A multispecies occupancy model for two or more interacting species

Summary Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies oc...

Full description

Saved in:
Bibliographic Details
Published inMethods in ecology and evolution Vol. 7; no. 10; pp. 1164 - 1173
Main Authors Rota, Christopher T., Ferreira, Marco A. R., Kays, Roland W., Forrester, Tavis D., Kalies, Elizabeth L., McShea, William J., Parsons, Arielle W., Millspaugh, Joshua J., Warton, David
Format Journal Article
LanguageEnglish
Published London John Wiley & Sons, Inc 01.10.2016
Subjects
Online AccessGet full text
ISSN2041-210X
2041-210X
DOI10.1111/2041-210X.12587

Cover

Loading…
Abstract Summary Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies occupancy model that can accommodate two or more interacting species. We generalize the single‐species occupancy model to two or more interacting species by assuming the latent occupancy state is a multivariate Bernoulli random variable. We propose modelling the probability of each potential latent occupancy state with both a multinomial logit and a multinomial probit model and present details of a Gibbs sampler for the latter. As an example, we model co‐occurrence probabilities of bobcat (Lynx rufus), coyote (Canis latrans), grey fox (Urocyon cinereoargenteus) and red fox (Vulpes vulpes) as a function of human disturbance variables throughout 6 Mid‐Atlantic states in the eastern United States. We found evidence for pairwise interactions among most species, and the probability of some pairs of species occupying the same site varied along environmental gradients; for example, occupancy probabilities of coyote and grey fox were independent at sites with little human disturbance, but these two species were more likely to occur together at sites with high human disturbance. Ecological communities are composed of multiple interacting species. Our proposed method improves our ability to draw inference from such communities by permitting modelling of detection/non‐detection data from an arbitrary number of species, without assuming asymmetric interactions. Additionally, our proposed method permits modelling the probability two or more species occur together as a function of environmental variables. These advancements represent an important improvement in our ability to draw community‐level inference from multiple interacting species that are subject to imperfect detection.
AbstractList Summary Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies occupancy model that can accommodate two or more interacting species. We generalize the single-species occupancy model to two or more interacting species by assuming the latent occupancy state is a multivariate Bernoulli random variable. We propose modelling the probability of each potential latent occupancy state with both a multinomial logit and a multinomial probit model and present details of a Gibbs sampler for the latter. As an example, we model co-occurrence probabilities of bobcat (Lynx rufus), coyote (Canis latrans), grey fox (Urocyon cinereoargenteus) and red fox (Vulpes vulpes) as a function of human disturbance variables throughout 6 Mid-Atlantic states in the eastern United States. We found evidence for pairwise interactions among most species, and the probability of some pairs of species occupying the same site varied along environmental gradients; for example, occupancy probabilities of coyote and grey fox were independent at sites with little human disturbance, but these two species were more likely to occur together at sites with high human disturbance. Ecological communities are composed of multiple interacting species. Our proposed method improves our ability to draw inference from such communities by permitting modelling of detection/non-detection data from an arbitrary number of species, without assuming asymmetric interactions. Additionally, our proposed method permits modelling the probability two or more species occur together as a function of environmental variables. These advancements represent an important improvement in our ability to draw community-level inference from multiple interacting species that are subject to imperfect detection.
1. Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies occupancy model that can accommodate two or more interacting species. 2. We generalize the single-species occupancy model to two or more interacting species by assuming the latent occupancy state is a multivariate Bernoulli random variable. We propose modelling the probability of each potential latent occupancy state with both a multinomial logit and a multinomial probit model and present details of a Gibbs sampler for the latter. 3. As an example, we model co-occurrence probabilities of bobcat (Lynx rufus), coyote (Canis latrans), grey fox (Urocyon cinereoargenteus) and red fox (Vulpes vulpes) as a function of human disturbance variables throughout 6 Mid-Atlantic states in the eastern United States. We found evidence for pairwise interactions among most species, and the probability of some pairs of species occupying the same site varied along environmental gradients; for example, occupancy probabilities of coyote and grey fox were independent at sites with little human disturbance, but these two species were more likely to occur together at sites with high human disturbance. 4. Ecological communities are composed of multiple interacting species. Our proposed method improves our ability to draw inference from such communities by permitting modelling of detection/non-detection data from an arbitrary number of species, without assuming asymmetric interactions. Additionally, our proposed method permits modelling the probability two or more species occur together as a function of environmental variables. These advancements represent an important improvement in our ability to draw community-level inference from multiple interacting species that are subject to imperfect detection.
Summary Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies occupancy model that can accommodate two or more interacting species. We generalize the single‐species occupancy model to two or more interacting species by assuming the latent occupancy state is a multivariate Bernoulli random variable. We propose modelling the probability of each potential latent occupancy state with both a multinomial logit and a multinomial probit model and present details of a Gibbs sampler for the latter. As an example, we model co‐occurrence probabilities of bobcat (Lynx rufus), coyote (Canis latrans), grey fox (Urocyon cinereoargenteus) and red fox (Vulpes vulpes) as a function of human disturbance variables throughout 6 Mid‐Atlantic states in the eastern United States. We found evidence for pairwise interactions among most species, and the probability of some pairs of species occupying the same site varied along environmental gradients; for example, occupancy probabilities of coyote and grey fox were independent at sites with little human disturbance, but these two species were more likely to occur together at sites with high human disturbance. Ecological communities are composed of multiple interacting species. Our proposed method improves our ability to draw inference from such communities by permitting modelling of detection/non‐detection data from an arbitrary number of species, without assuming asymmetric interactions. Additionally, our proposed method permits modelling the probability two or more species occur together as a function of environmental variables. These advancements represent an important improvement in our ability to draw community‐level inference from multiple interacting species that are subject to imperfect detection.
Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies occupancy model that can accommodate two or more interacting species. We generalize the single‐species occupancy model to two or more interacting species by assuming the latent occupancy state is a multivariate Bernoulli random variable. We propose modelling the probability of each potential latent occupancy state with both a multinomial logit and a multinomial probit model and present details of a Gibbs sampler for the latter. As an example, we model co‐occurrence probabilities of bobcat ( Lynx rufus ), coyote ( Canis latrans ), grey fox ( Urocyon cinereoargenteus ) and red fox ( Vulpes vulpes ) as a function of human disturbance variables throughout 6 Mid‐Atlantic states in the eastern United States. We found evidence for pairwise interactions among most species, and the probability of some pairs of species occupying the same site varied along environmental gradients; for example, occupancy probabilities of coyote and grey fox were independent at sites with little human disturbance, but these two species were more likely to occur together at sites with high human disturbance. Ecological communities are composed of multiple interacting species. Our proposed method improves our ability to draw inference from such communities by permitting modelling of detection/non‐detection data from an arbitrary number of species, without assuming asymmetric interactions. Additionally, our proposed method permits modelling the probability two or more species occur together as a function of environmental variables. These advancements represent an important improvement in our ability to draw community‐level inference from multiple interacting species that are subject to imperfect detection.
Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are practically limited to two interacting species and often require the assumption of asymmetric interactions. We propose a multispecies occupancy model that can accommodate two or more interacting species.We generalize the single‐species occupancy model to two or more interacting species by assuming the latent occupancy state is a multivariate Bernoulli random variable. We propose modelling the probability of each potential latent occupancy state with both a multinomial logit and a multinomial probit model and present details of a Gibbs sampler for the latter.As an example, we model co‐occurrence probabilities of bobcat (Lynx rufus), coyote (Canis latrans), grey fox (Urocyon cinereoargenteus) and red fox (Vulpes vulpes) as a function of human disturbance variables throughout 6 Mid‐Atlantic states in the eastern United States. We found evidence for pairwise interactions among most species, and the probability of some pairs of species occupying the same site varied along environmental gradients; for example, occupancy probabilities of coyote and grey fox were independent at sites with little human disturbance, but these two species were more likely to occur together at sites with high human disturbance.Ecological communities are composed of multiple interacting species. Our proposed method improves our ability to draw inference from such communities by permitting modelling of detection/non‐detection data from an arbitrary number of species, without assuming asymmetric interactions. Additionally, our proposed method permits modelling the probability two or more species occur together as a function of environmental variables. These advancements represent an important improvement in our ability to draw community‐level inference from multiple interacting species that are subject to imperfect detection.
Author Forrester, Tavis D.
Kays, Roland W.
Kalies, Elizabeth L.
Parsons, Arielle W.
Rota, Christopher T.
Ferreira, Marco A. R.
Millspaugh, Joshua J.
Warton, David
McShea, William J.
Author_xml – sequence: 1
  givenname: Christopher T.
  surname: Rota
  fullname: Rota, Christopher T.
  email: christopher.rota@mail.wvu.edu
  organization: University of Missouri
– sequence: 2
  givenname: Marco A. R.
  surname: Ferreira
  fullname: Ferreira, Marco A. R.
  organization: Virginia Tech
– sequence: 3
  givenname: Roland W.
  surname: Kays
  fullname: Kays, Roland W.
  organization: North Carolina State University
– sequence: 4
  givenname: Tavis D.
  surname: Forrester
  fullname: Forrester, Tavis D.
  organization: Smithsonian Conservation Biology Institute
– sequence: 5
  givenname: Elizabeth L.
  surname: Kalies
  fullname: Kalies, Elizabeth L.
  organization: The Nature Conservancy
– sequence: 6
  givenname: William J.
  surname: McShea
  fullname: McShea, William J.
  organization: Smithsonian Conservation Biology Institute
– sequence: 7
  givenname: Arielle W.
  surname: Parsons
  fullname: Parsons, Arielle W.
  organization: North Carolina Museum of Natural Sciences
– sequence: 8
  givenname: Joshua J.
  surname: Millspaugh
  fullname: Millspaugh, Joshua J.
  organization: University of Missouri
– sequence: 9
  givenname: David
  surname: Warton
  fullname: Warton, David
BookMark eNqFkTtrwzAQgEVJoWmauauhSxcnetlWxjSkD0jpkqGbkGWpKNiWK8mE_PsqdSglQ3vLHcf3HcfdNRi1tlUA3CI4QzHmGFKUYgTfZwhnrLgA45_O6Fd9Babe72AMwhYQ0zF4WCZNXwfjOyWN8omVsu9EKw9JYytVJ9q6JOxtElNjnUpMG5QTMpj2Izk5N-BSi9qr6SlPwPZxvV09p5u3p5fVcpNKSkmR6oxgiksJq6qEeaULpCUtlWA5K6uyoDiDFMMCSQwzprBmmBSQLUieayWwJBNwP4ztnP3slQ-8MV6quhatsr3niJGCIEIhjejdGbqzvWvjcjwOpQSTnOK_KMRwzhhZoCJS2UBJZ713SnNpggjGtsEJU3ME-fED_Hhjfrwx__5A9OZnXudMI9zhDyMfjL2p1eE_nL-u12QQvwDe6ZZW
CitedBy_id crossref_primary_10_1093_jmammal_gyab166
crossref_primary_10_1111_btp_13389
crossref_primary_10_1071_WR17181
crossref_primary_10_1007_s10344_021_01499_x
crossref_primary_10_1016_j_gecco_2021_e01807
crossref_primary_10_1007_s10980_022_01567_w
crossref_primary_10_1071_WR22094
crossref_primary_10_1002_ece3_10040
crossref_primary_10_1128_mSystems_00790_21
crossref_primary_10_1111_1365_2656_13264
crossref_primary_10_1002_ece3_10200
crossref_primary_10_1071_WR21045
crossref_primary_10_1093_jmammal_gyaf002
crossref_primary_10_1016_j_ecochg_2022_100061
crossref_primary_10_1111_1365_2656_14236
crossref_primary_10_63033_JWLS_SBGZ2233
crossref_primary_10_1002_ecy_2754
crossref_primary_10_1016_j_gecco_2025_e03422
crossref_primary_10_1371_journal_pone_0284850
crossref_primary_10_1007_s10530_023_03200_6
crossref_primary_10_1111_2041_210X_12587
crossref_primary_10_1676_23_00065
crossref_primary_10_1002_nafm_10402
crossref_primary_10_1111_2041_210X_14123
crossref_primary_10_1002_eap_2470
crossref_primary_10_1111_acv_12926
crossref_primary_10_1098_rspb_2021_2338
crossref_primary_10_1111_jzo_12645
crossref_primary_10_1111_oik_10270
crossref_primary_10_63033_JWLS_GCTQ1198
crossref_primary_10_3390_fishes9020043
crossref_primary_10_1002_edn3_579
crossref_primary_10_1007_s42974_025_00234_9
crossref_primary_10_1111_acv_12662
crossref_primary_10_3996_JFWM_23_038
crossref_primary_10_1007_s10651_021_00486_4
crossref_primary_10_1016_j_ecolmodel_2021_109712
crossref_primary_10_1016_j_gecco_2023_e02562
crossref_primary_10_1002_wlb3_01197
crossref_primary_10_1016_j_foreco_2021_119847
crossref_primary_10_1016_j_gecco_2023_e02684
crossref_primary_10_1002_ecs2_4500
crossref_primary_10_1098_rstb_2022_0232
crossref_primary_10_1016_j_biocon_2021_109294
crossref_primary_10_1371_journal_pone_0265440
crossref_primary_10_1002_ecm_1648
crossref_primary_10_1002_ecs2_3637
crossref_primary_10_1007_s00442_022_05127_6
crossref_primary_10_1017_S0030605323001746
crossref_primary_10_1111_ele_13610
crossref_primary_10_1086_725318
crossref_primary_10_1186_s12915_021_01136_8
crossref_primary_10_1002_eap_1564
crossref_primary_10_1002_ece3_11150
crossref_primary_10_1111_1365_2656_12791
crossref_primary_10_1093_jmammal_gyaa052
crossref_primary_10_1002_ecy_4237
crossref_primary_10_1016_j_avrs_2025_100238
crossref_primary_10_1111_oik_10577
crossref_primary_10_1016_j_gecco_2024_e03002
crossref_primary_10_1002_ecs2_3748
crossref_primary_10_1038_s41598_022_09084_1
crossref_primary_10_1086_718472
crossref_primary_10_1371_journal_pone_0191730
crossref_primary_10_1071_WR21116
crossref_primary_10_1002_eap_2404
crossref_primary_10_1111_biom_13203
crossref_primary_10_1016_j_jaridenv_2023_105067
crossref_primary_10_1007_s42974_024_00183_9
crossref_primary_10_1111_ecog_07402
crossref_primary_10_1007_s13253_021_00482_y
crossref_primary_10_1016_j_gecco_2024_e03017
crossref_primary_10_1111_2041_210X_14437
crossref_primary_10_1111_2041_210X_13106
crossref_primary_10_1002_ecs2_3993
crossref_primary_10_1111_btp_12705
crossref_primary_10_1002_ece3_6290
crossref_primary_10_1111_cobi_13320
crossref_primary_10_1111_jav_01225
crossref_primary_10_3390_insects10100321
crossref_primary_10_1371_journal_pone_0217543
crossref_primary_10_1111_csp2_12847
crossref_primary_10_1371_journal_pone_0245973
crossref_primary_10_1111_jzo_12970
crossref_primary_10_1093_jmammal_gyae119
crossref_primary_10_1002_ece3_5005
crossref_primary_10_1007_s10531_022_02445_2
crossref_primary_10_1111_ecog_05411
crossref_primary_10_7554_eLife_38012
crossref_primary_10_1016_j_gecco_2023_e02493
crossref_primary_10_1007_s42991_022_00313_8
crossref_primary_10_1002_ecy_3520
crossref_primary_10_1111_2041_210X_13117
crossref_primary_10_1016_j_gecco_2022_e02139
crossref_primary_10_1002_ecs2_4435
crossref_primary_10_1111_gcb_15650
crossref_primary_10_1007_s00442_022_05252_2
crossref_primary_10_1002_eap_2393
crossref_primary_10_3390_d14010017
crossref_primary_10_3354_esr01106
crossref_primary_10_1016_j_scitotenv_2023_169552
crossref_primary_10_1111_ddi_13502
crossref_primary_10_1111_ecog_04957
crossref_primary_10_1675_063_047_0203
crossref_primary_10_1002_ecs2_4383
crossref_primary_10_1002_ecy_4468
crossref_primary_10_1371_journal_pone_0210878
crossref_primary_10_1016_j_gecco_2024_e03116
crossref_primary_10_1016_j_gecco_2022_e02300
crossref_primary_10_1007_s12237_025_01482_8
crossref_primary_10_1086_720714
crossref_primary_10_1007_s11252_024_01581_7
crossref_primary_10_1002_ecy_3494
crossref_primary_10_1093_cz_zoac093
crossref_primary_10_1016_j_biocon_2024_110777
crossref_primary_10_1111_oik_09004
crossref_primary_10_1016_j_fooweb_2023_e00288
crossref_primary_10_1007_s13253_023_00533_6
crossref_primary_10_1111_jzo_13002
crossref_primary_10_1111_jzo_13120
crossref_primary_10_1002_ece3_9104
crossref_primary_10_1371_journal_pone_0281687
crossref_primary_10_1002_ecy_70014
crossref_primary_10_1007_s10530_020_02254_0
crossref_primary_10_1002_ecy_3186
crossref_primary_10_3390_ani10122200
crossref_primary_10_1111_aje_12557
crossref_primary_10_1016_j_gecco_2020_e00984
crossref_primary_10_1002_ece3_6242
crossref_primary_10_1016_j_biocon_2021_108984
crossref_primary_10_1002_ecs2_4913
crossref_primary_10_11609_jott_7102_13_8_19079_19092
crossref_primary_10_3354_esr01320
crossref_primary_10_1007_s10531_022_02465_y
crossref_primary_10_1016_j_gecco_2024_e03180
crossref_primary_10_1038_s41598_022_15694_6
crossref_primary_10_1126_science_abd4605
crossref_primary_10_1139_cjz_2019_0246
crossref_primary_10_1111_1365_2656_12883
crossref_primary_10_1016_j_cub_2023_07_064
crossref_primary_10_1111_1365_2664_13385
crossref_primary_10_1002_ece3_70651
crossref_primary_10_1016_j_spasta_2020_100418
crossref_primary_10_1038_s41598_022_20953_7
crossref_primary_10_1111_1365_2656_13976
crossref_primary_10_1111_rec_13678
crossref_primary_10_1002_nafm_10575
crossref_primary_10_1002_ecs2_3273
crossref_primary_10_1111_mam_12207
crossref_primary_10_1093_auk_ukaa048
crossref_primary_10_1371_journal_pone_0297053
crossref_primary_10_1093_condor_duaa016
Cites_doi 10.1890/12-0564.1
10.1111/j.1365-2656.2009.01613.x
10.1016/j.anbehav.2013.11.027
10.1890/14-0661.1
10.1016/j.biocon.2015.05.007
10.1890/12-0285.1
10.3150/12-BEJSP10
10.1002/wmon.1015
10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
10.1890/09-0850.1
10.1080/01621459.1993.10476321
10.1111/j.1600-0587.2013.00574.x
10.1111/j.1600-0587.2011.07103.x
10.1111/2041-210X.12587
10.1111/2041-210X.12180
10.1890/15-1193.1
10.1016/j.jaridenv.2011.10.016
10.1111/j.1461-0248.2008.01270.x
10.1890/10-0173.1
10.1016/j.biocon.2009.07.028
10.1007/s10980-015-0262-9
10.1016/j.biocon.2015.03.032
10.1214/09-BA403
10.1111/j.2041-210X.2012.00237.x
10.1093/jmammal/gyv100
10.1111/j.0021-8790.2004.00828.x
10.1890/09-0470.1
10.2307/4087501
10.1371/journal.pone.0099571
10.1890/08-0765.1
10.1371/journal.pone.0052015
10.1111/1365-2656.12121
ContentType Journal Article
Copyright 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society
Methods in Ecology and Evolution © 2016 British Ecological Society
Copyright_xml – notice: 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society
– notice: Methods in Ecology and Evolution © 2016 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
8FD
C1K
FR3
P64
RC3
DOI 10.1111/2041-210X.12587
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Genetics Abstracts
Ecology Abstracts

CrossRef
Genetics Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2041-210X
EndPage 1173
ExternalDocumentID 4207747531
10_1111_2041_210X_12587
MEE312587
Genre article
GeographicLocations Mid-Atlantic states
GeographicLocations_xml – name: Mid-Atlantic states
GrantInformation_xml – fundername: Smithsonian Institution
– fundername: VWR Foundation
– fundername: US Forest Service
– fundername: National Science Foundation
  funderid: 1232442; 1319293
– fundername: North Carolina Museum of Natural Sciences
GroupedDBID 05W
0R~
1OC
24P
31~
33P
4.4
4P2
50Y
5DZ
702
8-1
A00
AAESR
AAFWJ
AAHBH
AAHHS
AAZKR
ABCUV
ABLJU
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AENEX
AEQDE
AEUYN
AFBPY
AFKRA
AFPKN
AFRAH
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ATCPS
AVUZU
AZVAB
BBNVY
BENPR
BFHJK
BHPHI
BMXJE
BRXPI
CAG
CCPQU
COF
DCZOG
DPXWK
EBD
EBS
EDH
EJD
F1Z
G-S
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M7P
MY.
MY~
M~E
O9-
P2P
P2W
P4E
PATMY
PYCSY
R.K
ROL
RX1
SUPJJ
V8K
WBKPD
WOHZO
WYJ
ZZTAW
~S-
AAYXX
CITATION
PHGZM
PHGZT
7QG
7SN
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
WIN
ID FETCH-LOGICAL-c4437-f53242bc0ddb06df71fc4bea868bdb7425042071c2058e2f8237089366fea2c3
ISSN 2041-210X
IngestDate Thu Jul 10 19:08:53 EDT 2025
Wed Aug 13 05:53:15 EDT 2025
Wed Aug 13 06:08:50 EDT 2025
Thu Apr 24 23:02:19 EDT 2025
Tue Jul 01 03:19:37 EDT 2025
Wed Jan 22 16:27:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4437-f53242bc0ddb06df71fc4bea868bdb7425042071c2058e2f8237089366fea2c3
Notes This article has been contributed to by US Government employees and their work is in the public domain in the USA.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1826883917
PQPubID 1016379
PageCount 10
ParticipantIDs proquest_miscellaneous_1837313404
proquest_journals_2374323642
proquest_journals_1826883917
crossref_citationtrail_10_1111_2041_210X_12587
crossref_primary_10_1111_2041_210X_12587
wiley_primary_10_1111_2041_210X_12587_MEE312587
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2016
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Methods in ecology and evolution
PublicationYear 2016
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 79
2012
2016a
1993; 88
2015; 96
2016b; 97
2016; 31
2011; 77
2006
1972
2002
2015b
2012; 35
2015b; 190
2013; 8
2014; 83
2012; 78
2014; 88
1988; 105
2013; 19
2009; 12
2012; 93
2010; 20
2015; 191
2014; 5
2012; 3
2004; 73
2015a
2002; 83
2015; 85
2013; 94
2015a; 186
2009; 90
2014; 37
2015
2014
2009; 142
2013
2009; 4
2014; 9
2010; 91
e_1_2_7_6_1
e_1_2_7_5_1
MacArthur R (e_1_2_7_18_1) 1972
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_29_1
MacKenzie D.I. (e_1_2_7_21_1) 2006
Schabenberger O. (e_1_2_7_31_1) 2002
e_1_2_7_30_1
e_1_2_7_25_1
Fry J. (e_1_2_7_9_1) 2011; 77
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
R Core Team (e_1_2_7_27_1) 2015
Gelman A. (e_1_2_7_10_1) 2014
References_xml – volume: 191
  start-page: 1
  year: 2015
  end-page: 61
  article-title: Spatial and temporal structure of a mesocarnivore guild in midwestern North America
  publication-title: Wildlife Monographs
– volume: 79
  start-page: 4
  year: 2010
  end-page: 12
  article-title: Considering ecological dynamics in resource selection functions
  publication-title: Journal of Animal Ecology
– volume: 37
  start-page: 1198
  year: 2014
  end-page: 1209
  article-title: The influence of interspecific interactions on species range expansion rates
  publication-title: Ecography
– volume: 88
  start-page: 669
  year: 1993
  end-page: 679
  article-title: Bayesian analysis of binary and polychotomous response data
  publication-title: Journal of the American Statistical Association
– volume: 20
  start-page: 1467
  year: 2010
  end-page: 1475
  article-title: A new parameterization for estimating co‐occurrence of interacting species
  publication-title: Ecological Applications
– volume: 3
  start-page: 1093
  year: 2012
  end-page: 1098
  article-title: A gibbs sampler for bayesian analysis of site‐occupancy data
  publication-title: Methods in Ecology and Evolution
– volume: 90
  start-page: 546
  year: 2009
  end-page: 555
  article-title: Predator‐specific landscapes of fear and resource distribution: effects on spatial range use
  publication-title: Ecology
– volume: 78
  start-page: 119
  year: 2012
  end-page: 127
  article-title: Savanna glade hotspots: Plant community development and synergy with large herbivores
  publication-title: Journal of Arid Environments
– volume: 105
  start-page: 350
  year: 1988
  end-page: 364
  article-title: Habitat selection by breeding american redstarts in response to the dominant competitor, the least flycatcher
  publication-title: Auk
– volume: 77
  start-page: 858
  year: 2011
  end-page: 864
  article-title: Completion of the 2006 national land cover database for the conterminous United States
  publication-title: Photogrammetric Engineering & Remote Sensing
– volume: 97
  start-page: 48
  year: 2016b
  end-page: 53
  article-title: A two‐species occupancy model accommodating simultaneous spatial and interspecific dependence
  publication-title: Ecology
– volume: 83
  start-page: 2248
  year: 2002
  end-page: 2255
  article-title: Estimating site occupancy rates when detection probabilities are less than one
  publication-title: Ecology
– volume: 91
  start-page: 2514
  year: 2010
  end-page: 2521
  article-title: Modeling species co‐occurrence by multivariate logistic regression generates new hypotheses on fungal interactions
  publication-title: Ecology
– volume: 12
  start-page: 144
  year: 2009
  end-page: 154
  article-title: Hierarchical models facilitate spatial analysis of large data sets: A case study on invasive plant species in the northeastern united states
  publication-title: Ecology Letters
– volume: 96
  start-page: 981
  year: 2015
  end-page: 987
  article-title: Cats are rare where coyotes roam
  publication-title: Journal of Mammalogy
– year: 2014
– year: 2015a
– year: 2012
– year: 2016a
– volume: 142
  start-page: 2983
  year: 2009
  end-page: 2989
  article-title: Modeling cooccurrence of northern spotted and barred owls: Accounting for detection probability differences
  publication-title: Biological Conservation
– volume: 31
  start-page: 55
  year: 2016
  end-page: 66
  article-title: Volunteer run cameras as distributed sensors for macrosystem mammal research
  publication-title: Landscape Ecology
– volume: 4
  start-page: 85
  year: 2009
  end-page: 118
  article-title: A review of bayesian variable selection methods: What, how and which
  publication-title: Bayesian Analysis
– volume: 20
  start-page: 2036
  year: 2010
  end-page: 2046
  article-title: Two‐species occupancy models: a new parameterization applied to co‐occurrence of secretive rails
  publication-title: Ecological Applications
– volume: 19
  start-page: 1465
  year: 2013
  end-page: 1483
  article-title: Multivariate bernoulli distribution
  publication-title: Bernoulli
– volume: 85
  start-page: 3
  year: 2015
  end-page: 28
  article-title: A guide to Bayesian model selection for ecologists
  publication-title: Ecological Monographs
– volume: 190
  start-page: 23
  year: 2015b
  end-page: 33
  article-title: Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz mountains of California
  publication-title: Biological Conservation
– volume: 94
  start-page: 801
  year: 2013
  end-page: 808
  article-title: Spatial occupancy models for large data sets
  publication-title: Ecology
– volume: 83
  start-page: 286
  year: 2014
  end-page: 295
  article-title: Snake co‐occurrence patterns are best explained by habitat and hypothesized effects of interspecific interactions
  publication-title: Journal of Animal Ecology
– year: 2002
– year: 2006
– year: 1972
– volume: 8
  start-page: e52015
  year: 2013
  article-title: Fitting and interpreting occupancy models
  publication-title: PLoS One
– volume: 88
  start-page: 165
  year: 2014
  end-page: 173
  article-title: Living in a landscape of fear: the impact of predation, resource availability and habitat structure on primate range use
  publication-title: Animal Behaviour
– volume: 5
  start-page: 397
  year: 2014
  end-page: 406
  article-title: Understanding co‐occurrence by modelling species simultaneously with a joint species distribution model (jsdm)
  publication-title: Methods in Ecology and Evolution
– volume: 93
  start-page: 1802
  year: 2012
  end-page: 1808
  article-title: Competitive exclusion within the predator community influences the distribution of a threatened prey species
  publication-title: Ecology
– volume: 35,
  start-page: 811
  year: 2012
  end-page: 820
  article-title: How do species interactions affect species distribution models
  publication-title: Ecography,
– volume: 73
  start-page: 546
  year: 2004
  end-page: 555
  article-title: Investigating species cooccurrence patterns when species are detected imperfectly
  publication-title: Journal of Animal Ecology
– volume: 186
  start-page: 319
  year: 2015a
  end-page: 325
  article-title: Shared resources between giant panda and sympatric wild and domestic mammals
  publication-title: Biological Conservation
– volume: 9
  start-page: e99571
  year: 2014
  article-title: Ignoring imperfect detection in biological surveys is dangerous: a response to ‘fitting and interpreting occupancy models
  publication-title: PLoS One
– year: 2015
– year: 2015b
– year: 2013
– ident: e_1_2_7_14_1
  doi: 10.1890/12-0564.1
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1365-2656.2009.01613.x
– ident: e_1_2_7_34_1
– ident: e_1_2_7_5_1
  doi: 10.1016/j.anbehav.2013.11.027
– ident: e_1_2_7_13_1
  doi: 10.1890/14-0661.1
– ident: e_1_2_7_41_1
  doi: 10.1016/j.biocon.2015.05.007
– ident: e_1_2_7_4_1
  doi: 10.1890/12-0285.1
– ident: e_1_2_7_7_1
  doi: 10.3150/12-BEJSP10
– ident: e_1_2_7_17_1
  doi: 10.1002/wmon.1015
– ident: e_1_2_7_19_1
  doi: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
– volume-title: Geographical Ecology: Patterns in the Distribution of Species
  year: 1972
  ident: e_1_2_7_18_1
– ident: e_1_2_7_39_1
  doi: 10.1890/09-0850.1
– ident: e_1_2_7_2_1
  doi: 10.1080/01621459.1993.10476321
– volume: 77
  start-page: 858
  year: 2011
  ident: e_1_2_7_9_1
  article-title: Completion of the 2006 national land cover database for the conterminous United States
  publication-title: Photogrammetric Engineering & Remote Sensing
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1600-0587.2013.00574.x
– volume-title: Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence
  year: 2006
  ident: e_1_2_7_21_1
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1600-0587.2011.07103.x
– ident: e_1_2_7_33_1
– ident: e_1_2_7_29_1
  doi: 10.1111/2041-210X.12587
– ident: e_1_2_7_26_1
  doi: 10.1111/2041-210X.12180
– ident: e_1_2_7_30_1
  doi: 10.1890/15-1193.1
– ident: e_1_2_7_38_1
  doi: 10.1016/j.jaridenv.2011.10.016
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1461-0248.2008.01270.x
– ident: e_1_2_7_25_1
  doi: 10.1890/10-0173.1
– ident: e_1_2_7_36_1
– ident: e_1_2_7_3_1
  doi: 10.1016/j.biocon.2009.07.028
– ident: e_1_2_7_23_1
  doi: 10.1007/s10980-015-0262-9
– ident: e_1_2_7_40_1
  doi: 10.1016/j.biocon.2015.03.032
– ident: e_1_2_7_24_1
  doi: 10.1214/09-BA403
– ident: e_1_2_7_8_1
  doi: 10.1111/j.2041-210X.2012.00237.x
– ident: e_1_2_7_15_1
  doi: 10.1093/jmammal/gyv100
– ident: e_1_2_7_20_1
  doi: 10.1111/j.0021-8790.2004.00828.x
– ident: e_1_2_7_6_1
– ident: e_1_2_7_28_1
  doi: 10.1890/09-0470.1
– ident: e_1_2_7_32_1
  doi: 10.2307/4087501
– ident: e_1_2_7_12_1
  doi: 10.1371/journal.pone.0099571
– ident: e_1_2_7_43_1
  doi: 10.1890/08-0765.1
– ident: e_1_2_7_42_1
  doi: 10.1371/journal.pone.0052015
– ident: e_1_2_7_35_1
  doi: 10.1111/1365-2656.12121
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2015
  ident: e_1_2_7_27_1
– volume-title: Contemporary statistical models for the plant and social sciences
  year: 2002
  ident: e_1_2_7_31_1
– volume-title: Bayesian data analysis
  year: 2014
  ident: e_1_2_7_10_1
SSID ssj0000389024
Score 2.537951
Snippet Summary Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling...
Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are...
Summary Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling...
1. Species occurrence is influenced by environmental conditions and the presence of other species. Current approaches for multispecies occupancy modelling are...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1164
SubjectTerms Asymmetry
Canis latrans
community
competition
Coyotes
eMammal
Environmental conditions
Environmental gradient
Foxes
Inference
interspecific interactions
Lynx rufus
Modelling
multinomial logit
multinomial probit
multivariate Bernoulli
Occupancy
occupancy modelling
predation
Probability
Random variables
Species
Urocyon cinereoargenteus
Vulpes vulpes
Title A multispecies occupancy model for two or more interacting species
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.12587
https://www.proquest.com/docview/1826883917
https://www.proquest.com/docview/2374323642
https://www.proquest.com/docview/1837313404
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_rieCL-Imrp1TwQSitSZOm3cdVVw5lfTgq7ltp0xQOjq2cu3fgg3-Gf68zSTbNyR7n-dJd8kWb-TWZSWd-Q8hrrWkH-0qWcKGbRLQ9T2YqLxKpWJ_zXnJpfHOWX-TRV_Fpla8mk9-B19J206bq5964kv-RKpSBXDFK9gaS9YNCAfwH-cIVJAzXf5Lx3PoDYrTkCZLHGsZgDKU0-W2sB-HFgC7n6E5rqCFMUBQeIdg-oW66NMmkjX-sViM1kz53zzB-m7EaZ8BLEFdpcDB9pk9M9iIMBFJDPE_jY1_9ubHIOR7QpTL-NvYL04RUyH0Qf0jDMwkmvXebW7oyKlgCxuTK7jJ7ytzaW4QQo8FCypglN3ebMmM24ckVC74fOwV9zW3gl6i1fdP8msZmZ18uFtzU3SK3MzA_MDPG8td4doekhNTkS_ZjOdYodBL7a_zLCs9oxYS2kFFmqvvknrNCormF1AMy0euH5M7CSv0ReTePQmBFHliRAVYEwIoAWBH8ILCiAFiR6_OYVB8X1fujxCXbSJQQvEjgzQRtrVW061oqu75gvRKtbkpZtl1bCKS6y0AfVRnNS531SHJEQdmVstdNpvgTcrAe1vopibJZ0TQz2bBW50LlbdkrKnsqwRIpVS5nU5LuJqRWjoge86Gc1juDFGewxhmszQxOyRvf4bvlYLm66eFuhmv3ov6o0YQuwRBg-6vhQQTHPArZlLzy1bDK4qezZq2HLQ7BC864oGJK3hrBXXcntQfRsxv3eE7ujm_VITnYnG31C9B9N-1LA8Q_0neh_A
linkProvider ISSN International Centre
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT-swDLdgCMEFwQPE-MyTOHAppE2adseBhsbHOG1oepeqSRMuqEOwCfHfY2ddGeghxKmVUketE8c_p87PAMfW8gL9ShQIafNAaieClomTQJnQxcIpoXxuTu9OdQfyehgP587CTPkh6g03sgy_XpOB04b0nJVHXIYBRizDU3TSabIIS4Rt0gYste8H_wb1TgtRyHFf3baWqDh-KKXnSy-f3dMH5pxHrt71XK7DWoUZWXs6yBuwYMs_sNzxfNNvm3DeZj4tkA5NYtzLRp44GBdN5svcMISlbPw6YnihrFpGDBH-bFT5wCqZLehfdvoX3aAqjRAYKUUSoB7Rt2rDi0JzVbgkdEZqm6cq1YXGcDdGY0RtmIjHqY0cUdJwhCZKOZtHRmxDoxyVdgdY1EryvKXyUNtYmlinznDluELcmJpYtZpwOlNIZiracKpe8ZjNwgfSYEYazLwGm3BSCzxNGTO-f3R_puGsMp2XjAKeFGFb-P9m_BApiPU-asLfuhltgn505KUdTagLkYhQSC6bcOYH7qc3yXqdjvB3u7-WOIKVbr93m91e3d3swSrOfDXN9tuHxvh5Yg8QtYz1YTUt3wGJ2N43
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgCMQF8RSDAUHiwKWQNmnaHQds4i0ODCEuVZMmXFCHYAjx77GzrjwEQpxaKXXUOnH8OXU-A-xYywv0K1EgpM0DqZ0I2iZOAmVCFwunhPK5OReX6rgvT2_jcTYhnYUZ8UPUG25kGX69JgN_LNwnI4-4DAMMWG730EenySRMEVceTuypzk3_rl9vtBCDHPfFbWuJiuKHMnq-9fLVO31Azs_A1Xue3jzMVZCRdUZjvAATtlyE6a6nm35bgoMO81mBdGYSw1428LzBuGYyX-WGISplw9cBwwsl1TIiiPBHo8p7Vsksw3Wve314HFSVEQIjpUgCVCO6Vm14UWiuCpeEzkht81SlutAY7cZoiwgeTMTj1EaOGGk4IhOlnM0jI1agUQ5Kuwosaid53lZ5qG0sTaxTZ7hyXCFsTE2s2k3YGyskMxVrOBWveMjG0QNpMCMNZl6DTditBR5HhBm_P9oaazirLOc5o3gnRdQW_tyMHyIFkd5HTdium9Ek6D9HXtrBC3UhEhEKyWUT9v3A_fUm2UW3K_zd2r8ltmDm6qiXnZ9cnq3DLM57Ncr1a0Fj-PRiNxCzDPVmNSvfATfU3WA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multispecies+occupancy+model+for+two+or+more+interacting+species&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Rota%2C+Christopher+T.&rft.au=Ferreira%2C+Marco+A.+R.&rft.au=Kays%2C+Roland+W.&rft.au=Forrester%2C+Tavis+D.&rft.date=2016-10-01&rft.issn=2041-210X&rft.eissn=2041-210X&rft.volume=7&rft.issue=10&rft.spage=1164&rft.epage=1173&rft_id=info:doi/10.1111%2F2041-210X.12587&rft.externalDBID=10.1111%252F2041-210X.12587&rft.externalDocID=MEE312587
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon