Effective feature learning and fusion of multimodality data using stage‐wise deep neural network for dementia diagnosis
In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable...
Saved in:
Published in | Human brain mapping Vol. 40; no. 3; pp. 1001 - 1016 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable insights into brain abnormalities, while genetic data such as single nucleotide polymorphism (SNP) provide information about a patient's AD risk factors. When these data are used together, the accuracy of AD diagnosis may be improved. However, these data are heterogeneous (e.g., with different data distributions), and have different number of samples (e.g., with far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel three‐stage deep feature learning and fusion framework, where deep neural network is trained stage‐wise. Each stage of the network learns feature representations for different combinations of modalities, via effective training using the maximum number of available samples. Specifically, in the first stage, we learn latent representations (i.e., high‐level features) for each modality independently, so that the heterogeneity among modalities can be partially addressed, and high‐level features from different modalities can be combined in the next stage. In the second stage, we learn joint latent features for each pair of modality combination by using the high‐level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To further increase the number of samples during training, we also use data at multiple scanning time points for each training subject in the dataset. We evaluate the proposed framework using Alzheimer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results show that the proposed framework outperforms other state‐of‐the‐art methods. |
---|---|
AbstractList | In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable insights into brain abnormalities, while genetic data such as single nucleotide polymorphism (SNP) provide information about a patient's AD risk factors. When these data are used together, the accuracy of AD diagnosis may be improved. However, these data are heterogeneous (e.g., with different data distributions), and have different number of samples (e.g., with far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel three‐stage deep feature learning and fusion framework, where deep neural network is trained stage‐wise. Each stage of the network learns feature representations for different combinations of modalities, via effective training using the maximum number of available samples. Specifically, in the first stage, we learn latent representations (i.e., high‐level features) for each modality independently, so that the heterogeneity among modalities can be partially addressed, and high‐level features from different modalities can be combined in the next stage. In the second stage, we learn joint latent features for each pair of modality combination by using the high‐level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To further increase the number of samples during training, we also use data at multiple scanning time points for each training subject in the dataset. We evaluate the proposed framework using Alzheimer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results show that the proposed framework outperforms other state‐of‐the‐art methods. In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable insights into brain abnormalities, while genetic data such as single nucleotide polymorphism (SNP) provide information about a patient's AD risk factors. When these data are used together, the accuracy of AD diagnosis may be improved. However, these data are heterogeneous (e.g., with different data distributions), and have different number of samples (e.g., with far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel three‐stage deep feature learning and fusion framework , where deep neural network is trained stage‐wise. Each stage of the network learns feature representations for different combinations of modalities, via effective training using the maximum number of available samples. Specifically, in the first stage, we learn latent representations (i.e., high‐level features) for each modality independently, so that the heterogeneity among modalities can be partially addressed, and high‐level features from different modalities can be combined in the next stage. In the second stage, we learn joint latent features for each pair of modality combination by using the high‐level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To further increase the number of samples during training, we also use data at multiple scanning time points for each training subject in the dataset. We evaluate the proposed framework using Alzheimer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results show that the proposed framework outperforms other state‐of‐the‐art methods. In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable insights into brain abnormalities, while genetic data such as single nucleotide polymorphism (SNP) provide information about a patient's AD risk factors. When these data are used together, the accuracy of AD diagnosis may be improved. However, these data are heterogeneous (e.g., with different data distributions), and have different number of samples (e.g., with far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel three-stage deep feature learning and fusion framework, where deep neural network is trained stage-wise. Each stage of the network learns feature representations for different combinations of modalities, via effective training using the maximum number of available samples. Specifically, in the first stage, we learn latent representations (i.e., high-level features) for each modality independently, so that the heterogeneity among modalities can be partially addressed, and high-level features from different modalities can be combined in the next stage. In the second stage, we learn joint latent features for each pair of modality combination by using the high-level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To further increase the number of samples during training, we also use data at multiple scanning time points for each training subject in the dataset. We evaluate the proposed framework using Alzheimer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results show that the proposed framework outperforms other state-of-the-art methods.In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal status, Mild Cognitive Impairment (MCI), from normal aging subjects. Multimodality neuroimaging data such as MRI and PET provide valuable insights into brain abnormalities, while genetic data such as single nucleotide polymorphism (SNP) provide information about a patient's AD risk factors. When these data are used together, the accuracy of AD diagnosis may be improved. However, these data are heterogeneous (e.g., with different data distributions), and have different number of samples (e.g., with far less number of PET samples than the number of MRI or SNPs). Thus, learning an effective model using these data is challenging. To this end, we present a novel three-stage deep feature learning and fusion framework, where deep neural network is trained stage-wise. Each stage of the network learns feature representations for different combinations of modalities, via effective training using the maximum number of available samples. Specifically, in the first stage, we learn latent representations (i.e., high-level features) for each modality independently, so that the heterogeneity among modalities can be partially addressed, and high-level features from different modalities can be combined in the next stage. In the second stage, we learn joint latent features for each pair of modality combination by using the high-level features learned from the first stage. In the third stage, we learn the diagnostic labels by fusing the learned joint latent features from the second stage. To further increase the number of samples during training, we also use data at multiple scanning time points for each training subject in the dataset. We evaluate the proposed framework using Alzheimer's disease neuroimaging initiative (ADNI) dataset for AD diagnosis, and the experimental results show that the proposed framework outperforms other state-of-the-art methods. |
Author | Thung, Kim‐Han Shen, Dinggang Zhu, Xiaofeng Zhou, Tao |
AuthorAffiliation | 1 Department of Radiology and the Biomedical Research Imaging Center University of North Carolina Chapel Hill North Carolina 2 Department of Brain and Cognitive Engineering Korea University Seoul Republic of Korea |
AuthorAffiliation_xml | – name: 2 Department of Brain and Cognitive Engineering Korea University Seoul Republic of Korea – name: 1 Department of Radiology and the Biomedical Research Imaging Center University of North Carolina Chapel Hill North Carolina |
Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0002-3733-7286 surname: Zhou fullname: Zhou, Tao organization: University of North Carolina – sequence: 2 givenname: Kim‐Han surname: Thung fullname: Thung, Kim‐Han organization: University of North Carolina – sequence: 3 givenname: Xiaofeng surname: Zhu fullname: Zhu, Xiaofeng organization: University of North Carolina – sequence: 4 givenname: Dinggang surname: Shen fullname: Shen, Dinggang email: dgshen@med.unc.edu organization: Korea University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30381863$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9uFSEUxolpY__owhcwJG50cVsYYIbZmGhTrUmNG10TGA631Bm4AtObu_MRfEafROq9NbXR1SGc3_flO_mO0F6IARB6RskJJaQ5vTLTScN5Ix-hQ0r6bkFoz_Zu361Y9LyjB-go52tCKBWEPkYHjDBJZcsO0ebcORiKvwHsQJc5AR5Bp-DDEutgsZuzjwFHh6d5LH6KVo--bLDVReO6q1guegk_v_9Y-wzYAqxwgDnpsY6yjukrdjHV_wlC8Rpbr5chZp-foH2nxwxPd_MYfXl3_vnsYnH56f2HszeXi4FzJheyJcbwfhBUCyGstAMznex708gBpGC94axjje2oJKITXDvSCSDStMZZSg07Rq-3vqvZTGCHGqOGU6vkJ502Kmqv_t4Ef6WW8Ua1shWc02rwcmeQ4rcZclGTzwOMow4Q56wa2nQ9l5Lwir54gF7HOYV6XqVaISltBKvU8_uJ_kS5a6UCp1tgSDHnBE4NvuhSi6gB_agoUbe9q9q7-t17Vbx6oLgz_Re7c1_7ETb_B9XF249bxS_glb8N |
CitedBy_id | crossref_primary_10_1155_2022_3088915 crossref_primary_10_1007_s11063_020_10364_y crossref_primary_10_1109_TCCN_2020_3023145 crossref_primary_10_1007_s11682_019_00255_9 crossref_primary_10_1016_j_patrec_2019_11_016 crossref_primary_10_1016_j_ejmp_2021_03_008 crossref_primary_10_1007_s41095_020_0199_z crossref_primary_10_1111_ene_15775 crossref_primary_10_1186_s13040_021_00258_7 crossref_primary_10_1016_j_bspc_2022_104312 crossref_primary_10_1109_JSEN_2024_3483108 crossref_primary_10_1142_S012906572050032X crossref_primary_10_1016_j_media_2019_101545 crossref_primary_10_1109_JBHI_2020_2986376 crossref_primary_10_1002_widm_1492 crossref_primary_10_3390_brainsci12060751 crossref_primary_10_1109_TMI_2022_3162870 crossref_primary_10_1016_j_media_2025_103503 crossref_primary_10_1080_20479700_2022_2130631 crossref_primary_10_1093_bioinformatics_btab608 crossref_primary_10_1038_s41746_022_00712_8 crossref_primary_10_1063_5_0011697 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_1049_ipr2_12841 crossref_primary_10_1016_j_media_2019_03_006 crossref_primary_10_1109_ACCESS_2022_3221089 crossref_primary_10_1109_TMI_2020_2975344 crossref_primary_10_1007_s11042_020_08795_9 crossref_primary_10_1109_TNSRE_2023_3323432 crossref_primary_10_1016_j_bspc_2020_101962 crossref_primary_10_1016_j_patter_2022_100602 crossref_primary_10_3389_fnagi_2022_812870 crossref_primary_10_1109_TCBB_2022_3199244 crossref_primary_10_1007_s40745_024_00550_3 crossref_primary_10_1145_3492865 crossref_primary_10_1093_braincomms_fcab246 crossref_primary_10_1038_s41598_022_06444_9 crossref_primary_10_1016_j_inffus_2022_12_010 crossref_primary_10_3233_JAD_220021 crossref_primary_10_3390_app10020559 crossref_primary_10_3390_sym13071156 crossref_primary_10_1002_pnp_721 crossref_primary_10_1109_ACCESS_2019_2916557 crossref_primary_10_52294_001c_124518 crossref_primary_10_1109_TNNLS_2023_3282961 crossref_primary_10_1016_j_compbiomed_2022_106418 crossref_primary_10_1016_j_inffus_2024_102690 crossref_primary_10_1109_ACCESS_2019_2913685 crossref_primary_10_1088_2516_1091_acc2fe crossref_primary_10_3390_app131810470 crossref_primary_10_1016_j_knosys_2021_106849 crossref_primary_10_1080_24725579_2023_2227197 crossref_primary_10_1371_journal_pcbi_1007677 crossref_primary_10_3233_JAD_220539 crossref_primary_10_1371_journal_pone_0282573 crossref_primary_10_1109_ACCESS_2019_2913847 crossref_primary_10_1007_s00521_019_04650_7 crossref_primary_10_1155_2022_6825576 crossref_primary_10_3390_ijerph18105386 crossref_primary_10_1155_2020_5294840 crossref_primary_10_1016_j_jpsychires_2024_02_036 crossref_primary_10_1109_TMI_2019_2913158 crossref_primary_10_1016_j_media_2020_101652 crossref_primary_10_1109_ACCESS_2024_3508271 crossref_primary_10_1016_j_inffus_2024_102342 crossref_primary_10_1016_j_neurobiolaging_2022_10_005 crossref_primary_10_3389_fnimg_2022_981642 crossref_primary_10_1016_j_patcog_2025_111597 crossref_primary_10_3233_JAD_190715 crossref_primary_10_1016_j_bspc_2023_105212 crossref_primary_10_3390_make5020035 crossref_primary_10_1016_j_media_2023_102842 crossref_primary_10_1016_j_cmpb_2019_04_006 crossref_primary_10_1016_j_procbio_2024_05_024 crossref_primary_10_1155_2022_4946154 crossref_primary_10_1016_j_patrec_2020_02_026 crossref_primary_10_1155_2022_4715998 crossref_primary_10_3390_jpm14040421 crossref_primary_10_1016_j_jbi_2021_103863 crossref_primary_10_1109_JBHI_2021_3109301 crossref_primary_10_1007_s10519_024_10177_y crossref_primary_10_1016_j_compbiomed_2024_109438 crossref_primary_10_1016_j_compbiomed_2024_108869 crossref_primary_10_3390_ijms22157911 crossref_primary_10_1109_ACCESS_2021_3103410 crossref_primary_10_1038_s41598_024_56001_9 crossref_primary_10_1080_24725579_2023_2249487 crossref_primary_10_1109_EMR_2022_3230820 crossref_primary_10_1016_j_neucom_2022_09_097 crossref_primary_10_1053_j_semnuclmed_2021_11_014 crossref_primary_10_1093_braincomms_fcae265 crossref_primary_10_1007_s11042_020_09543_9 crossref_primary_10_1016_j_compmedimag_2020_101748 crossref_primary_10_1016_j_heliyon_2024_e34402 crossref_primary_10_1109_JBHI_2023_3337661 crossref_primary_10_1007_s11042_020_09288_5 crossref_primary_10_1161_CIRCIMAGING_121_012943 crossref_primary_10_1186_s12877_025_05771_6 crossref_primary_10_1109_ACCESS_2019_2907071 crossref_primary_10_1016_j_compbiomed_2024_108635 crossref_primary_10_1115_1_4063954 crossref_primary_10_3390_biomedicines10020315 crossref_primary_10_1016_j_cmpb_2019_105027 crossref_primary_10_1016_j_media_2019_101632 crossref_primary_10_3389_fnagi_2020_603179 crossref_primary_10_1016_j_eswa_2023_119965 crossref_primary_10_1016_j_compmedimag_2021_101873 crossref_primary_10_1007_s11633_022_1361_0 crossref_primary_10_1016_j_media_2021_102189 crossref_primary_10_1016_j_asej_2022_101986 crossref_primary_10_1016_j_compbiomed_2023_107373 crossref_primary_10_1109_ACCESS_2022_3180073 crossref_primary_10_1016_j_phrs_2023_107038 crossref_primary_10_1016_j_media_2019_101630 crossref_primary_10_3389_fninf_2022_843566 crossref_primary_10_1016_j_neulet_2021_136147 crossref_primary_10_1109_ACCESS_2020_3038479 crossref_primary_10_1109_TMI_2020_3022591 crossref_primary_10_1016_j_bspc_2022_104092 crossref_primary_10_1016_j_ipm_2022_103113 crossref_primary_10_1515_em_2021_0047 crossref_primary_10_1109_TIM_2025_3547084 crossref_primary_10_1007_s11042_020_10473_9 crossref_primary_10_1002_alz_14377 crossref_primary_10_1016_j_csbj_2022_11_008 crossref_primary_10_1038_s41598_023_47706_4 crossref_primary_10_3389_fdata_2025_1515341 crossref_primary_10_3233_XST_240083 crossref_primary_10_1007_s11227_022_04665_3 crossref_primary_10_1016_j_eswa_2023_120761 crossref_primary_10_1109_JBHI_2024_3472011 crossref_primary_10_3390_math10050805 crossref_primary_10_3389_fnins_2023_1333725 crossref_primary_10_1109_TCBB_2022_3143900 crossref_primary_10_1109_TCYB_2019_2918495 crossref_primary_10_3390_app11178104 crossref_primary_10_1007_s11227_022_04810_y crossref_primary_10_1002_ima_23110 crossref_primary_10_1007_s00259_019_04502_5 crossref_primary_10_1016_j_csbj_2021_10_019 crossref_primary_10_1109_JBHI_2022_3214999 crossref_primary_10_1016_j_cmpb_2019_105242 crossref_primary_10_1016_j_jneumeth_2020_108795 crossref_primary_10_1109_TCYB_2023_3344641 crossref_primary_10_3389_fnagi_2025_1532470 crossref_primary_10_1109_JBHI_2024_3442468 crossref_primary_10_1016_j_inffus_2025_103010 crossref_primary_10_1177_1536012119869070 crossref_primary_10_1016_j_patcog_2024_110845 crossref_primary_10_1109_TCYB_2020_3005859 crossref_primary_10_1364_BOE_472106 crossref_primary_10_1016_j_nicl_2021_102860 crossref_primary_10_1038_s41467_022_29637_2 crossref_primary_10_1155_2021_8890513 crossref_primary_10_1109_JBHI_2022_3208517 crossref_primary_10_1109_TMI_2020_3017275 crossref_primary_10_3390_s20205872 crossref_primary_10_1016_j_neuroimage_2021_118586 crossref_primary_10_1016_j_compmedimag_2023_102303 crossref_primary_10_1016_j_artmed_2022_102332 crossref_primary_10_1016_j_media_2020_101694 crossref_primary_10_1109_JPROC_2019_2947272 crossref_primary_10_1007_s44196_023_00225_6 |
Cites_doi | 10.1109/ISBI.2016.7493399 10.1016/j.media.2015.10.008 10.1145/1961189.1961199 10.1371/journal.pone.0022193 10.1038/srep45269 10.1089/rej.2006.9.485 10.1007/978-3-319-46723-8_9 10.1016/j.neuroimage.2014.01.033 10.1016/j.neuroimage.2015.01.048 10.1109/TPAMI.2012.231 10.1016/S1053-8119(18)31550-7 10.1093/brain/119.6.2001 10.1016/j.neurobiolaging.2010.04.022 10.1109/TMI.2002.803111 10.1016/j.neuroimage.2012.03.059 10.1371/journal.pone.0037828 10.1109/TBME.2012.2212278 10.3389/fnins.2014.00229 10.3389/fneur.2014.00071 10.1016/j.neunet.2014.09.003 10.1016/j.neuroimage.2011.09.069 10.1109/42.906424 10.1002/hbm.20160 10.1109/TBME.2014.2372011 10.1016/j.neuroimage.2014.06.077 10.1038/nature08538 10.1016/S0197-4580(99)00107-4 10.1162/0899766042321814 10.1016/j.media.2018.01.002 10.1371/journal.pone.0077810 10.1093/bioinformatics/btm187 10.1016/j.patcog.2013.11.032 10.1016/j.patcog.2018.12.001 10.1002/hbm.23240 10.1016/j.neuroimage.2010.01.042 10.1016/j.jneumeth.2014.09.001 10.1016/j.neurobiolaging.2014.05.040 10.1016/j.media.2017.07.005 10.1007/s11682-013-9262-z 10.1038/nrneurol.2009.217 10.1016/j.nicl.2016.02.019 10.1016/0169-7439(87)80084-9 10.1016/j.neuroimage.2010.06.013 10.1016/j.neuroimage.2013.10.067 10.1212/01.WNL.0000055847.17752.E6 10.1038/ng.3738 10.1007/s00429-013-0687-3 10.1002/hbm.23494 10.1016/j.neuroimage.2010.01.005 10.1016/j.jalz.2010.03.013 10.1016/j.neuroimage.2011.10.003 10.1609/aaai.v32i1.11730 10.1002/jmri.21049 10.1016/j.neuroimage.2014.10.002 10.1016/j.nicl.2016.11.025 10.1001/archneurol.2010.108 10.1212/WNL.0b013e3181d7d8cb 10.1093/bioinformatics/bts228 10.1016/j.jalz.2016.03.001 10.1007/s00429-015-1140-6 10.1038/ng1847 10.1038/s41598-017-06509-0 10.2967/jnumed.107.045385 10.1016/j.patcog.2011.09.011 10.1109/TBME.2015.2466616 10.1109/42.668698 10.1002/hbm.23711 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.24428 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Zhou et al |
EISSN | 1097-0193 |
EndPage | 1016 |
ExternalDocumentID | PMC6865441 30381863 10_1002_hbm_24428 HBM24428 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Foundation for the National Institutes of Health funderid: EB022880; AG053867; EB006733; EB008374; AG041721 – fundername: Foundation for the National Institutes of Health grantid: EB022880 – fundername: Foundation for the National Institutes of Health grantid: EB008374 – fundername: Foundation for the National Institutes of Health grantid: AG041721 – fundername: Foundation for the National Institutes of Health grantid: AG053867 – fundername: Foundation for the National Institutes of Health grantid: EB006733 – fundername: ; grantid: EB022880; AG053867; EB006733; EB008374; AG041721 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACCFJ ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 5PM LW6 |
ID | FETCH-LOGICAL-c4438-860bb49c51a555d8dc3b7899b28ce8539b43732d71805754af075e08b6bfd11b3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:18:27 EDT 2025 Fri Jul 11 04:05:19 EDT 2025 Wed Aug 13 04:29:32 EDT 2025 Wed Feb 19 02:30:42 EST 2025 Tue Jul 01 01:10:52 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Wed Jan 22 16:59:25 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | mild cognitive impairment (MCI) deep learning Alzheimer's disease (AD) multimodality data fusion |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4438-860bb49c51a555d8dc3b7899b28ce8539b43732d71805754af075e08b6bfd11b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Foundation for the National Institutes of Health, Grant/Award Number: EB022880, AG053867, EB006733, EB008374, AG041721 |
ORCID | 0000-0002-3733-7286 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.24428 |
PMID | 30381863 |
PQID | 2165811253 |
PQPubID | 996345 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865441 proquest_miscellaneous_2127948804 proquest_journals_2165811253 pubmed_primary_30381863 crossref_citationtrail_10_1002_hbm_24428 crossref_primary_10_1002_hbm_24428 wiley_primary_10_1002_hbm_24428_HBM24428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 15, 2019 |
PublicationDateYYYYMMDD | 2019-02-15 |
PublicationDate_xml | – month: 02 year: 2019 text: February 15, 2019 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2012; 61 2017; 7 2017; 42 1987; 2 2015; 36 2010; 53 2013; 28 2015; 104 2017; 49 2006; 38 2015; 220 2016; 221 2011; 56 2012; 59 2005; 26 2018; 45 2016; 37 2010; 67 1998; 17 2014; 5 2017; 38 2015; 44 2008; 27 2013; 60 2012; 28 2014; 9 2014; 8 2007; 23 2010; 74 2010; 6 2014; 237 2010; 31 2014; 91 2011; 2 2012 2011 2010 2000; 21 2006; 9 2014; 47 2006 2011; 6 2016; 12 2014; 87 2001; 20 2016; 11 2013; 35 2004; 16 2015; 62 2015; 61 2015; 111 2008; 49 2002; 21 2017; 13 2018 2016; 63 2017 2016 2009; 461 2003; 60 1998; 7 2012; 7 2012; 45 1996; 119 2010; 50 2014; 101 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 (e_1_2_9_77_1) 2017 e_1_2_9_71_1 (e_1_2_9_18_1) 2006 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Barshan E. (e_1_2_9_5_1) 2015; 44 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 (e_1_2_9_63_1) 2017 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 (e_1_2_9_76_1) 2017 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – year: 2011 – volume: 221 start-page: 3979 year: 2016 end-page: 3995 article-title: Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans publication-title: Brain Structure and Function – volume: 27 start-page: 685 issue: 4 year: 2008 end-page: 691 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: Journal of Magnetic Resonance Imaging – volume: 2 start-page: 27 issue: 3 year: 2011 article-title: LIBSVM: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – start-page: 1 year: 2006 end-page: 30 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine learning research – year: 2010 article-title: Efficient and robust feature selection via joint ℓ2, 1‐norms minimization publication-title: Advances in Neural Information Processing Systems – volume: 111 start-page: 562 year: 2015 end-page: 579 article-title: Standardized evaluation of algorithms for computer‐aided diagnosis of dementia based on structural MRI: The CADDementia challenge publication-title: NeuroImage – volume: 119 start-page: 2001 issue: 6 year: 1996 end-page: 2007 article-title: Presymptomatic hippocampal atrophy in Alzheimer's disease: A longitudinal MRI study publication-title: Brain – volume: 220 start-page: 841 issue: 2 year: 2015 end-page: 859 article-title: Latent feature representation with stacked auto‐encoder for AD/MCI diagnosis publication-title: Brain Structure and Function – start-page: 160 year: 2017 end-page: 168 – volume: 45 start-page: 68 year: 2018 end-page: 82 article-title: Conversion and time‐to‐conversion predictions of mild cognitive impairment using low‐rank affinity pursuit denoising and matrix completion publication-title: Medical Image Analysis – volume: 16 start-page: 2639 issue: 12 year: 2004 end-page: 2664 article-title: Canonical correlation analysis: An overview with application to learning methods publication-title: Neural Computation – volume: 49 start-page: 125 issue: 1 year: 2017 end-page: 130 article-title: Multiethnic genome‐wide meta‐analysis of ectopic fat depots identifies loci associated with adipocyte development and differentiation publication-title: Nature Genetics – volume: 7 start-page: 6530 issue: 1 year: 2017 article-title: Hybrid high‐order functional connectivity networks using resting‐state functional MRI for mild cognitive impairment diagnosis publication-title: Scientific Reports – volume: 26 start-page: 231 issue: 4 year: 2005 end-page: 239 article-title: Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study publication-title: Human Brain Mapping – year: 2018 – volume: 38 start-page: 5019 issue: 10 year: 2017 end-page: 5034 article-title: Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification publication-title: Human Brain Mapping – volume: 28 start-page: i127 issue: 12 year: 2012 end-page: i136 article-title: Identifying disease sensitive and quantitative trait‐relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning publication-title: Bioinformatics – volume: 61 start-page: 622 issue: 3 year: 2012 end-page: 632 article-title: Multi‐source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data publication-title: NeuroImage – start-page: 132 year: 2017 end-page: 140 – volume: 31 start-page: 1429 issue: 8 year: 2010 end-page: 1442 article-title: Boosting power for clinical trials using classifiers based on multiple biomarkers publication-title: Neurobiology of Aging – volume: 13 start-page: 470 year: 2017 end-page: 482 article-title: Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry publication-title: NeuroImage: Clinical – volume: 74 start-page: 1136 issue: 14 year: 2010 end-page: 1142 article-title: When, where, and how the corpus callosum changes in MCI and AD a multimodal MRI study publication-title: Neurology – volume: 38 start-page: 1933 issue: 4 year: 2017 end-page: 1940 article-title: Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease publication-title: Human Brain Mapping – volume: 47 start-page: 1800 issue: 5 year: 2014 end-page: 1812 article-title: Human activity recognition using multi‐features and multiple kernel learning publication-title: Pattern Recognition – volume: 49 start-page: 390 issue: 3 year: 2008 end-page: 398 article-title: Multicenter standardized 18F‐FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias publication-title: Journal of Nuclear Medicine – volume: 59 start-page: 895 issue: 2 year: 2012 end-page: 907 article-title: Multi‐modal multi‐task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease publication-title: NeuroImage – volume: 2 start-page: 37 issue: 1–3 year: 1987 end-page: 52 article-title: Principal component analysis publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 23 start-page: i125 issue: 13 year: 2007 end-page: i132 article-title: Kernel‐based data fusion for gene prioritization publication-title: Bioinformatics – volume: 35 start-page: 1915 issue: 8 year: 2013 end-page: 1929 article-title: Learning hierarchical features for scene labeling publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 42 start-page: 60 year: 2017 end-page: 88 article-title: A survey on deep learning in medical image analysis publication-title: Medical Image Analysis – volume: 62 start-page: 1132 issue: 4 year: 2015 end-page: 1140 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease publication-title: IEEE Transactions on Biomedical Engineering – volume: 45 start-page: 2085 issue: 6 year: 2012 end-page: 2100 article-title: Model sparsity and brain pattern interpretation of classification models in neuroimaging publication-title: Pattern Recognition – volume: 8 year: 2014 article-title: Deep learning for neuroimaging: A validation study publication-title: Frontiers in Neuroscience – volume: 6 start-page: e22193 year: 2011 article-title: Age Correction in Dementia–Matching to a Healthy brain publication-title: PLoS One – volume: 21 start-page: 19 issue: 1 year: 2000 end-page: 26 article-title: Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non‐demented elderly predict decline to Alzheimer's disease publication-title: Neurobiology of Aging – volume: 36 start-page: S91 year: 2015 end-page: S102 article-title: Thickness network features for prognostic applications in dementia publication-title: Neurobiology of Aging – volume: 20 start-page: 45 issue: 1 year: 2001 end-page: 57 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm publication-title: IEEE Transactions on Medical Imaging – volume: 6 start-page: 265 issue: 3 year: 2010 end-page: 273 article-title: Alzheimer's disease neuroimaging initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans publication-title: Alzheimer's & Dementia – volume: 21 start-page: 1421 issue: 11 year: 2002 end-page: 1439 article-title: HAMMER: Hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Transactions on Medical Imaging – volume: 7 year: 2017 article-title: A hierarchical feature and sample selection framework and its application for Alzheimer's disease diagnosis publication-title: Scientific Reports – volume: 37 start-page: 3282 issue: 9 year: 2016 end-page: 3296 article-title: High‐order resting‐state functional connectivity network for MCI classification publication-title: Human Brain Mapping – volume: 60 start-page: 1374 issue: 8 year: 2003 end-page: 1377 article-title: Mild cognitive impairment can FDG‐PET predict who is to rapidly convert to Alzheimer's disease? publication-title: Neurology – volume: 60 start-page: 164 issue: 1 year: 2013 end-page: 168 article-title: Machine learning‐based method for personalized and cost‐effective detection of Alzheimer's disease publication-title: IEEE Transactions on Biomedical Engineering – volume: 17 start-page: 87 issue: 1 year: 1998 end-page: 97 article-title: A nonparametric method for automatic correction of intensity nonuniformity in MRI data publication-title: IEEE Transactions on Medical Imaging – volume: 53 start-page: 1051 issue: 3 year: 2010 end-page: 1063 article-title: Whole genome association study of brain‐wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort publication-title: NeuroImage – volume: 38 start-page: 205 year: 2017 end-page: 214 article-title: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis publication-title: Medical Image Analysis – volume: 7 year: 1998 article-title: 3D anatomical atlas of the human brain publication-title: NeuroImage – volume: 38 start-page: 904 issue: 8 year: 2006 end-page: 909 article-title: Principal components analysis corrects for stratification in genome‐wide association studies publication-title: Nature Genetics – year: 2016 – volume: 461 start-page: 916 issue: 7266 year: 2009 end-page: 922 article-title: Multimodal techniques for diagnosis and prognosis of Alzheimer's disease publication-title: Nature – volume: 12 start-page: 459 issue: 4 year: 2016 end-page: 509 article-title: 2016 Alzheimer's disease facts and figures publication-title: Alzheimer's & Dementia – volume: 44 start-page: 49 year: 2015 end-page: 59 article-title: Stage‐wise training: An improved feature learning strategy for deep models. Feature extraction: Modern questions and challenges publication-title: Proceedings of Machine Learning Research – volume: 91 start-page: 386 year: 2014 end-page: 400 article-title: Neurodegenerative disease diagnosis using incomplete multi‐modality data via matrix shrinkage and completion publication-title: NeuroImage – year: 2012 – volume: 7 issue: 5 year: 2012 article-title: Resting‐state multi‐spectrum functional connectivity networks for identification of MCI patients publication-title: PloS one – volume: 56 start-page: 766 issue: 2 year: 2011 end-page: 781 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: A comparison of ten methods using the ADNI database publication-title: NeuroImage – volume: 28 year: 2013 article-title: Using deep learning to enhance cancer diagnosis and classification publication-title: Proceedings of the International Conference on Machine Learning – volume: 5 year: 2014 article-title: Three‐class differential diagnosis among Alzheimer disease, frontotemporal dementia, and controls publication-title: Frontiers in Neurology – volume: 8 start-page: 183 issue: 2 year: 2014 end-page: 207 article-title: Genetic analysis of quantitative phenotypes in AD and MCI: Imaging, cognition and biomarkers publication-title: Brain Imaging and Behavior – volume: 87 start-page: 96 year: 2014 end-page: 110 article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging publication-title: NeuroImage – volume: 237 start-page: 69 year: 2014 end-page: 78 article-title: Sparse models for correlative and integrative analysis of imaging and genetic data publication-title: Journal of Neuroscience Methods – volume: 50 start-page: 883 issue: 3 year: 2010 end-page: 892 article-title: Estimating the age of healthy subjects from T 1‐weighted MRI scans using kernel methods: Exploring the influence of various parameters publication-title: NeuroImage – volume: 59 start-page: 2187 issue: 3 year: 2012 end-page: 2195 article-title: Discriminative analysis of early Alzheimer's disease using multi‐modal imaging and multi‐level characterization with multi‐classifier (M3) publication-title: NeuroImage – volume: 9 start-page: 485 issue: 4 year: 2006 end-page: 493 article-title: VEGF gene and phenotype relation with Alzheimer's disease and mild cognitive impairment publication-title: Rejuvenation Research – volume: 9 issue: 1 year: 2014 article-title: Knowledge‐guided robust MRI brain extraction for diverse large‐scale neuroimaging studies on humans and non‐human primates publication-title: PLoS One – year: 2017 – volume: 6 start-page: 78 issue: 2 year: 2010 end-page: 87 article-title: The use of PET in Alzheimer disease publication-title: Nature Reviews Neurology – volume: 61 start-page: 85 year: 2015 end-page: 117 article-title: Deep learning in neural networks: An overview publication-title: Neural Networks – volume: 67 start-page: 677 issue: 6 year: 2010 end-page: 685 article-title: Genetic variation and neuroimaging measures in Alzheimer disease publication-title: Archives of Neurology – year: 2006 article-title: Laplacian score for feature selection publication-title: Advances in Neural Information Processing Systems – year: 2018 article-title: Brain‐wide genome‐wide association study for Alzheimer's disease via joint projection learning and sparse regression model publication-title: IEEE Transactions on Biomedical Engineering – volume: 11 start-page: 435 year: 2016 end-page: 449 article-title: Differential diagnosis of neurodegenerative diseases using structural MRI data publication-title: NeuroImage: Clinical – volume: 104 start-page: 398 year: 2015 end-page: 412 article-title: Machine learning framework for early MRI‐based Alzheimer's conversion prediction in MCI subjects publication-title: NeuroImage – volume: 101 start-page: 569 year: 2014 end-page: 582 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: NeuroImage – volume: 63 start-page: 607 issue: 3 year: 2016 end-page: 618 article-title: Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification publication-title: IEEE Transactions on Biomedical Engineering – ident: e_1_2_9_75_1 doi: 10.1109/ISBI.2016.7493399 – ident: e_1_2_9_80_1 doi: 10.1016/j.media.2015.10.008 – ident: e_1_2_9_8_1 doi: 10.1145/1961189.1961199 – ident: e_1_2_9_20_1 doi: 10.1371/journal.pone.0022193 – ident: e_1_2_9_3_1 doi: 10.1038/srep45269 – ident: e_1_2_9_12_1 doi: 10.1089/rej.2006.9.485 – ident: e_1_2_9_42_1 doi: 10.1007/978-3-319-46723-8_9 – volume-title: Deep learning for medical image analysis year: 2017 ident: e_1_2_9_76_1 – ident: e_1_2_9_60_1 doi: 10.1016/j.neuroimage.2014.01.033 – ident: e_1_2_9_7_1 doi: 10.1016/j.neuroimage.2015.01.048 – ident: e_1_2_9_23_1 doi: 10.1109/TPAMI.2012.231 – ident: e_1_2_9_30_1 doi: 10.1016/S1053-8119(18)31550-7 – ident: e_1_2_9_24_1 doi: 10.1093/brain/119.6.2001 – ident: e_1_2_9_31_1 doi: 10.1016/j.neurobiolaging.2010.04.022 – ident: e_1_2_9_52_1 doi: 10.1109/TMI.2002.803111 – ident: e_1_2_9_70_1 doi: 10.1016/j.neuroimage.2012.03.059 – ident: e_1_2_9_78_1 – ident: e_1_2_9_67_1 doi: 10.1371/journal.pone.0037828 – start-page: 1 year: 2006 ident: e_1_2_9_18_1 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine learning research – ident: e_1_2_9_21_1 doi: 10.1109/TBME.2012.2212278 – ident: e_1_2_9_44_1 doi: 10.3389/fnins.2014.00229 – ident: e_1_2_9_46_1 doi: 10.3389/fneur.2014.00071 – ident: e_1_2_9_51_1 doi: 10.1016/j.neunet.2014.09.003 – ident: e_1_2_9_71_1 doi: 10.1016/j.neuroimage.2011.09.069 – ident: e_1_2_9_72_1 doi: 10.1109/42.906424 – ident: e_1_2_9_49_1 doi: 10.1002/hbm.20160 – ident: e_1_2_9_35_1 doi: 10.1109/TBME.2014.2372011 – ident: e_1_2_9_39_1 – ident: e_1_2_9_58_1 doi: 10.1016/j.neuroimage.2014.06.077 – ident: e_1_2_9_43_1 doi: 10.1038/nature08538 – ident: e_1_2_9_14_1 doi: 10.1016/S0197-4580(99)00107-4 – ident: e_1_2_9_26_1 doi: 10.1162/0899766042321814 – ident: e_1_2_9_62_1 doi: 10.1016/j.media.2018.01.002 – ident: e_1_2_9_66_1 doi: 10.1371/journal.pone.0077810 – ident: e_1_2_9_17_1 doi: 10.1093/bioinformatics/btm187 – ident: e_1_2_9_2_1 doi: 10.1016/j.patcog.2013.11.032 – start-page: 132 volume-title: International Workshop on Machine Learning in Medical Imaging year: 2017 ident: e_1_2_9_77_1 – ident: e_1_2_9_57_1 – ident: e_1_2_9_69_1 doi: 10.1016/j.patcog.2018.12.001 – ident: e_1_2_9_9_1 doi: 10.1002/hbm.23240 – ident: e_1_2_9_53_1 doi: 10.1016/j.neuroimage.2010.01.042 – ident: e_1_2_9_33_1 doi: 10.1016/j.jneumeth.2014.09.001 – ident: e_1_2_9_47_1 doi: 10.1016/j.neurobiolaging.2014.05.040 – ident: e_1_2_9_34_1 doi: 10.1016/j.media.2017.07.005 – ident: e_1_2_9_54_1 doi: 10.1007/s11682-013-9262-z – ident: e_1_2_9_22_1 – ident: e_1_2_9_41_1 doi: 10.1038/nrneurol.2009.217 – ident: e_1_2_9_32_1 doi: 10.1016/j.nicl.2016.02.019 – ident: e_1_2_9_68_1 doi: 10.1016/0169-7439(87)80084-9 – ident: e_1_2_9_15_1 doi: 10.1016/j.neuroimage.2010.06.013 – ident: e_1_2_9_27_1 doi: 10.1016/j.neuroimage.2013.10.067 – ident: e_1_2_9_11_1 doi: 10.1212/01.WNL.0000055847.17752.E6 – ident: e_1_2_9_28_1 – ident: e_1_2_9_13_1 doi: 10.1038/ng.3738 – ident: e_1_2_9_59_1 doi: 10.1007/s00429-013-0687-3 – ident: e_1_2_9_38_1 doi: 10.1002/hbm.23494 – ident: e_1_2_9_25_1 doi: 10.1016/j.neuroimage.2010.01.005 – ident: e_1_2_9_50_1 doi: 10.1016/j.jalz.2010.03.013 – ident: e_1_2_9_16_1 doi: 10.1016/j.neuroimage.2011.10.003 – ident: e_1_2_9_74_1 doi: 10.1609/aaai.v32i1.11730 – ident: e_1_2_9_29_1 doi: 10.1002/jmri.21049 – ident: e_1_2_9_36_1 doi: 10.1016/j.neuroimage.2014.10.002 – ident: e_1_2_9_56_1 doi: 10.1016/j.nicl.2016.11.025 – ident: e_1_2_9_40_1 – ident: e_1_2_9_6_1 doi: 10.1001/archneurol.2010.108 – ident: e_1_2_9_19_1 doi: 10.1212/WNL.0b013e3181d7d8cb – ident: e_1_2_9_65_1 doi: 10.1093/bioinformatics/bts228 – ident: e_1_2_9_4_1 doi: 10.1016/j.jalz.2016.03.001 – ident: e_1_2_9_61_1 doi: 10.1007/s00429-015-1140-6 – volume: 44 start-page: 49 year: 2015 ident: e_1_2_9_5_1 article-title: Stage‐wise training: An improved feature learning strategy for deep models. Feature extraction: Modern questions and challenges publication-title: Proceedings of Machine Learning Research – ident: e_1_2_9_45_1 doi: 10.1038/ng1847 – ident: e_1_2_9_73_1 doi: 10.1038/s41598-017-06509-0 – ident: e_1_2_9_37_1 doi: 10.2967/jnumed.107.045385 – start-page: 160 volume-title: Deep learning in medical image analysis and multimodal learning for clinical decision support year: 2017 ident: e_1_2_9_63_1 – ident: e_1_2_9_48_1 doi: 10.1016/j.patcog.2011.09.011 – ident: e_1_2_9_79_1 doi: 10.1109/TBME.2015.2466616 – ident: e_1_2_9_55_1 doi: 10.1109/42.668698 – ident: e_1_2_9_64_1 – ident: e_1_2_9_10_1 doi: 10.1002/hbm.23711 |
SSID | ssj0011501 |
Score | 2.6402805 |
Snippet | In this article, the authors aim to maximally utilize multimodality neuroimaging and genetic data for identifying Alzheimer's disease (AD) and its prodromal... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1001 |
SubjectTerms | Abnormalities Aged Aging Alzheimer's disease Alzheimer's disease (AD) Artificial neural networks Brain Cognitive ability Cognitive Dysfunction - diagnostic imaging Cognitive Dysfunction - genetics Deep Learning Dementia Dementia - diagnostic imaging Dementia - genetics Dementia disorders Diagnosis Diagnostic systems Female Gene polymorphism Heterogeneity Humans Machine learning Magnetic resonance imaging Male Medical imaging Middle Aged mild cognitive impairment (MCI) Multimodal Imaging - methods multimodality data fusion Neurodegenerative diseases Neuroimaging Neuroimaging - methods Neurology Polymorphism Polymorphism, Single Nucleotide Positron emission tomography Representations Risk analysis Risk factors Single-nucleotide polymorphism Training |
Title | Effective feature learning and fusion of multimodality data using stage‐wise deep neural network for dementia diagnosis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24428 https://www.ncbi.nlm.nih.gov/pubmed/30381863 https://www.proquest.com/docview/2165811253 https://www.proquest.com/docview/2127948804 https://pubmed.ncbi.nlm.nih.gov/PMC6865441 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL2a9jDtBcY2oGMgD02Il3SNY-dDPA3EVE0qD9Mm7QEpsmO7q6DpRFuh8cRP2G_kl3CvnQTKhoR4i5obxUnvx7F9ci7Aocud0SLOI-syGwlps0hzlUWKtK-M5Db27YBGH9LhhTi9lJdr8Kb9FiboQ3QLbhQZPl9TgCs9P_olGnqlp32sTZw-9CWuFgGis046ioCOn2xhiY0KzMCtqtCAH3VXrtaiOwDzLk_yd_zqC9DJQ_jYDj3wTj71lwvdr779oer4n8-2BQ8aYMqOgyc9gjVbb8POcY2T8ukNe8U8VdSvwW_DxqjZkd-BmyB_jDmTOetFQlnTiGLMVG2YW9JyHJs55qmL05nxwJ8RM5UR6X7MEJ-O7Y_vt18nc8uMtdeMRDZxLHWgqDPE1fi75zUpZgI3cDLfhYuT9-fvhlHTziGqhMC0mqcDrUVRyVhJKU1uqkRnON3TPKfeqUmhSWaJG6yWBCKFcghn7CDXqXYmjnXyGNbrWW2fAkMjGdvKGZNxUZGgjdZJMVAqo21Ya3rwuv1jy6rROqeWG5_LoNLMS3zDpX_DPXjZmV4HgY_7jPZb7yibGJ-XPEb0hnBVJj046E5jdNKWi6rtbEk2HBMe5kjRgyfBmbq7JH6TNsWrsxU36wxI-Xv1TD258grgaZ5S7zh8TO9Ffx94OXw78gd7_276DDYRFRZETY_lPqwvviztc0ReC_3Ch9hPnZ4tRQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQwJeuGzACgMMQoiXdI1j5yLxMhBTgXUPaJP2giI7truKNZ1oKzSe-An8Rn4J59hJoAwkxFvUnChOei6f7S_fAXjqcme0iPPIusxGQtos0lxlkSLtKyO5jX07oNFBOjwSb4_l8Rq8aL-FCfoQ3YIbRYbP1xTgtCC981M19ERP-1iceH4JLlNHbz-het-JRxHU8dMtLLJRgTm41RUa8J3u0tVqdAFiXmRK_opgfQnauwEf2sEH5snH_nKh-9WX33Qd__fpbsL1Bpuy3eBMt2DN1huwuVvjvHx6zp4xzxb1y_AbcGXUbMpvwnlQQMa0yZz1OqGs6UUxZqo2zC1pRY7NHPPsxenMeOzPiJzKiHc_ZghRx_b712-fJ3PLjLVnjHQ2cSx1YKkzhNb4u6c2KWYCPXAyvw1He68PXw2jpqNDVAmBmTVPB1qLopKxklKa3FSJznDGp3lO7VOTQpPSEjdYMAlHCuUQ0dhBrlPtTBzr5A6s17PabgFDIxnbyhmTcVGRpo3WSTFQKqOdWGt68Lz9Z8uqkTunrhunZRBq5iW-4dK_4R486UzPgsbHn4y2W_comzCflzxGAIeIVSY9eNydxgClXRdV29mSbDjmPEyTogd3gzd1d0n8Pm2KV2crftYZkPj36pl6cuJFwNM8pfZx-Jjejf4-8HL4cuQP7v276SO4Ojwc7Zf7bw7e3YdrCBILYqrHchvWF5-W9gECsYV-6OPtB0P0MWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQ5p44bLBKAwwCCFe0iWOnTjiaTCqcumEEJP2gBTFsd1V0LSirdB44ifwG_klnONcoAwkxFvUnChOei6f7S_fAXjolDNaRCqwLrWBkDYNNC_SoCDtKyO5jXw7oNFRMjwWL0_kyQY8ab-FqfUhugU3igyfrynA58bt_xQNPdXTPtYmri7ARZGEilz68G2nHUVIx8-2sMYGGabgVlYo5PvdpevF6BzCPE-U_BXA-go0uALv27HXxJMP_dVS98svv8k6_ufDXYXLDTJlB7UrXYMNW23DzkGFs_LpGXvEPFfUL8Jvw9ao2ZLfgbNa_xiTJnPWq4SyphPFmBWVYW5F63Fs5pjnLk5nxiN_RtRURqz7MUOAOrbfv377PFlYZqydM1LZxLFUNUedIbDG3z2xqWCmJgdOFtfhePD83bNh0PRzCEohMK-qJNRaZKWMCimlUaaMdYrzPc0VNU-NM006S9xguSQUKQqHeMaGSifamSjS8Q3YrGaVvQkMjWRkS2dMykVJijZax1lYFCntw1rTg8ftH5uXjdg59dz4mNcyzTzHN5z7N9yDB53pvFb4-JPRXusdeRPki5xHCN8Qr8q4B_e70xietOdSVHa2IhuOGQ-TpOjBbu1M3V1iv0ub4NXpmpt1BiT9vX6mmpx6CfBEJdQ8Dh_Te9HfB54Pn478wa1_N70HW28OB_nrF0evbsMlRIgZ0dQjuQeby08rewdR2FLf9dH2A7ZLMBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+feature+learning+and+fusion+of+multimodality+data+using+stage%E2%80%90wise+deep+neural+network+for+dementia+diagnosis&rft.jtitle=Human+brain+mapping&rft.au=Zhou%2C+Tao&rft.au=Thung%2C+Kim%E2%80%90Han&rft.au=Zhu%2C+Xiaofeng&rft.au=Shen%2C+Dinggang&rft.date=2019-02-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=40&rft.issue=3&rft.spage=1001&rft.epage=1016&rft_id=info:doi/10.1002%2Fhbm.24428&rft.externalDBID=10.1002%252Fhbm.24428&rft.externalDocID=HBM24428 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |