Decoding fMRI events in sensorimotor motor network using sparse paradigm free mapping and activation likelihood estimates
Most functional MRI (fMRI) studies map task‐driven brain activity using a block or event‐related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain functio...
Saved in:
Published in | Human brain mapping Vol. 38; no. 11; pp. 5778 - 5794 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.11.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.23767 |
Cover
Abstract | Most functional MRI (fMRI) studies map task‐driven brain activity using a block or event‐related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate‐based meta‐analysis method of activation likelihood estimation (ALE). We defined meta‐maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta‐maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM‐detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)–fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single‐trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778–5794, 2017. © 2017 Wiley Periodicals, Inc. |
---|---|
AbstractList | Most functional MRI (fMRI) studies map task‐driven brain activity using a block or event‐related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate‐based meta‐analysis method of activation likelihood estimation (ALE). We defined meta‐maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta‐maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM‐detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)–fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single‐trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778–5794, 2017. © 2017 Wiley Periodicals, Inc. Most functional MRI (fMRI) studies map task-driven brain activity using a block or event-related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate-based meta-analysis method of activation likelihood estimation (ALE). We defined meta-maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta-maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM-detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)-fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single-trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778-5794, 2017. © 2017 Wiley Periodicals, Inc.Most functional MRI (fMRI) studies map task-driven brain activity using a block or event-related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate-based meta-analysis method of activation likelihood estimation (ALE). We defined meta-maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta-maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM-detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)-fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single-trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778-5794, 2017. © 2017 Wiley Periodicals, Inc. Most functional MRI (fMRI) studies map task‐driven brain activity using a block or event‐related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate‐based meta‐analysis method of activation likelihood estimation (ALE). We defined meta‐maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta‐maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM‐detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)–fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single‐trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778–5794, 2017 . © 2017 Wiley Periodicals, Inc. |
Author | Mullinger, Karen J. Gowland, Penny A. Caballero‐Gaudes, César Dryden, Ian L. Cho, Siu‐Yeung Zhang, Yaping Tan, Francisca M. Francis, Susan T. |
AuthorAffiliation | 1 School of Physics and Astronomy and Sir Peter Mansfield Imaging Centre The University of Nottingham, University Park Nottingham NG7 2RD United Kingdom 4 School of Mathematical Sciences The University of Nottingham, University Park Nottingham NG7 2RD United Kingdom 5 Birmingham University Imaging Centre School of Psychology, University of Birmingham Birmingham B15 2TT United Kingdom 2 Department of Electrical and Electronic Engineering University of Nottingham Ningbo China Ningbo 315100 People's Republic of China 3 Basque Center of Cognition Brain and Language San Sebastian 20009 Spain |
AuthorAffiliation_xml | – name: 2 Department of Electrical and Electronic Engineering University of Nottingham Ningbo China Ningbo 315100 People's Republic of China – name: 4 School of Mathematical Sciences The University of Nottingham, University Park Nottingham NG7 2RD United Kingdom – name: 1 School of Physics and Astronomy and Sir Peter Mansfield Imaging Centre The University of Nottingham, University Park Nottingham NG7 2RD United Kingdom – name: 3 Basque Center of Cognition Brain and Language San Sebastian 20009 Spain – name: 5 Birmingham University Imaging Centre School of Psychology, University of Birmingham Birmingham B15 2TT United Kingdom |
Author_xml | – sequence: 1 givenname: Francisca M. orcidid: 0000-0001-5114-335X surname: Tan fullname: Tan, Francisca M. email: fran.mtan@gmail.com organization: University of Nottingham Ningbo China – sequence: 2 givenname: César surname: Caballero‐Gaudes fullname: Caballero‐Gaudes, César organization: Brain and Language – sequence: 3 givenname: Karen J. surname: Mullinger fullname: Mullinger, Karen J. organization: School of Psychology, University of Birmingham – sequence: 4 givenname: Siu‐Yeung surname: Cho fullname: Cho, Siu‐Yeung organization: University of Nottingham Ningbo China – sequence: 5 givenname: Yaping surname: Zhang fullname: Zhang, Yaping organization: University of Nottingham Ningbo China – sequence: 6 givenname: Ian L. surname: Dryden fullname: Dryden, Ian L. organization: The University of Nottingham, University Park – sequence: 7 givenname: Susan T. surname: Francis fullname: Francis, Susan T. organization: The University of Nottingham, University Park – sequence: 8 givenname: Penny A. surname: Gowland fullname: Gowland, Penny A. organization: The University of Nottingham, University Park |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28815863$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9v1DAQxS1URP9x4AsgS1zKIa0d23F8QaKl0EqtkCo4W64z2XWb2MFOttpvX6e7RVDBZWxpfvP0Zt4-2vHBA0LvKDmmhJQny9v-uGSykq_QHiVKFoQqtjP_K1EoLuku2k_pjhBKBaFv0G5Z11TUFdtD6y9gQ-P8ArfXN5cYVuDHhJ3HCXwK0fVhDBFvqofxIcR7PKWZT4OJCXCupnGLHrcRAPdmGOam8Q02dnQrM7rgcefuoXPLEBoMaXS9GSEdotet6RK83b4H6OfX8x9nF8XV92-XZ5-vCss5k0XNa1pzWTEGwBomhWylVU3LhBJW0ZIZoxSxBoyo8ka2FQKEENzWoNqaU3aAPm10h-m2h8bmBaPp9JB3M3Gtg3H67453S70IKy0qVopqFjjaCsTwa8r-de-Sha4zHsKUdL414fmgSmT0wwv0LkzR5_UyxSWnNMeTqfd_Ovpt5TmVDJxsABtDShFabd34dMls0HWaEj3nrnPu-in3PPHxxcSz6L_YrfqD62D9f1BfnF5vJh4BV3S-XA |
CitedBy_id | crossref_primary_10_1016_j_media_2023_103010 crossref_primary_10_1523_JNEUROSCI_1786_20_2020 crossref_primary_10_1016_j_neuroimage_2019_116081 crossref_primary_10_1016_j_neuroimage_2019_116129 crossref_primary_10_1016_j_apm_2022_11_034 crossref_primary_10_1016_j_tics_2021_09_005 |
Cites_doi | 10.1136/jnnp.56.4.329 10.1002/hbm.21513 10.1016/j.neuroimage.2011.09.017 10.1162/089892999563265 10.1371/journal.pone.0015710 10.1371/journal.pone.0035860 10.1002/hbm.20718 10.1162/08989290051137549 10.1016/j.neuron.2011.11.001 10.1073/pnas.1121329109 10.1002/jmri.21277 10.3389/fnsys.2013.00101 10.1371/journal.pone.0124577 10.1038/nn1444 10.1006/nimg.2000.0599 10.1002/mrm.1910340409 10.1016/j.neuroimage.2015.02.064 10.1016/j.neuroimage.2013.09.018 10.1155/2013/935154 10.1109/ISBI.2012.6235549 10.1002/mrm.22361 10.1002/hbm.20336 10.1002/hbm.20136 10.1016/j.cub.2005.06.026 10.1016/j.ijpsycho.2007.05.015 10.1152/jn.01017.2009 10.1016/j.neuroimage.2014.03.034 10.1006/nimg.2002.1131 10.1016/j.otohns.2004.03.015 10.1126/science.1063736 10.1006/nimg.1998.0361 10.1016/S1053-8119(03)00049-1 10.1111/j.1469-8986.2005.00271.x 10.1002/hbm.21186 10.1146/annurev-psych-120710-100412 10.1016/j.mri.2010.10.012 10.1038/nmeth.1635 10.1016/j.neuron.2007.12.009 10.1016/j.tics.2005.12.004 10.1109/PRNI.2012.19 10.1162/0898929053467550 10.1002/hbm.21452 10.1016/j.neuroimage.2015.01.057 10.1016/j.neuroimage.2012.12.075 10.1016/j.neuroimage.2010.04.246 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E 10.1016/j.neuroimage.2013.11.046 10.1093/brain/60.4.389 10.1016/j.neuroimage.2015.02.063 10.1016/j.neulet.2014.08.025 10.1016/j.mri.2007.03.009 10.1016/j.neuroimage.2013.01.067 10.1002/hbm.21116 10.1126/science.1234330 |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.23767 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Decoding fMRI Events in SMN |
EISSN | 1097-0193 |
EndPage | 5794 |
ExternalDocumentID | PMC5632561 28815863 10_1002_hbm_23767 HBM23767 |
Genre | article Validation Study Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: G0901321 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4437-8481847633ee3d3757f7c9df3595c9123aa990caea56863cf55e5554c8e9f8413 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 14:13:13 EDT 2025 Fri Sep 05 07:30:14 EDT 2025 Sat Jul 26 02:30:37 EDT 2025 Mon Jul 21 05:51:12 EDT 2025 Thu Apr 24 23:09:10 EDT 2025 Tue Jul 01 01:10:48 EDT 2025 Wed Jan 22 16:54:20 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | meta-analysis functional MRI paradigm free mapping activation likelihood estimation decoding |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4437-8481847633ee3d3757f7c9df3595c9123aa990caea56863cf55e5554c8e9f8413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0001-5114-335X |
OpenAccessLink | http://eprints.nottingham.ac.uk/44731/ |
PMID | 28815863 |
PQID | 1947411109 |
PQPubID | 996345 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5632561 proquest_miscellaneous_1930488195 proquest_journals_1947411109 pubmed_primary_28815863 crossref_citationtrail_10_1002_hbm_23767 crossref_primary_10_1002_hbm_23767 wiley_primary_10_1002_hbm_23767_HBM23767 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2017 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2002; 16 2015a; 112 2010; 103 1995; 34 2000; 44 2003; 19 2012; 59 2015b; 112 2013; 7 2010; 63 2005; 25 2007; 28 2004; 131 2001; 293 2013; 2013 2000; 12 2008; 27 2011; 72 1999; 11 2008; 67 2012a 2014; 95 2010; 5 2011; 29 2007; 25 2012; 63 2014; 90 2012 2006; 10 1937; 60 2015; 10 2005; 42 2011; 32 2008; 57 2013; 340 2014; 84 2012; 33 2011; 8 2012; 109 1993; 56 2009; 30 2013; 34 2015; 111 2013; 73 2005; 8 2005; 15 2014; 581 2005; 17 2010; 52 2012b; 7 1998; 8 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 581 start-page: 69 year: 2014 end-page: 74 article-title: Effector‐independent brain activity during motor imagery of the upper and lower limbs: An fMRI study publication-title: Neurosci Lett – volume: 12 start-page: 1013 year: 2000 end-page: 1023 article-title: Mental imagery of faces and places activates corresponding stimulus‐specific brain regions publication-title: J Cogn Neurosci – volume: 59 start-page: 2349 year: 2012 end-page: 2361 article-title: Activation likelihood estimation meta‐analysis revisited publication-title: NeuroImage – volume: 72 start-page: 692 year: 2011 end-page: 697 article-title: Inferring mental states from neuroimaging data: From reverse inference to large‐scale decoding publication-title: Neuron – volume: 7 year: 2013 article-title: Decomposition of spontaneous brain activity into distinct fMRI co‐activation patterns publication-title: Front Syst Neurosci – volume: 34 start-page: 501 year: 2013 end-page: 518 article-title: Paradigm free mapping with sparse regression automatically detects single‐trial functional magnetic resonance imaging blood oxygenation level dependent responses publication-title: Hum Brain Mapp – volume: 25 start-page: 155 year: 2005 end-page: 164 article-title: ALE meta‐analysis: Controlling the false discovery rate and performing statistical contrasts publication-title: Hum Brain Mapp – volume: 84 start-page: 1061 year: 2014 end-page: 1069 article-title: Reverse inference is not a fallacy per se: Cognitive processes can be inferred from functional imaging data publication-title: NeuroImage – volume: 8 start-page: 679 year: 2005 end-page: 685 article-title: Decoding the visual and subjective contents of the human brain publication-title: Nat Neurosci – volume: 63 start-page: 1144 year: 2010 end-page: 1153 article-title: Multiband multislice GE‐EPI at 7 Tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI publication-title: Magn Reson Med – volume: 32 start-page: 1400 year: 2011 end-page: 1418 article-title: Detection and characterization of single‐trial fMRI bold responses: Paradigm free mapping publication-title: Hum Brain Mapp – volume: 42 start-page: 1 year: 2005 end-page: 15 article-title: Committee report: Guidelines for human startle eyeblink electromyographic studies publication-title: Psychophysiology – volume: 10 start-page: e0124577 year: 2015 article-title: Functional connectivity in MRI is driven by spontaneous BOLD events publication-title: PLoS One – volume: 34 start-page: 1319 year: 2013 end-page: 1329 article-title: Periods of rest in fMRI contain individual spontaneous events which are related to slowly fluctuating spontaneous activity publication-title: Hum Brain Mapp – volume: 57 start-page: 452 year: 2008 end-page: 462 article-title: Enhanced intersubject correlations during movie viewing correlate with successful episodic encoding publication-title: Neuron – volume: 7 start-page: e35860 year: 2012b article-title: Decoding semi‐constrained brain activity from fMRI using support vector machines and Gaussian processes publication-title: PLoS One – volume: 34 start-page: 537 year: 1995 end-page: 541 article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI publication-title: Magn Reson Med – start-page: 322 year: 2012 end-page: 325 – volume: 27 start-page: 607 year: 2008 end-page: 616 article-title: Improved artifact correction for combined electroencephalography/functional MRI by means of synchronization and use of vectorcardiogram recordings publication-title: J Magn Reson Imaging – volume: 84 start-page: 1042 year: 2014 end-page: 1052 article-title: A comparison of statistical methods for detecting context‐modulated functional connectivity in fMRI publication-title: NeuroImage – volume: 44 start-page: 162 year: 2000 end-page: 167 article-title: Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR publication-title: Magn Reson Med – volume: 90 start-page: 449 year: 2014 end-page: 468 article-title: Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers publication-title: NeuroImage – volume: 15 start-page: 1301 year: 2005 end-page: 1307 article-title: Predicting the stream of consciousness from activity in human visual cortex publication-title: Curr Biol – volume: 28 start-page: 1117 year: 2007 end-page: 1127 article-title: fMRI analysis for motor paradigms using EMG‐based designs: A validation study publication-title: Hum Brain Mapp – volume: 52 start-page: 571 year: 2010 end-page: 582 article-title: Mapping sources of correlation in resting state FMRI, with artifact detection and removal publication-title: NeuroImage – volume: 67 start-page: 189 year: 2008 end-page: 199 article-title: Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength publication-title: Int J Psychophysiol – volume: 63 start-page: 483 year: 2012 end-page: 509 article-title: Decoding patterns of human brain activity publication-title: Annu Rev Psychol – volume: 29 start-page: 353 year: 2011 end-page: 364 article-title: Neuronal event detection in fMRI time series using iterative deconvolution techniques publication-title: Magn Reson Imaging – volume: 2013 year: 2013 article-title: Effective preprocessing procedures virtually eliminate distance‐dependent motion artifacts in resting state fMRI publication-title: J Appl Math – volume: 112 start-page: 278 year: 2015a end-page: 287 article-title: Evaluation of ICA‐AROMA and alternative strategies for motion artifact removal in resting state fMRI publication-title: NeuroImage – volume: 293 start-page: 2425 year: 2001 end-page: 2430 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science – volume: 131 start-page: 977 year: 2004 end-page: 985 article-title: Surface electromyographic studies of swallowing in normal subjects: A review of 440 adults. Report 3. Qualitative data publication-title: Otolaryngol Head Neck Surg – volume: 95 start-page: 232 year: 2014 end-page: 247 article-title: ICA‐based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: NeuroImage – volume: 10 start-page: 59 year: 2006 end-page: 63 article-title: Can cognitive processes be inferred from neuroimaging data? publication-title: Trends Cogn Sci – volume: 17 start-page: 580 year: 2005 end-page: 590 article-title: Partially distributed representations of objects and faces in ventral temporal cortex publication-title: J Cogn Neurosci – volume: 8 start-page: 665 year: 2011 end-page: U95 article-title: Large‐scale automated synthesis of human functional neuroimaging data publication-title: Nature Methods – volume: 340 start-page: 639 year: 2013 end-page: 642 article-title: Neural decoding of visual imagery during sleep publication-title: Science – volume: 19 start-page: 261 year: 2003 end-page: 270 article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: Detecting and classifying distributed patterns of fMRI activity in human visual cortex publication-title: NeuroImage – volume: 11 start-page: 80 year: 1999 end-page: 95 article-title: Conceptual processing during the conscious resting state. A functional MRI study publication-title: J Cogn Neurosci – volume: 60 start-page: 389 year: 1937 end-page: 443 article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation publication-title: Brain – volume: 8 start-page: 229 year: 1998 end-page: 239 article-title: Identification of EEG events in the MR scanner: The problem of pulse artifact and a method for its subtraction publication-title: NeuroImage – volume: 56 start-page: 329 year: 1993 end-page: 333 article-title: Penfield's homunculus: A note on cerebral cartography publication-title: J Neurol Neurosurg Psychiatry – volume: 12 start-page: 230 year: 2000 end-page: 239 article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI publication-title: NeuroImage – volume: 5 start-page: e15710 year: 2010 article-title: Multiplexed echo planar imaging for sub‐second whole brain fMRI and fast diffusion imaging publication-title: PLoS One – volume: 33 start-page: 1 year: 2012 end-page: 13 article-title: Minimizing within‐experiment and within‐group effects in activation likelihood estimation meta‐analyses publication-title: Hum Brain Mapp – volume: 112 start-page: 267 year: 2015b end-page: 277 article-title: ICA‐AROMA: A robust ICA‐based strategy for removing motion artifacts from fMRI data publication-title: NeuroImage – volume: 16 start-page: 765 year: 2002 end-page: 780 article-title: Meta‐analysis of the functional neuroanatomy of single‐word reading: Method and validation publication-title: NeuroImage – year: 2012a – volume: 30 start-page: 2907 year: 2009 end-page: 2926 article-title: Coordinate‐based activation likelihood estimation meta‐analysis of neuroimaging data: A random‐effects approach based on empirical estimates of spatial uncertainty publication-title: Hum Brain Mapp – volume: 103 start-page: 2544 year: 2010 end-page: 2556 article-title: Mapping human somatosensory cortex in individual subjects with 7T functional MRI publication-title: J Neurophysiol – volume: 109 start-page: 3131 year: 2012 end-page: 3136 article-title: Temporally‐independent functional modes of spontaneous brain activity publication-title: Proc Natl Acad Sci USA – volume: 73 start-page: 121 year: 2013 end-page: 134 article-title: Total activation: fMRI deconvolution through spatio‐temporal regularization publication-title: NeuroImage – volume: 25 start-page: 894 year: 2007 end-page: 901 article-title: Modelling large motion events in fMRI studies of patients with epilepsy publication-title: Magn Reson Imaging – volume: 111 start-page: 476 year: 2015 end-page: 488 article-title: Introducing co‐activation pattern metrics to quantify spontaneous brain network dynamics publication-title: NeuroImage – ident: e_1_2_7_47_1 doi: 10.1136/jnnp.56.4.329 – ident: e_1_2_7_40_1 doi: 10.1002/hbm.21513 – ident: e_1_2_7_14_1 doi: 10.1016/j.neuroimage.2011.09.017 – ident: e_1_2_7_5_1 doi: 10.1162/089892999563265 – ident: e_1_2_7_16_1 doi: 10.1371/journal.pone.0015710 – ident: e_1_2_7_49_1 doi: 10.1371/journal.pone.0035860 – ident: e_1_2_7_15_1 doi: 10.1002/hbm.20718 – ident: e_1_2_7_36_1 doi: 10.1162/08989290051137549 – ident: e_1_2_7_42_1 doi: 10.1016/j.neuron.2011.11.001 – ident: e_1_2_7_50_1 doi: 10.1073/pnas.1121329109 – ident: e_1_2_7_35_1 doi: 10.1002/jmri.21277 – ident: e_1_2_7_32_1 doi: 10.3389/fnsys.2013.00101 – ident: e_1_2_7_2_1 doi: 10.1371/journal.pone.0124577 – ident: e_1_2_7_28_1 doi: 10.1038/nn1444 – ident: e_1_2_7_3_1 doi: 10.1006/nimg.2000.0599 – ident: e_1_2_7_6_1 doi: 10.1002/mrm.1910340409 – ident: e_1_2_7_39_1 – ident: e_1_2_7_44_1 doi: 10.1016/j.neuroimage.2015.02.064 – ident: e_1_2_7_11_1 doi: 10.1016/j.neuroimage.2013.09.018 – ident: e_1_2_7_26_1 doi: 10.1155/2013/935154 – ident: e_1_2_7_8_1 doi: 10.1109/ISBI.2012.6235549 – ident: e_1_2_7_34_1 doi: 10.1002/mrm.22361 – ident: e_1_2_7_55_1 doi: 10.1002/hbm.20336 – ident: e_1_2_7_30_1 doi: 10.1002/hbm.20136 – ident: e_1_2_7_22_1 doi: 10.1016/j.cub.2005.06.026 – ident: e_1_2_7_13_1 doi: 10.1016/j.ijpsycho.2007.05.015 – ident: e_1_2_7_46_1 doi: 10.1152/jn.01017.2009 – ident: e_1_2_7_19_1 doi: 10.1016/j.neuroimage.2014.03.034 – ident: e_1_2_7_52_1 doi: 10.1006/nimg.2002.1131 – ident: e_1_2_7_54_1 doi: 10.1016/j.otohns.2004.03.015 – ident: e_1_2_7_21_1 doi: 10.1126/science.1063736 – ident: e_1_2_7_4_1 doi: 10.1006/nimg.1998.0361 – ident: e_1_2_7_12_1 doi: 10.1016/S1053-8119(03)00049-1 – ident: e_1_2_7_7_1 doi: 10.1111/j.1469-8986.2005.00271.x – ident: e_1_2_7_53_1 doi: 10.1002/hbm.21186 – ident: e_1_2_7_51_1 doi: 10.1146/annurev-psych-120710-100412 – ident: e_1_2_7_23_1 doi: 10.1016/j.mri.2010.10.012 – ident: e_1_2_7_56_1 doi: 10.1038/nmeth.1635 – ident: e_1_2_7_20_1 doi: 10.1016/j.neuron.2007.12.009 – ident: e_1_2_7_41_1 doi: 10.1016/j.tics.2005.12.004 – ident: e_1_2_7_48_1 doi: 10.1109/PRNI.2012.19 – ident: e_1_2_7_37_1 doi: 10.1162/0898929053467550 – ident: e_1_2_7_9_1 doi: 10.1002/hbm.21452 – ident: e_1_2_7_10_1 doi: 10.1016/j.neuroimage.2015.01.057 – ident: e_1_2_7_25_1 doi: 10.1016/j.neuroimage.2012.12.075 – ident: e_1_2_7_27_1 doi: 10.1016/j.neuroimage.2010.04.246 – ident: e_1_2_7_18_1 doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E – ident: e_1_2_7_45_1 doi: 10.1016/j.neuroimage.2013.11.046 – ident: e_1_2_7_38_1 doi: 10.1093/brain/60.4.389 – ident: e_1_2_7_43_1 doi: 10.1016/j.neuroimage.2015.02.063 – ident: e_1_2_7_33_1 doi: 10.1016/j.neulet.2014.08.025 – ident: e_1_2_7_31_1 doi: 10.1016/j.mri.2007.03.009 – ident: e_1_2_7_29_1 doi: 10.1016/j.neuroimage.2013.01.067 – ident: e_1_2_7_17_1 doi: 10.1002/hbm.21116 – ident: e_1_2_7_24_1 doi: 10.1126/science.1234330 |
SSID | ssj0011501 |
Score | 2.2838826 |
Snippet | Most functional MRI (fMRI) studies map task‐driven brain activity using a block or event‐related paradigm. Sparse paradigm free mapping (SPFM) can detect the... Most functional MRI (fMRI) studies map task-driven brain activity using a block or event-related paradigm. Sparse paradigm free mapping (SPFM) can detect the... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5778 |
SubjectTerms | activation likelihood estimation Blinking - physiology Brain Brain - diagnostic imaging Brain - physiology Brain mapping Brain Mapping - methods Decoding Deglutition - physiology Electromyography Eye Eye movements Eye Movements - physiology Fingers - physiology Functional Laterality Functional magnetic resonance imaging functional MRI Humans Interstimulus interval Likelihood Functions Magnetic Resonance Imaging - methods Mapping Mathematical analysis Meta-analysis Motor Activity - physiology Mouth - physiology Muscle, Skeletal - physiology Neural Pathways - diagnostic imaging Neural Pathways - physiology paradigm free mapping Proof of Concept Study Rest Sensorimotor system Spatial distribution Statistical analysis Swallowing Toes - physiology |
Title | Decoding fMRI events in sensorimotor motor network using sparse paradigm free mapping and activation likelihood estimates |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23767 https://www.ncbi.nlm.nih.gov/pubmed/28815863 https://www.proquest.com/docview/1947411109 https://www.proquest.com/docview/1930488195 https://pubmed.ncbi.nlm.nih.gov/PMC5632561 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VPSAuPFoebku1IIS4OGW9XjsWp9KHAlI4VFTqAcnaXe-mUWsH2cmh_fXMrB-QFiTEJYriieJ1Zub7dnfmW4C3cYG4IR0PrcoK2mbUodKSh5KnOtIu0c4f0zn9mkzO4y8X8mIDPva9MK0-xLDgRpHh8zUFuNLNwS_R0EtdjqikgzrJuUhIN__4bJCOIqLjJ1sIsWGGGbhXFfoQHQzfXMeiewTzfp3k7_zVA9DpY_je33pbd3I1Wi31yNzeUXX8z7E9gUcdMWWHrSc9hQ1bbcH2YYWT8vKGvWO-VNSvwW_Bg2m3I78NN8c4fyX8Y2569pl5PaiGzSvW4Px4UZMnLGrWvlZtyTmjWvsZw1RWN5aR9ngxn5XM1dayUpFexIypqmDUctEuGLPr-RWOiBSYGamClESQn8H56cm3o0nYHecQmjgWiIUxkoMY85mwVhQilalLTVY4ag02GSKoUgiNRlklk3EijJPSSmQ7ZmwzN0awfQ6b1aKyL4GlYxOlRlB3C9ITR4eH6KgoRKZiHpnIBPC-_2Nz02md05Eb13mr0hzl-IRz_4QDeDOY_mgFPv5ktNd7R97FeJNzdKuYk2JrAK-HyxidtOWiKrtYkY2gFMkzGcCL1pmGX4nwc4kDDSBdc7PBgJS_169U80uvAC4TgVSV4zC9F_39xvPJp6l_s_PvprvwMCLu4hsu92BzWa_sK2ReS73vQ-wnmG0rxw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQEvDDYGGQMMQoiXdCS2k0bay2BMHSx7mDZpLyhyHLurtqQobR-2v5475wPKQEK8RFVyVe30Pn5n3_0M8FYUGDekDXyjkoK2GXNf5TLwZRDnYW6j3LpjOtPjaHQmvpzL8xXY7XphGn6IfsGNLMP5azJwWpDe-ckaepGXA6rpiO_AXYFAg1Kv_ZOePIqgjku3MMj6CfrgjlfoQ7jTf3U5Gt2CmLcrJX9FsC4EHazBt27wTeXJ5WAxzwf65jdex_-d3SN42GJTttco02NYMdU6bOxVmJeX1-wdc9Wibhl-He6l7ab8BlzvYwpLIZDZ9OSQOUqoGZtUbIYp8rQmZZjWrLlWTdU5o3L7MUNvVs8MI_rxYjIuma2NYaUiyogxU1XBqOuiWTNmV5NLnBKRMDMiBikJIz-Bs4PPp59Gfnuig6-F4BgOBeIDgS6NG8MLHsvYxjopLHUH6wSDqFIYHbUySkbDiGsrpZEIePTQJHaI8XYTVqtpZZ4Bi4c6jDWnBhdEKJbOD8nDouCJEkGoQ-3B--6fzXRLd06nblxlDVFzmOEbztwb9uBNL_q94fj4k9B2px5Za-azLEC9EgGRtnrwun-MBkq7Lqoy0wXJcPKSQSI9eNpoU_8rId6XOFEP4iU96wWI_Hv5STW5cCTgMuKIVgOcplOjvw88G31M3Yetfxd9BfdHp-lRdnR4_PU5PAgJyrj-y21YndcL8wKB2Dx_6eztBzrcL-Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6NIU28jLHByNjAIIR4SUcSO2m0p41RdUAnNDFpD0iR49hdtSWd0vZh_Hru7CRQBhLipaqaqxqnd_d9tu8-A7zmBeKGMIGvZVrQNmPuy1wEvgiSPMxNnBt7TOfoNB6e848X4mIFDtpeGKcP0S24UWTYfE0BflOY_Z-ioZd52aOSjuQe3OcxMgliRGeddhQxHTvbQoz1U0zBrazQu3C_--oyGN1hmHcLJX8lsBaBBg_hW3vvrvDkqreY5z31_TdZx_8c3AasN8yUHTpXegQrutqErcMKZ-XlLXvDbK2oXYTfhLVRsyW_BbfHOIElAGRmdHbCrCDUjE0qNsMJ8rQmV5jWzL1WruacUbH9mGEuq2eakfh4MRmXzNRas1KSYMSYyapg1HPhVozZ9eQKR0QSzIxkQUpiyI_hfPDh6_uh35zn4CvOIwRDjuyAY0KLtI6KKBGJSVRaGOoNVilCqJSIjUpqKeJ-HCkjhBZId1Rfp6aPaPsEVqtppZ8CS_oqTFRE7S3ITwydHpKHRRGlkgehCpUHb9s_NlON2DmduXGdOZnmMMMnnNkn7MGrzvTGKXz8yWi39Y6sCfJZFqBb8YAkWz142V3G8KQ9F1np6YJsIsqRQSo82HbO1P1KiJ8LHKgHyZKbdQYk_b18pZpcWglwEUfIVQMcpvWiv994Njwa2Tc7_276Ata-HA-yzyenn57Bg5B4jG2-3IXVeb3Qe8jC5vlzG20_AI-lLpU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+fMRI+events+in+sensorimotor+motor+network+using+sparse+paradigm+free+mapping+and+activation+likelihood+estimates&rft.jtitle=Human+brain+mapping&rft.au=Tan%2C+Francisca+M&rft.au=Caballero-Gaudes%2C+C%C3%A9sar&rft.au=Mullinger%2C+Karen+J&rft.au=Cho%2C+Siu-Yeung&rft.date=2017-11-01&rft.eissn=1097-0193&rft.volume=38&rft.issue=11&rft.spage=5778&rft_id=info:doi/10.1002%2Fhbm.23767&rft_id=info%3Apmid%2F28815863&rft.externalDocID=28815863 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |