CVPR52729.2023.02175 10.1007/s11263-015-0816-y 10.1109/IJCNN55064.2022.9892673 10.1523/JNEUROSCI.0158-20.2020 10.1016/s1364-6613(02)01870-3 10.1111/psyp.14320 10.1073/pnas.1315275111 10.1167/13.10.1 10.3390/electronics11172706 10.1109/CVPR.2017.195 10.1002/hbm.23730 10.1017/thg.2012.6 10.1109/IDSTA55301.2022.9923087 10.1109/IJCNN48605.2020.9206750 10.1145/3123266.3127907 10.1523/ENEURO.0244-17.2017 10.1038/s42003-022-04194-y 10.1016/j.jneumeth.2021.109080 10.1088/1741-2552/aace8c 10.1080/2326263X.2023.2287719 10.1109/TPAMI.2020.2973153 10.1109/CVPR46437.2021.00384 10.48550/arXiv.2310.19812 10.1109/TNSRE.2022.3230250 10.1371/journal.pone.0274847 10.3389/fpsyg.2010.00028 10.1145/1015330.1015435 10.3389/fninf.2015.00016 10.3389/fnins.2023.1122661 10.1371/journal.pone.0014465 10.1016/j.neuropsychologia.2017.02.013 10.3758/s13428-018-01193-y 10.1109/TPAMI.2020.2995909 10.1016/j.neuron.2008.10.043 10.1088/2057-1976/ab302c 10.3389/fnhum.2020.00365 10.1117/12.2520589 10.1109/CVPR52688.2022.01042 10.1016/j.neuron.2012.03.011 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-66228-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_bf21c917b1054391b47010a50dc249c6 PMC11252274 39013929 10_1038_s41598_024_66228_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Technische Universität München (1025) |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c4438-cf9cf616597894a948f7e76e2673d787bcb02d888f1636a619ca4528b71e408f3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:32:14 EDT 2025 Thu Aug 21 18:33:04 EDT 2025 Thu Jul 10 23:50:38 EDT 2025 Wed Aug 13 06:04:19 EDT 2025 Wed Feb 19 02:08:53 EST 2025 Tue Jul 01 01:02:10 EDT 2025 Fri Feb 21 02:37:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4438-cf9cf616597894a948f7e76e2673d787bcb02d888f1636a619ca4528b71e408f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-66228-1 |
PMID | 39013929 |
PQID | 3081479190 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bf21c917b1054391b47010a50dc249c6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11252274 proquest_miscellaneous_3081770916 proquest_journals_3081479190 pubmed_primary_39013929 crossref_primary_10_1038_s41598_024_66228_1 springer_journals_10_1038_s41598_024_66228_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240716 |
PublicationDateYYYYMMDD | 2024-07-16 |
PublicationDate_xml | – month: 7 year: 2024 text: 20240716 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | CarlsonTTovarDAAlinkAKriegeskorteNRepresentational dynamics of object vision: The first 1000 msJ. Vision2013131110.1167/13.10.1 RonnebergerOFischerPBroxTNavabNHorneggerJWellsWMFrangiAFU-net: Convolutional networks for biomedical image segmentationMedical image computing and computer-assisted intervention - MICCAI 20152015ChamSpringer International Publishing234241 Cui, W. et al. Neuro-gpt: Developing a foundation model for eeg (2023). arXiv: 2311.03764. Mishra, A., Raj, N. & Bajwa, G. Eeg-based image feature extraction for visual classification using deep learning (2022). arXiv: 2209.13090. Ng, A. Y. Feature selection, l1 vs. l2 regularization, and rotational invariance. In proceedings of the twenty-first international conference on machine learning, ICML ’04, 78, https://doi.org/10.1145/1015330.1015435 (Association for computing machinery, New York, NY, USA, 2004). ZhengXChenWAn attention-based bi-lstm method for visual object classification via eegBiomed. Signal Process. Control20216310.1016/j.bspc.2020.102174 HuangGDiscrepancy between inter- and intra-subject variability in eeg-based motor imagery brain-computer interface: Evidence from multiple perspectivesFront. Neurosci.202317112266110.3389/fnins.2023.1122661368606209968845 Chen, Z., Qing, J., Xiang, T., Yue, W. L. & Zhou, J. H. Seeing beyond the brain: Conditional diffusion model with sparse masked modeling for vision decoding. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 22710–22720 (2022). Dhariwal, P. & Nichol, A. Diffusion Models Beat GANs on Image Synthesis. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P. S. & Vaughan, J. W. (eds.) Advances in Neural Information Processing Systems, 8780–8794 (Curran Associates, Inc., 2021). Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. High-resolution image synthesis with latent diffusion models. In 2022 IEEE/CVF conference on computer vision and pattern recognition (CVPR) Liu, L., Ren, Y., Lin, Z. & Zhao, Z. Pseudo numerical methods for diffusion models on manifolds (2022). arXiv: 2202.09778. Esser, P., Rombach, R. & Ommer, B. Taming transformers for high-resolution image synthesis. In 2021 IEEE/CVF conference on computer vision and pattern recognition (CVPR), 12868–12878 (IEEE, New York, 2021). Sauer, A., Lorenz, D., Blattmann, A. & Rombach, R. Adversarial diffusion distillation (2023). arXiv: 2311.17042. LiRThe perils and pitfalls of block design for eeg classification experimentsIEEE Trans. Pattern Anal. Mach. Intell.20214331633310.1109/TPAMI.2020.2973153 Bigdely-ShamloNMullenTKotheCSuK-MRobbinsKAThe prep pipeline: Standardized preprocessing for large-scale eeg analysisFront. Neuroinform.201591610.3389/fninf.2015.00016261507854471356 LawhernVJEEGNet: A compact convolutional neural network for EEG-based brain-computer interfacesJ. Neural Eng.2018152018JNEng..15e6013L10.1088/1741-2552/aace8c29932424 Ozcelik, F., Choksi, B., Mozafari, M., Reddy, L. & VanRullen, R. Reconstruction of perceived images from fmri patterns and semantic brain exploration using instance-conditioned gans. In 2022 international joint conference on neural networks (IJCNN), 1–8, https://doi.org/10.1109/IJCNN55064.2022.9892673 (2022). Smith, L. N. & Topin, N. Super-convergence: Very fast training of neural networks using large learning rates (2018). arXiv: 1708.07120. PasupathyAKimTPopovkinaDVObject shape and surface properties are jointly encoded in mid-level ventral visual cortexCurr. Opin. Neurobiol.2019581992081:CAS:528:DC%2BC1MXhvVenu7rF10.1016/j.conb.2019.09.009315867496876744 SimanovaIvan GervenMOostenveldRHagoortPIdentifying object categories from event-related eeg: Toward decoding of conceptual representationsPLoS ONE201151121:CAS:528:DC%2BC3MXlsl2guw%3D%3D10.1371/journal.pone.0014465 RoeAWToward a unified theory of visual area v4Neuron20127412291:CAS:528:DC%2BC38Xls1emu7k%3D10.1016/j.neuron.2012.03.011225006264912377 LeeSJangSJunSCExploring the ability to classify visual perception and visual imagery eeg data: Toward an intuitive bci systemElectronics202211270610.3390/electronics11172706 Ding, Y. et al. TSception: A deep learning framework for emotion detection using EEG. In 2020 international joint conference on neural networks (IJCNN), 1–7, https://doi.org/10.1109/IJCNN48605.2020.9206750 (2020). GrootswagersTZhouIRobinsonAKHebartMNCarlsonTAHuman EEG recordings for 1,854 concepts presented in rapid serial visual presentation streamsSci. Data20229310.1038/s41597-021-01102-7350133318748587 SongYZhengQLiuBGaoXEEG conformer: Convolutional transformer for EEG decoding and visualizationIEEE Trans. Neural Syst. Rehabil. Eng.20233171071910.1109/TNSRE.2022.3230250 RussakovskyOImagenet large scale visual recognition challengeInt. J. Comput. Vision2015115211252342248210.1007/s11263-015-0816-y Bai, Y. et al. Dreamdiffusion: Generating high-quality images from brain eeg signals (2023). arXiv: 2306.16934. Gupta, A. Human faces [dataset]. Kaggle (2021 (Accessed January 10, 2024)). https://www.kaggle.com/datasets/ashwingupta3012/human-faces. SmitDJABoomsmaDISchnackHGHulshoff PolHEde GeusEJCIndividual differences in eeg spectral power reflect genetic variance in gray and white matter volumesTwin Res. Human Genet.20121538439210.1017/thg.2012.6 Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers for image recognition at scale (2021). arXiv: 2010.11929. Spampinato, C. et al. Deep learning human mind for automated visual classification. In In 2017 IEEE conference on computer vision and pattern recognition (CVPR), 4503–4511, https://doi.org/10.1109/CVPR.2017.479 (2017). Chollet, F. Xception: Deep learning with depthwise separable convolutions (2017). arXiv: 1610.02357. BirdCMBerensSCHornerAJFranklinACategorical encoding of color in the brainProc. Natl. Acad. Sci.2014111459045952014PNAS..111.4590B1:CAS:528:DC%2BC2cXjtlyltL8%3D10.1073/pnas.1315275111245916023970503 ShimizuHSrinivasanRImproving classification and reconstruction of imagined images from eeg signalsPLoS ONE2022171161:CAS:528:DC%2BB38XisFOrtbbN10.1371/journal.pone.0274847 PetroniAThe variability of neural responses to naturalistic videos change with age and sexeNeuro201851710.1523/ENEURO.0244-17.2017 Benchetrit, Y., Banville, H. & King, J.-R. Brain decoding: Toward real-time reconstruction of visual perception, https://doi.org/10.48550/arXiv.2310.19812 (2023). arXiv: 2310.19812. Van Den BoomMAVansteenselMJKoppeschaarMIRaemaekersMAHRamseyNFTowards an intuitive communication-BCI: Decoding visually imagined characters from the early visual cortex using high-field fMRIBiomed. Phys. Eng. Express2019510.1088/2057-1976/ab302c329835737116116 MalachRLevyIHassonUThe topography of high-order human object areasTrends Cogn. Sci.2002617618410.1016/s1364-6613(02)01870-311912041 ContiniEWWardleSGCarlsonTADecoding the time-course of object recognition in the human brain: From visual features to categorical decisionsNeuropsychologia201710516517610.1016/j.neuropsychologia.2017.02.01328215698 NicholsDBettsLWilsonHDecoding of faces and face components in face-sensitive human visual cortexFront. Psychol.20101136710.3389/fpsyg.2010.00028 TeichmannLThe influence of object-color knowledge on emerging object representations in the brainJ. Neurosci.202040677967891:CAS:528:DC%2BB3cXisFWhtr3F10.1523/JNEUROSCI.0158-20.2020327039037455208 Szegedy, C. et al. Going deeper with convolutions. In 2015 IEEE conference on computer vision and pattern recognition (CVPR), 1–9, https://doi.org/10.1109/CVPR.2015.7298594 (2015). SchirrmeisterRTDeep learning with convolutional neural networks for eeg decoding and visualizationHuman Brain Map.2017385391542010.1002/hbm.23730 JozwikKMDisentangling five dimensions of animacy in human brain and behaviourNat. Commun. Biol.20225124710.1038/s42003-022-04194-y Holly Wilson, M. G. M. J. P., Xi Chen & O’Neill, E. Feasibility of decoding visual information from eeg. Brain-computer interfaces, 1–28, https://doi.org/10.1080/2326263X.2023.2287719 (2023). KlemGHLüdersHJasperHHElgerCEThe ten-twenty electrode system of the international federation the international federation of clinical neurophysiologyElectroencephal. Clin. Neurophysiol.199952361:STN:280:DC%2BD3c%2FlvVCquw%3D%3D PontifexMBCoffmanCAValidation of the gtec unicorn hybrid black wireless EEG systemPsychophysiology20236010.1111/psyp.1432037171024 ContiniEWWardleSGCarlsonTADecoding the time-course of object recognition in the human brain: From visual features to categorical decisionsNeuropsychologia201710516517610.1016/j.neuropsychologia.2017.02.0110.1016/j.neuropsychologia.2017.02.0110.1016/j.neuropsychologia.2017.02.01328215698 van DrielJOliversCNFahrenfortJJHigh-pass filtering artifacts in multivariate classification of neural time series dataJ. Neurosci. Methods202135210.1016/j.jneumeth.2021.10908033508412 KaneshiroBPerreau GuimaraesMKimH-SNorciaAMSuppesPA representational similarity analysis of the dynamics of object processing using single-trial eeg classificationPLOS ONE20151012710.1371/journal.pone.0135697 KriegeskorteNMatching categorical object representations in inferior temporal cortex of man and monkeyNeuron200860112611411:CAS:528:DC%2BD1MXlsVKjtA%3D%3D10.1016/j.neuron.2008.10.043191099163143574 PeirceJWPsychopy2: Experiments in behavior made easyBehav. Res. Methods20195119520310.3758/s13428-018-01193-y307342066420413 Kothe, C. Lab streaming layer (lsl) - a software framework for synchronizing a large array of data collection and stimulation devices. Computer software (2014). Kavasidis, I., Palazzo, S., Spampinato, C., Giordano, D. & Shah, M. Brain2image: Converting brain signals into images. In proceedings of the 25th ACM international conference on multimedia, MM ’17, 1809-1817, https://doi.org/10.1145/3123266.3127907 (Association for computing machinery, New York, NY, USA, 2017). Ahmed, H., Wilbur, R. B., Bharadwaj, H. M. & Siskind, J. M. Object classification from randomized eeg trials. In 2021 IEEE/cvf conference on computer vision and pattern recognition (CVPR), 3844–3853, https://doi.org/10.1109/CVPR46437. 66228_CR46 T Grootswagers (66228_CR19) 2022; 9 A Petroni (66228_CR48) 2018; 5 I Simanova (66228_CR10) 2011; 5 D Nichols (66228_CR15) 2010; 1 S Lee (66228_CR3) 2022; 11 H Shimizu (66228_CR4) 2022; 17 DJA Smit (66228_CR49) 2012; 15 66228_CR41 66228_CR40 66228_CR43 66228_CR42 G Huang (66228_CR47) 2023; 17 O Russakovsky (66228_CR13) 2015; 115 A Pasupathy (66228_CR53) 2019; 58 66228_CR14 H Zhang (66228_CR32) 2020; 14 AW Roe (66228_CR54) 2012; 74 O Ronneberger (66228_CR38) 2015 66228_CR59 T Carlson (66228_CR18) 2013; 13 X Zheng (66228_CR45) 2021; 63 KM Jozwik (66228_CR51) 2022; 5 66228_CR12 VJ Lawhern (66228_CR24) 2018; 15 66228_CR55 N Kriegeskorte (66228_CR50) 2008; 60 L Teichmann (66228_CR56) 2020; 40 R Li (66228_CR8) 2021; 43 N Bigdely-Shamlo (66228_CR22) 2015; 9 B Kaneshiro (66228_CR9) 2015; 10 R Malach (66228_CR58) 2002; 6 GH Klem (66228_CR11) 1999; 52 66228_CR25 S Palazzo (66228_CR26) 2021; 43 S Lee (66228_CR20) 2022; 11 RT Schirrmeister (66228_CR31) 2017; 38 66228_CR29 66228_CR28 MB Pontifex (66228_CR44) 2023; 60 66228_CR61 66228_CR60 66228_CR7 JW Peirce (66228_CR21) 2019; 51 66228_CR1 J van Driel (66228_CR23) 2021; 352 L Teichmann (66228_CR17) 2020; 40 66228_CR5 66228_CR2 Y Song (66228_CR27) 2023; 31 EW Contini (66228_CR57) 2017; 105 EW Contini (66228_CR16) 2017; 105 66228_CR36 CM Bird (66228_CR52) 2014; 111 66228_CR35 66228_CR37 66228_CR39 66228_CR30 MA Van Den Boom (66228_CR6) 2019; 5 66228_CR34 66228_CR33 |
References_xml | – reference: MalachRLevyIHassonUThe topography of high-order human object areasTrends Cogn. Sci.2002617618410.1016/s1364-6613(02)01870-311912041 – reference: Kavasidis, I., Palazzo, S., Spampinato, C., Giordano, D. & Shah, M. Brain2image: Converting brain signals into images. In proceedings of the 25th ACM international conference on multimedia, MM ’17, 1809-1817, https://doi.org/10.1145/3123266.3127907 (Association for computing machinery, New York, NY, USA, 2017). – reference: PalazzoSDecoding brain representations by multimodal learning of neural activity and visual featuresIEEE Trans. Pattern Anal. Mach. Intell.2021433833384910.1109/TPAMI.2020.299590932750768 – reference: Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. In Proceedings of the 34th international conference on neural information processing systems – reference: ShimizuHSrinivasanRImproving classification and reconstruction of imagined images from eeg signalsPLoS ONE2022171161:CAS:528:DC%2BB38XisFOrtbbN10.1371/journal.pone.0274847 – reference: Ding, Y. et al. TSception: A deep learning framework for emotion detection using EEG. In 2020 international joint conference on neural networks (IJCNN), 1–7, https://doi.org/10.1109/IJCNN48605.2020.9206750 (2020). – reference: Holly Wilson, M. G. M. J. P., Xi Chen & O’Neill, E. Feasibility of decoding visual information from eeg. Brain-computer interfaces, 1–28, https://doi.org/10.1080/2326263X.2023.2287719 (2023). – reference: Kingma, D. P. & Ba, J A method for stochastic optimization, Adam, 2017), arXiv: 1412.6980. – reference: PeirceJWPsychopy2: Experiments in behavior made easyBehav. Res. Methods20195119520310.3758/s13428-018-01193-y307342066420413 – reference: Ozcelik, F., Choksi, B., Mozafari, M., Reddy, L. & VanRullen, R. Reconstruction of perceived images from fmri patterns and semantic brain exploration using instance-conditioned gans. In 2022 international joint conference on neural networks (IJCNN), 1–8, https://doi.org/10.1109/IJCNN55064.2022.9892673 (2022). – reference: Ng, A. Y. Feature selection, l1 vs. l2 regularization, and rotational invariance. In proceedings of the twenty-first international conference on machine learning, ICML ’04, 78, https://doi.org/10.1145/1015330.1015435 (Association for computing machinery, New York, NY, USA, 2004). – reference: Spampinato, C. et al. Deep learning human mind for automated visual classification. In In 2017 IEEE conference on computer vision and pattern recognition (CVPR), 4503–4511, https://doi.org/10.1109/CVPR.2017.479 (2017). – reference: SmitDJABoomsmaDISchnackHGHulshoff PolHEde GeusEJCIndividual differences in eeg spectral power reflect genetic variance in gray and white matter volumesTwin Res. Human Genet.20121538439210.1017/thg.2012.6 – reference: KaneshiroBPerreau GuimaraesMKimH-SNorciaAMSuppesPA representational similarity analysis of the dynamics of object processing using single-trial eeg classificationPLOS ONE20151012710.1371/journal.pone.0135697 – reference: RoeAWToward a unified theory of visual area v4Neuron20127412291:CAS:528:DC%2BC38Xls1emu7k%3D10.1016/j.neuron.2012.03.011225006264912377 – reference: JozwikKMDisentangling five dimensions of animacy in human brain and behaviourNat. Commun. Biol.20225124710.1038/s42003-022-04194-y – reference: LawhernVJEEGNet: A compact convolutional neural network for EEG-based brain-computer interfacesJ. Neural Eng.2018152018JNEng..15e6013L10.1088/1741-2552/aace8c29932424 – reference: SongYZhengQLiuBGaoXEEG conformer: Convolutional transformer for EEG decoding and visualizationIEEE Trans. Neural Syst. Rehabil. Eng.20233171071910.1109/TNSRE.2022.3230250 – reference: Liu, L., Ren, Y., Lin, Z. & Zhao, Z. Pseudo numerical methods for diffusion models on manifolds (2022). arXiv: 2202.09778. – reference: Kothe, C. Lab streaming layer (lsl) - a software framework for synchronizing a large array of data collection and stimulation devices. Computer software (2014). – reference: PasupathyAKimTPopovkinaDVObject shape and surface properties are jointly encoded in mid-level ventral visual cortexCurr. Opin. Neurobiol.2019581992081:CAS:528:DC%2BC1MXhvVenu7rF10.1016/j.conb.2019.09.009315867496876744 – reference: Sauer, A., Lorenz, D., Blattmann, A. & Rombach, R. Adversarial diffusion distillation (2023). arXiv: 2311.17042. – reference: KlemGHLüdersHJasperHHElgerCEThe ten-twenty electrode system of the international federation the international federation of clinical neurophysiologyElectroencephal. Clin. Neurophysiol.199952361:STN:280:DC%2BD3c%2FlvVCquw%3D%3D – reference: Bigdely-ShamloNMullenTKotheCSuK-MRobbinsKAThe prep pipeline: Standardized preprocessing for large-scale eeg analysisFront. Neuroinform.201591610.3389/fninf.2015.00016261507854471356 – reference: SchirrmeisterRTDeep learning with convolutional neural networks for eeg decoding and visualizationHuman Brain Map.2017385391542010.1002/hbm.23730 – reference: Benchetrit, Y., Banville, H. & King, J.-R. Brain decoding: Toward real-time reconstruction of visual perception, https://doi.org/10.48550/arXiv.2310.19812 (2023). arXiv: 2310.19812. – reference: RonnebergerOFischerPBroxTNavabNHorneggerJWellsWMFrangiAFU-net: Convolutional networks for biomedical image segmentationMedical image computing and computer-assisted intervention - MICCAI 20152015ChamSpringer International Publishing234241 – reference: Mishra, A., Raj, N. & Bajwa, G. Eeg-based image feature extraction for visual classification using deep learning (2022). arXiv: 2209.13090. – reference: Szegedy, C. et al. Going deeper with convolutions. In 2015 IEEE conference on computer vision and pattern recognition (CVPR), 1–9, https://doi.org/10.1109/CVPR.2015.7298594 (2015). – reference: SimanovaIvan GervenMOostenveldRHagoortPIdentifying object categories from event-related eeg: Toward decoding of conceptual representationsPLoS ONE201151121:CAS:528:DC%2BC3MXlsl2guw%3D%3D10.1371/journal.pone.0014465 – reference: GrootswagersTZhouIRobinsonAKHebartMNCarlsonTAHuman EEG recordings for 1,854 concepts presented in rapid serial visual presentation streamsSci. Data20229310.1038/s41597-021-01102-7350133318748587 – reference: Cui, W. et al. Neuro-gpt: Developing a foundation model for eeg (2023). arXiv: 2311.03764. – reference: Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers for image recognition at scale (2021). arXiv: 2010.11929. – reference: NicholsDBettsLWilsonHDecoding of faces and face components in face-sensitive human visual cortexFront. Psychol.20101136710.3389/fpsyg.2010.00028 – reference: ContiniEWWardleSGCarlsonTADecoding the time-course of object recognition in the human brain: From visual features to categorical decisionsNeuropsychologia201710516517610.1016/j.neuropsychologia.2017.02.01328215698 – reference: RussakovskyOImagenet large scale visual recognition challengeInt. J. Comput. Vision2015115211252342248210.1007/s11263-015-0816-y – reference: PontifexMBCoffmanCAValidation of the gtec unicorn hybrid black wireless EEG systemPsychophysiology20236010.1111/psyp.1432037171024 – reference: ZhangHSilvaFHSOhataEFMedeirosAGRebouças FilhoPPBi-dimensional approach based on transfer learning for alcoholism pre-disposition classification via eeg signalsFront. Human Neurosci.20201436510.3389/fnhum.2020.00365 – reference: ZhengXChenWAn attention-based bi-lstm method for visual object classification via eegBiomed. Signal Process. Control20216310.1016/j.bspc.2020.102174 – reference: Van Den BoomMAVansteenselMJKoppeschaarMIRaemaekersMAHRamseyNFTowards an intuitive communication-BCI: Decoding visually imagined characters from the early visual cortex using high-field fMRIBiomed. Phys. Eng. Express2019510.1088/2057-1976/ab302c329835737116116 – reference: Bai, Y. et al. Dreamdiffusion: Generating high-quality images from brain eeg signals (2023). arXiv: 2306.16934. – reference: BirdCMBerensSCHornerAJFranklinACategorical encoding of color in the brainProc. Natl. Acad. Sci.2014111459045952014PNAS..111.4590B1:CAS:528:DC%2BC2cXjtlyltL8%3D10.1073/pnas.1315275111245916023970503 – reference: ContiniEWWardleSGCarlsonTADecoding the time-course of object recognition in the human brain: From visual features to categorical decisionsNeuropsychologia201710516517610.1016/j.neuropsychologia.2017.02.0110.1016/j.neuropsychologia.2017.02.0110.1016/j.neuropsychologia.2017.02.01328215698 – reference: LeeSJangSJunSCExploring the ability to classify visual perception and visual imagery eeg data: Toward an intuitive bci systemElectronics202211270610.3390/electronics11172706 – reference: van DrielJOliversCNFahrenfortJJHigh-pass filtering artifacts in multivariate classification of neural time series dataJ. Neurosci. Methods202135210.1016/j.jneumeth.2021.10908033508412 – reference: Chollet, F. Xception: Deep learning with depthwise separable convolutions (2017). arXiv: 1610.02357. – reference: CarlsonTTovarDAAlinkAKriegeskorteNRepresentational dynamics of object vision: The first 1000 msJ. Vision2013131110.1167/13.10.1 – reference: Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. High-resolution image synthesis with latent diffusion models. In 2022 IEEE/CVF conference on computer vision and pattern recognition (CVPR) – reference: TeichmannLThe influence of object-color knowledge on emerging object representations in the brainJ. Neurosci.202040677967891:CAS:528:DC%2BB3cXisFWhtr3F10.1523/JNEUROSCI.0158-20.2020327039037455208 – reference: PetroniAThe variability of neural responses to naturalistic videos change with age and sexeNeuro201851710.1523/ENEURO.0244-17.2017 – reference: KriegeskorteNMatching categorical object representations in inferior temporal cortex of man and monkeyNeuron200860112611411:CAS:528:DC%2BD1MXlsVKjtA%3D%3D10.1016/j.neuron.2008.10.043191099163143574 – reference: Chen, Z., Qing, J., Xiang, T., Yue, W. L. & Zhou, J. H. Seeing beyond the brain: Conditional diffusion model with sparse masked modeling for vision decoding. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 22710–22720 (2022). – reference: LiRThe perils and pitfalls of block design for eeg classification experimentsIEEE Trans. Pattern Anal. Mach. Intell.20214331633310.1109/TPAMI.2020.2973153 – reference: Gupta, A. Human faces [dataset]. Kaggle (2021 (Accessed January 10, 2024)). https://www.kaggle.com/datasets/ashwingupta3012/human-faces. – reference: HuangGDiscrepancy between inter- and intra-subject variability in eeg-based motor imagery brain-computer interface: Evidence from multiple perspectivesFront. Neurosci.202317112266110.3389/fnins.2023.1122661368606209968845 – reference: Esser, P., Rombach, R. & Ommer, B. Taming transformers for high-resolution image synthesis. In 2021 IEEE/CVF conference on computer vision and pattern recognition (CVPR), 12868–12878 (IEEE, New York, 2021). – reference: Ahmed, H., Wilbur, R. B., Bharadwaj, H. M. & Siskind, J. M. Object classification from randomized eeg trials. In 2021 IEEE/cvf conference on computer vision and pattern recognition (CVPR), 3844–3853, https://doi.org/10.1109/CVPR46437.2021.00384 (2021). – reference: Smith, L. N. & Topin, N. Super-convergence: Very fast training of neural networks using large learning rates (2018). arXiv: 1708.07120. – reference: Dhariwal, P. & Nichol, A. Diffusion Models Beat GANs on Image Synthesis. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P. S. & Vaughan, J. W. (eds.) Advances in Neural Information Processing Systems, 8780–8794 (Curran Associates, Inc., 2021). – ident: 66228_CR7 doi: 10.1109/CVPR.2017.479 – volume: 10 start-page: 1 year: 2015 ident: 66228_CR9 publication-title: PLOS ONE doi: 10.1371/journal.pone.0135697 – volume: 63 year: 2021 ident: 66228_CR45 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102174 – ident: 66228_CR39 doi: 10.1109/CVPR46437.2021.01268 – ident: 66228_CR59 – volume: 58 start-page: 199 year: 2019 ident: 66228_CR53 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2019.09.009 – volume: 9 start-page: 3 year: 2022 ident: 66228_CR19 publication-title: Sci. Data doi: 10.1038/s41597-021-01102-7 – volume: 105 start-page: 165 year: 2017 ident: 66228_CR16 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2017.02.0110.1016/j.neuropsychologia.2017.02.0110.1016/j.neuropsychologia.2017.02.013 – ident: 66228_CR30 doi: 10.1109/CVPR.2015.7298594 – ident: 66228_CR1 doi: 10.1109/CVPR52729.2023.02175 – volume: 115 start-page: 211 year: 2015 ident: 66228_CR13 publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-015-0816-y – ident: 66228_CR55 doi: 10.1109/IJCNN55064.2022.9892673 – ident: 66228_CR41 – volume: 40 start-page: 6779 year: 2020 ident: 66228_CR17 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0158-20.2020 – volume: 6 start-page: 176 year: 2002 ident: 66228_CR58 publication-title: Trends Cogn. Sci. doi: 10.1016/s1364-6613(02)01870-3 – volume: 52 start-page: 3 year: 1999 ident: 66228_CR11 publication-title: Electroencephal. Clin. Neurophysiol. – volume: 60 year: 2023 ident: 66228_CR44 publication-title: Psychophysiology doi: 10.1111/psyp.14320 – volume: 111 start-page: 4590 year: 2014 ident: 66228_CR52 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1315275111 – ident: 66228_CR14 – volume: 13 start-page: 1 year: 2013 ident: 66228_CR18 publication-title: J. Vision doi: 10.1167/13.10.1 – start-page: 234 volume-title: Medical image computing and computer-assisted intervention - MICCAI 2015 year: 2015 ident: 66228_CR38 – volume: 11 start-page: 2706 year: 2022 ident: 66228_CR20 publication-title: Electronics doi: 10.3390/electronics11172706 – volume: 40 start-page: 6779 year: 2020 ident: 66228_CR56 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0158-20.2020 – ident: 66228_CR29 doi: 10.1109/CVPR.2017.195 – volume: 38 start-page: 5391 year: 2017 ident: 66228_CR31 publication-title: Human Brain Map. doi: 10.1002/hbm.23730 – volume: 15 start-page: 384 year: 2012 ident: 66228_CR49 publication-title: Twin Res. Human Genet. doi: 10.1017/thg.2012.6 – ident: 66228_CR28 doi: 10.1109/IDSTA55301.2022.9923087 – ident: 66228_CR25 doi: 10.1109/IJCNN48605.2020.9206750 – ident: 66228_CR46 – ident: 66228_CR42 – ident: 66228_CR60 doi: 10.1145/3123266.3127907 – volume: 5 start-page: 17 year: 2018 ident: 66228_CR48 publication-title: eNeuro doi: 10.1523/ENEURO.0244-17.2017 – volume: 5 start-page: 1247 year: 2022 ident: 66228_CR51 publication-title: Nat. Commun. Biol. doi: 10.1038/s42003-022-04194-y – volume: 352 year: 2021 ident: 66228_CR23 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2021.109080 – volume: 15 year: 2018 ident: 66228_CR24 publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – ident: 66228_CR5 doi: 10.1080/2326263X.2023.2287719 – volume: 43 start-page: 316 year: 2021 ident: 66228_CR8 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2973153 – ident: 66228_CR43 doi: 10.1109/CVPR46437.2021.00384 – ident: 66228_CR2 doi: 10.48550/arXiv.2310.19812 – volume: 11 start-page: 2706 year: 2022 ident: 66228_CR3 publication-title: Electronics doi: 10.3390/electronics11172706 – volume: 31 start-page: 710 year: 2023 ident: 66228_CR27 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3230250 – volume: 17 start-page: 1 year: 2022 ident: 66228_CR4 publication-title: PLoS ONE doi: 10.1371/journal.pone.0274847 – volume: 1 start-page: 1367 year: 2010 ident: 66228_CR15 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2010.00028 – ident: 66228_CR34 doi: 10.1145/1015330.1015435 – volume: 9 start-page: 16 year: 2015 ident: 66228_CR22 publication-title: Front. Neuroinform. doi: 10.3389/fninf.2015.00016 – volume: 17 start-page: 1122661 year: 2023 ident: 66228_CR47 publication-title: Front. Neurosci. doi: 10.3389/fnins.2023.1122661 – volume: 5 start-page: 1 year: 2011 ident: 66228_CR10 publication-title: PLoS ONE doi: 10.1371/journal.pone.0014465 – volume: 105 start-page: 165 year: 2017 ident: 66228_CR57 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2017.02.013 – volume: 51 start-page: 195 year: 2019 ident: 66228_CR21 publication-title: Behav. Res. Methods doi: 10.3758/s13428-018-01193-y – ident: 66228_CR12 – volume: 43 start-page: 3833 year: 2021 ident: 66228_CR26 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2995909 – ident: 66228_CR33 – ident: 66228_CR37 – volume: 60 start-page: 1126 year: 2008 ident: 66228_CR50 publication-title: Neuron doi: 10.1016/j.neuron.2008.10.043 – volume: 5 year: 2019 ident: 66228_CR6 publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/ab302c – volume: 14 start-page: 365 year: 2020 ident: 66228_CR32 publication-title: Front. Human Neurosci. doi: 10.3389/fnhum.2020.00365 – ident: 66228_CR35 doi: 10.1117/12.2520589 – ident: 66228_CR40 – ident: 66228_CR36 doi: 10.1109/CVPR52688.2022.01042 – volume: 74 start-page: 12 year: 2012 ident: 66228_CR54 publication-title: Neuron doi: 10.1016/j.neuron.2012.03.011 – ident: 66228_CR61 |
SSID | ssj0000529419 |
Score | 2.423213 |
Snippet | Recent advances in visual decoding have enabled the classification and reconstruction of perceived images from the brain. However, previous approaches have... Abstract Recent advances in visual decoding have enabled the classification and reconstruction of perceived images from the brain. However, previous approaches... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 16436 |
SubjectTerms | 631/378/116/2394 639/705/117 Adult Algorithms Brain - diagnostic imaging Brain - physiology Brain mapping Brain Mapping - methods Classification Diffusion models EEG Electroencephalography - methods Female Functional magnetic resonance imaging Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted - methods Information processing Magnetic Resonance Imaging - methods Male multidisciplinary Neuroimaging Photic Stimulation Science Science (multidisciplinary) Visual stimuli Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9swFH6UwKCXsa3d5i4bHvS2mViyLFmwyzbStYXutEJuwpIlWmidQlJG_vu9Jzlpsh_0smtsB_G9J7_vs_Q-ARyLELT2mhfe09cqplihQ80KZjnH6uSYrakb-eK7PL0U57N6tnXUF-0JS_bACbiJDZw51BQWiQB1iVqhUEK0ddk5VA4umm1jzdsSU8nVm2vB9NAlU1bNZIGVirrJuCik5Byl004liob9f2OZf26W_G3FNBaik2fwdGCQ-ec08uew5_sX8CSdKbk6gE9nt_iKyB2xYtoGFJHP277Lo_bd-MXm1FiS38x_Fh3tYV-u8un02yFcnkx_fD0thiMSCicEvqpc0C5IJlEWNFq0WjRBeSU9l6rqcC5aZ0veocoNyLtki2rJtaLmjVXMi7IJ1UsY9fPev4a8dE2FT9u6q1vBfUWuNc5VnddtzW2nM_iwhsvcJScME1ewq8YkcA2CayK4hmXwhRDd3Eku1vEHjK0ZYmsei20G43U8zDC1FqZCEiOURiKTwfvNZZwUtNLR9n5-n-5RCtMC_-JVCt9mJPSRh0hhBs1OYHeGunulv76KxtvITZGuKpHBx3UOPIzr31gc_Q8s3sA-p-QlT085hhFmi3-LfGhp38XU_wXFrgJa priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLdgaBKXic_RMVCRuG3VmjRNGmnSBOiNMWmcmPRuUfM1kLZ27G1C---x075OjwHXJq1Sx45_tmMb4L2IUeugeRECeauYYoWONSuY5Ry1k2O2pmzkk6_y6FQcz-v56HBbjNcql2diOqh978hHvleh7hJKo_46uPxZUNcoiq6OLTQewiMqXUZcreZq8rFQFEswPebKlFWzt0B9RTllXBRSco4G1Io-SmX7_4Y171-Z_CNumtTR4RPYGHFk_mHY-KfwIHTPYH3oLHn7HPa_XOBBkTvCxnQZKNE_bzufJwt4qhqbU3pJft7_KjzdZL--zWezzy_g9HD27dNRMTZKKJwQeGC5qF2UTKJx0GjRatFEFZQMXKrKo0RaZ0vu0daNiL5kizaTa0XNG6tYEGUTq5ew1vVdeAV56ZoK37a1r1vBQ0W1a5yrfNBtza3XGewsyWUuh3oYJsWxq8YMxDVIXJOIa1gGH4mi00yqZZ0e9FdnZhQNYyNnDq1Gi1CP8oCtUGgktnXpHdqGTmawvdwPMwrYwtyxQwbvpmEUDYp3tF3ob4Y5SiEgwk9sDts3rYRcPQQNM2hWNnZlqasj3Y_vqfw2IlQErUpksLvkgbt1_ZsWW___jdfwmBNbUs1OuQ1ryAfhDeKda_s2MfVva1_7BQ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71oUq9oAIFQgsKEjcaETuOHUu9LGhLWam9wEp7s2LHpkiQrdpFaP99Z5wH2lIOXGM7Go3Hnm_smc8Ab0UIWnvNM-_ptIoplulQsoxZztE7OWZLqka-uJTnczFblIst4EMtTEzaj5SWcZsessPe36KjoWIwLjIpOcfIZxt2iaodbXt3Mpl9mY0nK3R3JZjuK2Tyonpg8IYXimT9DyHMvxMl792WRid0dgCPevSYTjp5H8OWb5_AXvee5PopnH7-idtD6ggRUwpQ1Hpat00a496RKzalopL0x_J31lD--mqdTqefDmF-Nv368Tzrn0fInBC4TbmgXZBMYkhQaVFrUQXllfRcqqLBdWidzXmDEW5AzCVrjJRcLUpeWcW8yKtQPIOddtn6F5DmripwtC2bshbcF8RY41zReF2X3DY6gXeDusx1x4Jh4u11UZlOuQaVa6JyDUvgA2l07EkM1vHD8uab6WfU2MCZw1jRIsCj6l8rFIaGdZk3DiNCJxM4HubD9Mvq1hQIYITSCGISeDM244KgW4669ctfXR-lEAbhL5530zdKQgc8BAgTqDYmdkPUzZb2-1Uk3UZcilBViQROBhv4I9e_dfHy_7ofwT4nMyXmTnkMO2gX_hWinpV93Zv5HSP2-jQ priority: 102 providerName: Springer Nature |
Title | Image classification and reconstruction from low-density EEG |
URI | https://link.springer.com/article/10.1038/s41598-024-66228-1 https://www.ncbi.nlm.nih.gov/pubmed/39013929 https://www.proquest.com/docview/3081479190 https://www.proquest.com/docview/3081770916 https://pubmed.ncbi.nlm.nih.gov/PMC11252274 https://doaj.org/article/bf21c917b1054391b47010a50dc249c6 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_uA8EX8dt651LBN61u0jRpwOPYW_Y8F-4QdWHfQpMmKpxd70N0_3tn0nZldX3zqZAmJUxmOr9fkpkBeCZC0NprnnlPu1VMsUyHgmXMco7eyTFbUDTy6Zk8mYnpvJhvQV_uqBPg1UZqR_WkZpfnL39eLA_R4A_akPHy1RU6IQoU4yKTknNkRduwi55JUUWD0w7ut7m-uRZMd7Ezm4eu-aeYxn8T9vz7CuUf56jRPR3fhlsdrkxHrSLcgS3f3IUbbaXJ5T14_fYr_jhSR1iZLgfF9Uirpk4jI15lkU0p3CQ9X_zIarrZfr1MJ5M392F2PPk4Psm6wgmZEwJ_YC5oFySTSBZKLSotyqC8kp5LlddoodbZIa-R-wZEY7JCDuUqUfDSKubFsAz5A9hpFo1_BOnQlTmOtkVdVIL7nHLZOJfXXlcFt7VO4HkvLvOtzY9h4rl2XppWuAaFa6JwDUvgiCS66km5rWPD4vKT6UzF2MCZQxZpEfpRXLAVCkljVQxrh1zRyQT2-_Uwvb6YHKGNUBrhTQJPV6_RVOj8o2r84nvbRykESPiJh-3yrWZCWz8EFRMo1xZ2barrb5ovn2M6bkSsCGKVSOBFrwO_5_VvWTz-H7LYg5uclJcyfcp92EFt8U8QJV3bAWyruRrA7mg0_TDF59Hk7N17bB3L8SDuPAyicfwCmYYQig |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgQviJtAgSDBE0SNHceOJRDi2LJLj6dW2jc3dhxaCZLCFlX7p_iNzDhHtVxvfY0Ty5nD843HMwPwTNS11l7zxHs6rWKKJbrOWcIs52idHLM5ZSPv7snpgfg0z-dr8HPIhaFrlcOeGDbqqnV0Rr6Zoe0SSqP9enPyLaGuURRdHVpodGKx7Zdn6LItXs8-IH-fc7412X8_TfquAokTArXb1drVkklE0oUWpRZFrbySnkuVVSi-1tmUV-gY1ghVZIkOhitFzgurmBdpUWc47yW4jIY3JWdPzdV4pkNRM8F0n5uTZsXmAu0j5bBxkUjJOTpsK_YvtAn4G7b984rmb3HaYP62bsD1HrfGbztBuwlrvrkFV7pOlsvb8Gr2FTem2BEWp8tHgd9x2VRx8LjHKrUxpbPEX9qzpKKb86fLeDL5eAcOLoSEd2G9aRt_H-LUFRl-bfMqLwX3GdXKcS6rvC5zbisdwYuBXOakq79hQtw8K0xHXIPENYG4hkXwjig6vkm1s8OD9vtn06uisTVnDr1Ui9CS8o6tUOiUlnlaOfRFnYxgY-CH6RV6Yc7FL4Kn4zCqIsVXysa3P7p3lEIAhlPc69g3roSOlgiKRlCsMHZlqasjzfFRKPeNiBhBshIRvBxk4Hxd_6bFg___xhO4Ot3f3TE7s73th3CNk4hSvVC5AesoE_4RYq1T-zgIeAyHF61RvwBZpTYn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrUC8IG4CBYIETxBt7Dh2LIEQpbt0KawqRKW-mdixAQmSwhZV-9f4dczk2Gq53vqaS84cnm88F8BDEYLWXvPEezqtYoolOuQsYZZztE6O2Zyqkd_O5e6BeH2YH27Az6EWhtIqhz2x3airxtEZ-ThD2yWURvs1Dn1axP7O9PnRt4QmSFGkdRin0YnInl-eoPu2eDbbQV4_4nw6ef9yN-knDCROCNR0F7QLkklE1YUWpRZFUF5Jz6XKKhRl62zKK3QSA8IWWaKz4UqR88Iq5kVahAy_ew42FXlFI9jcnsz3361OeCiGJpjuK3XSrBgv0FpSRRsXiZSco_u2Zg3boQF_Q7p_Jmz-FrVtjeH0MlzqUWz8ohO7K7Dh66twvptrubwGT2dfcZuKHSFzSkVquR-XdRW3_veqZ21MxS3xl-YkqSiP_ngZTyavrsPBmRDxBozqpva3IE5dkeHbNq_yUnCfUecc57LK6zLnttIRPB7IZY66bhymjaJnhemIa5C4piWuYRFsE0VXT1In7fZC8_2j6RXT2MCZQ5_VItCkKmQrFLqoZZ5WDj1TJyPYGvhhevVemFNhjODB6jYqJkVbyto3P7pnlEI4hp-42bFvtRI6aCJgGkGxxti1pa7fqT9_apt_Iz5GyKxEBE8GGThd179pcfv_v3EfLqA2mTez-d4duMhJQql5qNyCEYqEv4vA69je6yU8hg9nrVS_AFtEO8I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+classification+and+reconstruction+from+low-density+EEG&rft.jtitle=Scientific+reports&rft.au=Sven+Guenther&rft.au=Nataliya+Kosmyna&rft.au=Pattie+Maes&rft.date=2024-07-16&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41598-024-66228-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf21c917b1054391b47010a50dc249c6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |