A multispecies occupancy model for two or more interacting species
Summary Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies oc...
Saved in:
Published in | Methods in ecology and evolution Vol. 7; no. 10; pp. 1164 - 1173 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
John Wiley & Sons, Inc
01.10.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2041-210X 2041-210X |
DOI | 10.1111/2041-210X.12587 |
Cover
Loading…
Abstract | Summary
Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies occupancy model that can accommodate two or more interacting species.
We generalize the single‐species occupancy model to two or more interacting species by assuming the latent occupancy state is a multivariate Bernoulli random variable. We propose modelling the probability of each potential latent occupancy state with both a multinomial logit and a multinomial probit model and present details of a Gibbs sampler for the latter.
As an example, we model co‐occurrence probabilities of bobcat (Lynx rufus), coyote (Canis latrans), grey fox (Urocyon cinereoargenteus) and red fox (Vulpes vulpes) as a function of human disturbance variables throughout 6 Mid‐Atlantic states in the eastern United States. We found evidence for pairwise interactions among most species, and the probability of some pairs of species occupying the same site varied along environmental gradients; for example, occupancy probabilities of coyote and grey fox were independent at sites with little human disturbance, but these two species were more likely to occur together at sites with high human disturbance.
Ecological communities are composed of multiple interacting species. Our proposed method improves our ability to draw inference from such communities by permitting modelling of detection/non‐detection data from an arbitrary number of species, without assuming asymmetric interactions. Additionally, our proposed method permits modelling the probability two or more species occur together as a function of environmental variables. These advancements represent an important improvement in our ability to draw community‐level inference from multiple interacting species that are subject to imperfect detection. |
---|---|
AbstractList | Summary Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies occupancy model that can accommodate two or more interacting species. We generalize the single-species occupancy model to two or more interacting species by assuming the latent occupancy state is a multivariate Bernoulli random variable. We propose modelling the probability of each potential latent occupancy state with both a multinomial logit and a multinomial probit model and present details of a Gibbs sampler for the latter. As an example, we model co-occurrence probabilities of bobcat (Lynx rufus), coyote (Canis latrans), grey fox (Urocyon cinereoargenteus) and red fox (Vulpes vulpes) as a function of human disturbance variables throughout 6 Mid-Atlantic states in the eastern United States. We found evidence for pairwise interactions among most species, and the probability of some pairs of species occupying the same site varied along environmental gradients; for example, occupancy probabilities of coyote and grey fox were independent at sites with little human disturbance, but these two species were more likely to occur together at sites with high human disturbance. Ecological communities are composed of multiple interacting species. Our proposed method improves our ability to draw inference from such communities by permitting modelling of detection/non-detection data from an arbitrary number of species, without assuming asymmetric interactions. Additionally, our proposed method permits modelling the probability two or more species occur together as a function of environmental variables. These advancements represent an important improvement in our ability to draw community-level inference from multiple interacting species that are subject to imperfect detection. 1. Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies occupancy model that can accommodate two or more interacting species. 2. We generalize the single-species occupancy model to two or more interacting species by assuming the latent occupancy state is a multivariate Bernoulli random variable. We propose modelling the probability of each potential latent occupancy state with both a multinomial logit and a multinomial probit model and present details of a Gibbs sampler for the latter. 3. As an example, we model co-occurrence probabilities of bobcat (Lynx rufus), coyote (Canis latrans), grey fox (Urocyon cinereoargenteus) and red fox (Vulpes vulpes) as a function of human disturbance variables throughout 6 Mid-Atlantic states in the eastern United States. We found evidence for pairwise interactions among most species, and the probability of some pairs of species occupying the same site varied along environmental gradients; for example, occupancy probabilities of coyote and grey fox were independent at sites with little human disturbance, but these two species were more likely to occur together at sites with high human disturbance. 4. Ecological communities are composed of multiple interacting species. Our proposed method improves our ability to draw inference from such communities by permitting modelling of detection/non-detection data from an arbitrary number of species, without assuming asymmetric interactions. Additionally, our proposed method permits modelling the probability two or more species occur together as a function of environmental variables. These advancements represent an important improvement in our ability to draw community-level inference from multiple interacting species that are subject to imperfect detection. Summary Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies occupancy model that can accommodate two or more interacting species. We generalize the single‐species occupancy model to two or more interacting species by assuming the latent occupancy state is a multivariate Bernoulli random variable. We propose modelling the probability of each potential latent occupancy state with both a multinomial logit and a multinomial probit model and present details of a Gibbs sampler for the latter. As an example, we model co‐occurrence probabilities of bobcat (Lynx rufus), coyote (Canis latrans), grey fox (Urocyon cinereoargenteus) and red fox (Vulpes vulpes) as a function of human disturbance variables throughout 6 Mid‐Atlantic states in the eastern United States. We found evidence for pairwise interactions among most species, and the probability of some pairs of species occupying the same site varied along environmental gradients; for example, occupancy probabilities of coyote and grey fox were independent at sites with little human disturbance, but these two species were more likely to occur together at sites with high human disturbance. Ecological communities are composed of multiple interacting species. Our proposed method improves our ability to draw inference from such communities by permitting modelling of detection/non‐detection data from an arbitrary number of species, without assuming asymmetric interactions. Additionally, our proposed method permits modelling the probability two or more species occur together as a function of environmental variables. These advancements represent an important improvement in our ability to draw community‐level inference from multiple interacting species that are subject to imperfect detection. Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies occupancy model that can accommodate two or more interacting species. We generalize the single‐species occupancy model to two or more interacting species by assuming the latent occupancy state is a multivariate Bernoulli random variable. We propose modelling the probability of each potential latent occupancy state with both a multinomial logit and a multinomial probit model and present details of a Gibbs sampler for the latter. As an example, we model co‐occurrence probabilities of bobcat ( Lynx rufus ), coyote ( Canis latrans ), grey fox ( Urocyon cinereoargenteus ) and red fox ( Vulpes vulpes ) as a function of human disturbance variables throughout 6 Mid‐Atlantic states in the eastern United States. We found evidence for pairwise interactions among most species, and the probability of some pairs of species occupying the same site varied along environmental gradients; for example, occupancy probabilities of coyote and grey fox were independent at sites with little human disturbance, but these two species were more likely to occur together at sites with high human disturbance. Ecological communities are composed of multiple interacting species. Our proposed method improves our ability to draw inference from such communities by permitting modelling of detection/non‐detection data from an arbitrary number of species, without assuming asymmetric interactions. Additionally, our proposed method permits modelling the probability two or more species occur together as a function of environmental variables. These advancements represent an important improvement in our ability to draw community‐level inference from multiple interacting species that are subject to imperfect detection. Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies occupancy model that can accommodate two or more interacting species.We generalize the single‐species occupancy model to two or more interacting species by assuming the latent occupancy state is a multivariate Bernoulli random variable. We propose modelling the probability of each potential latent occupancy state with both a multinomial logit and a multinomial probit model and present details of a Gibbs sampler for the latter.As an example, we model co‐occurrence probabilities of bobcat (Lynx rufus), coyote (Canis latrans), grey fox (Urocyon cinereoargenteus) and red fox (Vulpes vulpes) as a function of human disturbance variables throughout 6 Mid‐Atlantic states in the eastern United States. We found evidence for pairwise interactions among most species, and the probability of some pairs of species occupying the same site varied along environmental gradients; for example, occupancy probabilities of coyote and grey fox were independent at sites with little human disturbance, but these two species were more likely to occur together at sites with high human disturbance.Ecological communities are composed of multiple interacting species. Our proposed method improves our ability to draw inference from such communities by permitting modelling of detection/non‐detection data from an arbitrary number of species, without assuming asymmetric interactions. Additionally, our proposed method permits modelling the probability two or more species occur together as a function of environmental variables. These advancements represent an important improvement in our ability to draw community‐level inference from multiple interacting species that are subject to imperfect detection. |
Author | Forrester, Tavis D. Kays, Roland W. Kalies, Elizabeth L. Parsons, Arielle W. Rota, Christopher T. Ferreira, Marco A. R. Millspaugh, Joshua J. Warton, David McShea, William J. |
Author_xml | – sequence: 1 givenname: Christopher T. surname: Rota fullname: Rota, Christopher T. email: christopher.rota@mail.wvu.edu organization: University of Missouri – sequence: 2 givenname: Marco A. R. surname: Ferreira fullname: Ferreira, Marco A. R. organization: Virginia Tech – sequence: 3 givenname: Roland W. surname: Kays fullname: Kays, Roland W. organization: North Carolina State University – sequence: 4 givenname: Tavis D. surname: Forrester fullname: Forrester, Tavis D. organization: Smithsonian Conservation Biology Institute – sequence: 5 givenname: Elizabeth L. surname: Kalies fullname: Kalies, Elizabeth L. organization: The Nature Conservancy – sequence: 6 givenname: William J. surname: McShea fullname: McShea, William J. organization: Smithsonian Conservation Biology Institute – sequence: 7 givenname: Arielle W. surname: Parsons fullname: Parsons, Arielle W. organization: North Carolina Museum of Natural Sciences – sequence: 8 givenname: Joshua J. surname: Millspaugh fullname: Millspaugh, Joshua J. organization: University of Missouri – sequence: 9 givenname: David surname: Warton fullname: Warton, David |
BookMark | eNqFkTtrwzAQgEVJoWmauauhSxcnetlWxjSkD0jpkqGbkGWpKNiWK8mE_PsqdSglQ3vLHcf3HcfdNRi1tlUA3CI4QzHmGFKUYgTfZwhnrLgA45_O6Fd9Babe72AMwhYQ0zF4WCZNXwfjOyWN8omVsu9EKw9JYytVJ9q6JOxtElNjnUpMG5QTMpj2Izk5N-BSi9qr6SlPwPZxvV09p5u3p5fVcpNKSkmR6oxgiksJq6qEeaULpCUtlWA5K6uyoDiDFMMCSQwzprBmmBSQLUieayWwJBNwP4ztnP3slQ-8MV6quhatsr3niJGCIEIhjejdGbqzvWvjcjwOpQSTnOK_KMRwzhhZoCJS2UBJZ713SnNpggjGtsEJU3ME-fED_Hhjfrwx__5A9OZnXudMI9zhDyMfjL2p1eE_nL-u12QQvwDe6ZZW |
CitedBy_id | crossref_primary_10_1093_jmammal_gyab166 crossref_primary_10_1111_btp_13389 crossref_primary_10_1071_WR17181 crossref_primary_10_1007_s10344_021_01499_x crossref_primary_10_1016_j_gecco_2021_e01807 crossref_primary_10_1007_s10980_022_01567_w crossref_primary_10_1071_WR22094 crossref_primary_10_1002_ece3_10040 crossref_primary_10_1128_mSystems_00790_21 crossref_primary_10_1111_1365_2656_13264 crossref_primary_10_1002_ece3_10200 crossref_primary_10_1071_WR21045 crossref_primary_10_1093_jmammal_gyaf002 crossref_primary_10_1016_j_ecochg_2022_100061 crossref_primary_10_1111_1365_2656_14236 crossref_primary_10_63033_JWLS_SBGZ2233 crossref_primary_10_1002_ecy_2754 crossref_primary_10_1016_j_gecco_2025_e03422 crossref_primary_10_1371_journal_pone_0284850 crossref_primary_10_1007_s10530_023_03200_6 crossref_primary_10_1111_2041_210X_12587 crossref_primary_10_1676_23_00065 crossref_primary_10_1002_nafm_10402 crossref_primary_10_1111_2041_210X_14123 crossref_primary_10_1002_eap_2470 crossref_primary_10_1111_acv_12926 crossref_primary_10_1098_rspb_2021_2338 crossref_primary_10_1111_jzo_12645 crossref_primary_10_1111_oik_10270 crossref_primary_10_63033_JWLS_GCTQ1198 crossref_primary_10_3390_fishes9020043 crossref_primary_10_1002_edn3_579 crossref_primary_10_1007_s42974_025_00234_9 crossref_primary_10_1111_acv_12662 crossref_primary_10_3996_JFWM_23_038 crossref_primary_10_1007_s10651_021_00486_4 crossref_primary_10_1016_j_ecolmodel_2021_109712 crossref_primary_10_1016_j_gecco_2023_e02562 crossref_primary_10_1002_wlb3_01197 crossref_primary_10_1016_j_foreco_2021_119847 crossref_primary_10_1016_j_gecco_2023_e02684 crossref_primary_10_1002_ecs2_4500 crossref_primary_10_1098_rstb_2022_0232 crossref_primary_10_1016_j_biocon_2021_109294 crossref_primary_10_1371_journal_pone_0265440 crossref_primary_10_1002_ecm_1648 crossref_primary_10_1002_ecs2_3637 crossref_primary_10_1007_s00442_022_05127_6 crossref_primary_10_1017_S0030605323001746 crossref_primary_10_1111_ele_13610 crossref_primary_10_1086_725318 crossref_primary_10_1186_s12915_021_01136_8 crossref_primary_10_1002_eap_1564 crossref_primary_10_1002_ece3_11150 crossref_primary_10_1111_1365_2656_12791 crossref_primary_10_1093_jmammal_gyaa052 crossref_primary_10_1002_ecy_4237 crossref_primary_10_1016_j_avrs_2025_100238 crossref_primary_10_1111_oik_10577 crossref_primary_10_1016_j_gecco_2024_e03002 crossref_primary_10_1002_ecs2_3748 crossref_primary_10_1038_s41598_022_09084_1 crossref_primary_10_1086_718472 crossref_primary_10_1371_journal_pone_0191730 crossref_primary_10_1071_WR21116 crossref_primary_10_1002_eap_2404 crossref_primary_10_1111_biom_13203 crossref_primary_10_1016_j_jaridenv_2023_105067 crossref_primary_10_1007_s42974_024_00183_9 crossref_primary_10_1111_ecog_07402 crossref_primary_10_1007_s13253_021_00482_y crossref_primary_10_1016_j_gecco_2024_e03017 crossref_primary_10_1111_2041_210X_14437 crossref_primary_10_1111_2041_210X_13106 crossref_primary_10_1002_ecs2_3993 crossref_primary_10_1111_btp_12705 crossref_primary_10_1002_ece3_6290 crossref_primary_10_1111_cobi_13320 crossref_primary_10_1111_jav_01225 crossref_primary_10_3390_insects10100321 crossref_primary_10_1371_journal_pone_0217543 crossref_primary_10_1111_csp2_12847 crossref_primary_10_1371_journal_pone_0245973 crossref_primary_10_1111_jzo_12970 crossref_primary_10_1093_jmammal_gyae119 crossref_primary_10_1002_ece3_5005 crossref_primary_10_1007_s10531_022_02445_2 crossref_primary_10_1111_ecog_05411 crossref_primary_10_7554_eLife_38012 crossref_primary_10_1016_j_gecco_2023_e02493 crossref_primary_10_1007_s42991_022_00313_8 crossref_primary_10_1002_ecy_3520 crossref_primary_10_1111_2041_210X_13117 crossref_primary_10_1016_j_gecco_2022_e02139 crossref_primary_10_1002_ecs2_4435 crossref_primary_10_1111_gcb_15650 crossref_primary_10_1007_s00442_022_05252_2 crossref_primary_10_1002_eap_2393 crossref_primary_10_3390_d14010017 crossref_primary_10_3354_esr01106 crossref_primary_10_1016_j_scitotenv_2023_169552 crossref_primary_10_1111_ddi_13502 crossref_primary_10_1111_ecog_04957 crossref_primary_10_1675_063_047_0203 crossref_primary_10_1002_ecs2_4383 crossref_primary_10_1002_ecy_4468 crossref_primary_10_1371_journal_pone_0210878 crossref_primary_10_1016_j_gecco_2024_e03116 crossref_primary_10_1016_j_gecco_2022_e02300 crossref_primary_10_1007_s12237_025_01482_8 crossref_primary_10_1086_720714 crossref_primary_10_1007_s11252_024_01581_7 crossref_primary_10_1002_ecy_3494 crossref_primary_10_1093_cz_zoac093 crossref_primary_10_1016_j_biocon_2024_110777 crossref_primary_10_1111_oik_09004 crossref_primary_10_1016_j_fooweb_2023_e00288 crossref_primary_10_1007_s13253_023_00533_6 crossref_primary_10_1111_jzo_13002 crossref_primary_10_1111_jzo_13120 crossref_primary_10_1002_ece3_9104 crossref_primary_10_1371_journal_pone_0281687 crossref_primary_10_1002_ecy_70014 crossref_primary_10_1007_s10530_020_02254_0 crossref_primary_10_1002_ecy_3186 crossref_primary_10_3390_ani10122200 crossref_primary_10_1111_aje_12557 crossref_primary_10_1016_j_gecco_2020_e00984 crossref_primary_10_1002_ece3_6242 crossref_primary_10_1016_j_biocon_2021_108984 crossref_primary_10_1002_ecs2_4913 crossref_primary_10_11609_jott_7102_13_8_19079_19092 crossref_primary_10_3354_esr01320 crossref_primary_10_1007_s10531_022_02465_y crossref_primary_10_1016_j_gecco_2024_e03180 crossref_primary_10_1038_s41598_022_15694_6 crossref_primary_10_1126_science_abd4605 crossref_primary_10_1139_cjz_2019_0246 crossref_primary_10_1111_1365_2656_12883 crossref_primary_10_1016_j_cub_2023_07_064 crossref_primary_10_1111_1365_2664_13385 crossref_primary_10_1002_ece3_70651 crossref_primary_10_1016_j_spasta_2020_100418 crossref_primary_10_1038_s41598_022_20953_7 crossref_primary_10_1111_1365_2656_13976 crossref_primary_10_1111_rec_13678 crossref_primary_10_1002_nafm_10575 crossref_primary_10_1002_ecs2_3273 crossref_primary_10_1111_mam_12207 crossref_primary_10_1093_auk_ukaa048 crossref_primary_10_1371_journal_pone_0297053 crossref_primary_10_1093_condor_duaa016 |
Cites_doi | 10.1890/12-0564.1 10.1111/j.1365-2656.2009.01613.x 10.1016/j.anbehav.2013.11.027 10.1890/14-0661.1 10.1016/j.biocon.2015.05.007 10.1890/12-0285.1 10.3150/12-BEJSP10 10.1002/wmon.1015 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 10.1890/09-0850.1 10.1080/01621459.1993.10476321 10.1111/j.1600-0587.2013.00574.x 10.1111/j.1600-0587.2011.07103.x 10.1111/2041-210X.12587 10.1111/2041-210X.12180 10.1890/15-1193.1 10.1016/j.jaridenv.2011.10.016 10.1111/j.1461-0248.2008.01270.x 10.1890/10-0173.1 10.1016/j.biocon.2009.07.028 10.1007/s10980-015-0262-9 10.1016/j.biocon.2015.03.032 10.1214/09-BA403 10.1111/j.2041-210X.2012.00237.x 10.1093/jmammal/gyv100 10.1111/j.0021-8790.2004.00828.x 10.1890/09-0470.1 10.2307/4087501 10.1371/journal.pone.0099571 10.1890/08-0765.1 10.1371/journal.pone.0052015 10.1111/1365-2656.12121 |
ContentType | Journal Article |
Copyright | 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society Methods in Ecology and Evolution © 2016 British Ecological Society |
Copyright_xml | – notice: 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society – notice: Methods in Ecology and Evolution © 2016 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 8FD C1K FR3 P64 RC3 |
DOI | 10.1111/2041-210X.12587 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Genetics Abstracts Ecology Abstracts CrossRef Genetics Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2041-210X |
EndPage | 1173 |
ExternalDocumentID | 4207747531 10_1111_2041_210X_12587 MEE312587 |
Genre | article |
GeographicLocations | Mid-Atlantic states |
GeographicLocations_xml | – name: Mid-Atlantic states |
GrantInformation_xml | – fundername: Smithsonian Institution – fundername: VWR Foundation – fundername: US Forest Service – fundername: National Science Foundation funderid: 1232442; 1319293 – fundername: North Carolina Museum of Natural Sciences |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 4.4 4P2 50Y 5DZ 702 8-1 A00 AAESR AAFWJ AAHBH AAHHS AAZKR ABCUV ABLJU ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACPRK ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AENEX AEQDE AEUYN AFBPY AFKRA AFPKN AFRAH AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATCPS AVUZU AZVAB BBNVY BENPR BFHJK BHPHI BMXJE BRXPI CAG CCPQU COF DCZOG DPXWK EBD EBS EDH EJD F1Z G-S GODZA GROUPED_DOAJ HCIFZ HZ~ LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES M7P MY. MY~ M~E O9- P2P P2W P4E PATMY PYCSY R.K ROL RX1 SUPJJ V8K WBKPD WOHZO WYJ ZZTAW ~S- AAYXX CITATION PHGZM PHGZT 7QG 7SN 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 WIN |
ID | FETCH-LOGICAL-c4437-f53242bc0ddb06df71fc4bea868bdb7425042071c2058e2f8237089366fea2c3 |
ISSN | 2041-210X |
IngestDate | Thu Jul 10 19:08:53 EDT 2025 Wed Aug 13 05:53:15 EDT 2025 Wed Aug 13 06:08:50 EDT 2025 Thu Apr 24 23:02:19 EDT 2025 Tue Jul 01 03:19:37 EDT 2025 Wed Jan 22 16:27:40 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4437-f53242bc0ddb06df71fc4bea868bdb7425042071c2058e2f8237089366fea2c3 |
Notes | This article has been contributed to by US Government employees and their work is in the public domain in the USA. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1826883917 |
PQPubID | 1016379 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1837313404 proquest_journals_2374323642 proquest_journals_1826883917 crossref_citationtrail_10_1111_2041_210X_12587 crossref_primary_10_1111_2041_210X_12587 wiley_primary_10_1111_2041_210X_12587_MEE312587 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Methods in ecology and evolution |
PublicationYear | 2016 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2010; 79 2012 2016a 1993; 88 2015; 96 2016b; 97 2016; 31 2011; 77 2006 1972 2002 2015b 2012; 35 2015b; 190 2013; 8 2014; 83 2012; 78 2014; 88 1988; 105 2013; 19 2009; 12 2012; 93 2010; 20 2015; 191 2014; 5 2012; 3 2004; 73 2015a 2002; 83 2015; 85 2013; 94 2015a; 186 2009; 90 2014; 37 2015 2014 2009; 142 2013 2009; 4 2014; 9 2010; 91 e_1_2_7_6_1 e_1_2_7_5_1 MacArthur R (e_1_2_7_18_1) 1972 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_29_1 MacKenzie D.I. (e_1_2_7_21_1) 2006 Schabenberger O. (e_1_2_7_31_1) 2002 e_1_2_7_30_1 e_1_2_7_25_1 Fry J. (e_1_2_7_9_1) 2011; 77 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 R Core Team (e_1_2_7_27_1) 2015 Gelman A. (e_1_2_7_10_1) 2014 |
References_xml | – volume: 191 start-page: 1 year: 2015 end-page: 61 article-title: Spatial and temporal structure of a mesocarnivore guild in midwestern North America publication-title: Wildlife Monographs – volume: 79 start-page: 4 year: 2010 end-page: 12 article-title: Considering ecological dynamics in resource selection functions publication-title: Journal of Animal Ecology – volume: 37 start-page: 1198 year: 2014 end-page: 1209 article-title: The influence of interspecific interactions on species range expansion rates publication-title: Ecography – volume: 88 start-page: 669 year: 1993 end-page: 679 article-title: Bayesian analysis of binary and polychotomous response data publication-title: Journal of the American Statistical Association – volume: 20 start-page: 1467 year: 2010 end-page: 1475 article-title: A new parameterization for estimating co‐occurrence of interacting species publication-title: Ecological Applications – volume: 3 start-page: 1093 year: 2012 end-page: 1098 article-title: A gibbs sampler for bayesian analysis of site‐occupancy data publication-title: Methods in Ecology and Evolution – volume: 90 start-page: 546 year: 2009 end-page: 555 article-title: Predator‐specific landscapes of fear and resource distribution: effects on spatial range use publication-title: Ecology – volume: 78 start-page: 119 year: 2012 end-page: 127 article-title: Savanna glade hotspots: Plant community development and synergy with large herbivores publication-title: Journal of Arid Environments – volume: 105 start-page: 350 year: 1988 end-page: 364 article-title: Habitat selection by breeding american redstarts in response to the dominant competitor, the least flycatcher publication-title: Auk – volume: 77 start-page: 858 year: 2011 end-page: 864 article-title: Completion of the 2006 national land cover database for the conterminous United States publication-title: Photogrammetric Engineering & Remote Sensing – volume: 97 start-page: 48 year: 2016b end-page: 53 article-title: A two‐species occupancy model accommodating simultaneous spatial and interspecific dependence publication-title: Ecology – volume: 83 start-page: 2248 year: 2002 end-page: 2255 article-title: Estimating site occupancy rates when detection probabilities are less than one publication-title: Ecology – volume: 91 start-page: 2514 year: 2010 end-page: 2521 article-title: Modeling species co‐occurrence by multivariate logistic regression generates new hypotheses on fungal interactions publication-title: Ecology – volume: 12 start-page: 144 year: 2009 end-page: 154 article-title: Hierarchical models facilitate spatial analysis of large data sets: A case study on invasive plant species in the northeastern united states publication-title: Ecology Letters – volume: 96 start-page: 981 year: 2015 end-page: 987 article-title: Cats are rare where coyotes roam publication-title: Journal of Mammalogy – year: 2014 – year: 2015a – year: 2012 – year: 2016a – volume: 142 start-page: 2983 year: 2009 end-page: 2989 article-title: Modeling cooccurrence of northern spotted and barred owls: Accounting for detection probability differences publication-title: Biological Conservation – volume: 31 start-page: 55 year: 2016 end-page: 66 article-title: Volunteer run cameras as distributed sensors for macrosystem mammal research publication-title: Landscape Ecology – volume: 4 start-page: 85 year: 2009 end-page: 118 article-title: A review of bayesian variable selection methods: What, how and which publication-title: Bayesian Analysis – volume: 20 start-page: 2036 year: 2010 end-page: 2046 article-title: Two‐species occupancy models: a new parameterization applied to co‐occurrence of secretive rails publication-title: Ecological Applications – volume: 19 start-page: 1465 year: 2013 end-page: 1483 article-title: Multivariate bernoulli distribution publication-title: Bernoulli – volume: 85 start-page: 3 year: 2015 end-page: 28 article-title: A guide to Bayesian model selection for ecologists publication-title: Ecological Monographs – volume: 190 start-page: 23 year: 2015b end-page: 33 article-title: Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz mountains of California publication-title: Biological Conservation – volume: 94 start-page: 801 year: 2013 end-page: 808 article-title: Spatial occupancy models for large data sets publication-title: Ecology – volume: 83 start-page: 286 year: 2014 end-page: 295 article-title: Snake co‐occurrence patterns are best explained by habitat and hypothesized effects of interspecific interactions publication-title: Journal of Animal Ecology – year: 2002 – year: 2006 – year: 1972 – volume: 8 start-page: e52015 year: 2013 article-title: Fitting and interpreting occupancy models publication-title: PLoS One – volume: 88 start-page: 165 year: 2014 end-page: 173 article-title: Living in a landscape of fear: the impact of predation, resource availability and habitat structure on primate range use publication-title: Animal Behaviour – volume: 5 start-page: 397 year: 2014 end-page: 406 article-title: Understanding co‐occurrence by modelling species simultaneously with a joint species distribution model (jsdm) publication-title: Methods in Ecology and Evolution – volume: 93 start-page: 1802 year: 2012 end-page: 1808 article-title: Competitive exclusion within the predator community influences the distribution of a threatened prey species publication-title: Ecology – volume: 35, start-page: 811 year: 2012 end-page: 820 article-title: How do species interactions affect species distribution models publication-title: Ecography, – volume: 73 start-page: 546 year: 2004 end-page: 555 article-title: Investigating species cooccurrence patterns when species are detected imperfectly publication-title: Journal of Animal Ecology – volume: 186 start-page: 319 year: 2015a end-page: 325 article-title: Shared resources between giant panda and sympatric wild and domestic mammals publication-title: Biological Conservation – volume: 9 start-page: e99571 year: 2014 article-title: Ignoring imperfect detection in biological surveys is dangerous: a response to ‘fitting and interpreting occupancy models publication-title: PLoS One – year: 2015 – year: 2015b – year: 2013 – ident: e_1_2_7_14_1 doi: 10.1890/12-0564.1 – ident: e_1_2_7_22_1 doi: 10.1111/j.1365-2656.2009.01613.x – ident: e_1_2_7_34_1 – ident: e_1_2_7_5_1 doi: 10.1016/j.anbehav.2013.11.027 – ident: e_1_2_7_13_1 doi: 10.1890/14-0661.1 – ident: e_1_2_7_41_1 doi: 10.1016/j.biocon.2015.05.007 – ident: e_1_2_7_4_1 doi: 10.1890/12-0285.1 – ident: e_1_2_7_7_1 doi: 10.3150/12-BEJSP10 – ident: e_1_2_7_17_1 doi: 10.1002/wmon.1015 – ident: e_1_2_7_19_1 doi: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 – volume-title: Geographical Ecology: Patterns in the Distribution of Species year: 1972 ident: e_1_2_7_18_1 – ident: e_1_2_7_39_1 doi: 10.1890/09-0850.1 – ident: e_1_2_7_2_1 doi: 10.1080/01621459.1993.10476321 – volume: 77 start-page: 858 year: 2011 ident: e_1_2_7_9_1 article-title: Completion of the 2006 national land cover database for the conterminous United States publication-title: Photogrammetric Engineering & Remote Sensing – ident: e_1_2_7_37_1 doi: 10.1111/j.1600-0587.2013.00574.x – volume-title: Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence year: 2006 ident: e_1_2_7_21_1 – ident: e_1_2_7_11_1 doi: 10.1111/j.1600-0587.2011.07103.x – ident: e_1_2_7_33_1 – ident: e_1_2_7_29_1 doi: 10.1111/2041-210X.12587 – ident: e_1_2_7_26_1 doi: 10.1111/2041-210X.12180 – ident: e_1_2_7_30_1 doi: 10.1890/15-1193.1 – ident: e_1_2_7_38_1 doi: 10.1016/j.jaridenv.2011.10.016 – ident: e_1_2_7_16_1 doi: 10.1111/j.1461-0248.2008.01270.x – ident: e_1_2_7_25_1 doi: 10.1890/10-0173.1 – ident: e_1_2_7_36_1 – ident: e_1_2_7_3_1 doi: 10.1016/j.biocon.2009.07.028 – ident: e_1_2_7_23_1 doi: 10.1007/s10980-015-0262-9 – ident: e_1_2_7_40_1 doi: 10.1016/j.biocon.2015.03.032 – ident: e_1_2_7_24_1 doi: 10.1214/09-BA403 – ident: e_1_2_7_8_1 doi: 10.1111/j.2041-210X.2012.00237.x – ident: e_1_2_7_15_1 doi: 10.1093/jmammal/gyv100 – ident: e_1_2_7_20_1 doi: 10.1111/j.0021-8790.2004.00828.x – ident: e_1_2_7_6_1 – ident: e_1_2_7_28_1 doi: 10.1890/09-0470.1 – ident: e_1_2_7_32_1 doi: 10.2307/4087501 – ident: e_1_2_7_12_1 doi: 10.1371/journal.pone.0099571 – ident: e_1_2_7_43_1 doi: 10.1890/08-0765.1 – ident: e_1_2_7_42_1 doi: 10.1371/journal.pone.0052015 – ident: e_1_2_7_35_1 doi: 10.1111/1365-2656.12121 – volume-title: R: A Language and Environment for Statistical Computing year: 2015 ident: e_1_2_7_27_1 – volume-title: Contemporary statistical models for the plant and social sciences year: 2002 ident: e_1_2_7_31_1 – volume-title: Bayesian data analysis year: 2014 ident: e_1_2_7_10_1 |
SSID | ssj0000389024 |
Score | 2.537951 |
Snippet | Summary
Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling... Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are... Summary Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling... 1. Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1164 |
SubjectTerms | Asymmetry Canis latrans community competition Coyotes eMammal Environmental conditions Environmental gradient Foxes Inference interspecific interactions Lynx rufus Modelling multinomial logit multinomial probit multivariate Bernoulli Occupancy occupancy modelling predation Probability Random variables Species Urocyon cinereoargenteus Vulpes vulpes |
Title | A multispecies occupancy model for two or more interacting species |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.12587 https://www.proquest.com/docview/1826883917 https://www.proquest.com/docview/2374323642 https://www.proquest.com/docview/1837313404 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_rieCL-Imrp1TwQSitSZOm3cdVVw5lfTgq7ltp0xQOjq2cu3fgg3-Gf68zSTbNyR7n-dJd8kWb-TWZSWd-Q8hrrWkH-0qWcKGbRLQ9T2YqLxKpWJ_zXnJpfHOWX-TRV_Fpla8mk9-B19J206bq5964kv-RKpSBXDFK9gaS9YNCAfwH-cIVJAzXf5Lx3PoDYrTkCZLHGsZgDKU0-W2sB-HFgC7n6E5rqCFMUBQeIdg-oW66NMmkjX-sViM1kz53zzB-m7EaZ8BLEFdpcDB9pk9M9iIMBFJDPE_jY1_9ubHIOR7QpTL-NvYL04RUyH0Qf0jDMwkmvXebW7oyKlgCxuTK7jJ7ytzaW4QQo8FCypglN3ebMmM24ckVC74fOwV9zW3gl6i1fdP8msZmZ18uFtzU3SK3MzA_MDPG8td4doekhNTkS_ZjOdYodBL7a_zLCs9oxYS2kFFmqvvknrNCormF1AMy0euH5M7CSv0ReTePQmBFHliRAVYEwIoAWBH8ILCiAFiR6_OYVB8X1fujxCXbSJQQvEjgzQRtrVW061oqu75gvRKtbkpZtl1bCKS6y0AfVRnNS531SHJEQdmVstdNpvgTcrAe1vopibJZ0TQz2bBW50LlbdkrKnsqwRIpVS5nU5LuJqRWjoge86Gc1juDFGewxhmszQxOyRvf4bvlYLm66eFuhmv3ov6o0YQuwRBg-6vhQQTHPArZlLzy1bDK4qezZq2HLQ7BC864oGJK3hrBXXcntQfRsxv3eE7ujm_VITnYnG31C9B9N-1LA8Q_0neh_A |
linkProvider | ISSN International Centre |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT-swDLdgCMEFwQPE-MyTOHAppE2adseBhsbHOG1oepeqSRMuqEOwCfHfY2ddGeghxKmVUketE8c_p87PAMfW8gL9ShQIafNAaieClomTQJnQxcIpoXxuTu9OdQfyehgP587CTPkh6g03sgy_XpOB04b0nJVHXIYBRizDU3TSabIIS4Rt0gYste8H_wb1TgtRyHFf3baWqDh-KKXnSy-f3dMH5pxHrt71XK7DWoUZWXs6yBuwYMs_sNzxfNNvm3DeZj4tkA5NYtzLRp44GBdN5svcMISlbPw6YnihrFpGDBH-bFT5wCqZLehfdvoX3aAqjRAYKUUSoB7Rt2rDi0JzVbgkdEZqm6cq1YXGcDdGY0RtmIjHqY0cUdJwhCZKOZtHRmxDoxyVdgdY1EryvKXyUNtYmlinznDluELcmJpYtZpwOlNIZiracKpe8ZjNwgfSYEYazLwGm3BSCzxNGTO-f3R_puGsMp2XjAKeFGFb-P9m_BApiPU-asLfuhltgn505KUdTagLkYhQSC6bcOYH7qc3yXqdjvB3u7-WOIKVbr93m91e3d3swSrOfDXN9tuHxvh5Yg8QtYz1YTUt3wGJ2N43 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCMQF8RSDAUHiwKWQNmnaHQds4i0ODCEuVZMmXFCHYAjx77GzrjwEQpxaKXXUOnH8OXU-A-xYywv0K1EgpM0DqZ0I2iZOAmVCFwunhPK5OReX6rgvT2_jcTYhnYUZ8UPUG25kGX69JgN_LNwnI4-4DAMMWG730EenySRMEVceTuypzk3_rl9vtBCDHPfFbWuJiuKHMnq-9fLVO31Azs_A1Xue3jzMVZCRdUZjvAATtlyE6a6nm35bgoMO81mBdGYSw1428LzBuGYyX-WGISplw9cBwwsl1TIiiPBHo8p7Vsksw3Wve314HFSVEQIjpUgCVCO6Vm14UWiuCpeEzkht81SlutAY7cZoiwgeTMTj1EaOGGk4IhOlnM0jI1agUQ5Kuwosaid53lZ5qG0sTaxTZ7hyXCFsTE2s2k3YGyskMxVrOBWveMjG0QNpMCMNZl6DTditBR5HhBm_P9oaazirLOc5o3gnRdQW_tyMHyIFkd5HTdium9Ek6D9HXtrBC3UhEhEKyWUT9v3A_fUm2UW3K_zd2r8ltmDm6qiXnZ9cnq3DLM57Ncr1a0Fj-PRiNxCzDPVmNSvfATfU3WA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multispecies+occupancy+model+for+two+or+more+interacting+species&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Rota%2C+Christopher+T.&rft.au=Ferreira%2C+Marco+A.+R.&rft.au=Kays%2C+Roland+W.&rft.au=Forrester%2C+Tavis+D.&rft.date=2016-10-01&rft.issn=2041-210X&rft.eissn=2041-210X&rft.volume=7&rft.issue=10&rft.spage=1164&rft.epage=1173&rft_id=info:doi/10.1111%2F2041-210X.12587&rft.externalDBID=10.1111%252F2041-210X.12587&rft.externalDocID=MEE312587 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon |