A Photoprotective Effect by Cation‐π‐Interaction? Quenching of Singlet Oxygen by an Indole Cation‐π Model System

We investigated the effect of the cation‐π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type II photooxidation. The model system consists of two indole units linked to a lariat crown ether to measure the total rate of removal of sing...

Full description

Saved in:
Bibliographic Details
Published inPhotochemistry and photobiology Vol. 96; no. 6; pp. 1200 - 1207
Main Authors Arevalo, Gary E., Cagan, David A., Monsour, Charlotte G., Garcia, Arman C., McCurdy, Alison, Selke, Matthias
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.11.2020
Subjects
Online AccessGet full text
ISSN0031-8655
1751-1097
1751-1097
DOI10.1111/php.13287

Cover

Loading…
Abstract We investigated the effect of the cation‐π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type II photooxidation. The model system consists of two indole units linked to a lariat crown ether to measure the total rate of removal of singlet oxygen by the indole units in the presence of sodium cations (i.e. indole units subject to a cation‐π interaction) and in the absence of this interaction. We found that the cation‐π interaction significantly decreases the total rate of removal of singlet oxygen (kT) for the model system, that is, (kT = 2.4 ± 0.2) × 108 m−1 s−1 without sodium cation vs (kT = 6.9 ± 0.9) × 107 m−1 s−1 upon complexation of sodium cation to the crown ether. Furthermore, we found that the indole moieties undergo type I photooxidation processes with triplet excited methylene blue; this effect is also inhibited by the cation‐π interaction. The chemical rate of reaction of the indole groups with singlet oxygen is also slower upon complexation of sodium cation in our model system, although we were unable to obtain an exact ratio due to differences of the chemical reaction rates of the two indole moieties. The cation‐π interaction between a sodium cation and an indole moiety significantly decreases the total rate of removal of singlet oxygen (kT) in an indole‐crown model system. A type I photooxidation of the indole group is also inhibited by the cation‐π interaction. These results imply that there may be a photoprotective effect by the cation‐π interaction for tryptophan.
AbstractList We investigated the effect of the cation-π interaction on the susceptibility of a tryptophan model system towards interaction with singlet oxygen, i.e. Type II photooxidation. The model system consists of two indole units linked to a lariat crown ether to measure the total rate of removal of singlet oxygen by the indole units in the presence of sodium cations (i.e. indole units subject to a cation-π interaction) and in the absence of this interaction. We found that the cation-π interaction significantly decreases the total rate of removal of singlet oxygen ( k T ) for the model system, i.e. ( k T = 2.4±0.2)×10 8 M −1 sec −1 without sodium cation vs. ( k T = 6.9±0.7)×10 7 M −1 sec −1 upon complexation of sodium cation to the crown ether. Furthermore, we found that the indole moieties undergo Type I photooxidation processes with triplet excited Methylene Blue; this effect is also inhibited by the cation-π interaction. The chemical rate of reaction of the indole groups with singlet oxygen is also slower upon complexation of sodium cation in our model system, although we were unable to obtain an exact ratio due to differences of the chemical reaction rates of the two indole moieties. The cation-π interaction between a sodium cation and an indole moiety significantly decreases the total rate of removal of singlet oxygen ( k T ) in an indole-crown model system. A Type I photooxidation of the indole group is also inhibited by the cation-π interaction. These results imply that there may be a photoprotective effect by the cation-π interaction for tryptophan.
We investigated the effect of the cation-π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type II photooxidation. The model system consists of two indole units linked to a lariat crown ether to measure the total rate of removal of singlet oxygen by the indole units in the presence of sodium cations (i.e. indole units subject to a cation-π interaction) and in the absence of this interaction. We found that the cation-π interaction significantly decreases the total rate of removal of singlet oxygen (k ) for the model system, that is, (k  = 2.4 ± 0.2) × 10  m  s without sodium cation vs (k  = 6.9 ± 0.9) × 10  m  s upon complexation of sodium cation to the crown ether. Furthermore, we found that the indole moieties undergo type I photooxidation processes with triplet excited methylene blue; this effect is also inhibited by the cation-π interaction. The chemical rate of reaction of the indole groups with singlet oxygen is also slower upon complexation of sodium cation in our model system, although we were unable to obtain an exact ratio due to differences of the chemical reaction rates of the two indole moieties.
We investigated the effect of the cation‐π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type II photooxidation. The model system consists of two indole units linked to a lariat crown ether to measure the total rate of removal of singlet oxygen by the indole units in the presence of sodium cations (i.e. indole units subject to a cation‐π interaction) and in the absence of this interaction. We found that the cation‐π interaction significantly decreases the total rate of removal of singlet oxygen (kT) for the model system, that is, (kT = 2.4 ± 0.2) × 108 m−1 s−1 without sodium cation vs (kT = 6.9 ± 0.9) × 107 m−1 s−1 upon complexation of sodium cation to the crown ether. Furthermore, we found that the indole moieties undergo type I photooxidation processes with triplet excited methylene blue; this effect is also inhibited by the cation‐π interaction. The chemical rate of reaction of the indole groups with singlet oxygen is also slower upon complexation of sodium cation in our model system, although we were unable to obtain an exact ratio due to differences of the chemical reaction rates of the two indole moieties. The cation‐π interaction between a sodium cation and an indole moiety significantly decreases the total rate of removal of singlet oxygen (kT) in an indole‐crown model system. A type I photooxidation of the indole group is also inhibited by the cation‐π interaction. These results imply that there may be a photoprotective effect by the cation‐π interaction for tryptophan.
We investigated the effect of the cation‐π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type II photooxidation. The model system consists of two indole units linked to a lariat crown ether to measure the total rate of removal of singlet oxygen by the indole units in the presence of sodium cations (i.e. indole units subject to a cation‐π interaction) and in the absence of this interaction. We found that the cation‐π interaction significantly decreases the total rate of removal of singlet oxygen ( k T ) for the model system, that is, ( k T  = 2.4 ± 0.2) × 10 8   m −1  s −1 without sodium cation vs ( k T  = 6.9 ± 0.9) × 10 7   m −1  s −1 upon complexation of sodium cation to the crown ether. Furthermore, we found that the indole moieties undergo type I photooxidation processes with triplet excited methylene blue; this effect is also inhibited by the cation‐π interaction. The chemical rate of reaction of the indole groups with singlet oxygen is also slower upon complexation of sodium cation in our model system, although we were unable to obtain an exact ratio due to differences of the chemical reaction rates of the two indole moieties.
We investigated the effect of the cation-π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type II photooxidation. The model system consists of two indole units linked to a lariat crown ether to measure the total rate of removal of singlet oxygen by the indole units in the presence of sodium cations (i.e. indole units subject to a cation-π interaction) and in the absence of this interaction. We found that the cation-π interaction significantly decreases the total rate of removal of singlet oxygen (kT ) for the model system, that is, (kT = 2.4 ± 0.2) × 108 m-1 s-1 without sodium cation vs (kT = 6.9 ± 0.9) × 107 m-1 s-1 upon complexation of sodium cation to the crown ether. Furthermore, we found that the indole moieties undergo type I photooxidation processes with triplet excited methylene blue; this effect is also inhibited by the cation-π interaction. The chemical rate of reaction of the indole groups with singlet oxygen is also slower upon complexation of sodium cation in our model system, although we were unable to obtain an exact ratio due to differences of the chemical reaction rates of the two indole moieties.We investigated the effect of the cation-π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type II photooxidation. The model system consists of two indole units linked to a lariat crown ether to measure the total rate of removal of singlet oxygen by the indole units in the presence of sodium cations (i.e. indole units subject to a cation-π interaction) and in the absence of this interaction. We found that the cation-π interaction significantly decreases the total rate of removal of singlet oxygen (kT ) for the model system, that is, (kT = 2.4 ± 0.2) × 108 m-1 s-1 without sodium cation vs (kT = 6.9 ± 0.9) × 107 m-1 s-1 upon complexation of sodium cation to the crown ether. Furthermore, we found that the indole moieties undergo type I photooxidation processes with triplet excited methylene blue; this effect is also inhibited by the cation-π interaction. The chemical rate of reaction of the indole groups with singlet oxygen is also slower upon complexation of sodium cation in our model system, although we were unable to obtain an exact ratio due to differences of the chemical reaction rates of the two indole moieties.
We investigated the effect of the cation‐π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type II photooxidation. The model system consists of two indole units linked to a lariat crown ether to measure the total rate of removal of singlet oxygen by the indole units in the presence of sodium cations (i.e. indole units subject to a cation‐π interaction) and in the absence of this interaction. We found that the cation‐π interaction significantly decreases the total rate of removal of singlet oxygen (kT) for the model system, that is, (kT = 2.4 ± 0.2) × 108 m−1 s−1 without sodium cation vs (kT = 6.9 ± 0.9) × 107 m−1 s−1 upon complexation of sodium cation to the crown ether. Furthermore, we found that the indole moieties undergo type I photooxidation processes with triplet excited methylene blue; this effect is also inhibited by the cation‐π interaction. The chemical rate of reaction of the indole groups with singlet oxygen is also slower upon complexation of sodium cation in our model system, although we were unable to obtain an exact ratio due to differences of the chemical reaction rates of the two indole moieties.
Author Selke, Matthias
Monsour, Charlotte G.
Arevalo, Gary E.
Garcia, Arman C.
Cagan, David A.
McCurdy, Alison
Author_xml – sequence: 1
  givenname: Gary E.
  surname: Arevalo
  fullname: Arevalo, Gary E.
  organization: California State University
– sequence: 2
  givenname: David A.
  surname: Cagan
  fullname: Cagan, David A.
  organization: California State University
– sequence: 3
  givenname: Charlotte G.
  surname: Monsour
  fullname: Monsour, Charlotte G.
  organization: California State University
– sequence: 4
  givenname: Arman C.
  surname: Garcia
  fullname: Garcia, Arman C.
  organization: California State University
– sequence: 5
  givenname: Alison
  surname: McCurdy
  fullname: McCurdy, Alison
  organization: California State University
– sequence: 6
  givenname: Matthias
  orcidid: 0000-0001-7268-143X
  surname: Selke
  fullname: Selke, Matthias
  email: mselke@calstatela.edu
  organization: California State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32472700$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS1URKeFBS-ALLGBRVr_xU42oGpU6EhFHVRYWx7nZsZVxg6JU5pdH4E34x14EjydKSoVeOFr2d85utfnAO354AGhl5Qc0bSO21V7RDkr1BM0oSqnGSWl2kMTQjjNCpnn--ig768IoaJU9Bna50wopgiZoJsTPF-FGNouRLDRXQM-ret0wosRT010wf-6_fHzNm0zH6EzdnP1Hn8ewNuV80scanyZagMRX9yMS_AbpfF45qvQwEMP_ClU0ODLsY-wfo6e1qbp4cWuHqKvH06_TM-y84uPs-nJeWaF4CqrWKWMlUoVFkAUOWNGqgXNGRclX9RpellbVlHDuJSFkIzXtALJVFHVJQfBD9G7rW87LNZQWfCxM41uO7c23aiDcfrvF-9WehmutVJEyJImgzc7gy58G6CPeu16C01jPISh10yQghZlycuEvn6EXoWh82m8RMmck1KwDfXqYUd_WrkPJQHHW8B2oe87qLV18e4bU4Ou0ZToTew6xa7vYk-Kt48U96b_Ynfu310D4_9BPT-bbxW_AbQ3wEc
CitedBy_id crossref_primary_10_1111_php_13704
crossref_primary_10_1016_j_bios_2024_116847
Cites_doi 10.1111/j.1751-1097.1979.tb07786.x
10.1016/S0006-291X(03)00817-9
10.1073/pnas.96.17.9459
10.1111/jphp.12688
10.1021/ja9940672
10.1039/b104673j
10.1063/1.555965
10.1021/ja00348a040
10.1111/j.1751-1097.1981.tb09023.x
10.1021/ja303710m
10.1016/S0165-6147(02)02027-8
10.1039/c0cp02984j
10.1111/j.1751-1097.1994.tb05035.x
10.1016/S0301-4622(02)00318-6
10.1021/cr9603744
10.1002/wcms.81
10.1002/bip.10070
10.1039/c1pp05181d
10.1016/j.jasms.2008.08.016
10.1021/jacs.8b10516
10.1039/C6RA10368E
10.1021/ja2010708
10.1021/ct2001667
10.1021/ja9907921
10.1021/ja00075a006
10.1021/ct049977a
10.1039/b508541a
10.1021/acs.chemrev.8b00554
10.1021/jo00276a016
10.1111/j.1751-1097.1976.tb07244.x
10.1039/b307576c
10.1021/es404236c
10.1016/j.jphotobiol.2016.03.036
10.1111/j.1751-1097.1990.tb08679.x
10.1021/bi052395a
10.1021/ar300265y
10.1016/j.abb.2007.03.020
10.1006/jmbi.2000.3610
ContentType Journal Article
Copyright 2020 American Society for Photobiology
2020 American Society for Photobiology.
Copyright © 2020 American Society for Photobiology
Copyright_xml – notice: 2020 American Society for Photobiology
– notice: 2020 American Society for Photobiology.
– notice: Copyright © 2020 American Society for Photobiology
DBID AAYXX
CITATION
NPM
4T-
7TM
7U7
8FD
C1K
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1111/php.13287
DatabaseName CrossRef
PubMed
Docstoc
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
Docstoc
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
PubMed

CrossRef
MEDLINE - Academic
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1751-1097
EndPage 1207
ExternalDocumentID PMC7704691
32472700
10_1111_php_13287
PHP13287
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: 5R25GM061331; T34 GM08228
– fundername: Division of Human Resource Development
  funderid: HRD‐1547723
– fundername: NIGMS NIH HHS
  grantid: T34 GM008228
– fundername: NIH HHS
  grantid: 5R25GM061331
– fundername: NIGMS NIH HHS
  grantid: R25 GM061331
– fundername: NIH HHS
  grantid: T34 GM08228
– fundername: NIGMS NIH HHS
  grantid: R25 GM049001
GroupedDBID ---
-JH
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
3O-
3SF
3V.
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
7RV
7X2
7X7
8-0
8-1
8-3
8-4
8-5
88A
88E
88I
8AF
8AO
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEPYG
AEQDE
AEUQT
AEUYN
AEUYR
AFBPY
AFFIJ
AFFPM
AFGKR
AFKRA
AFNWH
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKPMI
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BLYAC
BMNLL
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
C1A
CAG
CCPQU
COF
CS3
D-E
D-F
DC7
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
ESX
EX3
F00
F01
F04
F5P
FEDTE
FYUFA
FZ0
G-S
G.N
GNUQQ
GODZA
H.T
H.X
H13
HCIFZ
HF~
HGLYW
HMCUK
HVGLF
HZ~
H~9
IH2
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M0L
M1P
M2P
M2Q
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NAPCQ
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQ0
PQQKQ
PROAC
PSQYO
Q.N
Q11
Q2X
Q5J
QB0
R.K
RBO
RIG
RIWAO
RJQFR
ROL
RWL
RX1
S0X
SAMSI
SJN
SUPJJ
TAE
UB1
UKHRP
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XOL
YNT
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
PHGZM
PHGZT
NPM
4T-
7TM
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4437-d2d7ac6778cee48522a67b1523493bf1116fc2d1a236684623f1de6278df93e43
IEDL.DBID DR2
ISSN 0031-8655
1751-1097
IngestDate Thu Aug 21 13:55:10 EDT 2025
Tue Aug 05 09:53:10 EDT 2025
Wed Aug 13 08:51:05 EDT 2025
Thu Apr 03 06:58:35 EDT 2025
Thu Apr 24 22:56:04 EDT 2025
Tue Jul 01 02:14:39 EDT 2025
Wed Jan 22 16:31:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2020 American Society for Photobiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4437-d2d7ac6778cee48522a67b1523493bf1116fc2d1a236684623f1de6278df93e43
Notes
Arevalo and Cagan contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors contributed equally to this work.
ORCID 0000-0001-7268-143X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7704691
PMID 32472700
PQID 2465309429
PQPubID 30729
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7704691
proquest_miscellaneous_2408189939
proquest_journals_2465309429
pubmed_primary_32472700
crossref_citationtrail_10_1111_php_13287
crossref_primary_10_1111_php_13287
wiley_primary_10_1111_php_13287_PHP13287
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November/December 2020
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November/December 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Lawrence
PublicationTitle Photochemistry and photobiology
PublicationTitleAlternate Photochem Photobiol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 1990; 52
2013; 47
1976; 23
2009; 20
2013; 46
2007; 461
2004; 3
1999; 121
2011; 10
2011; 13
2000; 297
2019; 141
2011; 133
2011; 7
1983; 105
2016; 6
2012; 2
2003; 305
2012; 134
1989; 54
2006; 45
2002; 63
1997; 97
1995; 24
2002; 23
2018; 70
1978; 29
2005; 7
2019; 119
2001; 3
2005; 1
1994; 59
1999; 96
2016; 159
2000; 122
2003; 103
1993; 115
1981; 34
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 119
  start-page: 2043
  year: 2019
  end-page: 2086
  article-title: Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins
  publication-title: Chem. Rev.
– volume: 461
  start-page: 151
  year: 2007
  end-page: 158
  article-title: Inactivation of cysteine and serine proteases by singlet oxygen
  publication-title: Arch. Biochem. Biophys.
– volume: 52
  start-page: 761
  year: 1990
  end-page: 768
  article-title: The reaction of singlet oxygen with proteins, with special reference to crystallins
  publication-title: Photochem. Photobiol.
– volume: 29
  start-page: 879
  year: 1978
  end-page: 881
  article-title: Chemical reaction rates of amino acids with singlet oxygen
  publication-title: Photochem. Photobiol.
– volume: 20
  start-page: 188
  year: 2009
  end-page: 197
  article-title: Characterization of O ( Δ )‐derived oxidation products of tryptophan: A combination of tandem mass spectrometry analyses and isotopic labeling studies
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 45
  start-page: 4736
  year: 2006
  end-page: 4748
  article-title: Fluorophore‐assisted light inactivation of Calmodulin involves singlet‐oxygen mediated cross‐linking and methionine oxidation
  publication-title: Biochemistry
– volume: 305
  start-page: 761
  year: 2003
  end-page: 770
  article-title: Singlet oxygen‐mediated damage to proteins and its consequences
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 1
  start-page: 70
  year: 2005
  end-page: 77
  article-title: Benchmarking the conductor‐like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules
  publication-title: J. Chem. Theory Comput.
– volume: 115
  start-page: 9907
  year: 1993
  end-page: 9919
  article-title: Molecular recognition in aqueous media. New binding studies provide further insights into the cation‐pi interaction and related phenomena
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 284
  year: 1994
  end-page: 289
  article-title: Reactivity of singlet oxygen toward amino acids and peptides
  publication-title: Photochem. Photobiol.
– volume: 297
  start-page: 989
  year: 2000
  end-page: 1001
  article-title: The solution structure of the cytokine‐binding domain of the common β‐chain of the receptors for granulocyte‐macrophage colony‐stimulating factor, interleukin‐3 and interleukin‐5
  publication-title: J. Mol. Biol.
– volume: 23
  start-page: 209
  year: 1976
  end-page: 211
  article-title: The quenching effect of iodide ion on singlet oxygen
  publication-title: Photochem. Photobiol.
– volume: 122
  start-page: 3325
  year: 2000
  end-page: 3335
  article-title: Structural and dynamic evidence for C−H···O hydrogen bonding in lariat ethers: implications for protein structure
  publication-title: J. Am. Chem. Soc.
– volume: 103
  start-page: 251
  year: 2003
  end-page: 258
  article-title: Influence of cation–π interactions in different folding types of membrane proteins
  publication-title: Biophys. Chem.
– volume: 54
  start-page: 3581
  year: 1989
  end-page: 3584
  article-title: Solvent effects on the ability of amines to physically quench singlet oxygen as determined by time‐resolved infrared emission studies
  publication-title: J. Org. Chem.
– volume: 97
  start-page: 1303
  year: 1997
  end-page: 1324
  article-title: The cation−π interaction
  publication-title: Chem. Rev.
– volume: 134
  start-page: 9820
  year: 2012
  end-page: 9826
  article-title: Reaction of singlet oxygen with tryptophan in proteins: a pronounced effect of the local environment on the reaction rate
  publication-title: J. Am. Chem. Soc.
– volume: 121
  start-page: 5613
  year: 1999
  end-page: 5614
  article-title: Solution‐ and solid‐state evidence for alkali metal cation−π interactions with indole, the side chain of tryptophan
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 663
  year: 1995
  end-page: 1021
  article-title: Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation
  publication-title: J. Phys. Chem. Ref. Data.
– volume: 96
  start-page: 9459
  year: 1999
  end-page: 9464
  article-title: Cation‐π interactions in structural biology
  publication-title: Proc. Natl. Acad. Sci.
– volume: 159
  start-page: 106
  year: 2016
  end-page: 110
  article-title: Protein reactivity with singlet oxygen: Influence of the solvent exposure of the reactive amino acid residues
  publication-title: J. Photochem. Photobiol. B: Biol.
– volume: 63
  start-page: 261
  year: 2002
  end-page: 272
  article-title: Cation–π interaction in a folded polypeptide
  publication-title: Biopolymers
– volume: 13
  start-page: 6670
  year: 2011
  end-page: 6688
  article-title: Thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions Phys
  publication-title: Chem. Chem. Phys.
– volume: 47
  start-page: 14215
  year: 2013
  end-page: 14223
  article-title: Reactivity differences of combined and free amino acids: quantifying the relationship between three‐dimensional protein structure and singlet oxygen reaction rates
  publication-title: Environ. Sci. Tech.
– volume: 105
  start-page: 3200
  year: 1983
  end-page: 3206
  article-title: Formation of superoxide ion via one‐electron transfer from electron donors to singlet oxygen
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 67
  year: 2019
  end-page: 71
  article-title: Chemistry of singlet oxygen with a cadmium‐sulfur cluster: physical quenching versus photooxidation
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 63827
  year: 2016
  end-page: 63836
  article-title: Unique cation–cyclohexane interactions in tri‐ and hexa‐fluorocyclohexane multidecker complexes in the gas phase: a DFT study
  publication-title: RSC Adv.
– volume: 3
  start-page: 17
  year: 2004
  end-page: 25
  article-title: Reactive species formed on proteins exposed to singlet oxygen
  publication-title: Photochem. Photobiol. Sci.
– volume: 10
  start-page: 1727
  year: 2011
  end-page: 1730
  article-title: Mechanism of dioxindolylalanine formation by singlet molecular oxygen‐mediated oxidation of tryptophan residues
  publication-title: Photochem. Photobiol. Sci.
– volume: 7
  start-page: 2059
  year: 2011
  end-page: 2067
  article-title: The accuracy of density functional theory in the description of cation−π and π–hydrogen bond interactions
  publication-title: J. Chem. Theory Comput.
– volume: 23
  start-page: 281
  year: 2002
  end-page: 287
  article-title: Cation‐pi interactions in ligand recognition and catalysis
  publication-title: Trends Pharmacol. Sci.
– volume: 70
  start-page: 655
  year: 2018
  end-page: 665
  article-title: Novel chemical degradation pathways of proteins mediated by tryptophan oxidation: tryptophan side chain fragmentation
  publication-title: J. Pharm. Pharmacol.
– volume: 2
  start-page: 73
  year: 2012
  end-page: 78
  article-title: The ORCA program system
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 34
  start-page: 447
  year: 1981
  end-page: 454
  article-title: Competition between the singlet oxygen and electron transfer mechanisms in the porphyrin‐sensitized photooxidation of l‐tryptophan and tryptamine in aqueous micellar dispersions
  publication-title: Photochem. Photobiol.
– volume: 133
  start-page: 7166
  year: 2011
  end-page: 7173
  article-title: Singlet oxygen's response to protein dynamics
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 5222
  year: 2001
  end-page: 5225
  article-title: Solvent effect on the quenching of singlet oxygen by 3‐methylindole
  publication-title: Phys. Chem. Chem. Phys.
– volume: 46
  start-page: 885
  year: 2013
  end-page: 893
  article-title: The cation−π interaction
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 3297
  year: 2005
  end-page: 3305
  article-title: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
  publication-title: Phys. Chem. Chem. Phys.
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1751-1097.1979.tb07786.x
– ident: e_1_2_6_7_1
  doi: 10.1016/S0006-291X(03)00817-9
– ident: e_1_2_6_20_1
  doi: 10.1073/pnas.96.17.9459
– ident: e_1_2_6_21_1
  doi: 10.1111/jphp.12688
– ident: e_1_2_6_29_1
  doi: 10.1021/ja9940672
– ident: e_1_2_6_33_1
  doi: 10.1039/b104673j
– ident: e_1_2_6_11_1
  doi: 10.1063/1.555965
– ident: e_1_2_6_27_1
  doi: 10.1021/ja00348a040
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1751-1097.1981.tb09023.x
– ident: e_1_2_6_13_1
  doi: 10.1021/ja303710m
– ident: e_1_2_6_16_1
  doi: 10.1016/S0165-6147(02)02027-8
– ident: e_1_2_6_37_1
  doi: 10.1039/c0cp02984j
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1751-1097.1994.tb05035.x
– ident: e_1_2_6_15_1
  doi: 10.1016/S0301-4622(02)00318-6
– ident: e_1_2_6_19_1
  doi: 10.1021/cr9603744
– ident: e_1_2_6_34_1
  doi: 10.1002/wcms.81
– ident: e_1_2_6_17_1
  doi: 10.1002/bip.10070
– ident: e_1_2_6_22_1
  doi: 10.1039/c1pp05181d
– ident: e_1_2_6_23_1
  doi: 10.1016/j.jasms.2008.08.016
– ident: e_1_2_6_32_1
  doi: 10.1021/jacs.8b10516
– ident: e_1_2_6_39_1
  doi: 10.1039/C6RA10368E
– ident: e_1_2_6_12_1
  doi: 10.1021/ja2010708
– ident: e_1_2_6_38_1
  doi: 10.1021/ct2001667
– ident: e_1_2_6_25_1
  doi: 10.1021/ja9907921
– ident: e_1_2_6_30_1
  doi: 10.1021/ja00075a006
– ident: e_1_2_6_36_1
  doi: 10.1021/ct049977a
– ident: e_1_2_6_35_1
  doi: 10.1039/b508541a
– ident: e_1_2_6_2_1
  doi: 10.1021/acs.chemrev.8b00554
– ident: e_1_2_6_28_1
  doi: 10.1021/jo00276a016
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1751-1097.1976.tb07244.x
– ident: e_1_2_6_24_1
  doi: 10.1039/b307576c
– ident: e_1_2_6_4_1
  doi: 10.1021/es404236c
– ident: e_1_2_6_3_1
  doi: 10.1016/j.jphotobiol.2016.03.036
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1751-1097.1990.tb08679.x
– ident: e_1_2_6_6_1
  doi: 10.1021/bi052395a
– ident: e_1_2_6_14_1
  doi: 10.1021/ar300265y
– ident: e_1_2_6_5_1
  doi: 10.1016/j.abb.2007.03.020
– ident: e_1_2_6_18_1
  doi: 10.1006/jmbi.2000.3610
SSID ssj0014971
Score 2.3224447
Snippet We investigated the effect of the cation‐π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type...
We investigated the effect of the cation-π interaction on the susceptibility of a tryptophan model system toward interaction with singlet oxygen, that is, type...
We investigated the effect of the cation-π interaction on the susceptibility of a tryptophan model system towards interaction with singlet oxygen, i.e. Type II...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1200
SubjectTerms Cations
Chemical reactions
Complexation
Crown ethers
Indoles
Methylene blue
Oxygen
Photooxidation
Singlet oxygen
Sodium
Tryptophan
Title A Photoprotective Effect by Cation‐π‐Interaction? Quenching of Singlet Oxygen by an Indole Cation‐π Model System
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fphp.13287
https://www.ncbi.nlm.nih.gov/pubmed/32472700
https://www.proquest.com/docview/2465309429
https://www.proquest.com/docview/2408189939
https://pubmed.ncbi.nlm.nih.gov/PMC7704691
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB4hJFoutA0_TUurbcWBiyO863htcahQVJQiQVNaJA5I1q7XVlCRHUEiEU48Am_Wd-iTdGbXthIoEuKSRPI49npnvN_MznwDsKV2iHUsCj2ecoMOiok9lZnIU-gy-8r4KbcVcodHYf8kODjtni7Abl0L4_ghmoAbWYZ9X5OBK301Y-Sj4aiDrlREleSUq0WA6LihjkLgL123POF7VHxZsQpRFk9z5vxa9ABgPsyTnMWvdgHafwVn9a27vJPfnclYd9Kbe6yOzxzba1ipgCnbc5r0BhayogVLrlXltAUve3VnuBa8OKw25Ffheo8NhuW4rOge8NXJHB8y01PWs7P-9_buzy1-2NijK6P4wn5Q_jYFv1iZs5_4jerDvl9PUZ3pTFWwbwVxTc3-B6O-bRfMcayvwcn-11-9vlc1c_DSIBDSM9xIlRJdHS7LQYSwT4VSI3oQQSx0juMOc1QXX3ERhgiKuMh9k4VcRiaPRRaIdVgsyiJ7C8xPVdzVgu9EKqNpjsJYa9TFQCOeybumDdv1tCZpxXRODTcuktrjweeb2Ofbhs-N6MjRe_xPaLPWjaSy8KuEEzEd-sY8bsOn5jBOBG24qCIrJyRDhIGIAFFmw6lScxUEspI2_dsg55SsESDe7_kjxfnQ8n9LSUENH4dpdejxG08G_YH98e7pou9hmVNIwZZbbsLi-HKSfUDcNdYfrYH9A-kELYQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwED-NoTFegBUYhY15iAdeUi12GicSEpoKU8fWrcAm7QVFdpyoaFNSQSutPO0j8M34DnwS7uwkajeQEC9JpFz-OL6Lf3f2_Q7gpdoh1rEo9HjKDTooJvZUZiJPocvsK-On3GbIDY7C_mnw_qx7tgSv61wYxw_RBNzIMuz_mgycAtJzVj4ejTvoS0XyFtymit5Uv-Dtx4Y8CqG_dPXyhO9R-mXFK0TreJpLF0ejGxDz5krJeQRrh6C9-_C5fnm38uS8M53oTvr9Gq_j_7buAdyrsCnbdcq0BktZ0YIVV61y1oLVXl0crgV3BtWc_EO43GXDUTkpK8YH_HsyR4nM9Iz1bMf_uvrx8wo3NvzoMinesA-0hJviX6zM2Sfcowax48sZajRdqQq2XxDd1Pw9GJVuu2COZv0RnO69O-n1vaqeg5cGgZCe4UaqlBjrcGQOIkR-KpQaAYQIYqFzbHeYo8b4ioswRFzERe6bLOQyMnksskA8huWiLLInwPxUxV0t-E6kMurnKIy1RnUMNEKavGva8Kru1yStyM6p5sZFUjs9-H0T-33b8KIRHTuGjz8JbdTKkVRG_i3hxE2H7jGP27DdnMaOoDkXVWTllGSIMxBBIMqsO11qnoJYVtK8fxvkgpY1AkT9vXim-DKyFOBSUlzDx2ZaJfr7iyfD_tAePP130S1Y7Z8MDpPD_aODZ3CXU4TBZl9uwPLk6zTbRBg20c-ttf0GjBExng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIlou_CwUFgoYxIFLVo2dtRP1gKqF1RZoWX4q9YAU2XGiRVTJCnalLqc-Qt-Md-BJmLGTaJeChLgkkTL5cTwTfzP2fAPwVO8Q61gsA55xiw6KTQKd2zjQ6DKH2oYZdxlyB4dydBS9Ou4fr8Fukwvj-SHagBtZhvtfk4FPbbFk5NPJtIeuVKwuweVIorEQInrfckch8le-XJ4IA8q-rGmFaBlPe-nqYHQBYV5cKLkMYN0INLwOn5p39wtPvvTmM9PLvv9G6_ifjbsB12pkyva8Kt2EtbzswBVfq3LRgc1BUxquAxsH9Yz8LTjdY-NJNatqvgf8dzJPiMzMgg1ct_88O_9xhhsXfPR5FM_ZO1rATdEvVhXsA-5Rf9jb0wXqM12pS7ZfEtnU8j0YFW47YZ5k_TYcDV9-HIyCuppDkEWRUIHlVumM-OpwXI5ixH1aKoPwQUSJMAW2WxaoL6HmQkpERVwUoc0lV7EtEpFHYgvWy6rM7wILM530jeA7sc6pm2OZGIPKGBkENEXfduFZ061pVlOdU8WNk7RxefD7pu77duFJKzr1_B5_EtpudCOtTfxbyomZDp1jnnThcXsaO4JmXHSZV3OSIcZAhIAoc8erUvsURLKKZv27oFaUrBUg4u_VM-XniSMAV4qiGiE20-nQ3188HY_G7uDev4s-go3xi2H6Zv_w9X24yim84FIvt2F99nWeP0AMNjMPna39AgCuMFY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Photoprotective+Effect+by+Cation%E2%80%90%CF%80%E2%80%90Interaction%3F+Quenching+of+Singlet+Oxygen+by+an+Indole+Cation%E2%80%90%CF%80+Model+System&rft.jtitle=Photochemistry+and+photobiology&rft.au=Arevalo%2C+Gary+E&rft.au=Cagan%2C+David+A&rft.au=Monsour%2C+Charlotte+G&rft.au=Garcia%2C+Arman+C&rft.date=2020-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0031-8655&rft.eissn=1751-1097&rft.volume=96&rft.issue=6&rft.spage=1200&rft.epage=1207&rft_id=info:doi/10.1111%2Fphp.13287&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8655&client=summon