A simple permutation‐based test of intermodal correspondence
Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multipl...
Saved in:
Published in | Human brain mapping Vol. 42; no. 16; pp. 5175 - 5187 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group‐level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject‐level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p‐value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n‐back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference.
We propose using a classical permutation testing framework to study intermodal correspondence using subject‐level data while requiring minimal statistical assumptions. We compare our method to previous approaches involving spatial null modeling of group‐level brain maps and illustrate and discuss the flexibility of our method for localizing intermodal relationships within subregions of the brain. |
---|---|
AbstractList | Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group‐level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject‐level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p‐value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n‐back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference.
We propose using a classical permutation testing framework to study intermodal correspondence using subject‐level data while requiring minimal statistical assumptions. We compare our method to previous approaches involving spatial null modeling of group‐level brain maps and illustrate and discuss the flexibility of our method for localizing intermodal relationships within subregions of the brain. Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group‐level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject‐level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p ‐value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n ‐back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference. Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group‐level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject‐level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p‐value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n‐back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference. Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state-of-the-art methods involve comparing observed group-level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group-level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject-level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p-value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n-back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference.Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state-of-the-art methods involve comparing observed group-level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group-level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject-level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p-value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n-back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference. Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current state‐of‐the‐art methods involve comparing observed group‐level brain maps (after averaging intensities at each image location across multiple subjects) against spatial null models of these group‐level maps. However, these methods typically make strong and potentially unrealistic statistical assumptions, such as covariance stationarity. To address these issues, in this article we propose using subject‐level data and a classical permutation testing framework to test and assess similarities between brain maps. Our method is comparable to traditional permutation tests in that it involves randomly permuting subjects to generate a null distribution of intermodal correspondence statistics, which we compare to an observed statistic to estimate a p ‐value. We apply and compare our method in simulated and real neuroimaging data from the Philadelphia Neurodevelopmental Cohort. We show that our method performs well for detecting relationships between modalities known to be strongly related (cortical thickness and sulcal depth), and it is conservative when an association would not be expected (cortical thickness and activation on the n ‐back working memory task). Notably, our method is the most flexible and reliable for localizing intermodal relationships within subregions of the brain and allows for generalizable statistical inference. We propose using a classical permutation testing framework to study intermodal correspondence using subject‐level data while requiring minimal statistical assumptions. We compare our method to previous approaches involving spatial null modeling of group‐level brain maps and illustrate and discuss the flexibility of our method for localizing intermodal relationships within subregions of the brain. |
Author | Shinohara, Russell T. Gur, Raquel E. Robert‐Fitzgerald, Timothy Gur, Ruben C. Alexander‐Bloch, Aaron F. Adebimpe, Azeez Weinstein, Sarah M. Tapera, Tinashe M. Raznahan, Armin Vandekar, Simon N. Satterthwaite, Theodore D. |
AuthorAffiliation | 6 Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia Philadelphia Pennsylvania 7 Section on Developmental Neurogenomics National Institute of Mental Health Intramural Research Program Bethesda Maryland 1 Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania 4 Department of Psychiatry, Brain Behavior Laboratory and Penn‐CHOP Lifespan Brain Institute University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania 8 Center for Biomedical Image Computing and Analytics, Department of Radiology University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania 5 Department of Psychiatry, Neurodevelopment and Psychosis Section and Penn‐CHOP Lifespan Brain Institute University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania 2 Department of Biostatistics |
AuthorAffiliation_xml | – name: 2 Department of Biostatistics Vanderbilt University Nashville Tennessee – name: 6 Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia Philadelphia Pennsylvania – name: 4 Department of Psychiatry, Brain Behavior Laboratory and Penn‐CHOP Lifespan Brain Institute University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania – name: 3 Department of Psychiatry, Lifespan Informatics and Neuroimaging Center University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania – name: 5 Department of Psychiatry, Neurodevelopment and Psychosis Section and Penn‐CHOP Lifespan Brain Institute University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania – name: 8 Center for Biomedical Image Computing and Analytics, Department of Radiology University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania – name: 1 Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics University of Pennsylvania, Perelman School of Medicine Philadelphia Pennsylvania – name: 7 Section on Developmental Neurogenomics National Institute of Mental Health Intramural Research Program Bethesda Maryland |
Author_xml | – sequence: 1 givenname: Sarah M. orcidid: 0000-0003-3152-6286 surname: Weinstein fullname: Weinstein, Sarah M. email: smweinst@pennmedicine.upenn.edu organization: University of Pennsylvania, Perelman School of Medicine – sequence: 2 givenname: Simon N. orcidid: 0000-0002-7457-9073 surname: Vandekar fullname: Vandekar, Simon N. organization: Vanderbilt University – sequence: 3 givenname: Azeez orcidid: 0000-0001-9049-0135 surname: Adebimpe fullname: Adebimpe, Azeez organization: University of Pennsylvania, Perelman School of Medicine – sequence: 4 givenname: Tinashe M. surname: Tapera fullname: Tapera, Tinashe M. organization: University of Pennsylvania, Perelman School of Medicine – sequence: 5 givenname: Timothy surname: Robert‐Fitzgerald fullname: Robert‐Fitzgerald, Timothy organization: University of Pennsylvania, Perelman School of Medicine – sequence: 6 givenname: Ruben C. orcidid: 0000-0002-9657-1996 surname: Gur fullname: Gur, Ruben C. organization: University of Pennsylvania, Perelman School of Medicine – sequence: 7 givenname: Raquel E. orcidid: 0000-0002-4082-8502 surname: Gur fullname: Gur, Raquel E. organization: Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia – sequence: 8 givenname: Armin orcidid: 0000-0002-5622-1190 surname: Raznahan fullname: Raznahan, Armin organization: National Institute of Mental Health Intramural Research Program – sequence: 9 givenname: Theodore D. orcidid: 0000-0001-7072-9399 surname: Satterthwaite fullname: Satterthwaite, Theodore D. organization: University of Pennsylvania, Perelman School of Medicine – sequence: 10 givenname: Aaron F. orcidid: 0000-0001-6554-1893 surname: Alexander‐Bloch fullname: Alexander‐Bloch, Aaron F. organization: Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia – sequence: 11 givenname: Russell T. orcidid: 0000-0001-8627-8203 surname: Shinohara fullname: Shinohara, Russell T. organization: University of Pennsylvania, Perelman School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34519385$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFOHSEYhUljU_XWhS_QTOJGF6PAwAU2JrfGVhNNN-2aMMM_ipmBKczYuPMRfEafpNxevbEmGhaQ_N9_cg5nG2344AGhXYIPCcb06LruDynnQnxAWwQrUWKiqo3le85LxQTZRNsp3WBMCMfkE9qsGM-E5FvoeFEk1w8dFAPEfhrN6IJ_vH-oTQJbjJDGIrSF82OeBmu6ogkxQhqCt-Ab-Iw-tqZLsPN0z9Cvb6c_T87Kix_fz08WF2XDWCVKq6wCJhVQ1So-Z4YLSg2usRWCWSnInLSGc2INcCGtMIJViivWsJrVXNJqho5XusNU92Ab8GM0nR6i602808E4_f_Eu2t9FW61zEEl51lg_0kght9TjqV7lxroOuMhTEnT7IjnI0lG916hN2GKPsfLlKRU4DlZOvry0tHayvPXZuBgBTQxpBShXSME62VtOtem_9WW2aNXbONWVeQwrntv44_r4O5taX329XK18RdPd6ji |
CitedBy_id | crossref_primary_10_7554_eLife_86933_3 crossref_primary_10_1111_resp_14866 crossref_primary_10_1016_j_neuroimage_2022_119100 crossref_primary_10_1038_s41467_023_37574_x crossref_primary_10_1002_hbm_26554 crossref_primary_10_1371_journal_pbio_3002758 crossref_primary_10_1016_j_neuroimage_2022_119712 crossref_primary_10_1038_s41597_024_04157_4 crossref_primary_10_7554_eLife_86933 crossref_primary_10_1016_j_dcn_2024_101443 crossref_primary_10_1038_s41583_022_00601_9 crossref_primary_10_1002_hbm_26714 crossref_primary_10_1038_s44220_024_00348_5 crossref_primary_10_1016_j_dcn_2024_101439 crossref_primary_10_1162_imag_a_00058 crossref_primary_10_1038_s41593_024_01722_3 |
Cites_doi | 10.1016/j.neuron.2017.07.011 10.1523/JNEUROSCI.1798-04.2004 10.1016/j.nicl.2015.12.002 10.1016/j.neuroimage.2019.116398 10.1152/jn.00338.2011 10.1016/j.neuron.2020.01.029 10.32614/CRAN.package.fsbrain 10.1038/s41583-021-00457-5 10.1016/j.neuroimage.2016.03.002 10.1093/cercor/bhu239 10.1006/nimg.1998.0395 10.1037/0894-4105.16.3.370 10.3389/fnins.2018.00354 10.1016/j.biopsych.2019.09.031 10.1038/s42003-020-0961-x 10.7554/eLife.50482 10.1523/JNEUROSCI.3554-12.2013 10.1093/cercor/bhx249 10.1038/s41596-018-0065-y 10.1523/JNEUROSCI.5309-07.2008 10.1073/pnas.1912034117 10.1016/j.neuroimage.2015.03.056 10.2202/1544-6115.1585 10.1111/biom.12139 10.1016/j.neuroimage.2013.09.069 10.1006/nimg.1998.0396 10.1016/j.neuroimage.2013.07.064 10.1523/JNEUROSCI.3628-14.2015 10.1073/pnas.1508831112 10.1016/j.neuroimage.2018.05.070 10.1073/pnas.1602413113 10.1523/JNEUROSCI.2345-13.2013 10.1016/j.neuroimage.2014.01.060 10.1038/s41593-018-0195-0 10.1093/cercor/bhx179 10.1016/j.jneumeth.2014.11.008 10.1073/pnas.1903403116 10.1016/j.neuroimage.2017.12.059 10.1523/JNEUROSCI.3302-16.2017 10.1073/pnas.1907892117 10.1038/s41386-020-0736-6 10.32614/CRAN.package.freesurferformats 10.1523/JNEUROSCI.2248-18.2019 10.1016/j.neuroimage.2011.09.015 10.1073/pnas.0811168106 10.1016/j.neuroimage.2020.117038 10.1016/j.neuroimage.2021.118052 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC. 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC. – notice: 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.25577 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef Technology Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology Statistics |
DocumentTitleAlternate | Weinstein et al |
EISSN | 1097-0193 |
EndPage | 5187 |
ExternalDocumentID | PMC8519855 34519385 10_1002_hbm_25577 HBM25577 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Mental Health funderid: 1ZIAMH002949; K08MH120564; R01MH107235; R01MH112847; R01MH113550; R01MH119219; R01MH120482; R01MH123563; RF1MH116920 – fundername: National Institutes of Health funderid: R01EB022573; R01NS060910 – fundername: National Science Foundation funderid: Graduate Research Fellowship Program – fundername: NIMH NIH HHS grantid: K08MH120564 – fundername: NINDS NIH HHS grantid: R01 NS060910 – fundername: NIMH NIH HHS grantid: R01MH113550 – fundername: NIMH NIH HHS grantid: R01MH119219 – fundername: NIMH NIH HHS grantid: R01 MH119219 – fundername: NIMH NIH HHS grantid: R01 MH113550 – fundername: NIH HHS grantid: R01EB022573 – fundername: NIBIB NIH HHS grantid: R01 EB022573 – fundername: NIMH NIH HHS grantid: R01 MH107235 – fundername: Intramural NIH HHS grantid: ZIA MH002949 – fundername: ; grantid: Graduate Research Fellowship Program – fundername: ; grantid: R01EB022573; R01NS060910 – fundername: ; grantid: 1ZIAMH002949; K08MH120564; R01MH107235; R01MH112847; R01MH113550; R01MH119219; R01MH120482; R01MH123563; RF1MH116920 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4437-d9d9e489e29f9564a5722a0b0d774d87161fa551dae578d7a7439594c4b4b5823 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:29:55 EDT 2025 Thu Jul 10 22:48:09 EDT 2025 Sat Jul 26 02:16:40 EDT 2025 Mon Jul 21 06:03:11 EDT 2025 Thu Apr 24 23:11:58 EDT 2025 Tue Jul 01 01:11:05 EDT 2025 Wed Jan 22 16:29:10 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | permutation testing covariance stationarity intermodal correspondence hypothesis testing |
Language | English |
License | Attribution 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4437-d9d9e489e29f9564a5722a0b0d774d87161fa551dae578d7a7439594c4b4b5823 |
Notes | Funding information National Institute of Mental Health, Grant/Award Numbers: 1ZIAMH002949, K08MH120564, R01MH107235, R01MH112847, R01MH113550, R01MH119219, R01MH120482, R01MH123563, RF1MH116920; National Institutes of Health, Grant/Award Numbers: R01EB022573, R01NS060910; National Science Foundation, Grant/Award Number: Graduate Research Fellowship Program Aaron F. Alexander‐Bloch and Russell T. Shinohara have contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information National Institute of Mental Health, Grant/Award Numbers: 1ZIAMH002949, K08MH120564, R01MH107235, R01MH112847, R01MH113550, R01MH119219, R01MH120482, R01MH123563, RF1MH116920; National Institutes of Health, Grant/Award Numbers: R01EB022573, R01NS060910; National Science Foundation, Grant/Award Number: Graduate Research Fellowship Program |
ORCID | 0000-0002-5622-1190 0000-0002-7457-9073 0000-0001-6554-1893 0000-0001-7072-9399 0000-0003-3152-6286 0000-0002-9657-1996 0000-0002-4082-8502 0000-0001-9049-0135 0000-0001-8627-8203 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25577 |
PMID | 34519385 |
PQID | 2582270612 |
PQPubID | 996345 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8519855 proquest_miscellaneous_2572525281 proquest_journals_2582270612 pubmed_primary_34519385 crossref_primary_10_1002_hbm_25577 crossref_citationtrail_10_1002_hbm_25577 wiley_primary_10_1002_hbm_25577_HBM25577 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2019; 8 2002; 16 2015; 35 2015; 240 2021; 46 2018; 28 2014; 70 2014; 92 2021; 22 2020; 220 2017; 27 2018; 169 2004; 24 2016; 124 2019; 39 2020; 106 2018; 21 2020; 207 2016; 12 1999; 9 2014; 86 2017; 95 2016; 5 2020; 3 2011; 106 2013; 33 2017; 37 2021; 236 2018; 178 2015; 112 2008; 28 2016; 113 2020b 2019; 116 2020; 117 2018 2020a 2016; 133 2020; 87 1929 2018; 12 2016; 26 2010; 9 2018; 13 2009; 106 2014; 102 2012; 62 Gordon E. M. (e_1_2_11_17_1) 2017; 27 e_1_2_11_32_1 Margulies D. S. (e_1_2_11_24_1) 2016; 5 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 Constantin von Economo (e_1_2_11_9_1) 1929 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 Wael R. V. d. (e_1_2_11_50_1) 2020; 3 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 3 start-page: 1 issue: 1 year: 2020 end-page: 12 article-title: Temporal sequences of brain activity at rest are constrained by white matter structure and modulated by cognitive demands publication-title: Communications Biology – volume: 13 start-page: 2801 issue: 12 year: 2018 end-page: 2826 article-title: Mitigating head motion artifact in functional connectivity MRI publication-title: Nature Protocols – volume: 112 start-page: 15462 issue: 50 year: 2015 end-page: 15467 article-title: Development and aging of cortical thickness correspond to genetic organization patterns publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 21 start-page: 1251 issue: 9 year: 2018 end-page: 1259 article-title: Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography publication-title: Nature Neuroscience – volume: 8 year: 2019 article-title: Shifts in myeloarchitecture characterise adolescent development of cortical gradients publication-title: Elife – volume: 9 start-page: 1 year: 2010 article-title: Permutation values should never be zero: Calculating exact values when permutations are randomly drawn publication-title: Statistical Applications in Genetics and Molecular Biology – volume: 220 year: 2020 article-title: Generative modeling of brain maps with spatial autocorrelation publication-title: NeuroImage – volume: 62 start-page: 782 issue: 2 year: 2012 end-page: 790 article-title: Fsl publication-title: NeuroImage – volume: 22 start-page: 1 year: 2021 end-page: 13 article-title: Environmental inuences on the pace of brain development publication-title: Nature Reviews Neuroscience – volume: 133 start-page: 88 year: 2016 end-page: 97 article-title: Subject‐level measurement of local cortical coupling publication-title: NeuroImage – volume: 16 start-page: 370 issue: 3 year: 2002 article-title: Working memory for complex figures: An fMRI comparison of letter and fractal n‐back tasks publication-title: Neuropsychology – volume: 24 start-page: 8223 issue: 38 year: 2004 end-page: 8231 article-title: Longitudinal mapping of cortical thickness and brain growth in normal children publication-title: Journal of Neuroscience – year: 2018 – volume: 28 start-page: 281 issue: 1 year: 2018 end-page: 294 article-title: Adolescent tuning of association cortex in human structural brain networks publication-title: Cerebral Cortex (New York, N.Y.: 1991) – volume: 28 start-page: 3095 issue: 9 year: 2018 end-page: 3114 article-title: Local‐global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI publication-title: Cerebral Cortex – volume: 116 start-page: 21219 issue: 42 year: 2019 end-page: 21227 article-title: Gradients of structure‐function tethering across neocortex publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 28 start-page: 3586 issue: 14 year: 2008 end-page: 3594 article-title: Neurodevelopmental trajectories of the human cerebral cortex publication-title: Journal of Neuroscience – volume: 117 start-page: 771 issue: 1 year: 2020 end-page: 778 article-title: Development of structure–function coupling in human brain networks during youth publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 5 start-page: s13742 issue: suppl 1 year: 2016 end-page: 016 article-title: A cortical surfacebased geodesic distance package for python publication-title: GigaScience – volume: 37 start-page: 3402 issue: 12 year: 2017 end-page: 3412 article-title: Development of the cerebral cortex across adolescence: A multisample study of inter‐related longitudinal changes in cortical volume, surface area, and thickness publication-title: Journal of Neuroscience – volume: 9 start-page: 195 issue: 2 year: 1999 end-page: 207 article-title: Cortical surface‐based analysis: II: Ination, attening, and a surface‐based coordinate system publication-title: NeuroImage – volume: 106 start-page: 340 year: 2020 end-page: 353 article-title: Individual variation in functional topography of association networks in youth publication-title: Neuron – volume: 113 start-page: 7900 issue: 28 year: 2016 end-page: 7905 article-title: Cluster failure: Why fMRI inferences for spatial extent have inated false‐positive rates publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 87 start-page: 727 issue: 8 year: 2020 end-page: 735 article-title: Spatial patterning of tissue volume loss in schizophrenia reects brain network architecture publication-title: Biological Psychiatry – volume: 106 start-page: 2035 issue: 6 year: 2009 end-page: 2040 article-title: Predicting human resting‐state functional connectivity from structural connectivity publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 33 start-page: 2889 issue: 7 year: 2013 end-page: 2899 article-title: The convergence of maturational change and structural covariance in human cortical networks publication-title: Journal of Neuroscience – volume: 86 start-page: 544 year: 2014 end-page: 553 article-title: Neuroimaging of the Philadelphia neurodevelopmental cohort publication-title: NeuroImage – volume: 124 start-page: 1115 year: 2016 end-page: 1119 article-title: The Philadelphia Neurodevelopmental Cohort: A publicly available resource for the study of normal and abnormal brain development in youth publication-title: NeuroImage – volume: 12 year: 2018 article-title: SPANOL (SPectral ANalysis of Lobes): A spectral clustering framework for individual and group parcellation of cortical surfaces in lobes publication-title: Frontiers in Neuroscience – year: 1929 – volume: 92 start-page: 381 year: 2014 end-page: 397 article-title: Permutation inference for the general linear model publication-title: NeuroImage – volume: 70 start-page: 409 issue: 2 year: 2014 end-page: 418 article-title: Assessing the significance of global and local correlations under spatial autocorrelation: A nonparametric approach publication-title: Biometrics – volume: 46 start-page: 131 issue: 1 year: 2021 end-page: 142 article-title: The ABCD study: Understanding the development of risk for mental and physical health outcomes publication-title: Neuropsychopharmacology – volume: 240 start-page: 101 year: 2015 end-page: 115 article-title: Nonparametric variogram modeling with hole effect structure in analyzing the spatial characteristics of fMRI data publication-title: Journal of Neuroscience Methods – year: 2020a – volume: 169 start-page: 407 year: 2018 end-page: 418 article-title: Quantitative assessment of structural image quality publication-title: NeuroImage – volume: 106 start-page: 1125 issue: 3 year: 2011 end-page: 1165 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: Journal of Neurophysiology – volume: 35 start-page: 599 issue: 2 year: 2015 end-page: 609 article-title: Topologically dissociable patterns of development of the human cerebral cortex publication-title: Journal of Neuroscience – volume: 26 start-page: 288 issue: 1 year: 2016 end-page: 303 article-title: Generation and evaluation of a cortical area parcellation from resting‐state correlations publication-title: Cerebral Cortex – volume: 33 issue: 41 year: 2013 article-title: Functional maturation of the executive system during adolescence publication-title: The Journal of Neuroscience – volume: 27 start-page: 386 issue: 1 year: 2017 end-page: 399 article-title: Individual variability of the system‐level organization of the human brain publication-title: Cerebral Cortex – volume: 178 start-page: 540 year: 2018 end-page: 551 article-title: On testing for spatial correspondence between maps of human brain structure and function publication-title: NeuroImage – volume: 117 start-page: 1201 issue: 2 year: 2020 end-page: 1206 article-title: Variable functional connectivity architecture of the preterm human brain: Impact of developmental cortical expansion and maturation publication-title: Proceedings of the National Academy of Sciencesof the United States of America – volume: 236 year: 2021 article-title: Comparing spatial null models for brain maps publication-title: Neuroimage – volume: 102 start-page: 142 year: 2014 end-page: 151 article-title: The structural–functional connectome and the default mode network of the human brain publication-title: NeuroImage – volume: 95 start-page: 791 issue: 4 year: 2017 end-page: 807 article-title: Precision functional mapping of individual human brains publication-title: Neuron – volume: 207 year: 2020 article-title: Comparing functional connectivity matrices: A geometry‐aware approach applied to participant identification publication-title: NeuroImage – volume: 3 start-page: 1 issue: 1 year: 2020 end-page: 10 article-title: BrainSpace: A toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets publication-title: Communications Biology – volume: 9 start-page: 179 issue: 2 year: 1999 end-page: 194 article-title: Cortical surface‐based analysis: I. Segmentation and surface reconstruction publication-title: NeuroImage – volume: 39 start-page: 3028 issue: 16 year: 2019 end-page: 3040 article-title: A comprehensive quantitative genetic analysis of cerebral surface area in youth publication-title: Journal of Neuroscience – volume: 12 start-page: 940 year: 2016 end-page: 948 article-title: Working memory circuit as a function of increasing age in healthy adolescence: A systematic review and metaanalyses publication-title: NeuroImage: Clinical – year: 2020b – ident: e_1_2_11_18_1 doi: 10.1016/j.neuron.2017.07.011 – ident: e_1_2_11_40_1 doi: 10.1523/JNEUROSCI.1798-04.2004 – ident: e_1_2_11_4_1 doi: 10.1016/j.nicl.2015.12.002 – ident: e_1_2_11_48_1 doi: 10.1016/j.neuroimage.2019.116398 – ident: e_1_2_11_53_1 doi: 10.1152/jn.00338.2011 – ident: e_1_2_11_11_1 doi: 10.1016/j.neuron.2020.01.029 – ident: e_1_2_11_36_1 doi: 10.32614/CRAN.package.fsbrain – ident: e_1_2_11_43_1 doi: 10.1038/s41583-021-00457-5 – ident: e_1_2_11_44_1 doi: 10.1016/j.neuroimage.2016.03.002 – ident: e_1_2_11_16_1 doi: 10.1093/cercor/bhu239 – ident: e_1_2_11_12_1 doi: 10.1006/nimg.1998.0395 – ident: e_1_2_11_29_1 doi: 10.1037/0894-4105.16.3.370 – ident: e_1_2_11_23_1 doi: 10.3389/fnins.2018.00354 – ident: e_1_2_11_38_1 doi: 10.1016/j.biopsych.2019.09.031 – ident: e_1_2_11_10_1 doi: 10.1038/s42003-020-0961-x – ident: e_1_2_11_27_1 doi: 10.7554/eLife.50482 – ident: e_1_2_11_3_1 doi: 10.1523/JNEUROSCI.3554-12.2013 – ident: e_1_2_11_46_1 doi: 10.1093/cercor/bhx249 – ident: e_1_2_11_8_1 doi: 10.1038/s41596-018-0065-y – ident: e_1_2_11_39_1 doi: 10.1523/JNEUROSCI.5309-07.2008 – ident: e_1_2_11_5_1 doi: 10.1073/pnas.1912034117 – volume-title: The cytoarchitectonics of the human cerebral cortex year: 1929 ident: e_1_2_11_9_1 – ident: e_1_2_11_31_1 doi: 10.1016/j.neuroimage.2015.03.056 – ident: e_1_2_11_28_1 doi: 10.2202/1544-6115.1585 – ident: e_1_2_11_49_1 doi: 10.1111/biom.12139 – ident: e_1_2_11_20_1 doi: 10.1016/j.neuroimage.2013.09.069 – ident: e_1_2_11_14_1 doi: 10.1006/nimg.1998.0396 – ident: e_1_2_11_32_1 doi: 10.1016/j.neuroimage.2013.07.064 – ident: e_1_2_11_45_1 doi: 10.1523/JNEUROSCI.3628-14.2015 – ident: e_1_2_11_15_1 doi: 10.1073/pnas.1508831112 – ident: e_1_2_11_2_1 doi: 10.1016/j.neuroimage.2018.05.070 – ident: e_1_2_11_13_1 doi: 10.1073/pnas.1602413113 – volume: 27 start-page: 386 issue: 1 year: 2017 ident: e_1_2_11_17_1 article-title: Individual variability of the system‐level organization of the human brain publication-title: Cerebral Cortex – ident: e_1_2_11_33_1 doi: 10.1523/JNEUROSCI.2345-13.2013 – ident: e_1_2_11_51_1 doi: 10.1016/j.neuroimage.2014.01.060 – ident: e_1_2_11_6_1 doi: 10.1038/s41593-018-0195-0 – ident: e_1_2_11_34_1 doi: 10.1093/cercor/bhx179 – ident: e_1_2_11_52_1 doi: 10.1016/j.jneumeth.2014.11.008 – volume: 3 start-page: 1 issue: 1 year: 2020 ident: e_1_2_11_50_1 article-title: BrainSpace: A toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets publication-title: Communications Biology – ident: e_1_2_11_47_1 doi: 10.1073/pnas.1903403116 – ident: e_1_2_11_30_1 doi: 10.1016/j.neuroimage.2017.12.059 – ident: e_1_2_11_26_1 – ident: e_1_2_11_42_1 doi: 10.1523/JNEUROSCI.3302-16.2017 – ident: e_1_2_11_41_1 doi: 10.1073/pnas.1907892117 – ident: e_1_2_11_22_1 doi: 10.1038/s41386-020-0736-6 – volume: 5 start-page: s13742 issue: 1 year: 2016 ident: e_1_2_11_24_1 article-title: A cortical surfacebased geodesic distance package for python publication-title: GigaScience – ident: e_1_2_11_35_1 doi: 10.32614/CRAN.package.freesurferformats – ident: e_1_2_11_37_1 doi: 10.1523/JNEUROSCI.2248-18.2019 – ident: e_1_2_11_21_1 doi: 10.1016/j.neuroimage.2011.09.015 – ident: e_1_2_11_19_1 doi: 10.1073/pnas.0811168106 – ident: e_1_2_11_7_1 doi: 10.1016/j.neuroimage.2020.117038 – ident: e_1_2_11_25_1 doi: 10.1016/j.neuroimage.2021.118052 |
SSID | ssj0011501 |
Score | 2.446727 |
Snippet | Many key findings in neuroimaging studies involve similarities between brain maps, but statistical methods used to measure these findings have varied. Current... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5175 |
SubjectTerms | Brain Brain mapping Brain Mapping - methods Brain Mapping - standards Cerebral Cortex - anatomy & histology Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiology Correspondence covariance stationarity Humans Hypotheses hypothesis Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - standards Intermodal intermodal correspondence Medical imaging Memory tasks Mental task performance Methods Models, Statistical Nerve Net - anatomy & histology Nerve Net - diagnostic imaging Nerve Net - physiology Neuroimaging Neuroimaging - methods Neuroimaging - standards permutation testing Permutations Random variables Short term memory Similarity Statistical analysis Statistical inference Statistical methods Statistics testing Thickness |
Title | A simple permutation‐based test of intermodal correspondence |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25577 https://www.ncbi.nlm.nih.gov/pubmed/34519385 https://www.proquest.com/docview/2582270612 https://www.proquest.com/docview/2572525281 https://pubmed.ncbi.nlm.nih.gov/PMC8519855 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UCuJLra2XaF1GEelLtmkys5NQELbSsghbSrGwD0KYW2jRTZbu7kP71J_gb_SXeM7komsVRAIhMCeZycw5M9-ZOfMNwFtt0jixkQkz6YqQ24KHWTEwobQULWa04xHtdx6fDEbn_ONETNbgoN0LU_NDdBNuZBm-vyYDV3q-95M09EJP-4iHJe0kp1gtAkRnHXUUAR3vbOEQG2bYA7esQlG81725OhbdAZh34yR_xa9-ADp-BJ_botdxJ1_6y4Xum5vfWB3_8982YaMBpmxYa9JjWHPlFmwPS3TKp9fsHfOhon4OfgsejJsV-W14P2TzS2IYZjPs45f1wv732280OlqGOHbBqoIRKcXVtLKYgfHHgcyq0h9m-gTOj48-fRiFzZkMoeE8kaHNbOZ4mrk4K9C14krIOFaRjiziSEve136hEIVZ5bAvsFKRwyMybrjmWqBePIX1sirdc2CJK0SquEu1EbwQA43IU9lUWfwG4iIZwG7bOrlpCMvp3IyveU21HOdYTbmvpgDedKKzmqXjT0I7bRPnjaHOMQURkiScF8DrLhlNjNZNVOmqJcnIWOCV7gfwrNaILpeE6HmSVAQgV3SlEyD67tWU8vLC03gj1s1SgW_uelX4e8Hz0eHYP7z4d9GX8DCm6Bu_a3IH1hdXS_cK4dNC9-BezE_xLieyB_cPj05Oz3p-KqLnLegHS-UbtA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXHi2FQAGDEOol2zSx17GEkBZEtUC3B9RKvaDIr6hVu8mq3T3AiZ_Ab-SXMOM8YClICOUSyePYSWbsb-zxNwDPjc3TzCU2VtKXMXclj1U5tLF0FC1mjecJnXee7A_Hh_z9kThagZfdWZiGH6JfcCPLCOM1GTgtSG__ZA09NtMBAmIpr8BVyugdHKqPPXkUQZ3gbuEkGyscgzteoSTd7qsuz0aXIOblSMlfEWyYgnZvwaeu803kyelgMTcD--U3Xsf_fbvbcLPFpmzUKNMdWPHVGqyPKvTLp5_ZCxaiRcMy_Bpcm7Sb8uvwasQuTohkmM1wmF80e_vfv36jCdIxhLJzVpeMeCnOp7XDBmzICDKrq5DP9C4c7r49eDOO27QMseU8k7FTTnmeK5-qEr0rroVMU52YxCGUdOSA7ZQagZjTHocDJzX5PEJxyw03AlVjA1aruvL3gWW-FLnmPjdW8FIMDYJP7XLt8BkIjWQEW93vKWzLWU6pM86Khm05LfAzFeEzRfCsF501RB1_Etrs_nHR2uoFliBIkgT1InjaF6OV0daJrny9IBmZCrzynQjuNSrRt5IRQ0-WiwjkkrL0AsTgvVxSnRwHJm-EuyoXWHMr6MLfO16MX0_CzYN_F30C18cHk71i793-h4dwI6VgnHCIchNW5-cL_wjR1Nw8DkbzAxFpG4I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UCsUXL62X0apRRPoy2-lMskkQhNW6rJctIhb6IAy50qI7s7S7D_rkT_A3-ks8yVx0rYLIvAzkZJJJzkm-k5x8AXikjcgLm5lUcudTaj1NpR-alNsQLWa0o1k47zw9GE4O6asjdrQGT7qzMA0_RL_gFiwjjtfBwOfW7_4kDT3WswHiYc4vwEU6zERQ6f13PXdUQDrR28I5NpU4BHe0Qlm-22ddnYzOIczzgZK_Atg4A42vwIeu7k3gycfBcqEH5stvtI7_-XNX4XKLTMmoUaVrsOaqTdgaVeiVzz6TxyTGisZF-E3YmLZb8lvwdETOTgLFMJnjIL9sdva_f_0WpkdLEMguSO1JYKU4ndUWCzDxPpB5XcXbTK_D4fjF--eTtL2UITWUFjy10kpHhXS59OhbUcV4nqtMZxaBpA3u155XCMOscjgYWK6Cx8MkNVRTzVAxbsB6VVfuFpDCeSYUdUIbRj0baoSeygpl8RsIjHgCO13vlKZlLA8XZ3wqG67lvMRmKmMzJfCwF503NB1_EtruurhsLfUMUxAi8QD0EnjQJ6ONhY0TVbl6GWR4zvARewncbDSiL6UI_DyFYAnwFV3pBQJ_92pKdXIcebwR7ErBMOdOVIW_V7ycPJvGl9v_LnofNt7uj8s3Lw9e34FLeYjEiScot2F9cbp0dxFKLfS9aDI_AM8iGjo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+simple+permutation%E2%80%90based+test+of+intermodal+correspondence&rft.jtitle=Human+brain+mapping&rft.au=Weinstein%2C+Sarah+M&rft.au=Vandekar%2C+Simon+N&rft.au=Azeez+Adebimpe&rft.au=Tapera%2C+Tinashe+M&rft.date=2021-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=42&rft.issue=16&rft.spage=5175&rft.epage=5187&rft_id=info:doi/10.1002%2Fhbm.25577&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |