Image classification and reconstruction from low-density EEG

Recent advances in visual decoding have enabled the classification and reconstruction of perceived images from the brain. However, previous approaches have predominantly relied on stationary, costly equipment like fMRI or high-density EEG, limiting the real-world availability and applicability of su...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 16436 - 14
Main Authors Guenther, Sven, Kosmyna, Nataliya, Maes, Pattie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent advances in visual decoding have enabled the classification and reconstruction of perceived images from the brain. However, previous approaches have predominantly relied on stationary, costly equipment like fMRI or high-density EEG, limiting the real-world availability and applicability of such projects. Additionally, several EEG-based paradigms have utilized artifactual, rather than stimulus-related information yielding flawed classification and reconstruction results. Our goal was to reduce the cost of the decoding paradigm, while increasing its flexibility. Therefore, we investigated whether the classification of an image category and the reconstruction of the image itself is possible from the visually evoked brain activity measured by a portable, 8-channel EEG. To compensate for the low electrode count and to avoid flawed predictions, we designed a theory-guided EEG setup and created a new experiment to obtain a dataset from 9 subjects. We compared five contemporary classification models with our setup reaching an average accuracy of 34.4% for 20 image classes on hold-out test recordings. For the reconstruction, the top-performing model was used as an EEG-encoder which was combined with a pretrained latent diffusion model via double-conditioning. After fine-tuning, we reconstructed images from the test set with a 1000 trial 50-class top-1 accuracy of 35.3%. While not reaching the same performance as MRI-based paradigms on unseen stimuli, our approach greatly improved the affordability and mobility of the visual decoding technology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-66228-1