The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest
Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning...
Saved in:
Published in | The New phytologist Vol. 215; no. 1; pp. 113 - 125 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.07.2017
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest.
We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area: sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia.
On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area: sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood.
In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. |
---|---|
AbstractList | Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest.
We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area: sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia.
On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area: sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood.
In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity ( WSG )), organ (leaf area, specific leaf area ( SLA ), leaf area : sapwood area ratio) and whole‐plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra‐firme forest in Central Amazonia. On plateaus, species had higher WSG , but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. See also the Commentary on this article by Christoffersen et al., 215 : 12–14. Summary Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole‐plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra‐firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. See also the Commentary on this article by Christoffersen et al., 215: 12–14. Summary Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. See also the Commentary on this article by Christoffersen et al., 215: 12-14. Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole‐plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra‐firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios.Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species at the local scale could be attributed to their hydraulic architectural traits, revealing the basis of hydrological microhabitat partitioning in a Central Amazonian forest. We analyzed the hydraulic characteristics at tissue (anatomical traits, wood specific gravity (WSG)), organ (leaf area, specific leaf area (SLA), leaf area : sapwood area ratio) and whole-plant (height) levels for 28 pairs of congeneric species from 14 genera restricted to either valleys or plateaus of a terra-firme forest in Central Amazonia. On plateaus, species had higher WSG, but lower mean vessel area, mean vessel hydraulic diameter, sapwood area and SLA than in valleys; traits commonly associated with hydraulic safety. Mean vessel hydraulic diameter and mean vessel area increased with height for both habitats, but leaf area and leaf area : sapwood area ratio investments with tree height declined in valley vs plateau species. [Correction added after online publication 29 March 2017: the preceding sentence has been reworded.] Two strategies for either efficiency or safety were detected, based on vessel size or allocation to sapwood. In conclusion, contrasting hydrological conditions act as environmental filters, generating differences in species composition at the local scale. This has important implications for the prediction of species distributions under future climate change scenarios. |
Author | Juliana Schietti Flávia R. C. Costa Rafael S. Oliveira Luiza H. M. Cosme |
Author_xml | – sequence: 1 givenname: Luiza H. M. surname: Cosme fullname: Cosme, Luiza H. M. email: luiza_hmc@hotmail.com organization: Programa de Pós‐Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA) – sequence: 2 givenname: Juliana surname: Schietti fullname: Schietti, Juliana email: jusa@inpa.gov.br organization: Instituto Nacional de Pesquisas da Amazônia (INPA) – sequence: 3 givenname: Flávia R. C. surname: Costa fullname: Costa, Flávia R. C. organization: Instituto Nacional de Pesquisas da Amazônia (INPA) – sequence: 4 givenname: Rafael S. surname: Oliveira fullname: Oliveira, Rafael S. organization: Universidade Estadual de Campinas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28369998$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbtuFDEARS0URDaBgg8AWaKBYhI_Z-wyioAgRSTFFnQjjx9ar2bswfYoWr4eL5ukiETixs051_K9J-AoxGABeI_RGa7nPMybM8w4Eq_ACrNWNgLT7gisECKiaVn76xic5LxFCEnekjfgmAjaSinFCozrjYV-mmMqKmgLo4ObnUlqGb2GKumNL1aXJVlYIiyVNT6X5Iel-BjgrEqxKeS9VpK1GfoAFdQ2lKRGeDGpPzF4FaCLyebyFrx2asz23f19Ctbfvq4vr5rrm-8_Li-uG80YFc1gByIGrQal3MAYx641CiNmiGFUcsecpIY7ajBSxg2IYMuZ6DRrEVPC0VPw-RA7p_h7qe_2k8_ajqMKNi65J7UIjgji_EUUC8FwyyXGFf30BN3GJYX6jx5LRDvRMbIP_HhPLcNkTT8nP6m06x8ar8CXA6BTzDlZ94hg1O_X7Oua_b81K3v-hNW-qH3ztV4_Pmfc-dHu_h_d_7y9ejA-HIxtLjE9GhIhjFra0b_btrql |
CitedBy_id | crossref_primary_10_1111_1365_2435_13964 crossref_primary_10_1111_nph_17266 crossref_primary_10_1007_s11258_023_01361_x crossref_primary_10_1029_2020WR027630 crossref_primary_10_3389_ffgc_2020_00025 crossref_primary_10_3390_f8060202 crossref_primary_10_1038_s41467_020_20811_y crossref_primary_10_1016_j_flora_2020_151710 crossref_primary_10_3389_ffgc_2022_836711 crossref_primary_10_1098_rstb_2018_0209 crossref_primary_10_1590_0001_3765201820170723 crossref_primary_10_1093_treephys_tpad088 crossref_primary_10_3832_ifor4137_016 crossref_primary_10_1111_1365_2745_13022 crossref_primary_10_1111_1365_2745_13261 crossref_primary_10_3389_fpls_2022_902509 crossref_primary_10_1016_j_flora_2021_151916 crossref_primary_10_1111_1365_2435_14572 crossref_primary_10_1111_nph_17944 crossref_primary_10_1016_j_jhydrol_2022_128923 crossref_primary_10_1002_eco_2015 crossref_primary_10_1093_botlinnean_boab097 crossref_primary_10_3390_f10040327 crossref_primary_10_1007_s11104_018_3878_0 crossref_primary_10_1093_jxb_erab432 crossref_primary_10_1111_1365_2435_13613 crossref_primary_10_3389_ffgc_2022_809904 crossref_primary_10_1007_s11104_017_3330_x crossref_primary_10_1007_s11104_019_04257_w crossref_primary_10_1016_j_flora_2023_152434 crossref_primary_10_1002_ajb2_16214 crossref_primary_10_3389_ffgc_2023_1112560 crossref_primary_10_3390_plants13223205 crossref_primary_10_1016_j_flora_2025_152712 crossref_primary_10_3390_ijms19072023 crossref_primary_10_1016_j_foreco_2022_120058 crossref_primary_10_1007_s00468_023_02469_3 crossref_primary_10_1038_s41561_019_0312_z crossref_primary_10_1111_1365_2435_14679 crossref_primary_10_1007_s10712_019_09540_0 crossref_primary_10_1016_j_ecolind_2019_02_047 crossref_primary_10_1111_ele_12964 crossref_primary_10_1111_nph_15463 crossref_primary_10_1002_ece3_11635 crossref_primary_10_1111_nph_16675 crossref_primary_10_1111_nph_17005 crossref_primary_10_1007_s11104_019_04097_8 crossref_primary_10_1371_journal_pone_0212232 crossref_primary_10_5194_hess_26_4125_2022 crossref_primary_10_1007_s00442_022_05258_w crossref_primary_10_1016_j_geoderma_2022_115849 crossref_primary_10_3832_ifor3291_014 crossref_primary_10_1016_j_flora_2022_152072 crossref_primary_10_1111_ecog_06125 crossref_primary_10_1111_nph_15909 crossref_primary_10_3390_agronomy12102351 crossref_primary_10_1111_geb_13531 crossref_primary_10_1093_aob_mcae077 crossref_primary_10_1111_1365_2435_14199 crossref_primary_10_3389_fpls_2019_00830 crossref_primary_10_1111_1365_2435_14751 crossref_primary_10_1111_1365_2435_14008 crossref_primary_10_1093_aobpla_plab066 crossref_primary_10_1111_nph_19257 crossref_primary_10_1111_ele_14314 crossref_primary_10_1007_s10265_023_01505_0 crossref_primary_10_1088_1748_9326_ac6f6d crossref_primary_10_1111_nph_18565 crossref_primary_10_1111_nph_18280 crossref_primary_10_3389_ffgc_2021_715266 crossref_primary_10_1111_nph_15170 crossref_primary_10_1007_s00271_024_00915_9 crossref_primary_10_1111_ele_70014 crossref_primary_10_1002_hyp_15148 crossref_primary_10_1007_s00442_021_04937_4 crossref_primary_10_1111_pce_14467 crossref_primary_10_21750_REFOR_18_02_118 crossref_primary_10_1002_ecy_2666 crossref_primary_10_1007_s00442_019_04513_x crossref_primary_10_1007_s00468_019_01899_2 crossref_primary_10_1111_nph_17832 crossref_primary_10_1111_nph_14601 crossref_primary_10_1016_j_agrformet_2018_11_037 crossref_primary_10_1111_nph_17914 |
Cites_doi | 10.1093/treephys/tpp018 10.1146/annurev.pp.40.060189.000315 10.1111/j.1471-8286.2004.00829.x 10.1111/j.1469-8137.2005.01555.x 10.1073/pnas.1302584110 10.2307/1937385 10.1111/j.1469-8137.2007.02061.x 10.1046/j.1365-3040.2000.00553.x 10.1002/j.1537-2197.1996.tb12739.x 10.1007/BF01945546 10.1111/nph.12632 10.1007/s00442-004-1624-1 10.1016/B978-012339552-8/50016-0 10.1017/S0266467407004701 10.5194/gmd-9-4227-2016 10.1046/j.1365-2745.2000.00506.x 10.1002/grl.50377 10.1890/0012-9658(2003)084[0602:AORFTS]2.0.CO;2 10.3389/fpls.2013.00056 10.1051/forest:2002060 10.1016/j.actao.2009.01.007 10.1046/j.1365-2745.2002.00689.x 10.1890/0012-9615(1999)069[0569:EDILSA]2.0.CO;2 10.1078/1433-8319-00017 10.3732/ajb.0900178 10.1093/treephys/19.11.717 10.1111/j.1461-0248.2009.01285.x 10.1093/treephys/tpr076 10.1002/hyp.6813 10.1111/nph.14044 10.1007/s004420100660 10.1016/j.aquabot.2009.10.004 10.1111/j.1469-8137.2005.01587.x 10.3732/ajb.0800414 10.1007/s00442-003-1259-7 10.2307/1313077 10.1093/treephys/28.11.1601 10.1046/j.1365-3040.2000.00537.x 10.1007/978-3-662-22627-8 10.1104/pp.104.058404 10.1016/j.flora.2009.12.008 10.1126/science.288.5470.1414 10.1093/aob/mcn103 10.1093/aob/mcs030 10.1111/j.1469-8137.1991.tb00035.x 10.1111/nph.13646 10.1093/treephys/tps026 10.1086/368401 10.1111/j.1469-8137.2009.03092.x 10.1016/S0169-5347(03)00061-2 10.1007/s00442-002-0904-x 10.1002/joc.4420 10.1163/22941932-20160128 10.3732/ajb.1000335 10.3732/ajb.1100324 10.1111/j.1365-3040.2007.01765.x 10.1111/j.1744-7429.2010.00712.x 10.1038/21877 10.1111/j.0022-0477.2005.00992.x 10.1007/s00442-009-1543-2 10.1093/treephys/15.9.559 10.1007/s10531-013-0442-3 10.1111/j.0022-0477.2004.00880.x 10.1029/2011GL047436 10.1111/j.1365-2745.2009.01598.x 10.1093/treephys/tps122 10.1111/j.1365-3040.2004.01213.x 10.1007/s004420100628 10.1890/0012-9658(2007)88[478:SWSTAH]2.0.CO;2 10.1111/j.1469-8137.2006.01712.x 10.1093/treephys/26.6.689 10.1093/treephys/23.14.949 10.1111/ele.12302 10.1111/1365-2745.12004 10.1111/j.1365-2435.2010.01698.x 10.1007/s00468-011-0674-3 10.1046/j.1365-2435.2000.00397.x 10.1146/annurev.ecolsys.33.010802.150452 10.1111/j.1365-2745.2006.01186.x 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2 10.1007/s004420050931 10.1111/j.1654-1103.2012.01491.x 10.1046/j.0269-8463.2001.00542.x 10.1111/j.1469-8137.2007.02137.x 10.1111/j.1654-1103.2007.tb02529.x 10.1111/nph.13763 10.1071/FP03200 10.1016/S0022-5193(85)80288-5 10.1038/23251 10.2307/3236631 10.1111/j.1469-8137.2010.03518.x 10.1590/1809-43921981114759 10.1139/b91-270 10.1086/520724 10.1371/journal.pone.0130799 10.1016/j.foreco.2014.06.039 10.1007/s00468-005-0042-2 10.1080/17550874.2013.783642 10.1111/nph.13798 10.1163/22941932-90001369 10.1111/j.1365-2745.2005.01030.x 10.1038/nature13327 10.1111/j.1365-2745.2011.01939.x 10.1038/nature05747 10.1038/nature15539 10.1111/j.1365-2435.2005.01045.x |
ContentType | Journal Article |
Copyright | 2017 New Phytologist Trust 2017 The Authors. New Phytologist © 2017 New Phytologist Trust 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. Copyright © 2017 New Phytologist Trust |
Copyright_xml | – notice: 2017 New Phytologist Trust – notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust – notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. – notice: Copyright © 2017 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.14508 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Architecture |
EISSN | 1469-8137 |
EndPage | 125 |
ExternalDocumentID | 28369998 10_1111_nph_14508 NPH14508 90010637 |
Genre | article Journal Article |
GeographicLocations | Amazonia |
GeographicLocations_xml | – name: Amazonia |
GrantInformation_xml | – fundername: CNPq |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4438-beb28bcabaafb4451f6da104d2d4395f4f93d5f3d10adfb021e5487c4604a8f3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:35:44 EDT 2025 Fri Jul 11 10:24:19 EDT 2025 Sun Jul 13 03:08:58 EDT 2025 Wed Feb 19 02:35:03 EST 2025 Tue Jul 01 03:09:25 EDT 2025 Thu Apr 24 23:11:34 EDT 2025 Wed Jan 22 16:32:23 EST 2025 Thu Jul 03 22:31:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | wood specific gravity environmental filters functional trade-offs tropical forest topographical and hydrological conditions wood anatomy plant traits |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4438-beb28bcabaafb4451f6da104d2d4395f4f93d5f3d10adfb021e5487c4604a8f3 |
Notes | 12–14. Correction added after online publication 29 March 2017: a second author for correspondence has been inserted. Christoffersen 215 See also the Commentary on this article by et al. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.14508 |
PMID | 28369998 |
PQID | 1903787425 |
PQPubID | 2026848 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2000502055 proquest_miscellaneous_1884165911 proquest_journals_1903787425 pubmed_primary_28369998 crossref_primary_10_1111_nph_14508 crossref_citationtrail_10_1111_nph_14508 wiley_primary_10_1111_nph_14508_NPH14508 jstor_primary_90010637 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170701 July 2017 2017-07-00 2017-Jul |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 7 year: 2017 text: 20170701 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2017 |
Publisher | New Phytologist Trust Wiley Subscription Services, Inc |
Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
References | 1989; 40 2010; 98 2010; 97 2013; 4 2004; 27 2000; 88 1997; 47 2010; 185 2006; 170 2011; 190 2008; 102 2008; 31 2012; 99 2016; 37 2016; 36 1991; 119 2009; 12 2004; 31 2009; 96 1987; 43 2006; 20 2010; 24 2000; 14 2000; 11 2007; 174 2008; 28 2007; 175 2006; 26 2008; 24 1983 2008; 22 2013; 110 2002; 90 2014; 17 2012; 26 2003; 164 2006; 169 2007; 18 2007; 168 2012; 100 2007; 447 2016; 209 2002; 132 2010; 205 2004; 140 2010; 163 2015; 528 2007; 95 2012; 32 2012; 109 1999 2005; 19 1991; 69 1996; 83 2005; 5 2016; 211 1994; 15 2005; 93 2007; 88 2016; 9 1981; 11 2003; 23 2002; 59 2015; 36 2013; 22 2013; 24 2005; 139 1999; 121 2011; 98 1999; 400 2003; 18 2014; 330 2008; 2 1999; 19 2015; 210 2001; 15 2000; 288 2003; 84 2014; 7 2014; 202 2000; 23 1995; 15 2013; 40 2015; 10 1999; 69 2002; 33 2011; 31 2004 2003; 136 2011; 38 2014; 510 2001; 126 2009; 29 2001; 128 2009; 35 2004; 92 2013; 33 2006; 87 2005; 168 2001; 4 1985; 112 2011; 43 2010; 92 1990; 71 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 Parent C (e_1_2_7_72_1) 2008; 2 e_1_2_7_94_1 e_1_2_7_71_1 Pineda‐García F (e_1_2_7_76_1) 2015; 36 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 Ribeiro JELS (e_1_2_7_82_1) 1999 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 28560791 - New Phytol. 2017 Jul;215(1):12-14 |
References_xml | – volume: 98 start-page: 126 year: 2010 end-page: 136 article-title: Explaining hydrological niches: the decisive role of below‐ground competition in two closely related species publication-title: Journal of Ecology – volume: 128 start-page: 326 year: 2001 end-page: 335 article-title: Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees publication-title: Oecologia – volume: 14 start-page: 4 year: 2000 end-page: 11 article-title: Hydraulic limitation of tree height: a critique publication-title: Functional Ecology – volume: 170 start-page: 807 year: 2006 end-page: 818 article-title: Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms publication-title: New Phytologist – volume: 31 start-page: 632 year: 2008 end-page: 645 article-title: Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees publication-title: Plant, Cell & Environment – volume: 71 start-page: 1176 year: 1990 end-page: 1184 article-title: Relating carbon allocation patterns to tree senescence in metrosideros forests publication-title: Ecology – volume: 26 start-page: 963 year: 2012 end-page: 974 article-title: Assessing sapwood depth and wood properties in and spp. using visual methods and near infrared spectroscopy (NIR) publication-title: Trees – Structure and Function – volume: 5 start-page: 181 year: 2005 end-page: 183 article-title: Phylomatic: tree assembly for applied phylogenetics publication-title: Molecular Ecology Notes – volume: 100 start-page: 732 year: 2012 end-page: 741 article-title: Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density publication-title: Journal of Ecology – volume: 22 start-page: 2133 year: 2008 end-page: 2147 article-title: The water balance of an Amazonian micro‐catchment: the effect of interannual variability of rainfall on hydrological behaviour publication-title: Hydrological Processes – volume: 31 start-page: 865 year: 2011 end-page: 877 article-title: The trade‐off between safety and efficiency in hydraulic architecture in 31 woody species in a karst area publication-title: Tree Physiology – volume: 18 start-page: 183 year: 2007 end-page: 194 article-title: Relationships between soil hydrology and forest structure and composition in the southern Brazilian Amazon publication-title: Journal of Vegetation Science – volume: 23 start-page: 251 year: 2000 end-page: 263 article-title: Age‐related decline in stand productivity: the role of structural acclimation under hydraulic constraints publication-title: Plant, Cell and Environment – volume: 37 start-page: 152 year: 2016 end-page: 171 article-title: Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem publication-title: IAWA Journal – volume: 27 start-page: 1077 year: 2004 end-page: 1087 article-title: Hydraulic responses to height growth in maritime pine trees publication-title: Plant, Cell & Environment – volume: 38 start-page: L12703 year: 2011 article-title: The drought of 2010 in the context of historical droughts in the Amazon region publication-title: Geophysical Research Letters – volume: 15 start-page: 335 year: 1994 end-page: 360 article-title: Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? publication-title: IAWA Journal – volume: 168 start-page: 1113 year: 2007 end-page: 1126 article-title: Water transport in vesselless angiosperms: conducting efficiency and cavitation safety publication-title: International Journal of Plant Sciences – volume: 20 start-page: 311 year: 2006 end-page: 319 article-title: Spatial variation in sapwood area to leaf area ratio and specific leaf area within a crown of silver birch publication-title: Trees – volume: 33 start-page: 161 year: 2013 end-page: 174 article-title: Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root‐to‐shoot flow path in tropical rainforest trees publication-title: Tree Physiology – volume: 100 start-page: 1434 year: 2012 end-page: 1439 article-title: Do niche‐structured plant communities exhibit phylogenetic conservatism? A test case in an endemic clade publication-title: Journal of Ecology – volume: 209 start-page: 123 year: 2016 end-page: 136 article-title: Weak tradeoff between xylem safety and xylem‐specific hydraulic efficiency across the world's woody plant species publication-title: New Phytologist – volume: 97 start-page: 207 year: 2010 end-page: 215 article-title: Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity publication-title: American Journal of Botany – volume: 126 start-page: 457 year: 2001 end-page: 461 article-title: Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure publication-title: Oecologia – volume: 95 start-page: 171 year: 2007 end-page: 183 article-title: Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean‐type climate region of South Africa publication-title: Journal of Ecology – volume: 211 start-page: 1152 year: 2016 end-page: 1155 article-title: On xylem hydraulic efficiencies, wood space‐use and the safety–efficiency tradeoff publication-title: New Phytologist – volume: 24 start-page: 651 year: 2013 end-page: 663 article-title: Competition, exogenous disturbances and senescence shape tree size distribution in tropical forest: evidence from tree mode of death in Central Amazonia publication-title: Journal of Vegetation Science – volume: 136 start-page: 193 year: 2003 end-page: 204 article-title: Does flood tolerance explain tree species distribution in tropical seasonally flooded habitats? publication-title: Oecologia – volume: 164 start-page: S165 year: 2003 end-page: S184 article-title: Community assembly, niche conservatism, and adaptive evolution in changing environments publication-title: International Journal of Plant Sciences – volume: 15 start-page: 423 year: 2001 end-page: 434 article-title: Strategy shifts in leaf physiology, structure and nutrient content between species of high‐ and low‐rainfall and high‐ and low‐nutrient habitats publication-title: Functional Ecology – volume: 140 start-page: 543 year: 2004 end-page: 550 article-title: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees publication-title: Oecologia – volume: 36 start-page: 208 year: 2015 end-page: 217 article-title: Exploiting water versus tolerating drought: water‐use strategies of trees in a secondary successional tropical dry forest publication-title: Tree Physiology – volume: 11 start-page: 759 year: 1981 end-page: 768 article-title: Estudos climatologicos da reserva florestal Ducke‐Manaus AM publication-title: Acta Amazonica – volume: 185 start-page: 481 year: 2010 end-page: 492 article-title: The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species publication-title: New Phytologist – volume: 7 start-page: 241 year: 2014 end-page: 253 article-title: Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest publication-title: Plant Ecology & Diversity – volume: 87 start-page: S150 year: 2006 end-page: S162 article-title: The growth–defense trade‐off and habitat specialization by plants in Amazonian forests publication-title: Ecology – volume: 33 start-page: 125 year: 2002 end-page: 159 article-title: Plant ecological strategies: some leading dimensions of variation between species publication-title: Annual Review of Ecology and Systematics – volume: 4 start-page: 1 year: 2013 end-page: 11 article-title: How to quantify conduits in wood? publication-title: Frontiers in Plant Science – volume: 93 start-page: 879 year: 2005 end-page: 889 article-title: Soil‐related performance variation and distributions of tree species in a Bornean rain forest publication-title: Journal of Ecology – volume: 169 start-page: 279 year: 2006 end-page: 290 article-title: Convergent tapering of xylem conduits in different woody species publication-title: New Phytologist – volume: 69 start-page: 2158 year: 1991 end-page: 2164 article-title: Effects of drought stress on hydraulic architecture of seedlings from five populations of green ash publication-title: Canadian Journal of Botany – volume: 102 start-page: 367 year: 2008 end-page: 375 article-title: The relationships of wood‐, gas‐ and water fractions of tree stems to performance and life history variation in tropical trees publication-title: Annals of Botany – volume: 12 start-page: 351 year: 2009 end-page: 366 article-title: Towards a worldwide wood economics spectrum publication-title: Ecology Letters – volume: 19 start-page: 717 year: 1999 end-page: 724 article-title: Partitioning of soil water among tree species in a Brazilian Cerrado ecosystem publication-title: Tree Physiology – volume: 47 start-page: 235 year: 1997 end-page: 242 article-title: Hydraulic limits to tree height and tree growth publication-title: Bioscience – volume: 190 start-page: 709 year: 2011 end-page: 723 article-title: Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus publication-title: New Phytologist – volume: 132 start-page: 12 year: 2002 end-page: 20 article-title: The relationship between tree height and leaf area : sapwood area ratio publication-title: Oecologia – volume: 288 start-page: 1414 year: 2000 end-page: 1418 article-title: Spatial patterns in the distribution of tropical tree species publication-title: Science – volume: 400 start-page: 664 year: 1999 end-page: 667 article-title: A general model for the structure and allometry of plant vascular systems publication-title: Nature – volume: 22 start-page: 2151 year: 2013 end-page: 2166 article-title: Topographically controlled soil moisture drives plant diversity patterns within grasslands publication-title: Biodiversity and Conservation – volume: 84 start-page: 602 year: 2003 end-page: 608 article-title: Architecture of 53 rain forest tree species differing in adult stature and shade tolerance publication-title: Ecology – volume: 24 start-page: 65 year: 2008 end-page: 74 article-title: How wide is the riparian zone of small streams in tropical forests? A test with terrestrial herbs publication-title: Journal of Tropical Ecology – volume: 209 start-page: 8 year: 2016 end-page: 10 article-title: Finding support for theoretical tradeoffs in xylem structure and function publication-title: New Phytologist – volume: 92 start-page: 384 year: 2004 end-page: 396 article-title: Small‐seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime publication-title: Journal of Ecology – volume: 15 start-page: 559 year: 1995 end-page: 567 article-title: Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest publication-title: Tree Physiology – volume: 109 start-page: 1091 year: 2012 end-page: 1100 article-title: Long‐term functional plasticity in plant hydraulic architecture in response to supplemental moisture publication-title: Annals of Botany – volume: 330 start-page: 126 year: 2014 end-page: 136 article-title: The importance of hydraulic conductivity and wood density to growth performance in eight tree species from a tropical semi‐dry climate publication-title: Forest Ecology and Management – volume: 168 start-page: 597 year: 2005 end-page: 612 article-title: Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co‐occurring Mediterranean oaks that differ in leaf lifespan publication-title: New Phytologist – volume: 59 start-page: 723 year: 2002 end-page: 752 article-title: Hydraulic architecture of trees: main concepts and results publication-title: Annals of Forest Science – volume: 31 start-page: 423 year: 2004 end-page: 428 article-title: Rooting depth and plant water relations explain species distribution patterns within a sandplain landscape publication-title: Functional Plant Biology – volume: 92 start-page: 70 year: 2010 end-page: 74 article-title: A controlled water‐table depth system to study the influence of fine‐scale differences in water regime for plant growth publication-title: Aquatic Botany – volume: 202 start-page: 79 year: 2014 end-page: 94 article-title: Wood specific gravity and anatomy of branches and roots in 113 Amazonian rainforest tree species across environmental gradients publication-title: New Phytologist – volume: 23 start-page: 365 year: 2000 end-page: 375 article-title: The effect of tree height on crown level stomatal conductance publication-title: Plant, Cell & Environment – volume: 43 start-page: 414 year: 2011 end-page: 422 article-title: Distribution patterns of tropical dry forest trees along a mesoscale water availability gradient publication-title: Biotropica – volume: 163 start-page: 291 year: 2010 end-page: 301 article-title: Allocation to leaf area and sapwood area affects water relations of co‐occurring savanna and forest trees publication-title: Oecologia – volume: 36 start-page: 1033 year: 2016 end-page: 1050 article-title: Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts publication-title: International Journal of Climatology – volume: 119 start-page: 345 year: 1991 end-page: 360 article-title: The hydraulic architecture of trees and other woody plants publication-title: New Phytologist – volume: 28 start-page: 1601 year: 2008 end-page: 1608 article-title: Allometric relationships predicting foliar biomass and leaf area: sapwood area ratio from tree height in five Costa Rican rain forest species publication-title: Tree Physiology – volume: 88 start-page: 964 year: 2000 end-page: 977 article-title: Shifts in trait‐combinations along rainfall and phosphorus gradients publication-title: Journal of Ecology – volume: 32 start-page: 401 year: 2012 end-page: 413 article-title: Xylem hydraulic adjustment and growth response of Willd. to climatic variability publication-title: Tree Physiology – volume: 112 start-page: 279 year: 1985 end-page: 297 article-title: Tree height and crown shape, as results of competitive games publication-title: Journal of Theoretical Biology – start-page: 273 year: 2004 end-page: 295 – volume: 35 start-page: 422 year: 2009 end-page: 428 article-title: Effects of waterlogging on seed germination of three Mediterranean oak species: ecological implications publication-title: Acta Oecologica – volume: 2 start-page: 20 year: 2008 end-page: 27 article-title: An overview of plant responses to soil waterlogging publication-title: Plant Stress – volume: 210 start-page: 443 year: 2015 end-page: 458 article-title: How adaptable is the hydraulic system of European beech in the face of climate change‐related precipitation reduction? publication-title: New Phytologist – volume: 24 start-page: 701 year: 2010 end-page: 705 article-title: Rethinking the value of high wood density publication-title: Functional Ecology – volume: 18 start-page: 337 year: 2003 end-page: 343 article-title: Plant height and evolutionary games publication-title: Trends in Ecology and Evolution – volume: 98 start-page: 915 year: 2011 end-page: 922 article-title: Integration of vessel traits, wood density, and height in angiosperm shrubs and trees publication-title: American Journal of Botany – volume: 400 start-page: 61 year: 1999 end-page: 63 article-title: Hydrologically defined niches reveal a basis for species richness in plant communities publication-title: Letters to Nature – volume: 10 start-page: 1 year: 2015 end-page: 19 article-title: Functional traits and water transport strategies in lowland tropical rainforest trees publication-title: PLoS One – volume: 510 start-page: 254 year: 2014 end-page: 258 article-title: Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming publication-title: Nature – volume: 43 start-page: 234 year: 1987 end-page: 241 article-title: On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil publication-title: Experientia – volume: 19 start-page: 932 year: 2005 end-page: 940 article-title: Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees publication-title: Functional Ecology – year: 1983 – volume: 17 start-page: 988 year: 2014 end-page: 997 article-title: Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates publication-title: Ecology Letters – volume: 174 start-page: 787 year: 2007 end-page: 798 article-title: Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral publication-title: New Phytologist – volume: 110 start-page: 18110 year: 2013 end-page: 18115 article-title: Increased dry‐season length over southern Amazonia in recent decades and its implication for future climate projection publication-title: Proceedings of the National Academy of Sciences, USA – volume: 29 start-page: 765 year: 2009 end-page: 775 article-title: Intraspecific differences in drought tolerance and acclimation in hydraulics of and publication-title: Tree Physiology – volume: 121 start-page: 293 year: 1999 article-title: Partitioning of soil water among canopy trees in a seasonally dry tropical forest publication-title: Oecologia – volume: 69 start-page: 569 year: 1999 end-page: 588 article-title: Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients publication-title: Ecological Monographs – volume: 90 start-page: 534 year: 2002 end-page: 543 article-title: Convergence towards higher leaf mass per area in dry and nutrient‐poor habitats has different consequences for leaf life span publication-title: Journal of Ecology – volume: 9 start-page: 4227 year: 2016 end-page: 4255 article-title: Linking hydraulic traits to tropical forest function in a size‐structured and trait‐driven model (TFS v. 1‐Hydro) publication-title: Geoscientific Model Development – volume: 40 start-page: 19 year: 1989 end-page: 38 article-title: Vulnerability of xylem to cavitation and embolism publication-title: Annual Review of Plant Physiology and Molecular Biology – volume: 447 start-page: 80 year: 2007 end-page: 82 article-title: Drought sensitivity shapes species distribution patterns in tropical forests publication-title: Nature – volume: 93 start-page: 521 year: 2005 end-page: 535 article-title: Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia publication-title: Journal of Ecology – volume: 205 start-page: 506 year: 2010 end-page: 512 article-title: Vessel diameter and xylem hydraulic conductivity increase with tree height in tropical rainforest trees in Sulawesi, Indonesia publication-title: Flora – volume: 23 start-page: 949 year: 2003 end-page: 958 article-title: Interaction between sapwood and foliage area in alpine ash ( ) trees of different heights publication-title: Tree Physiology – volume: 528 start-page: 119 year: 2015 end-page: 122 article-title: Death from drought in tropical forests is triggered by hydraulics not carbon starvation publication-title: Nature – volume: 83 start-page: 556 year: 1996 end-page: 566 article-title: Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest trees publication-title: American Journal of Botany – volume: 175 start-page: 686 year: 2007 end-page: 698 article-title: Diversity of hydraulic traits in nine species growing in tropical forests with contrasting precipitation publication-title: New Phytologist – volume: 40 start-page: 1729 year: 2013 end-page: 1733 article-title: Intensification of the Amazon hydrological cycle over the last two decades publication-title: Geophysical Research Letters – volume: 99 start-page: 165 year: 2012 end-page: 168 article-title: Still rethinking the value of high wood density publication-title: American Journal of Botany – volume: 4 start-page: 97 year: 2001 end-page: 115 article-title: Functional and ecological xylem anatomy publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 11 start-page: 383 year: 2000 end-page: 396 article-title: Pteridophyte diversity and species composition in four Amazonian rain forests publication-title: Journal of Vegetation Science – volume: 139 start-page: 546 year: 2005 end-page: 556 article-title: Do xylem fibers affect vessel cavitation resistance? publication-title: Plant Physiology – volume: 26 start-page: 689 year: 2006 end-page: 701 article-title: Scaling of angiosperm xylem structure with safety and efficiency publication-title: Tree Physiology – volume: 96 start-page: 2214 year: 2009 end-page: 2223 article-title: Coordination of foliar and wood anatomical traits contributes to tropical tree distributions and productivity along the Malay–Thai Peninsula publication-title: American Journal of Botany – volume: 88 start-page: 478 year: 2007 end-page: 489 article-title: Seasonal water stress tolerance and habitat associations within four Neotropical tree genera publication-title: Ecology – year: 1999 – ident: e_1_2_7_14_1 doi: 10.1093/treephys/tpp018 – ident: e_1_2_7_102_1 doi: 10.1146/annurev.pp.40.060189.000315 – ident: e_1_2_7_104_1 doi: 10.1111/j.1471-8286.2004.00829.x – ident: e_1_2_7_19_1 doi: 10.1111/j.1469-8137.2005.01555.x – ident: e_1_2_7_38_1 doi: 10.1073/pnas.1302584110 – ident: e_1_2_7_40_1 doi: 10.2307/1937385 – ident: e_1_2_7_80_1 doi: 10.1111/j.1469-8137.2007.02061.x – ident: e_1_2_7_87_1 doi: 10.1046/j.1365-3040.2000.00553.x – ident: e_1_2_7_96_1 doi: 10.1002/j.1537-2197.1996.tb12739.x – ident: e_1_2_7_20_1 doi: 10.1007/BF01945546 – ident: e_1_2_7_37_1 doi: 10.1111/nph.12632 – ident: e_1_2_7_86_1 doi: 10.1007/s00442-004-1624-1 – ident: e_1_2_7_8_1 doi: 10.1016/B978-012339552-8/50016-0 – ident: e_1_2_7_28_1 doi: 10.1017/S0266467407004701 – ident: e_1_2_7_23_1 doi: 10.5194/gmd-9-4227-2016 – ident: e_1_2_7_36_1 doi: 10.1046/j.1365-2745.2000.00506.x – ident: e_1_2_7_42_1 doi: 10.1002/grl.50377 – ident: e_1_2_7_78_1 doi: 10.1890/0012-9658(2003)084[0602:AORFTS]2.0.CO;2 – ident: e_1_2_7_89_1 doi: 10.3389/fpls.2013.00056 – ident: e_1_2_7_25_1 doi: 10.1051/forest:2002060 – ident: e_1_2_7_74_1 doi: 10.1016/j.actao.2009.01.007 – ident: e_1_2_7_107_1 doi: 10.1046/j.1365-2745.2002.00689.x – ident: e_1_2_7_26_1 doi: 10.1890/0012-9615(1999)069[0569:EDILSA]2.0.CO;2 – ident: e_1_2_7_45_1 doi: 10.1078/1433-8319-00017 – ident: e_1_2_7_109_1 doi: 10.3732/ajb.0900178 – ident: e_1_2_7_52_1 doi: 10.1093/treephys/19.11.717 – ident: e_1_2_7_21_1 doi: 10.1111/j.1461-0248.2009.01285.x – ident: e_1_2_7_33_1 doi: 10.1093/treephys/tpr076 – volume: 2 start-page: 20 year: 2008 ident: e_1_2_7_72_1 article-title: An overview of plant responses to soil waterlogging publication-title: Plant Stress – ident: e_1_2_7_98_1 doi: 10.1002/hyp.6813 – ident: e_1_2_7_15_1 doi: 10.1111/nph.14044 – ident: e_1_2_7_73_1 doi: 10.1007/s004420100660 – ident: e_1_2_7_5_1 doi: 10.1016/j.aquabot.2009.10.004 – ident: e_1_2_7_3_1 doi: 10.1111/j.1469-8137.2005.01587.x – ident: e_1_2_7_9_1 doi: 10.3732/ajb.0800414 – ident: e_1_2_7_60_1 doi: 10.1007/s00442-003-1259-7 – ident: e_1_2_7_85_1 doi: 10.2307/1313077 – ident: e_1_2_7_18_1 doi: 10.1093/treephys/28.11.1601 – ident: e_1_2_7_61_1 doi: 10.1046/j.1365-3040.2000.00537.x – ident: e_1_2_7_110_1 doi: 10.1007/978-3-662-22627-8 – ident: e_1_2_7_54_1 doi: 10.1104/pp.104.058404 – ident: e_1_2_7_108_1 doi: 10.1016/j.flora.2009.12.008 – ident: e_1_2_7_24_1 doi: 10.1126/science.288.5470.1414 – ident: e_1_2_7_77_1 doi: 10.1093/aob/mcn103 – ident: e_1_2_7_7_1 doi: 10.1093/aob/mcs030 – ident: e_1_2_7_101_1 doi: 10.1111/j.1469-8137.1991.tb00035.x – ident: e_1_2_7_41_1 doi: 10.1111/nph.13646 – ident: e_1_2_7_39_1 doi: 10.1093/treephys/tps026 – ident: e_1_2_7_2_1 doi: 10.1086/368401 – ident: e_1_2_7_79_1 doi: 10.1111/j.1469-8137.2009.03092.x – ident: e_1_2_7_31_1 doi: 10.1016/S0169-5347(03)00061-2 – ident: e_1_2_7_66_1 doi: 10.1007/s00442-002-0904-x – volume: 36 start-page: 208 year: 2015 ident: e_1_2_7_76_1 article-title: Exploiting water versus tolerating drought: water‐use strategies of trees in a secondary successional tropical dry forest publication-title: Tree Physiology – volume-title: Flora da reserva Ducke: guia de identificação das plantas vasculares de uma floresta de terra‐firme na Amazônia Central year: 1999 ident: e_1_2_7_82_1 – ident: e_1_2_7_62_1 doi: 10.1002/joc.4420 – ident: e_1_2_7_59_1 doi: 10.1163/22941932-20160128 – ident: e_1_2_7_65_1 doi: 10.3732/ajb.1000335 – ident: e_1_2_7_57_1 doi: 10.3732/ajb.1100324 – ident: e_1_2_7_95_1 doi: 10.1111/j.1365-3040.2007.01765.x – ident: e_1_2_7_10_1 doi: 10.1111/j.1744-7429.2010.00712.x – ident: e_1_2_7_94_1 doi: 10.1038/21877 – ident: e_1_2_7_32_1 doi: 10.1111/j.0022-0477.2005.00992.x – ident: e_1_2_7_43_1 doi: 10.1007/s00442-009-1543-2 – ident: e_1_2_7_103_1 doi: 10.1093/treephys/15.9.559 – ident: e_1_2_7_68_1 doi: 10.1007/s10531-013-0442-3 – ident: e_1_2_7_70_1 doi: 10.1111/j.0022-0477.2004.00880.x – ident: e_1_2_7_63_1 doi: 10.1029/2011GL047436 – ident: e_1_2_7_12_1 doi: 10.1111/j.1365-2745.2009.01598.x – ident: e_1_2_7_91_1 doi: 10.1093/treephys/tps122 – ident: e_1_2_7_27_1 doi: 10.1111/j.1365-3040.2004.01213.x – ident: e_1_2_7_47_1 doi: 10.1007/s004420100628 – ident: e_1_2_7_11_1 doi: 10.1890/0012-9658(2007)88[478:SWSTAH]2.0.CO;2 – ident: e_1_2_7_81_1 doi: 10.1111/j.1469-8137.2006.01712.x – ident: e_1_2_7_48_1 doi: 10.1093/treephys/26.6.689 – ident: e_1_2_7_69_1 doi: 10.1093/treephys/23.14.949 – ident: e_1_2_7_71_1 doi: 10.1111/ele.12302 – ident: e_1_2_7_6_1 doi: 10.1111/1365-2745.12004 – ident: e_1_2_7_56_1 doi: 10.1111/j.1365-2435.2010.01698.x – ident: e_1_2_7_75_1 doi: 10.1007/s00468-011-0674-3 – ident: e_1_2_7_13_1 doi: 10.1046/j.1365-2435.2000.00397.x – ident: e_1_2_7_105_1 doi: 10.1146/annurev.ecolsys.33.010802.150452 – ident: e_1_2_7_53_1 doi: 10.1111/j.1365-2745.2006.01186.x – ident: e_1_2_7_35_1 doi: 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2 – ident: e_1_2_7_67_1 doi: 10.1007/s004420050931 – ident: e_1_2_7_97_1 doi: 10.1111/j.1654-1103.2012.01491.x – ident: e_1_2_7_106_1 doi: 10.1046/j.0269-8463.2001.00542.x – ident: e_1_2_7_22_1 doi: 10.1111/j.1469-8137.2007.02137.x – ident: e_1_2_7_55_1 doi: 10.1111/j.1654-1103.2007.tb02529.x – ident: e_1_2_7_16_1 doi: 10.1111/nph.13763 – ident: e_1_2_7_44_1 doi: 10.1071/FP03200 – ident: e_1_2_7_51_1 doi: 10.1016/S0022-5193(85)80288-5 – ident: e_1_2_7_30_1 doi: 10.1038/23251 – ident: e_1_2_7_99_1 doi: 10.2307/3236631 – ident: e_1_2_7_58_1 doi: 10.1111/j.1469-8137.2010.03518.x – ident: e_1_2_7_64_1 doi: 10.1590/1809-43921981114759 – ident: e_1_2_7_93_1 doi: 10.1139/b91-270 – ident: e_1_2_7_46_1 doi: 10.1086/520724 – ident: e_1_2_7_4_1 doi: 10.1371/journal.pone.0130799 – ident: e_1_2_7_49_1 doi: 10.1016/j.foreco.2014.06.039 – ident: e_1_2_7_92_1 doi: 10.1007/s00468-005-0042-2 – ident: e_1_2_7_88_1 doi: 10.1080/17550874.2013.783642 – ident: e_1_2_7_90_1 doi: 10.1111/nph.13798 – ident: e_1_2_7_100_1 doi: 10.1163/22941932-90001369 – ident: e_1_2_7_84_1 doi: 10.1111/j.1365-2745.2005.01030.x – ident: e_1_2_7_17_1 doi: 10.1038/nature13327 – ident: e_1_2_7_34_1 doi: 10.1111/j.1365-2745.2011.01939.x – ident: e_1_2_7_29_1 doi: 10.1038/nature05747 – ident: e_1_2_7_83_1 doi: 10.1038/nature15539 – ident: e_1_2_7_50_1 doi: 10.1111/j.1365-2435.2005.01045.x – reference: 28560791 - New Phytol. 2017 Jul;215(1):12-14 |
SSID | ssj0009562 |
Score | 2.5136805 |
Snippet | Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of species... Summary Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of... Summary Species distributions and assemblage composition may be the result of trait selection through environmental filters. Here, we ask whether filtering of... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113 |
SubjectTerms | Amazonia Architecture Area Brazil Climate Climate change Density Distribution patterns Ecological distribution Ecosystem Efficiency environmental filters Filters Fluid filters forests functional trade‐offs Gravity Habitats Height Hydraulics Hydrology Internet Investment Investments Leaf area Leaves Microenvironments Microhabitat Microhabitats Partitioning plant traits Plateaus Population Dynamics prediction Principal Component Analysis Safety sapwood Species composition species diversity Species Specificity Specific gravity Tissue topographical and hydrological conditions Trees Trees - anatomy & histology Trees - metabolism Trees - physiology tropical forest Valleys Water - metabolism Wood wood anatomy wood specific gravity Xylem - anatomy & histology Xylem - metabolism Xylem - physiology |
Title | The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest |
URI | https://www.jstor.org/stable/90010637 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14508 https://www.ncbi.nlm.nih.gov/pubmed/28369998 https://www.proquest.com/docview/1903787425 https://www.proquest.com/docview/1884165911 https://www.proquest.com/docview/2000502055 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyNBEC5EPHhZ19ea9UErHryMJDPdkw6eVJTgQURcyGFhqH5h2DgTTHJIfr3VPQ_ioiDeBqZ6qOmuqv5qquZrgFOe2MQRLoi6wiUR51ZGKI2JUseFsLzjQ6LvtrhP-3_43UAMVuCi_hem5IdoPrh5zwjx2js4qsmSk-fjZ3JzEX709b1aHhA9xkuEu2lcMzCnPB1UrEK-i6cZ-W4vKtsRPwKa73Fr2HhuN-BvrXLZb_LvfDZV53rxH5vjN9_pJ_yoACm7LC1oE1ZsvgVrVwWBxvk2jMiM2PAlgHQyD1Y49jw3rzgbDTVbLkKwacEISzLjiXirM7TYOJB35hM_zFe_J2yYM2RVQyi7fMEFhRTMGSFnmoodeLq9ebruR9UBDZHmnAKlorRcKo0K0SnPdOZSg5TfmdgQzhGOkxUYsgHTaaNxiuCE9QmS5mmbo3TJLqzmRW73gGnXcUoK2dOKQjdKxFij7Fjd7rqelqoFZ_VKZboiL_dnaIyyOomhqcvC1LXgpBEdl4wdHwnthuVuJHohOU66LTio1z-rvHmSEWhKKLBReGvBcXOb_NAXVzC3xYxkpC_gCto7PpeJA91O3Bb0nF-lbTUKEMxLCayTZmfBQj7XPbt_6IeL318X3Yf12OOR0Gd8AKvT15k9JDQ1VUfBbd4AIigbgw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXyquQtsCCQOrFVbJeO5sDh0KpUloihIKUm7VPNSK1oyYRSv9S_wo_ipn1QylqJS49cLPksTXencc3u-NvAd6J2MUecUHUTXwcCeFkpKS1UepFkjjRoZBI3RaDtP9DfBklozW4rP-FKfkhmgU38owQr8nBaUF6xcvz6Sn6OQKMqqXy2C1_YcE2-3B0gLP7nvPDz8NP_ag6UyAyQqBva6wkpTZKK-U1kXP51CosSSy3mJoTL1Bxi2rbTltZrzEDOsL0RqRtoaSP8bV34C4dIE5E_Qff-QrDb8pryudUpKOKxojahhpNryS_sv_xOmR7FSiHTHe4Ab_rMSobXH7uLeZ6z1z8RR_5nwziI3hYIW62X7rIY1hz-RO497FAVLx8ChP0EzY-C1UI2j8rPDtd2nO1mIwNW91lYfOCIVhmlpiGq0PC2DSwk-Yzeoy292dsnDPFqo5Xtn-mLjBmqpxhaYBD_wyGt_Ghm7CeF7l7Acz4jtcykT2jMTcpqRQ3SnacaXd9z0jdgt3aMjJTsbPTISGTrK7ScKayMFMteNuITktKkuuENoN5NRK9UP3H3Rbs1PaWVeFqliEqjDFyY_xuwZvmNgYa2j1SuSsWKCNphzrB5HizDA98Qryd4Huel7bcKIA4NsVqBDXbDRZ5s-7Z4Fs_XGz9u-hruN8ffj3JTo4Gx9vwgBP4Ck3VO7A-P1-4lwgd5_pVcFkG2S1b9x-Kr3qv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5BWiEupS2FhtJ2W1GJi1GyXjubAwcgjUKpIlRRKTdrnyIi2FEeQuEn8Vf4U51dPxQqkHrh0Jstj63x7jy-8Y6_BdhjoQkt4oKgFdkwYMzwQHCtg9iyKDKs6UKi67box73f7McgGqzAXfkvTM4PUX1wc57h47Vz8LG2S06eji_RzRFfFB2VZ2Zxg_Xa9PC0g5P7jdLu94uTXlBsKRAoxtC1JRaSXCohhbDScXPZWAusSDTVmJkjy1BvjVrrZkNoKzEBGgfpFYsbTHAb4mNX4QWetd02EZ1fdIngN6Yl43PM4kHBYuS6hipNH-S-vP3xMWD7ECf7RNfdgPtyiPL-lquD-UweqNu_2CP_jzF8Da8KvE2Ocgd5AysmfQsvjzPExItNGKGXkOG1r0HQ-klmyeVCT8R8NFRkeY2FzDKCUJloxzNcbBFGxp6bNJ2629zi_pQMUyJI0e9Kjq7FLUZMkRIsDHDk38HFc7zoFtTSLDXvgSjbtJJHvK0kZibBhaBK8KZRjZZtKy7rsF8aRqIKbna3RcgoKWs0nKnEz1Qdvlai45yQ5DGhLW9dlUTb1_5hqw67pbklRbCaJogJQ4zbGL3r8KW6jGHGrR2J1GRzlOFufTrC1Pi0DPVsQrQR4XO2c1OuFEAUG2Mtgprte4N8Wvekf97zBzv_LvoZ1s473eTnaf_sA6xTh7x8R_Uu1GaTufmIuHEmP3mHJZA8s3H_AZgDeV4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+importance+of+hydraulic+architecture+to+the+distribution+patterns+of+trees+in+a+central+Amazonian+forest&rft.jtitle=The+New+phytologist&rft.au=Luiza+H.+M.+Cosme&rft.au=Juliana+Schietti&rft.au=Fl%C3%A1via+R.+C.+Costa&rft.au=Rafael+S.+Oliveira&rft.date=2017-07-01&rft.pub=New+Phytologist+Trust&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=215&rft.issue=1&rft.spage=113&rft.epage=125&rft_id=info:doi/10.1111%2Fnph.14508&rft.externalDocID=90010637 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |