Effective feature learning and fusion of multimodality data using stage‐wise deep neural network for dementia diagnosis

In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 40; no. 3; pp. 1001 - 1016
Main Authors Zhou, Tao, Thung, Kim‐Han, Zhu, Xiaofeng, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable insights into brain abnormalities, while genetic data such as single nucleotide polymorphism (SNP) provide information about a patient's AD risk factors. When these data are used together, the accuracy of AD diagnosis may be improved. However, these data are heterogeneous (e.g., with different data distributions), and have different number of samples (e.g., with far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel three‐stage deep feature learning and fusion framework, where deep neural network is trained stage‐wise. Each stage of the network learns feature representations for different combinations of modalities, via effective training using the maximum number of available samples. Specifically, in the first stage, we learn latent representations (i.e., high‐level features) for each modality independently, so that the heterogeneity among modalities can be partially addressed, and high‐level features from different modalities can be combined in the next stage. In the second stage, we learn joint latent features for each pair of modality combination by using the high‐level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To further increase the number of samples during training, we also use data at multiple scanning time points for each training subject in the dataset. We evaluate the proposed framework using Alzheimer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results show that the proposed framework outperforms other state‐of‐the‐art methods.
AbstractList In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable insights into brain abnormalities, while genetic data such as single nucleotide polymorphism (SNP) provide information about a patient's AD risk factors. When these data are used together, the accuracy of AD diagnosis may be improved. However, these data are heterogeneous (e.g., with different data distributions), and have different number of samples (e.g., with far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel three‐stage deep feature learning and fusion framework, where deep neural network is trained stage‐wise. Each stage of the network learns feature representations for different combinations of modalities, via effective training using the maximum number of available samples. Specifically, in the first stage, we learn latent representations (i.e., high‐level features) for each modality independently, so that the heterogeneity among modalities can be partially addressed, and high‐level features from different modalities can be combined in the next stage. In the second stage, we learn joint latent features for each pair of modality combination by using the high‐level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To further increase the number of samples during training, we also use data at multiple scanning time points for each training subject in the dataset. We evaluate the proposed framework using Alzheimer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results show that the proposed framework outperforms other state‐of‐the‐art methods.
In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable insights into brain abnormalities, while genetic data such as single nucleotide polymorphism (SNP) provide information about a patient's AD risk factors. When these data are used together, the accuracy of AD diagnosis may be improved. However, these data are heterogeneous (e.g., with different data distributions), and have different number of samples (e.g., with far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel three‐stage deep feature learning and fusion framework , where deep neural network is trained stage‐wise. Each stage of the network learns feature representations for different combinations of modalities, via effective training using the maximum number of available samples. Specifically, in the first stage, we learn latent representations (i.e., high‐level features) for each modality independently, so that the heterogeneity among modalities can be partially addressed, and high‐level features from different modalities can be combined in the next stage. In the second stage, we learn joint latent features for each pair of modality combination by using the high‐level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To further increase the number of samples during training, we also use data at multiple scanning time points for each training subject in the dataset. We evaluate the proposed framework using Alzheimer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results show that the proposed framework outperforms other state‐of‐the‐art methods.
In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable insights into brain abnormalities, while genetic data such as single nucleotide polymorphism (SNP) provide information about a patient's AD risk factors. When these data are used together, the accuracy of AD diagnosis may be improved. However, these data are heterogeneous (e.g., with different data distributions), and have different number of samples (e.g., with far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel three-stage deep feature learning and fusion framework, where deep neural network is trained stage-wise. Each stage of the network learns feature representations for different combinations of modalities, via effective training using the maximum number of available samples. Specifically, in the first stage, we learn latent representations (i.e., high-level features) for each modality independently, so that the heterogeneity among modalities can be partially addressed, and high-level features from different modalities can be combined in the next stage. In the second stage, we learn joint latent features for each pair of modality combination by using the high-level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To further increase the number of samples during training, we also use data at multiple scanning time points for each training subject in the dataset. We evaluate the proposed framework using Alzheimer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results show that the proposed framework outperforms other state-of-the-art methods.In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable insights into brain abnormalities, while genetic data such as single nucleotide polymorphism (SNP) provide information about a patient's AD risk factors. When these data are used together, the accuracy of AD diagnosis may be improved. However, these data are heterogeneous (e.g., with different data distributions), and have different number of samples (e.g., with far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel three-stage deep feature learning and fusion framework, where deep neural network is trained stage-wise. Each stage of the network learns feature representations for different combinations of modalities, via effective training using the maximum number of available samples. Specifically, in the first stage, we learn latent representations (i.e., high-level features) for each modality independently, so that the heterogeneity among modalities can be partially addressed, and high-level features from different modalities can be combined in the next stage. In the second stage, we learn joint latent features for each pair of modality combination by using the high-level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To further increase the number of samples during training, we also use data at multiple scanning time points for each training subject in the dataset. We evaluate the proposed framework using Alzheimer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results show that the proposed framework outperforms other state-of-the-art methods.
Author Thung, Kim‐Han
Shen, Dinggang
Zhu, Xiaofeng
Zhou, Tao
AuthorAffiliation 1 Department of Radiology and the Biomedical Research Imaging Center University of North Carolina Chapel Hill North Carolina
2 Department of Brain and Cognitive Engineering Korea University Seoul Republic of Korea
AuthorAffiliation_xml – name: 2 Department of Brain and Cognitive Engineering Korea University Seoul Republic of Korea
– name: 1 Department of Radiology and the Biomedical Research Imaging Center University of North Carolina Chapel Hill North Carolina
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0002-3733-7286
  surname: Zhou
  fullname: Zhou, Tao
  organization: University of North Carolina
– sequence: 2
  givenname: Kim‐Han
  surname: Thung
  fullname: Thung, Kim‐Han
  organization: University of North Carolina
– sequence: 3
  givenname: Xiaofeng
  surname: Zhu
  fullname: Zhu, Xiaofeng
  organization: University of North Carolina
– sequence: 4
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
  email: dgshen@med.unc.edu
  organization: Korea University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30381863$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9uFSEUxolpY__owhcwJG50cVsYYIbZmGhTrUmNG10TGA631Bm4AtObu_MRfEafROq9NbXR1SGc3_flO_mO0F6IARB6RskJJaQ5vTLTScN5Ix-hQ0r6bkFoz_Zu361Y9LyjB-go52tCKBWEPkYHjDBJZcsO0ebcORiKvwHsQJc5AR5Bp-DDEutgsZuzjwFHh6d5LH6KVo--bLDVReO6q1guegk_v_9Y-wzYAqxwgDnpsY6yjukrdjHV_wlC8Rpbr5chZp-foH2nxwxPd_MYfXl3_vnsYnH56f2HszeXi4FzJheyJcbwfhBUCyGstAMznex708gBpGC94axjje2oJKITXDvSCSDStMZZSg07Rq-3vqvZTGCHGqOGU6vkJ502Kmqv_t4Ef6WW8Ua1shWc02rwcmeQ4rcZclGTzwOMow4Q56wa2nQ9l5Lwir54gF7HOYV6XqVaISltBKvU8_uJ_kS5a6UCp1tgSDHnBE4NvuhSi6gB_agoUbe9q9q7-t17Vbx6oLgz_Re7c1_7ETb_B9XF249bxS_glb8N
CitedBy_id crossref_primary_10_1155_2022_3088915
crossref_primary_10_1007_s11063_020_10364_y
crossref_primary_10_1109_TCCN_2020_3023145
crossref_primary_10_1007_s11682_019_00255_9
crossref_primary_10_1016_j_patrec_2019_11_016
crossref_primary_10_1016_j_ejmp_2021_03_008
crossref_primary_10_1007_s41095_020_0199_z
crossref_primary_10_1111_ene_15775
crossref_primary_10_1186_s13040_021_00258_7
crossref_primary_10_1016_j_bspc_2022_104312
crossref_primary_10_1109_JSEN_2024_3483108
crossref_primary_10_1142_S012906572050032X
crossref_primary_10_1016_j_media_2019_101545
crossref_primary_10_1109_JBHI_2020_2986376
crossref_primary_10_1002_widm_1492
crossref_primary_10_3390_brainsci12060751
crossref_primary_10_1109_TMI_2022_3162870
crossref_primary_10_1016_j_media_2025_103503
crossref_primary_10_1080_20479700_2022_2130631
crossref_primary_10_1093_bioinformatics_btab608
crossref_primary_10_1038_s41746_022_00712_8
crossref_primary_10_1063_5_0011697
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_1049_ipr2_12841
crossref_primary_10_1016_j_media_2019_03_006
crossref_primary_10_1109_ACCESS_2022_3221089
crossref_primary_10_1109_TMI_2020_2975344
crossref_primary_10_1007_s11042_020_08795_9
crossref_primary_10_1109_TNSRE_2023_3323432
crossref_primary_10_1016_j_bspc_2020_101962
crossref_primary_10_1016_j_patter_2022_100602
crossref_primary_10_3389_fnagi_2022_812870
crossref_primary_10_1109_TCBB_2022_3199244
crossref_primary_10_1007_s40745_024_00550_3
crossref_primary_10_1145_3492865
crossref_primary_10_1093_braincomms_fcab246
crossref_primary_10_1038_s41598_022_06444_9
crossref_primary_10_1016_j_inffus_2022_12_010
crossref_primary_10_3233_JAD_220021
crossref_primary_10_3390_app10020559
crossref_primary_10_3390_sym13071156
crossref_primary_10_1002_pnp_721
crossref_primary_10_1109_ACCESS_2019_2916557
crossref_primary_10_52294_001c_124518
crossref_primary_10_1109_TNNLS_2023_3282961
crossref_primary_10_1016_j_compbiomed_2022_106418
crossref_primary_10_1016_j_inffus_2024_102690
crossref_primary_10_1109_ACCESS_2019_2913685
crossref_primary_10_1088_2516_1091_acc2fe
crossref_primary_10_3390_app131810470
crossref_primary_10_1016_j_knosys_2021_106849
crossref_primary_10_1080_24725579_2023_2227197
crossref_primary_10_1371_journal_pcbi_1007677
crossref_primary_10_3233_JAD_220539
crossref_primary_10_1371_journal_pone_0282573
crossref_primary_10_1109_ACCESS_2019_2913847
crossref_primary_10_1007_s00521_019_04650_7
crossref_primary_10_1155_2022_6825576
crossref_primary_10_3390_ijerph18105386
crossref_primary_10_1155_2020_5294840
crossref_primary_10_1016_j_jpsychires_2024_02_036
crossref_primary_10_1109_TMI_2019_2913158
crossref_primary_10_1016_j_media_2020_101652
crossref_primary_10_1109_ACCESS_2024_3508271
crossref_primary_10_1016_j_inffus_2024_102342
crossref_primary_10_1016_j_neurobiolaging_2022_10_005
crossref_primary_10_3389_fnimg_2022_981642
crossref_primary_10_1016_j_patcog_2025_111597
crossref_primary_10_3233_JAD_190715
crossref_primary_10_1016_j_bspc_2023_105212
crossref_primary_10_3390_make5020035
crossref_primary_10_1016_j_media_2023_102842
crossref_primary_10_1016_j_cmpb_2019_04_006
crossref_primary_10_1016_j_procbio_2024_05_024
crossref_primary_10_1155_2022_4946154
crossref_primary_10_1016_j_patrec_2020_02_026
crossref_primary_10_1155_2022_4715998
crossref_primary_10_3390_jpm14040421
crossref_primary_10_1016_j_jbi_2021_103863
crossref_primary_10_1109_JBHI_2021_3109301
crossref_primary_10_1007_s10519_024_10177_y
crossref_primary_10_1016_j_compbiomed_2024_109438
crossref_primary_10_1016_j_compbiomed_2024_108869
crossref_primary_10_3390_ijms22157911
crossref_primary_10_1109_ACCESS_2021_3103410
crossref_primary_10_1038_s41598_024_56001_9
crossref_primary_10_1080_24725579_2023_2249487
crossref_primary_10_1109_EMR_2022_3230820
crossref_primary_10_1016_j_neucom_2022_09_097
crossref_primary_10_1053_j_semnuclmed_2021_11_014
crossref_primary_10_1093_braincomms_fcae265
crossref_primary_10_1007_s11042_020_09543_9
crossref_primary_10_1016_j_compmedimag_2020_101748
crossref_primary_10_1016_j_heliyon_2024_e34402
crossref_primary_10_1109_JBHI_2023_3337661
crossref_primary_10_1007_s11042_020_09288_5
crossref_primary_10_1161_CIRCIMAGING_121_012943
crossref_primary_10_1186_s12877_025_05771_6
crossref_primary_10_1109_ACCESS_2019_2907071
crossref_primary_10_1016_j_compbiomed_2024_108635
crossref_primary_10_1115_1_4063954
crossref_primary_10_3390_biomedicines10020315
crossref_primary_10_1016_j_cmpb_2019_105027
crossref_primary_10_1016_j_media_2019_101632
crossref_primary_10_3389_fnagi_2020_603179
crossref_primary_10_1016_j_eswa_2023_119965
crossref_primary_10_1016_j_compmedimag_2021_101873
crossref_primary_10_1007_s11633_022_1361_0
crossref_primary_10_1016_j_media_2021_102189
crossref_primary_10_1016_j_asej_2022_101986
crossref_primary_10_1016_j_compbiomed_2023_107373
crossref_primary_10_1109_ACCESS_2022_3180073
crossref_primary_10_1016_j_phrs_2023_107038
crossref_primary_10_1016_j_media_2019_101630
crossref_primary_10_3389_fninf_2022_843566
crossref_primary_10_1016_j_neulet_2021_136147
crossref_primary_10_1109_ACCESS_2020_3038479
crossref_primary_10_1109_TMI_2020_3022591
crossref_primary_10_1016_j_bspc_2022_104092
crossref_primary_10_1016_j_ipm_2022_103113
crossref_primary_10_1515_em_2021_0047
crossref_primary_10_1109_TIM_2025_3547084
crossref_primary_10_1007_s11042_020_10473_9
crossref_primary_10_1002_alz_14377
crossref_primary_10_1016_j_csbj_2022_11_008
crossref_primary_10_1038_s41598_023_47706_4
crossref_primary_10_3389_fdata_2025_1515341
crossref_primary_10_3233_XST_240083
crossref_primary_10_1007_s11227_022_04665_3
crossref_primary_10_1016_j_eswa_2023_120761
crossref_primary_10_1109_JBHI_2024_3472011
crossref_primary_10_3390_math10050805
crossref_primary_10_3389_fnins_2023_1333725
crossref_primary_10_1109_TCBB_2022_3143900
crossref_primary_10_1109_TCYB_2019_2918495
crossref_primary_10_3390_app11178104
crossref_primary_10_1007_s11227_022_04810_y
crossref_primary_10_1002_ima_23110
crossref_primary_10_1007_s00259_019_04502_5
crossref_primary_10_1016_j_csbj_2021_10_019
crossref_primary_10_1109_JBHI_2022_3214999
crossref_primary_10_1016_j_cmpb_2019_105242
crossref_primary_10_1016_j_jneumeth_2020_108795
crossref_primary_10_1109_TCYB_2023_3344641
crossref_primary_10_3389_fnagi_2025_1532470
crossref_primary_10_1109_JBHI_2024_3442468
crossref_primary_10_1016_j_inffus_2025_103010
crossref_primary_10_1177_1536012119869070
crossref_primary_10_1016_j_patcog_2024_110845
crossref_primary_10_1109_TCYB_2020_3005859
crossref_primary_10_1364_BOE_472106
crossref_primary_10_1016_j_nicl_2021_102860
crossref_primary_10_1038_s41467_022_29637_2
crossref_primary_10_1155_2021_8890513
crossref_primary_10_1109_JBHI_2022_3208517
crossref_primary_10_1109_TMI_2020_3017275
crossref_primary_10_3390_s20205872
crossref_primary_10_1016_j_neuroimage_2021_118586
crossref_primary_10_1016_j_compmedimag_2023_102303
crossref_primary_10_1016_j_artmed_2022_102332
crossref_primary_10_1016_j_media_2020_101694
crossref_primary_10_1109_JPROC_2019_2947272
crossref_primary_10_1007_s44196_023_00225_6
Cites_doi 10.1109/ISBI.2016.7493399
10.1016/j.media.2015.10.008
10.1145/1961189.1961199
10.1371/journal.pone.0022193
10.1038/srep45269
10.1089/rej.2006.9.485
10.1007/978-3-319-46723-8_9
10.1016/j.neuroimage.2014.01.033
10.1016/j.neuroimage.2015.01.048
10.1109/TPAMI.2012.231
10.1016/S1053-8119(18)31550-7
10.1093/brain/119.6.2001
10.1016/j.neurobiolaging.2010.04.022
10.1109/TMI.2002.803111
10.1016/j.neuroimage.2012.03.059
10.1371/journal.pone.0037828
10.1109/TBME.2012.2212278
10.3389/fnins.2014.00229
10.3389/fneur.2014.00071
10.1016/j.neunet.2014.09.003
10.1016/j.neuroimage.2011.09.069
10.1109/42.906424
10.1002/hbm.20160
10.1109/TBME.2014.2372011
10.1016/j.neuroimage.2014.06.077
10.1038/nature08538
10.1016/S0197-4580(99)00107-4
10.1162/0899766042321814
10.1016/j.media.2018.01.002
10.1371/journal.pone.0077810
10.1093/bioinformatics/btm187
10.1016/j.patcog.2013.11.032
10.1016/j.patcog.2018.12.001
10.1002/hbm.23240
10.1016/j.neuroimage.2010.01.042
10.1016/j.jneumeth.2014.09.001
10.1016/j.neurobiolaging.2014.05.040
10.1016/j.media.2017.07.005
10.1007/s11682-013-9262-z
10.1038/nrneurol.2009.217
10.1016/j.nicl.2016.02.019
10.1016/0169-7439(87)80084-9
10.1016/j.neuroimage.2010.06.013
10.1016/j.neuroimage.2013.10.067
10.1212/01.WNL.0000055847.17752.E6
10.1038/ng.3738
10.1007/s00429-013-0687-3
10.1002/hbm.23494
10.1016/j.neuroimage.2010.01.005
10.1016/j.jalz.2010.03.013
10.1016/j.neuroimage.2011.10.003
10.1609/aaai.v32i1.11730
10.1002/jmri.21049
10.1016/j.neuroimage.2014.10.002
10.1016/j.nicl.2016.11.025
10.1001/archneurol.2010.108
10.1212/WNL.0b013e3181d7d8cb
10.1093/bioinformatics/bts228
10.1016/j.jalz.2016.03.001
10.1007/s00429-015-1140-6
10.1038/ng1847
10.1038/s41598-017-06509-0
10.2967/jnumed.107.045385
10.1016/j.patcog.2011.09.011
10.1109/TBME.2015.2466616
10.1109/42.668698
10.1002/hbm.23711
ContentType Journal Article
Copyright 2018 Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.24428
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
Technology Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Zhou et al
EISSN 1097-0193
EndPage 1016
ExternalDocumentID PMC6865441
30381863
10_1002_hbm_24428
HBM24428
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Foundation for the National Institutes of Health
  funderid: EB022880; AG053867; EB006733; EB008374; AG041721
– fundername: Foundation for the National Institutes of Health
  grantid: EB022880
– fundername: Foundation for the National Institutes of Health
  grantid: EB008374
– fundername: Foundation for the National Institutes of Health
  grantid: AG041721
– fundername: Foundation for the National Institutes of Health
  grantid: AG053867
– fundername: Foundation for the National Institutes of Health
  grantid: EB006733
– fundername: ;
  grantid: EB022880; AG053867; EB006733; EB008374; AG041721
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
LW6
ID FETCH-LOGICAL-c4438-860bb49c51a555d8dc3b7899b28ce8539b43732d71805754af075e08b6bfd11b3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:18:27 EDT 2025
Fri Jul 11 04:05:19 EDT 2025
Wed Aug 13 04:29:32 EDT 2025
Wed Feb 19 02:30:42 EST 2025
Tue Jul 01 01:10:52 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
Wed Jan 22 16:59:25 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords mild cognitive impairment (MCI)
deep learning
Alzheimer's disease (AD)
multimodality data fusion
Language English
License 2018 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4438-860bb49c51a555d8dc3b7899b28ce8539b43732d71805754af075e08b6bfd11b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Foundation for the National Institutes of Health, Grant/Award Number: EB022880, AG053867, EB006733, EB008374, AG041721
ORCID 0000-0002-3733-7286
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.24428
PMID 30381863
PQID 2165811253
PQPubID 996345
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865441
proquest_miscellaneous_2127948804
proquest_journals_2165811253
pubmed_primary_30381863
crossref_citationtrail_10_1002_hbm_24428
crossref_primary_10_1002_hbm_24428
wiley_primary_10_1002_hbm_24428_HBM24428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 15, 2019
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 02
  year: 2019
  text: February 15, 2019
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2012; 61
2017; 7
2017; 42
1987; 2
2015; 36
2010; 53
2013; 28
2015; 104
2017; 49
2006; 38
2015; 220
2016; 221
2011; 56
2012; 59
2005; 26
2018; 45
2016; 37
2010; 67
1998; 17
2014; 5
2017; 38
2015; 44
2008; 27
2013; 60
2012; 28
2014; 9
2014; 8
2007; 23
2010; 74
2010; 6
2014; 237
2010; 31
2014; 91
2011; 2
2012
2011
2010
2000; 21
2006; 9
2014; 47
2006
2011; 6
2016; 12
2014; 87
2001; 20
2016; 11
2013; 35
2004; 16
2015; 62
2015; 61
2015; 111
2008; 49
2002; 21
2017; 13
2018
2016; 63
2017
2016
2009; 461
2003; 60
1998; 7
2012; 7
2012; 45
1996; 119
2010; 50
2014; 101
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
(e_1_2_9_77_1) 2017
e_1_2_9_71_1
(e_1_2_9_18_1) 2006
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Barshan E. (e_1_2_9_5_1) 2015; 44
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
(e_1_2_9_63_1) 2017
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
(e_1_2_9_76_1) 2017
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – year: 2011
– volume: 221
  start-page: 3979
  year: 2016
  end-page: 3995
  article-title: Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans
  publication-title: Brain Structure and Function
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  end-page: 691
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– start-page: 1
  year: 2006
  end-page: 30
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine learning research
– year: 2010
  article-title: Efficient and robust feature selection via joint ℓ2, 1‐norms minimization
  publication-title: Advances in Neural Information Processing Systems
– volume: 111
  start-page: 562
  year: 2015
  end-page: 579
  article-title: Standardized evaluation of algorithms for computer‐aided diagnosis of dementia based on structural MRI: The CADDementia challenge
  publication-title: NeuroImage
– volume: 119
  start-page: 2001
  issue: 6
  year: 1996
  end-page: 2007
  article-title: Presymptomatic hippocampal atrophy in Alzheimer's disease: A longitudinal MRI study
  publication-title: Brain
– volume: 220
  start-page: 841
  issue: 2
  year: 2015
  end-page: 859
  article-title: Latent feature representation with stacked auto‐encoder for AD/MCI diagnosis
  publication-title: Brain Structure and Function
– start-page: 160
  year: 2017
  end-page: 168
– volume: 45
  start-page: 68
  year: 2018
  end-page: 82
  article-title: Conversion and time‐to‐conversion predictions of mild cognitive impairment using low‐rank affinity pursuit denoising and matrix completion
  publication-title: Medical Image Analysis
– volume: 16
  start-page: 2639
  issue: 12
  year: 2004
  end-page: 2664
  article-title: Canonical correlation analysis: An overview with application to learning methods
  publication-title: Neural Computation
– volume: 49
  start-page: 125
  issue: 1
  year: 2017
  end-page: 130
  article-title: Multiethnic genome‐wide meta‐analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation
  publication-title: Nature Genetics
– volume: 7
  start-page: 6530
  issue: 1
  year: 2017
  article-title: Hybrid high‐order functional connectivity networks using resting‐state functional MRI for mild cognitive impairment diagnosis
  publication-title: Scientific Reports
– volume: 26
  start-page: 231
  issue: 4
  year: 2005
  end-page: 239
  article-title: Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study
  publication-title: Human Brain Mapping
– year: 2018
– volume: 38
  start-page: 5019
  issue: 10
  year: 2017
  end-page: 5034
  article-title: Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification
  publication-title: Human Brain Mapping
– volume: 28
  start-page: i127
  issue: 12
  year: 2012
  end-page: i136
  article-title: Identifying disease sensitive and quantitative trait‐relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning
  publication-title: Bioinformatics
– volume: 61
  start-page: 622
  issue: 3
  year: 2012
  end-page: 632
  article-title: Multi‐source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data
  publication-title: NeuroImage
– start-page: 132
  year: 2017
  end-page: 140
– volume: 31
  start-page: 1429
  issue: 8
  year: 2010
  end-page: 1442
  article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers
  publication-title: Neurobiology of Aging
– volume: 13
  start-page: 470
  year: 2017
  end-page: 482
  article-title: Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry
  publication-title: NeuroImage: Clinical
– volume: 74
  start-page: 1136
  issue: 14
  year: 2010
  end-page: 1142
  article-title: When, where, and how the corpus callosum changes in MCI and AD a multimodal MRI study
  publication-title: Neurology
– volume: 38
  start-page: 1933
  issue: 4
  year: 2017
  end-page: 1940
  article-title: Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease
  publication-title: Human Brain Mapping
– volume: 47
  start-page: 1800
  issue: 5
  year: 2014
  end-page: 1812
  article-title: Human activity recognition using multi‐features and multiple kernel learning
  publication-title: Pattern Recognition
– volume: 49
  start-page: 390
  issue: 3
  year: 2008
  end-page: 398
  article-title: Multicenter standardized 18F‐FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias
  publication-title: Journal of Nuclear Medicine
– volume: 59
  start-page: 895
  issue: 2
  year: 2012
  end-page: 907
  article-title: Multi‐modal multi‐task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
  publication-title: NeuroImage
– volume: 2
  start-page: 37
  issue: 1–3
  year: 1987
  end-page: 52
  article-title: Principal component analysis
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 23
  start-page: i125
  issue: 13
  year: 2007
  end-page: i132
  article-title: Kernel‐based data fusion for gene prioritization
  publication-title: Bioinformatics
– volume: 35
  start-page: 1915
  issue: 8
  year: 2013
  end-page: 1929
  article-title: Learning hierarchical features for scene labeling
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  article-title: A survey on deep learning in medical image analysis
  publication-title: Medical Image Analysis
– volume: 62
  start-page: 1132
  issue: 4
  year: 2015
  end-page: 1140
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 45
  start-page: 2085
  issue: 6
  year: 2012
  end-page: 2100
  article-title: Model sparsity and brain pattern interpretation of classification models in neuroimaging
  publication-title: Pattern Recognition
– volume: 8
  year: 2014
  article-title: Deep learning for neuroimaging: A validation study
  publication-title: Frontiers in Neuroscience
– volume: 6
  start-page: e22193
  year: 2011
  article-title: Age Correction in Dementia–Matching to a Healthy brain
  publication-title: PLoS One
– volume: 21
  start-page: 19
  issue: 1
  year: 2000
  end-page: 26
  article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non‐demented elderly predict decline to Alzheimer's disease
  publication-title: Neurobiology of Aging
– volume: 36
  start-page: S91
  year: 2015
  end-page: S102
  article-title: Thickness network features for prognostic applications in dementia
  publication-title: Neurobiology of Aging
– volume: 20
  start-page: 45
  issue: 1
  year: 2001
  end-page: 57
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm
  publication-title: IEEE Transactions on Medical Imaging
– volume: 6
  start-page: 265
  issue: 3
  year: 2010
  end-page: 273
  article-title: Alzheimer's disease neuroimaging initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans
  publication-title: Alzheimer's & Dementia
– volume: 21
  start-page: 1421
  issue: 11
  year: 2002
  end-page: 1439
  article-title: HAMMER: Hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Transactions on Medical Imaging
– volume: 7
  year: 2017
  article-title: A hierarchical feature and sample selection framework and its application for Alzheimer's disease diagnosis
  publication-title: Scientific Reports
– volume: 37
  start-page: 3282
  issue: 9
  year: 2016
  end-page: 3296
  article-title: High‐order resting‐state functional connectivity network for MCI classification
  publication-title: Human Brain Mapping
– volume: 60
  start-page: 1374
  issue: 8
  year: 2003
  end-page: 1377
  article-title: Mild cognitive impairment can FDG‐PET predict who is to rapidly convert to Alzheimer's disease?
  publication-title: Neurology
– volume: 60
  start-page: 164
  issue: 1
  year: 2013
  end-page: 168
  article-title: Machine learning‐based method for personalized and cost‐effective detection of Alzheimer's disease
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 17
  start-page: 87
  issue: 1
  year: 1998
  end-page: 97
  article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data
  publication-title: IEEE Transactions on Medical Imaging
– volume: 53
  start-page: 1051
  issue: 3
  year: 2010
  end-page: 1063
  article-title: Whole genome association study of brain‐wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort
  publication-title: NeuroImage
– volume: 38
  start-page: 205
  year: 2017
  end-page: 214
  article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis
  publication-title: Medical Image Analysis
– volume: 7
  year: 1998
  article-title: 3D anatomical atlas of the human brain
  publication-title: NeuroImage
– volume: 38
  start-page: 904
  issue: 8
  year: 2006
  end-page: 909
  article-title: Principal components analysis corrects for stratification in genome‐wide association studies
  publication-title: Nature Genetics
– year: 2016
– volume: 461
  start-page: 916
  issue: 7266
  year: 2009
  end-page: 922
  article-title: Multimodal techniques for diagnosis and prognosis of Alzheimer's disease
  publication-title: Nature
– volume: 12
  start-page: 459
  issue: 4
  year: 2016
  end-page: 509
  article-title: 2016 Alzheimer's disease facts and figures
  publication-title: Alzheimer's & Dementia
– volume: 44
  start-page: 49
  year: 2015
  end-page: 59
  article-title: Stage‐wise training: An improved feature learning strategy for deep models. Feature extraction: Modern questions and challenges
  publication-title: Proceedings of Machine Learning Research
– volume: 91
  start-page: 386
  year: 2014
  end-page: 400
  article-title: Neurodegenerative disease diagnosis using incomplete multi‐modality data via matrix shrinkage and completion
  publication-title: NeuroImage
– year: 2012
– volume: 7
  issue: 5
  year: 2012
  article-title: Resting‐state multi‐spectrum functional connectivity networks for identification of MCI patients
  publication-title: PloS one
– volume: 56
  start-page: 766
  issue: 2
  year: 2011
  end-page: 781
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database
  publication-title: NeuroImage
– volume: 28
  year: 2013
  article-title: Using deep learning to enhance cancer diagnosis and classification
  publication-title: Proceedings of the International Conference on Machine Learning
– volume: 5
  year: 2014
  article-title: Three‐class differential diagnosis among Alzheimer disease, frontotemporal dementia, and controls
  publication-title: Frontiers in Neurology
– volume: 8
  start-page: 183
  issue: 2
  year: 2014
  end-page: 207
  article-title: Genetic analysis of quantitative phenotypes in AD and MCI: Imaging, cognition and biomarkers
  publication-title: Brain Imaging and Behavior
– volume: 87
  start-page: 96
  year: 2014
  end-page: 110
  article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging
  publication-title: NeuroImage
– volume: 237
  start-page: 69
  year: 2014
  end-page: 78
  article-title: Sparse models for correlative and integrative analysis of imaging and genetic data
  publication-title: Journal of Neuroscience Methods
– volume: 50
  start-page: 883
  issue: 3
  year: 2010
  end-page: 892
  article-title: Estimating the age of healthy subjects from T 1‐weighted MRI scans using kernel methods: Exploring the influence of various parameters
  publication-title: NeuroImage
– volume: 59
  start-page: 2187
  issue: 3
  year: 2012
  end-page: 2195
  article-title: Discriminative analysis of early Alzheimer's disease using multi‐modal imaging and multi‐level characterization with multi‐classifier (M3)
  publication-title: NeuroImage
– volume: 9
  start-page: 485
  issue: 4
  year: 2006
  end-page: 493
  article-title: VEGF gene and phenotype relation with Alzheimer's disease and mild cognitive impairment
  publication-title: Rejuvenation Research
– volume: 9
  issue: 1
  year: 2014
  article-title: Knowledge‐guided robust MRI brain extraction for diverse large‐scale neuroimaging studies on humans and non‐human primates
  publication-title: PLoS One
– year: 2017
– volume: 6
  start-page: 78
  issue: 2
  year: 2010
  end-page: 87
  article-title: The use of PET in Alzheimer disease
  publication-title: Nature Reviews Neurology
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Networks
– volume: 67
  start-page: 677
  issue: 6
  year: 2010
  end-page: 685
  article-title: Genetic variation and neuroimaging measures in Alzheimer disease
  publication-title: Archives of Neurology
– year: 2006
  article-title: Laplacian score for feature selection
  publication-title: Advances in Neural Information Processing Systems
– year: 2018
  article-title: Brain‐wide genome‐wide association study for Alzheimer's disease via joint projection learning and sparse regression model
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 11
  start-page: 435
  year: 2016
  end-page: 449
  article-title: Differential diagnosis of neurodegenerative diseases using structural MRI data
  publication-title: NeuroImage: Clinical
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  article-title: Machine learning framework for early MRI‐based Alzheimer's conversion prediction in MCI subjects
  publication-title: NeuroImage
– volume: 101
  start-page: 569
  year: 2014
  end-page: 582
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
– volume: 63
  start-page: 607
  issue: 3
  year: 2016
  end-page: 618
  article-title: Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification
  publication-title: IEEE Transactions on Biomedical Engineering
– ident: e_1_2_9_75_1
  doi: 10.1109/ISBI.2016.7493399
– ident: e_1_2_9_80_1
  doi: 10.1016/j.media.2015.10.008
– ident: e_1_2_9_8_1
  doi: 10.1145/1961189.1961199
– ident: e_1_2_9_20_1
  doi: 10.1371/journal.pone.0022193
– ident: e_1_2_9_3_1
  doi: 10.1038/srep45269
– ident: e_1_2_9_12_1
  doi: 10.1089/rej.2006.9.485
– ident: e_1_2_9_42_1
  doi: 10.1007/978-3-319-46723-8_9
– volume-title: Deep learning for medical image analysis
  year: 2017
  ident: e_1_2_9_76_1
– ident: e_1_2_9_60_1
  doi: 10.1016/j.neuroimage.2014.01.033
– ident: e_1_2_9_7_1
  doi: 10.1016/j.neuroimage.2015.01.048
– ident: e_1_2_9_23_1
  doi: 10.1109/TPAMI.2012.231
– ident: e_1_2_9_30_1
  doi: 10.1016/S1053-8119(18)31550-7
– ident: e_1_2_9_24_1
  doi: 10.1093/brain/119.6.2001
– ident: e_1_2_9_31_1
  doi: 10.1016/j.neurobiolaging.2010.04.022
– ident: e_1_2_9_52_1
  doi: 10.1109/TMI.2002.803111
– ident: e_1_2_9_70_1
  doi: 10.1016/j.neuroimage.2012.03.059
– ident: e_1_2_9_78_1
– ident: e_1_2_9_67_1
  doi: 10.1371/journal.pone.0037828
– start-page: 1
  year: 2006
  ident: e_1_2_9_18_1
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine learning research
– ident: e_1_2_9_21_1
  doi: 10.1109/TBME.2012.2212278
– ident: e_1_2_9_44_1
  doi: 10.3389/fnins.2014.00229
– ident: e_1_2_9_46_1
  doi: 10.3389/fneur.2014.00071
– ident: e_1_2_9_51_1
  doi: 10.1016/j.neunet.2014.09.003
– ident: e_1_2_9_71_1
  doi: 10.1016/j.neuroimage.2011.09.069
– ident: e_1_2_9_72_1
  doi: 10.1109/42.906424
– ident: e_1_2_9_49_1
  doi: 10.1002/hbm.20160
– ident: e_1_2_9_35_1
  doi: 10.1109/TBME.2014.2372011
– ident: e_1_2_9_39_1
– ident: e_1_2_9_58_1
  doi: 10.1016/j.neuroimage.2014.06.077
– ident: e_1_2_9_43_1
  doi: 10.1038/nature08538
– ident: e_1_2_9_14_1
  doi: 10.1016/S0197-4580(99)00107-4
– ident: e_1_2_9_26_1
  doi: 10.1162/0899766042321814
– ident: e_1_2_9_62_1
  doi: 10.1016/j.media.2018.01.002
– ident: e_1_2_9_66_1
  doi: 10.1371/journal.pone.0077810
– ident: e_1_2_9_17_1
  doi: 10.1093/bioinformatics/btm187
– ident: e_1_2_9_2_1
  doi: 10.1016/j.patcog.2013.11.032
– start-page: 132
  volume-title: International Workshop on Machine Learning in Medical Imaging
  year: 2017
  ident: e_1_2_9_77_1
– ident: e_1_2_9_57_1
– ident: e_1_2_9_69_1
  doi: 10.1016/j.patcog.2018.12.001
– ident: e_1_2_9_9_1
  doi: 10.1002/hbm.23240
– ident: e_1_2_9_53_1
  doi: 10.1016/j.neuroimage.2010.01.042
– ident: e_1_2_9_33_1
  doi: 10.1016/j.jneumeth.2014.09.001
– ident: e_1_2_9_47_1
  doi: 10.1016/j.neurobiolaging.2014.05.040
– ident: e_1_2_9_34_1
  doi: 10.1016/j.media.2017.07.005
– ident: e_1_2_9_54_1
  doi: 10.1007/s11682-013-9262-z
– ident: e_1_2_9_22_1
– ident: e_1_2_9_41_1
  doi: 10.1038/nrneurol.2009.217
– ident: e_1_2_9_32_1
  doi: 10.1016/j.nicl.2016.02.019
– ident: e_1_2_9_68_1
  doi: 10.1016/0169-7439(87)80084-9
– ident: e_1_2_9_15_1
  doi: 10.1016/j.neuroimage.2010.06.013
– ident: e_1_2_9_27_1
  doi: 10.1016/j.neuroimage.2013.10.067
– ident: e_1_2_9_11_1
  doi: 10.1212/01.WNL.0000055847.17752.E6
– ident: e_1_2_9_28_1
– ident: e_1_2_9_13_1
  doi: 10.1038/ng.3738
– ident: e_1_2_9_59_1
  doi: 10.1007/s00429-013-0687-3
– ident: e_1_2_9_38_1
  doi: 10.1002/hbm.23494
– ident: e_1_2_9_25_1
  doi: 10.1016/j.neuroimage.2010.01.005
– ident: e_1_2_9_50_1
  doi: 10.1016/j.jalz.2010.03.013
– ident: e_1_2_9_16_1
  doi: 10.1016/j.neuroimage.2011.10.003
– ident: e_1_2_9_74_1
  doi: 10.1609/aaai.v32i1.11730
– ident: e_1_2_9_29_1
  doi: 10.1002/jmri.21049
– ident: e_1_2_9_36_1
  doi: 10.1016/j.neuroimage.2014.10.002
– ident: e_1_2_9_56_1
  doi: 10.1016/j.nicl.2016.11.025
– ident: e_1_2_9_40_1
– ident: e_1_2_9_6_1
  doi: 10.1001/archneurol.2010.108
– ident: e_1_2_9_19_1
  doi: 10.1212/WNL.0b013e3181d7d8cb
– ident: e_1_2_9_65_1
  doi: 10.1093/bioinformatics/bts228
– ident: e_1_2_9_4_1
  doi: 10.1016/j.jalz.2016.03.001
– ident: e_1_2_9_61_1
  doi: 10.1007/s00429-015-1140-6
– volume: 44
  start-page: 49
  year: 2015
  ident: e_1_2_9_5_1
  article-title: Stage‐wise training: An improved feature learning strategy for deep models. Feature extraction: Modern questions and challenges
  publication-title: Proceedings of Machine Learning Research
– ident: e_1_2_9_45_1
  doi: 10.1038/ng1847
– ident: e_1_2_9_73_1
  doi: 10.1038/s41598-017-06509-0
– ident: e_1_2_9_37_1
  doi: 10.2967/jnumed.107.045385
– start-page: 160
  volume-title: Deep learning in medical image analysis and multimodal learning for clinical decision support
  year: 2017
  ident: e_1_2_9_63_1
– ident: e_1_2_9_48_1
  doi: 10.1016/j.patcog.2011.09.011
– ident: e_1_2_9_79_1
  doi: 10.1109/TBME.2015.2466616
– ident: e_1_2_9_55_1
  doi: 10.1109/42.668698
– ident: e_1_2_9_64_1
– ident: e_1_2_9_10_1
  doi: 10.1002/hbm.23711
SSID ssj0011501
Score 2.6402805
Snippet In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1001
SubjectTerms Abnormalities
Aged
Aging
Alzheimer's disease
Alzheimer's disease (AD)
Artificial neural networks
Brain
Cognitive ability
Cognitive Dysfunction - diagnostic imaging
Cognitive Dysfunction - genetics
Deep Learning
Dementia
Dementia - diagnostic imaging
Dementia - genetics
Dementia disorders
Diagnosis
Diagnostic systems
Female
Gene polymorphism
Heterogeneity
Humans
Machine learning
Magnetic resonance imaging
Male
Medical imaging
Middle Aged
mild cognitive impairment (MCI)
Multimodal Imaging - methods
multimodality data fusion
Neurodegenerative diseases
Neuroimaging
Neuroimaging - methods
Neurology
Polymorphism
Polymorphism, Single Nucleotide
Positron emission tomography
Representations
Risk analysis
Risk factors
Single-nucleotide polymorphism
Training
Title Effective feature learning and fusion of multimodality data using stage‐wise deep neural network for dementia diagnosis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24428
https://www.ncbi.nlm.nih.gov/pubmed/30381863
https://www.proquest.com/docview/2165811253
https://www.proquest.com/docview/2127948804
https://pubmed.ncbi.nlm.nih.gov/PMC6865441
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL2a9jDtBcY2oGMgD02Il3SNY-dDPA3EVE0qD9Mm7QEpsmO7q6DpRFuh8cRP2G_kl3CvnQTKhoR4i5obxUnvx7F9ci7Aocud0SLOI-syGwlps0hzlUWKtK-M5Db27YBGH9LhhTi9lJdr8Kb9FiboQ3QLbhQZPl9TgCs9P_olGnqlp32sTZw-9CWuFgGis046ioCOn2xhiY0KzMCtqtCAH3VXrtaiOwDzLk_yd_zqC9DJQ_jYDj3wTj71lwvdr779oer4n8-2BQ8aYMqOgyc9gjVbb8POcY2T8ukNe8U8VdSvwW_DxqjZkd-BmyB_jDmTOetFQlnTiGLMVG2YW9JyHJs55qmL05nxwJ8RM5UR6X7MEJ-O7Y_vt18nc8uMtdeMRDZxLHWgqDPE1fi75zUpZgI3cDLfhYuT9-fvhlHTziGqhMC0mqcDrUVRyVhJKU1uqkRnON3TPKfeqUmhSWaJG6yWBCKFcghn7CDXqXYmjnXyGNbrWW2fAkMjGdvKGZNxUZGgjdZJMVAqo21Ya3rwuv1jy6rROqeWG5_LoNLMS3zDpX_DPXjZmV4HgY_7jPZb7yibGJ-XPEb0hnBVJj046E5jdNKWi6rtbEk2HBMe5kjRgyfBmbq7JH6TNsWrsxU36wxI-Xv1TD258grgaZ5S7zh8TO9Ffx94OXw78gd7_276DDYRFRZETY_lPqwvviztc0ReC_3Ch9hPnZ4tRQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQwJeuGzACgMMQoiXdI1j5yLxMhBTgXUPaJP2giI7truKNZ1oKzSe-An8Rn4J59hJoAwkxFvUnChOei6f7S_fAXjqcme0iPPIusxGQtos0lxlkSLtKyO5jX07oNFBOjwSb4_l8Rq8aL-FCfoQ3YIbRYbP1xTgtCC981M19ERP-1iceH4JLlNHbz-het-JRxHU8dMtLLJRgTm41RUa8J3u0tVqdAFiXmRK_opgfQnauwEf2sEH5snH_nKh-9WX33Qd__fpbsL1Bpuy3eBMt2DN1huwuVvjvHx6zp4xzxb1y_AbcGXUbMpvwnlQQMa0yZz1OqGs6UUxZqo2zC1pRY7NHPPsxenMeOzPiJzKiHc_ZghRx_b712-fJ3PLjLVnjHQ2cSx1YKkzhNb4u6c2KWYCPXAyvw1He68PXw2jpqNDVAmBmTVPB1qLopKxklKa3FSJznDGp3lO7VOTQpPSEjdYMAlHCuUQ0dhBrlPtTBzr5A6s17PabgFDIxnbyhmTcVGRpo3WSTFQKqOdWGt68Lz9Z8uqkTunrhunZRBq5iW-4dK_4R486UzPgsbHn4y2W_comzCflzxGAIeIVSY9eNydxgClXRdV29mSbDjmPEyTogd3gzd1d0n8Pm2KV2crftYZkPj36pl6cuJFwNM8pfZx-Jjejf4-8HL4cuQP7v276SO4Ojwc7Zf7bw7e3YdrCBILYqrHchvWF5-W9gECsYV-6OPtB0P0MWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ5p44bLBKAwwCCFe0iWOnTjiaTCqcumEEJP2gBTFsd1V0LSirdB44ifwG_klnONcoAwkxFvUnChOei6f7S_fAXjolDNaRCqwLrWBkDYNNC_SoCDtKyO5jXw7oNFRMjwWL0_kyQY8ab-FqfUhugU3igyfrynA58bt_xQNPdXTPtYmri7ARZGEilz68G2nHUVIx8-2sMYGGabgVlYo5PvdpevF6BzCPE-U_BXA-go0uALv27HXxJMP_dVS98svv8k6_ufDXYXLDTJlB7UrXYMNW23DzkGFs_LpGXvEPFfUL8Jvw9ao2ZLfgbNa_xiTJnPWq4SyphPFmBWVYW5F63Fs5pjnLk5nxiN_RtRURqz7MUOAOrbfv377PFlYZqydM1LZxLFUNUedIbDG3z2xqWCmJgdOFtfhePD83bNh0PRzCEohMK-qJNRaZKWMCimlUaaMdYrzPc0VNU-NM006S9xguSQUKQqHeMaGSifamSjS8Q3YrGaVvQkMjWRkS2dMykVJijZax1lYFCntw1rTg8ftH5uXjdg59dz4mNcyzTzHN5z7N9yDB53pvFb4-JPRXusdeRPki5xHCN8Qr8q4B_e70xietOdSVHa2IhuOGQ-TpOjBbu1M3V1iv0ub4NXpmpt1BiT9vX6mmpx6CfBEJdQ8Dh_Te9HfB54Pn478wa1_N70HW28OB_nrF0evbsMlRIgZ0dQjuQeby08rewdR2FLf9dH2A7ZLMBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+feature+learning+and+fusion+of+multimodality+data+using+stage%E2%80%90wise+deep+neural+network+for+dementia+diagnosis&rft.jtitle=Human+brain+mapping&rft.au=Zhou%2C+Tao&rft.au=Thung%2C+Kim%E2%80%90Han&rft.au=Zhu%2C+Xiaofeng&rft.au=Shen%2C+Dinggang&rft.date=2019-02-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=40&rft.issue=3&rft.spage=1001&rft.epage=1016&rft_id=info:doi/10.1002%2Fhbm.24428&rft.externalDBID=10.1002%252Fhbm.24428&rft.externalDocID=HBM24428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon