A simple permutation‐based test of intermodal correspondence

Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multipl...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 42; no. 16; pp. 5175 - 5187
Main Authors Weinstein, Sarah M., Vandekar, Simon N., Adebimpe, Azeez, Tapera, Tinashe M., Robert‐Fitzgerald, Timothy, Gur, Ruben C., Gur, Raquel E., Raznahan, Armin, Satterthwaite, Theodore D., Alexander‐Bloch, Aaron F., Shinohara, Russell T.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group‐level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject‐level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p‐value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n‐back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference. We propose using a classical permutation testing framework to study intermodal correspondence using subject‐level data while requiring minimal statistical assumptions. We compare our method to previous approaches involving spatial null modeling of group‐level brain maps and illustrate and discuss the flexibility of our method for localizing intermodal relationships within subregions of the brain.
AbstractList Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group‐level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject‐level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p‐value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n‐back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference. We propose using a classical permutation testing framework to study intermodal correspondence using subject‐level data while requiring minimal statistical assumptions. We compare our method to previous approaches involving spatial null modeling of group‐level brain maps and illustrate and discuss the flexibility of our method for localizing intermodal relationships within subregions of the brain.
Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group‐level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject‐level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p ‐value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n ‐back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference.
Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group‐level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject‐level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p‐value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n‐back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference.
Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state-of-the-art methods involve comparing observed group-level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group-level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject-level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p-value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n-back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference.Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state-of-the-art methods involve comparing observed group-level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group-level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject-level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p-value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n-back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference.
Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group‐level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject‐level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p ‐value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n ‐back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference. We propose using a classical permutation testing framework to study intermodal correspondence using subject‐level data while requiring minimal statistical assumptions. We compare our method to previous approaches involving spatial null modeling of group‐level brain maps and illustrate and discuss the flexibility of our method for localizing intermodal relationships within subregions of the brain.
Author Shinohara, Russell T.
Gur, Raquel E.
Robert‐Fitzgerald, Timothy
Gur, Ruben C.
Alexander‐Bloch, Aaron F.
Adebimpe, Azeez
Weinstein, Sarah M.
Tapera, Tinashe M.
Raznahan, Armin
Vandekar, Simon N.
Satterthwaite, Theodore D.
AuthorAffiliation 6 Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia Philadelphia Pennsylvania
7 Section on Developmental Neurogenomics National Institute of Mental Health Intramural Research Program Bethesda Maryland
1 Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania
4 Department of Psychiatry, Brain Behavior Laboratory and Penn‐CHOP Lifespan Brain Institute University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania
8 Center for Biomedical Image Computing and Analytics, Department of Radiology University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania
5 Department of Psychiatry, Neurodevelopment and Psychosis Section and Penn‐CHOP Lifespan Brain Institute University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania
2 Department of Biostatistics
AuthorAffiliation_xml – name: 2 Department of Biostatistics Vanderbilt University Nashville Tennessee
– name: 6 Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia Philadelphia Pennsylvania
– name: 4 Department of Psychiatry, Brain Behavior Laboratory and Penn‐CHOP Lifespan Brain Institute University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania
– name: 3 Department of Psychiatry, Lifespan Informatics and Neuroimaging Center University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania
– name: 5 Department of Psychiatry, Neurodevelopment and Psychosis Section and Penn‐CHOP Lifespan Brain Institute University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania
– name: 8 Center for Biomedical Image Computing and Analytics, Department of Radiology University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania
– name: 1 Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania
– name: 7 Section on Developmental Neurogenomics National Institute of Mental Health Intramural Research Program Bethesda Maryland
Author_xml – sequence: 1
  givenname: Sarah M.
  orcidid: 0000-0003-3152-6286
  surname: Weinstein
  fullname: Weinstein, Sarah M.
  email: smweinst@pennmedicine.upenn.edu
  organization: University of Pennsylvania, Perelman School of Medicine
– sequence: 2
  givenname: Simon N.
  orcidid: 0000-0002-7457-9073
  surname: Vandekar
  fullname: Vandekar, Simon N.
  organization: Vanderbilt University
– sequence: 3
  givenname: Azeez
  orcidid: 0000-0001-9049-0135
  surname: Adebimpe
  fullname: Adebimpe, Azeez
  organization: University of Pennsylvania, Perelman School of Medicine
– sequence: 4
  givenname: Tinashe M.
  surname: Tapera
  fullname: Tapera, Tinashe M.
  organization: University of Pennsylvania, Perelman School of Medicine
– sequence: 5
  givenname: Timothy
  surname: Robert‐Fitzgerald
  fullname: Robert‐Fitzgerald, Timothy
  organization: University of Pennsylvania, Perelman School of Medicine
– sequence: 6
  givenname: Ruben C.
  orcidid: 0000-0002-9657-1996
  surname: Gur
  fullname: Gur, Ruben C.
  organization: University of Pennsylvania, Perelman School of Medicine
– sequence: 7
  givenname: Raquel E.
  orcidid: 0000-0002-4082-8502
  surname: Gur
  fullname: Gur, Raquel E.
  organization: Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia
– sequence: 8
  givenname: Armin
  orcidid: 0000-0002-5622-1190
  surname: Raznahan
  fullname: Raznahan, Armin
  organization: National Institute of Mental Health Intramural Research Program
– sequence: 9
  givenname: Theodore D.
  orcidid: 0000-0001-7072-9399
  surname: Satterthwaite
  fullname: Satterthwaite, Theodore D.
  organization: University of Pennsylvania, Perelman School of Medicine
– sequence: 10
  givenname: Aaron F.
  orcidid: 0000-0001-6554-1893
  surname: Alexander‐Bloch
  fullname: Alexander‐Bloch, Aaron F.
  organization: Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia
– sequence: 11
  givenname: Russell T.
  orcidid: 0000-0001-8627-8203
  surname: Shinohara
  fullname: Shinohara, Russell T.
  organization: University of Pennsylvania, Perelman School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34519385$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFOHSEYhUljU_XWhS_QTOJGF6PAwAU2JrfGVhNNN-2aMMM_ipmBKczYuPMRfEafpNxevbEmGhaQ_N9_cg5nG2344AGhXYIPCcb06LruDynnQnxAWwQrUWKiqo3le85LxQTZRNsp3WBMCMfkE9qsGM-E5FvoeFEk1w8dFAPEfhrN6IJ_vH-oTQJbjJDGIrSF82OeBmu6ogkxQhqCt-Ab-Iw-tqZLsPN0z9Cvb6c_T87Kix_fz08WF2XDWCVKq6wCJhVQ1So-Z4YLSg2usRWCWSnInLSGc2INcCGtMIJViivWsJrVXNJqho5XusNU92Ab8GM0nR6i602808E4_f_Eu2t9FW61zEEl51lg_0kght9TjqV7lxroOuMhTEnT7IjnI0lG916hN2GKPsfLlKRU4DlZOvry0tHayvPXZuBgBTQxpBShXSME62VtOtem_9WW2aNXbONWVeQwrntv44_r4O5taX329XK18RdPd6ji
CitedBy_id crossref_primary_10_7554_eLife_86933_3
crossref_primary_10_1111_resp_14866
crossref_primary_10_1016_j_neuroimage_2022_119100
crossref_primary_10_1038_s41467_023_37574_x
crossref_primary_10_1002_hbm_26554
crossref_primary_10_1371_journal_pbio_3002758
crossref_primary_10_1016_j_neuroimage_2022_119712
crossref_primary_10_1038_s41597_024_04157_4
crossref_primary_10_7554_eLife_86933
crossref_primary_10_1016_j_dcn_2024_101443
crossref_primary_10_1038_s41583_022_00601_9
crossref_primary_10_1002_hbm_26714
crossref_primary_10_1038_s44220_024_00348_5
crossref_primary_10_1016_j_dcn_2024_101439
crossref_primary_10_1162_imag_a_00058
crossref_primary_10_1038_s41593_024_01722_3
Cites_doi 10.1016/j.neuron.2017.07.011
10.1523/JNEUROSCI.1798-04.2004
10.1016/j.nicl.2015.12.002
10.1016/j.neuroimage.2019.116398
10.1152/jn.00338.2011
10.1016/j.neuron.2020.01.029
10.32614/CRAN.package.fsbrain
10.1038/s41583-021-00457-5
10.1016/j.neuroimage.2016.03.002
10.1093/cercor/bhu239
10.1006/nimg.1998.0395
10.1037/0894-4105.16.3.370
10.3389/fnins.2018.00354
10.1016/j.biopsych.2019.09.031
10.1038/s42003-020-0961-x
10.7554/eLife.50482
10.1523/JNEUROSCI.3554-12.2013
10.1093/cercor/bhx249
10.1038/s41596-018-0065-y
10.1523/JNEUROSCI.5309-07.2008
10.1073/pnas.1912034117
10.1016/j.neuroimage.2015.03.056
10.2202/1544-6115.1585
10.1111/biom.12139
10.1016/j.neuroimage.2013.09.069
10.1006/nimg.1998.0396
10.1016/j.neuroimage.2013.07.064
10.1523/JNEUROSCI.3628-14.2015
10.1073/pnas.1508831112
10.1016/j.neuroimage.2018.05.070
10.1073/pnas.1602413113
10.1523/JNEUROSCI.2345-13.2013
10.1016/j.neuroimage.2014.01.060
10.1038/s41593-018-0195-0
10.1093/cercor/bhx179
10.1016/j.jneumeth.2014.11.008
10.1073/pnas.1903403116
10.1016/j.neuroimage.2017.12.059
10.1523/JNEUROSCI.3302-16.2017
10.1073/pnas.1907892117
10.1038/s41386-020-0736-6
10.32614/CRAN.package.freesurferformats
10.1523/JNEUROSCI.2248-18.2019
10.1016/j.neuroimage.2011.09.015
10.1073/pnas.0811168106
10.1016/j.neuroimage.2020.117038
10.1016/j.neuroimage.2021.118052
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC.
2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC.
– notice: 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.25577
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
CrossRef
Technology Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Statistics
DocumentTitleAlternate Weinstein et al
EISSN 1097-0193
EndPage 5187
ExternalDocumentID PMC8519855
34519385
10_1002_hbm_25577
HBM25577
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Mental Health
  funderid: 1ZIAMH002949; K08MH120564; R01MH107235; R01MH112847; R01MH113550; R01MH119219; R01MH120482; R01MH123563; RF1MH116920
– fundername: National Institutes of Health
  funderid: R01EB022573; R01NS060910
– fundername: National Science Foundation
  funderid: Graduate Research Fellowship Program
– fundername: NIMH NIH HHS
  grantid: K08MH120564
– fundername: NINDS NIH HHS
  grantid: R01 NS060910
– fundername: NIMH NIH HHS
  grantid: R01MH113550
– fundername: NIMH NIH HHS
  grantid: R01MH119219
– fundername: NIMH NIH HHS
  grantid: R01 MH119219
– fundername: NIMH NIH HHS
  grantid: R01 MH113550
– fundername: NIH HHS
  grantid: R01EB022573
– fundername: NIBIB NIH HHS
  grantid: R01 EB022573
– fundername: NIMH NIH HHS
  grantid: R01 MH107235
– fundername: Intramural NIH HHS
  grantid: ZIA MH002949
– fundername: ;
  grantid: Graduate Research Fellowship Program
– fundername: ;
  grantid: R01EB022573; R01NS060910
– fundername: ;
  grantid: 1ZIAMH002949; K08MH120564; R01MH107235; R01MH112847; R01MH113550; R01MH119219; R01MH120482; R01MH123563; RF1MH116920
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4437-d9d9e489e29f9564a5722a0b0d774d87161fa551dae578d7a7439594c4b4b5823
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:29:55 EDT 2025
Thu Jul 10 22:48:09 EDT 2025
Sat Jul 26 02:16:40 EDT 2025
Mon Jul 21 06:03:11 EDT 2025
Thu Apr 24 23:11:58 EDT 2025
Tue Jul 01 01:11:05 EDT 2025
Wed Jan 22 16:29:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords permutation testing
covariance stationarity
intermodal correspondence
hypothesis
testing
Language English
License Attribution
2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4437-d9d9e489e29f9564a5722a0b0d774d87161fa551dae578d7a7439594c4b4b5823
Notes Funding information
National Institute of Mental Health, Grant/Award Numbers: 1ZIAMH002949, K08MH120564, R01MH107235, R01MH112847, R01MH113550, R01MH119219, R01MH120482, R01MH123563, RF1MH116920; National Institutes of Health, Grant/Award Numbers: R01EB022573, R01NS060910; National Science Foundation, Grant/Award Number: Graduate Research Fellowship Program
Aaron F. Alexander‐Bloch and Russell T. Shinohara have contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information National Institute of Mental Health, Grant/Award Numbers: 1ZIAMH002949, K08MH120564, R01MH107235, R01MH112847, R01MH113550, R01MH119219, R01MH120482, R01MH123563, RF1MH116920; National Institutes of Health, Grant/Award Numbers: R01EB022573, R01NS060910; National Science Foundation, Grant/Award Number: Graduate Research Fellowship Program
ORCID 0000-0002-5622-1190
0000-0002-7457-9073
0000-0001-6554-1893
0000-0001-7072-9399
0000-0003-3152-6286
0000-0002-9657-1996
0000-0002-4082-8502
0000-0001-9049-0135
0000-0001-8627-8203
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25577
PMID 34519385
PQID 2582270612
PQPubID 996345
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8519855
proquest_miscellaneous_2572525281
proquest_journals_2582270612
pubmed_primary_34519385
crossref_primary_10_1002_hbm_25577
crossref_citationtrail_10_1002_hbm_25577
wiley_primary_10_1002_hbm_25577_HBM25577
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019; 8
2002; 16
2015; 35
2015; 240
2021; 46
2018; 28
2014; 70
2014; 92
2021; 22
2020; 220
2017; 27
2018; 169
2004; 24
2016; 124
2019; 39
2020; 106
2018; 21
2020; 207
2016; 12
1999; 9
2014; 86
2017; 95
2016; 5
2020; 3
2011; 106
2013; 33
2017; 37
2021; 236
2018; 178
2015; 112
2008; 28
2016; 113
2020b
2019; 116
2020; 117
2018
2020a
2016; 133
2020; 87
1929
2018; 12
2016; 26
2010; 9
2018; 13
2009; 106
2014; 102
2012; 62
Gordon E. M. (e_1_2_11_17_1) 2017; 27
e_1_2_11_32_1
Margulies D. S. (e_1_2_11_24_1) 2016; 5
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
Constantin von Economo (e_1_2_11_9_1) 1929
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
Wael R. V. d. (e_1_2_11_50_1) 2020; 3
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 3
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  article-title: Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands
  publication-title: Communications Biology
– volume: 13
  start-page: 2801
  issue: 12
  year: 2018
  end-page: 2826
  article-title: Mitigating head motion artifact in functional connectivity MRI
  publication-title: Nature Protocols
– volume: 112
  start-page: 15462
  issue: 50
  year: 2015
  end-page: 15467
  article-title: Development and aging of cortical thickness correspond to genetic organization patterns
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 21
  start-page: 1251
  issue: 9
  year: 2018
  end-page: 1259
  article-title: Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography
  publication-title: Nature Neuroscience
– volume: 8
  year: 2019
  article-title: Shifts in myeloarchitecture characterise adolescent development of cortical gradients
  publication-title: Elife
– volume: 9
  start-page: 1
  year: 2010
  article-title: Permutation values should never be zero: Calculating exact values when permutations are randomly drawn
  publication-title: Statistical Applications in Genetics and Molecular Biology
– volume: 220
  year: 2020
  article-title: Generative modeling of brain maps with spatial autocorrelation
  publication-title: NeuroImage
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  end-page: 790
  article-title: Fsl
  publication-title: NeuroImage
– volume: 22
  start-page: 1
  year: 2021
  end-page: 13
  article-title: Environmental inuences on the pace of brain development
  publication-title: Nature Reviews Neuroscience
– volume: 133
  start-page: 88
  year: 2016
  end-page: 97
  article-title: Subject‐level measurement of local cortical coupling
  publication-title: NeuroImage
– volume: 16
  start-page: 370
  issue: 3
  year: 2002
  article-title: Working memory for complex figures: An fMRI comparison of letter and fractal n‐back tasks
  publication-title: Neuropsychology
– volume: 24
  start-page: 8223
  issue: 38
  year: 2004
  end-page: 8231
  article-title: Longitudinal mapping of cortical thickness and brain growth in normal children
  publication-title: Journal of Neuroscience
– year: 2018
– volume: 28
  start-page: 281
  issue: 1
  year: 2018
  end-page: 294
  article-title: Adolescent tuning of association cortex in human structural brain networks
  publication-title: Cerebral Cortex (New York, N.Y.: 1991)
– volume: 28
  start-page: 3095
  issue: 9
  year: 2018
  end-page: 3114
  article-title: Local‐global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI
  publication-title: Cerebral Cortex
– volume: 116
  start-page: 21219
  issue: 42
  year: 2019
  end-page: 21227
  article-title: Gradients of structure‐function tethering across neocortex
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 28
  start-page: 3586
  issue: 14
  year: 2008
  end-page: 3594
  article-title: Neurodevelopmental trajectories of the human cerebral cortex
  publication-title: Journal of Neuroscience
– volume: 117
  start-page: 771
  issue: 1
  year: 2020
  end-page: 778
  article-title: Development of structure–function coupling in human brain networks during youth
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 5
  start-page: s13742
  issue: suppl 1
  year: 2016
  end-page: 016
  article-title: A cortical surfacebased geodesic distance package for python
  publication-title: GigaScience
– volume: 37
  start-page: 3402
  issue: 12
  year: 2017
  end-page: 3412
  article-title: Development of the cerebral cortex across adolescence: A multisample study of inter‐related longitudinal changes in cortical volume, surface area, and thickness
  publication-title: Journal of Neuroscience
– volume: 9
  start-page: 195
  issue: 2
  year: 1999
  end-page: 207
  article-title: Cortical surface‐based analysis: II: Ination, attening, and a surface‐based coordinate system
  publication-title: NeuroImage
– volume: 106
  start-page: 340
  year: 2020
  end-page: 353
  article-title: Individual variation in functional topography of association networks in youth
  publication-title: Neuron
– volume: 113
  start-page: 7900
  issue: 28
  year: 2016
  end-page: 7905
  article-title: Cluster failure: Why fMRI inferences for spatial extent have inated false‐positive rates
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 87
  start-page: 727
  issue: 8
  year: 2020
  end-page: 735
  article-title: Spatial patterning of tissue volume loss in schizophrenia reects brain network architecture
  publication-title: Biological Psychiatry
– volume: 106
  start-page: 2035
  issue: 6
  year: 2009
  end-page: 2040
  article-title: Predicting human resting‐state functional connectivity from structural connectivity
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 33
  start-page: 2889
  issue: 7
  year: 2013
  end-page: 2899
  article-title: The convergence of maturational change and structural covariance in human cortical networks
  publication-title: Journal of Neuroscience
– volume: 86
  start-page: 544
  year: 2014
  end-page: 553
  article-title: Neuroimaging of the Philadelphia neurodevelopmental cohort
  publication-title: NeuroImage
– volume: 124
  start-page: 1115
  year: 2016
  end-page: 1119
  article-title: The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth
  publication-title: NeuroImage
– volume: 12
  year: 2018
  article-title: SPANOL (SPectral ANalysis of Lobes): A spectral clustering framework for individual and group parcellation of cortical surfaces in lobes
  publication-title: Frontiers in Neuroscience
– year: 1929
– volume: 92
  start-page: 381
  year: 2014
  end-page: 397
  article-title: Permutation inference for the general linear model
  publication-title: NeuroImage
– volume: 70
  start-page: 409
  issue: 2
  year: 2014
  end-page: 418
  article-title: Assessing the significance of global and local correlations under spatial autocorrelation: A nonparametric approach
  publication-title: Biometrics
– volume: 46
  start-page: 131
  issue: 1
  year: 2021
  end-page: 142
  article-title: The ABCD study: Understanding the development of risk for mental and physical health outcomes
  publication-title: Neuropsychopharmacology
– volume: 240
  start-page: 101
  year: 2015
  end-page: 115
  article-title: Nonparametric variogram modeling with hole effect structure in analyzing the spatial characteristics of fMRI data
  publication-title: Journal of Neuroscience Methods
– year: 2020a
– volume: 169
  start-page: 407
  year: 2018
  end-page: 418
  article-title: Quantitative assessment of structural image quality
  publication-title: NeuroImage
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  end-page: 1165
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
– volume: 35
  start-page: 599
  issue: 2
  year: 2015
  end-page: 609
  article-title: Topologically dissociable patterns of development of the human cerebral cortex
  publication-title: Journal of Neuroscience
– volume: 26
  start-page: 288
  issue: 1
  year: 2016
  end-page: 303
  article-title: Generation and evaluation of a cortical area parcellation from resting‐state correlations
  publication-title: Cerebral Cortex
– volume: 33
  issue: 41
  year: 2013
  article-title: Functional maturation of the executive system during adolescence
  publication-title: The Journal of Neuroscience
– volume: 27
  start-page: 386
  issue: 1
  year: 2017
  end-page: 399
  article-title: Individual variability of the system‐level organization of the human brain
  publication-title: Cerebral Cortex
– volume: 178
  start-page: 540
  year: 2018
  end-page: 551
  article-title: On testing for spatial correspondence between maps of human brain structure and function
  publication-title: NeuroImage
– volume: 117
  start-page: 1201
  issue: 2
  year: 2020
  end-page: 1206
  article-title: Variable functional connectivity architecture of the preterm human brain: Impact of developmental cortical expansion and maturation
  publication-title: Proceedings of the National Academy of Sciencesof the United States of America
– volume: 236
  year: 2021
  article-title: Comparing spatial null models for brain maps
  publication-title: Neuroimage
– volume: 102
  start-page: 142
  year: 2014
  end-page: 151
  article-title: The structural–functional connectome and the default mode network of the human brain
  publication-title: NeuroImage
– volume: 95
  start-page: 791
  issue: 4
  year: 2017
  end-page: 807
  article-title: Precision functional mapping of individual human brains
  publication-title: Neuron
– volume: 207
  year: 2020
  article-title: Comparing functional connectivity matrices: A geometry‐aware approach applied to participant identification
  publication-title: NeuroImage
– volume: 3
  start-page: 1
  issue: 1
  year: 2020
  end-page: 10
  article-title: BrainSpace: A toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets
  publication-title: Communications Biology
– volume: 9
  start-page: 179
  issue: 2
  year: 1999
  end-page: 194
  article-title: Cortical surface‐based analysis: I. Segmentation and surface reconstruction
  publication-title: NeuroImage
– volume: 39
  start-page: 3028
  issue: 16
  year: 2019
  end-page: 3040
  article-title: A comprehensive quantitative genetic analysis of cerebral surface area in youth
  publication-title: Journal of Neuroscience
– volume: 12
  start-page: 940
  year: 2016
  end-page: 948
  article-title: Working memory circuit as a function of increasing age in healthy adolescence: A systematic review and metaanalyses
  publication-title: NeuroImage: Clinical
– year: 2020b
– ident: e_1_2_11_18_1
  doi: 10.1016/j.neuron.2017.07.011
– ident: e_1_2_11_40_1
  doi: 10.1523/JNEUROSCI.1798-04.2004
– ident: e_1_2_11_4_1
  doi: 10.1016/j.nicl.2015.12.002
– ident: e_1_2_11_48_1
  doi: 10.1016/j.neuroimage.2019.116398
– ident: e_1_2_11_53_1
  doi: 10.1152/jn.00338.2011
– ident: e_1_2_11_11_1
  doi: 10.1016/j.neuron.2020.01.029
– ident: e_1_2_11_36_1
  doi: 10.32614/CRAN.package.fsbrain
– ident: e_1_2_11_43_1
  doi: 10.1038/s41583-021-00457-5
– ident: e_1_2_11_44_1
  doi: 10.1016/j.neuroimage.2016.03.002
– ident: e_1_2_11_16_1
  doi: 10.1093/cercor/bhu239
– ident: e_1_2_11_12_1
  doi: 10.1006/nimg.1998.0395
– ident: e_1_2_11_29_1
  doi: 10.1037/0894-4105.16.3.370
– ident: e_1_2_11_23_1
  doi: 10.3389/fnins.2018.00354
– ident: e_1_2_11_38_1
  doi: 10.1016/j.biopsych.2019.09.031
– ident: e_1_2_11_10_1
  doi: 10.1038/s42003-020-0961-x
– ident: e_1_2_11_27_1
  doi: 10.7554/eLife.50482
– ident: e_1_2_11_3_1
  doi: 10.1523/JNEUROSCI.3554-12.2013
– ident: e_1_2_11_46_1
  doi: 10.1093/cercor/bhx249
– ident: e_1_2_11_8_1
  doi: 10.1038/s41596-018-0065-y
– ident: e_1_2_11_39_1
  doi: 10.1523/JNEUROSCI.5309-07.2008
– ident: e_1_2_11_5_1
  doi: 10.1073/pnas.1912034117
– volume-title: The cytoarchitectonics of the human cerebral cortex
  year: 1929
  ident: e_1_2_11_9_1
– ident: e_1_2_11_31_1
  doi: 10.1016/j.neuroimage.2015.03.056
– ident: e_1_2_11_28_1
  doi: 10.2202/1544-6115.1585
– ident: e_1_2_11_49_1
  doi: 10.1111/biom.12139
– ident: e_1_2_11_20_1
  doi: 10.1016/j.neuroimage.2013.09.069
– ident: e_1_2_11_14_1
  doi: 10.1006/nimg.1998.0396
– ident: e_1_2_11_32_1
  doi: 10.1016/j.neuroimage.2013.07.064
– ident: e_1_2_11_45_1
  doi: 10.1523/JNEUROSCI.3628-14.2015
– ident: e_1_2_11_15_1
  doi: 10.1073/pnas.1508831112
– ident: e_1_2_11_2_1
  doi: 10.1016/j.neuroimage.2018.05.070
– ident: e_1_2_11_13_1
  doi: 10.1073/pnas.1602413113
– volume: 27
  start-page: 386
  issue: 1
  year: 2017
  ident: e_1_2_11_17_1
  article-title: Individual variability of the system‐level organization of the human brain
  publication-title: Cerebral Cortex
– ident: e_1_2_11_33_1
  doi: 10.1523/JNEUROSCI.2345-13.2013
– ident: e_1_2_11_51_1
  doi: 10.1016/j.neuroimage.2014.01.060
– ident: e_1_2_11_6_1
  doi: 10.1038/s41593-018-0195-0
– ident: e_1_2_11_34_1
  doi: 10.1093/cercor/bhx179
– ident: e_1_2_11_52_1
  doi: 10.1016/j.jneumeth.2014.11.008
– volume: 3
  start-page: 1
  issue: 1
  year: 2020
  ident: e_1_2_11_50_1
  article-title: BrainSpace: A toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets
  publication-title: Communications Biology
– ident: e_1_2_11_47_1
  doi: 10.1073/pnas.1903403116
– ident: e_1_2_11_30_1
  doi: 10.1016/j.neuroimage.2017.12.059
– ident: e_1_2_11_26_1
– ident: e_1_2_11_42_1
  doi: 10.1523/JNEUROSCI.3302-16.2017
– ident: e_1_2_11_41_1
  doi: 10.1073/pnas.1907892117
– ident: e_1_2_11_22_1
  doi: 10.1038/s41386-020-0736-6
– volume: 5
  start-page: s13742
  issue: 1
  year: 2016
  ident: e_1_2_11_24_1
  article-title: A cortical surfacebased geodesic distance package for python
  publication-title: GigaScience
– ident: e_1_2_11_35_1
  doi: 10.32614/CRAN.package.freesurferformats
– ident: e_1_2_11_37_1
  doi: 10.1523/JNEUROSCI.2248-18.2019
– ident: e_1_2_11_21_1
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: e_1_2_11_19_1
  doi: 10.1073/pnas.0811168106
– ident: e_1_2_11_7_1
  doi: 10.1016/j.neuroimage.2020.117038
– ident: e_1_2_11_25_1
  doi: 10.1016/j.neuroimage.2021.118052
SSID ssj0011501
Score 2.446727
Snippet Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5175
SubjectTerms Brain
Brain mapping
Brain Mapping - methods
Brain Mapping - standards
Cerebral Cortex - anatomy & histology
Cerebral Cortex - diagnostic imaging
Cerebral Cortex - physiology
Correspondence
covariance stationarity
Humans
Hypotheses
hypothesis
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Intermodal
intermodal correspondence
Medical imaging
Memory tasks
Mental task performance
Methods
Models, Statistical
Nerve Net - anatomy & histology
Nerve Net - diagnostic imaging
Nerve Net - physiology
Neuroimaging
Neuroimaging - methods
Neuroimaging - standards
permutation testing
Permutations
Random variables
Short term memory
Similarity
Statistical analysis
Statistical inference
Statistical methods
Statistics
testing
Thickness
Title A simple permutation‐based test of intermodal correspondence
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25577
https://www.ncbi.nlm.nih.gov/pubmed/34519385
https://www.proquest.com/docview/2582270612
https://www.proquest.com/docview/2572525281
https://pubmed.ncbi.nlm.nih.gov/PMC8519855
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UCuJLra2XaF1GEelLtmkys5NQELbSsghbSrGwD0KYW2jRTZbu7kP71J_gb_SXeM7komsVRAIhMCeZycw5M9-ZOfMNwFtt0jixkQkz6YqQ24KHWTEwobQULWa04xHtdx6fDEbn_ONETNbgoN0LU_NDdBNuZBm-vyYDV3q-95M09EJP-4iHJe0kp1gtAkRnHXUUAR3vbOEQG2bYA7esQlG81725OhbdAZh34yR_xa9-ADp-BJ_botdxJ1_6y4Xum5vfWB3_8982YaMBpmxYa9JjWHPlFmwPS3TKp9fsHfOhon4OfgsejJsV-W14P2TzS2IYZjPs45f1wv732280OlqGOHbBqoIRKcXVtLKYgfHHgcyq0h9m-gTOj48-fRiFzZkMoeE8kaHNbOZ4mrk4K9C14krIOFaRjiziSEve136hEIVZ5bAvsFKRwyMybrjmWqBePIX1sirdc2CJK0SquEu1EbwQA43IU9lUWfwG4iIZwG7bOrlpCMvp3IyveU21HOdYTbmvpgDedKKzmqXjT0I7bRPnjaHOMQURkiScF8DrLhlNjNZNVOmqJcnIWOCV7gfwrNaILpeE6HmSVAQgV3SlEyD67tWU8vLC03gj1s1SgW_uelX4e8Hz0eHYP7z4d9GX8DCm6Bu_a3IH1hdXS_cK4dNC9-BezE_xLieyB_cPj05Oz3p-KqLnLegHS-UbtA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi2FQAGDEOol2zSx17GEkBZEtUC3B9RKvaDIr6hVu8mq3T3AiZ_Ab-SXMOM8YClICOUSyePYSWbsb-zxNwDPjc3TzCU2VtKXMXclj1U5tLF0FC1mjecJnXee7A_Hh_z9kThagZfdWZiGH6JfcCPLCOM1GTgtSG__ZA09NtMBAmIpr8BVyugdHKqPPXkUQZ3gbuEkGyscgzteoSTd7qsuz0aXIOblSMlfEWyYgnZvwaeu803kyelgMTcD--U3Xsf_fbvbcLPFpmzUKNMdWPHVGqyPKvTLp5_ZCxaiRcMy_Bpcm7Sb8uvwasQuTohkmM1wmF80e_vfv36jCdIxhLJzVpeMeCnOp7XDBmzICDKrq5DP9C4c7r49eDOO27QMseU8k7FTTnmeK5-qEr0rroVMU52YxCGUdOSA7ZQagZjTHocDJzX5PEJxyw03AlVjA1aruvL3gWW-FLnmPjdW8FIMDYJP7XLt8BkIjWQEW93vKWzLWU6pM86Khm05LfAzFeEzRfCsF501RB1_Etrs_nHR2uoFliBIkgT1InjaF6OV0daJrny9IBmZCrzynQjuNSrRt5IRQ0-WiwjkkrL0AsTgvVxSnRwHJm-EuyoXWHMr6MLfO16MX0_CzYN_F30C18cHk71i793-h4dwI6VgnHCIchNW5-cL_wjR1Nw8DkbzAxFpG4I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UCsUXL62X0apRRPoy2-lMskkQhNW6rJctIhb6IAy50qI7s7S7D_rkT_A3-ks8yVx0rYLIvAzkZJJJzkm-k5x8AXikjcgLm5lUcudTaj1NpR-alNsQLWa0o1k47zw9GE4O6asjdrQGT7qzMA0_RL_gFiwjjtfBwOfW7_4kDT3WswHiYc4vwEU6zERQ6f13PXdUQDrR28I5NpU4BHe0Qlm-22ddnYzOIczzgZK_Atg4A42vwIeu7k3gycfBcqEH5stvtI7_-XNX4XKLTMmoUaVrsOaqTdgaVeiVzz6TxyTGisZF-E3YmLZb8lvwdETOTgLFMJnjIL9sdva_f_0WpkdLEMguSO1JYKU4ndUWCzDxPpB5XcXbTK_D4fjF--eTtL2UITWUFjy10kpHhXS59OhbUcV4nqtMZxaBpA3u155XCMOscjgYWK6Cx8MkNVRTzVAxbsB6VVfuFpDCeSYUdUIbRj0baoSeygpl8RsIjHgCO13vlKZlLA8XZ3wqG67lvMRmKmMzJfCwF503NB1_EtruurhsLfUMUxAi8QD0EnjQJ6ONhY0TVbl6GWR4zvARewncbDSiL6UI_DyFYAnwFV3pBQJ_92pKdXIcebwR7ErBMOdOVIW_V7ycPJvGl9v_LnofNt7uj8s3Lw9e34FLeYjEiScot2F9cbp0dxFKLfS9aDI_AM8iGjo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+permutation%E2%80%90based+test+of+intermodal+correspondence&rft.jtitle=Human+brain+mapping&rft.au=Weinstein%2C+Sarah+M&rft.au=Vandekar%2C+Simon+N&rft.au=Azeez+Adebimpe&rft.au=Tapera%2C+Tinashe+M&rft.date=2021-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=42&rft.issue=16&rft.spage=5175&rft.epage=5187&rft_id=info:doi/10.1002%2Fhbm.25577&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon