Decoding fMRI events in sensorimotor motor network using sparse paradigm free mapping and activation likelihood estimates

Most functional MRI (fMRI) studies map task‐driven brain activity using a block or event‐related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain functio...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 38; no. 11; pp. 5778 - 5794
Main Authors Tan, Francisca M., Caballero‐Gaudes, César, Mullinger, Karen J., Cho, Siu‐Yeung, Zhang, Yaping, Dryden, Ian L., Francis, Susan T., Gowland, Penny A.
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.11.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.23767

Cover

Abstract Most functional MRI (fMRI) studies map task‐driven brain activity using a block or event‐related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate‐based meta‐analysis method of activation likelihood estimation (ALE). We defined meta‐maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta‐maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM‐detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)–fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single‐trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778–5794, 2017. © 2017 Wiley Periodicals, Inc.
AbstractList Most functional MRI (fMRI) studies map task‐driven brain activity using a block or event‐related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate‐based meta‐analysis method of activation likelihood estimation (ALE). We defined meta‐maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta‐maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM‐detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)–fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single‐trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778–5794, 2017. © 2017 Wiley Periodicals, Inc.
Most functional MRI (fMRI) studies map task-driven brain activity using a block or event-related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate-based meta-analysis method of activation likelihood estimation (ALE). We defined meta-maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta-maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM-detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)-fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single-trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778-5794, 2017. © 2017 Wiley Periodicals, Inc.Most functional MRI (fMRI) studies map task-driven brain activity using a block or event-related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate-based meta-analysis method of activation likelihood estimation (ALE). We defined meta-maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta-maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM-detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)-fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single-trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778-5794, 2017. © 2017 Wiley Periodicals, Inc.
Most functional MRI (fMRI) studies map task‐driven brain activity using a block or event‐related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate‐based meta‐analysis method of activation likelihood estimation (ALE). We defined meta‐maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta‐maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM‐detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)–fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single‐trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778–5794, 2017 . © 2017 Wiley Periodicals, Inc.
Author Mullinger, Karen J.
Gowland, Penny A.
Caballero‐Gaudes, César
Dryden, Ian L.
Cho, Siu‐Yeung
Zhang, Yaping
Tan, Francisca M.
Francis, Susan T.
AuthorAffiliation 1 School of Physics and Astronomy and Sir Peter Mansfield Imaging Centre The University of Nottingham, University Park Nottingham NG7 2RD United Kingdom
4 School of Mathematical Sciences The University of Nottingham, University Park Nottingham NG7 2RD United Kingdom
5 Birmingham University Imaging Centre School of Psychology, University of Birmingham Birmingham B15 2TT United Kingdom
2 Department of Electrical and Electronic Engineering University of Nottingham Ningbo China Ningbo 315100 People's Republic of China
3 Basque Center of Cognition Brain and Language San Sebastian 20009 Spain
AuthorAffiliation_xml – name: 2 Department of Electrical and Electronic Engineering University of Nottingham Ningbo China Ningbo 315100 People's Republic of China
– name: 4 School of Mathematical Sciences The University of Nottingham, University Park Nottingham NG7 2RD United Kingdom
– name: 1 School of Physics and Astronomy and Sir Peter Mansfield Imaging Centre The University of Nottingham, University Park Nottingham NG7 2RD United Kingdom
– name: 3 Basque Center of Cognition Brain and Language San Sebastian 20009 Spain
– name: 5 Birmingham University Imaging Centre School of Psychology, University of Birmingham Birmingham B15 2TT United Kingdom
Author_xml – sequence: 1
  givenname: Francisca M.
  orcidid: 0000-0001-5114-335X
  surname: Tan
  fullname: Tan, Francisca M.
  email: fran.mtan@gmail.com
  organization: University of Nottingham Ningbo China
– sequence: 2
  givenname: César
  surname: Caballero‐Gaudes
  fullname: Caballero‐Gaudes, César
  organization: Brain and Language
– sequence: 3
  givenname: Karen J.
  surname: Mullinger
  fullname: Mullinger, Karen J.
  organization: School of Psychology, University of Birmingham
– sequence: 4
  givenname: Siu‐Yeung
  surname: Cho
  fullname: Cho, Siu‐Yeung
  organization: University of Nottingham Ningbo China
– sequence: 5
  givenname: Yaping
  surname: Zhang
  fullname: Zhang, Yaping
  organization: University of Nottingham Ningbo China
– sequence: 6
  givenname: Ian L.
  surname: Dryden
  fullname: Dryden, Ian L.
  organization: The University of Nottingham, University Park
– sequence: 7
  givenname: Susan T.
  surname: Francis
  fullname: Francis, Susan T.
  organization: The University of Nottingham, University Park
– sequence: 8
  givenname: Penny A.
  surname: Gowland
  fullname: Gowland, Penny A.
  organization: The University of Nottingham, University Park
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28815863$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9v1DAQxS1URP9x4AsgS1zKIa0d23F8QaKl0EqtkCo4W64z2XWb2MFOttpvX6e7RVDBZWxpfvP0Zt4-2vHBA0LvKDmmhJQny9v-uGSykq_QHiVKFoQqtjP_K1EoLuku2k_pjhBKBaFv0G5Z11TUFdtD6y9gQ-P8ArfXN5cYVuDHhJ3HCXwK0fVhDBFvqofxIcR7PKWZT4OJCXCupnGLHrcRAPdmGOam8Q02dnQrM7rgcefuoXPLEBoMaXS9GSEdotet6RK83b4H6OfX8x9nF8XV92-XZ5-vCss5k0XNa1pzWTEGwBomhWylVU3LhBJW0ZIZoxSxBoyo8ka2FQKEENzWoNqaU3aAPm10h-m2h8bmBaPp9JB3M3Gtg3H67453S70IKy0qVopqFjjaCsTwa8r-de-Sha4zHsKUdL414fmgSmT0wwv0LkzR5_UyxSWnNMeTqfd_Ovpt5TmVDJxsABtDShFabd34dMls0HWaEj3nrnPu-in3PPHxxcSz6L_YrfqD62D9f1BfnF5vJh4BV3S-XA
CitedBy_id crossref_primary_10_1016_j_media_2023_103010
crossref_primary_10_1523_JNEUROSCI_1786_20_2020
crossref_primary_10_1016_j_neuroimage_2019_116081
crossref_primary_10_1016_j_neuroimage_2019_116129
crossref_primary_10_1016_j_apm_2022_11_034
crossref_primary_10_1016_j_tics_2021_09_005
Cites_doi 10.1136/jnnp.56.4.329
10.1002/hbm.21513
10.1016/j.neuroimage.2011.09.017
10.1162/089892999563265
10.1371/journal.pone.0015710
10.1371/journal.pone.0035860
10.1002/hbm.20718
10.1162/08989290051137549
10.1016/j.neuron.2011.11.001
10.1073/pnas.1121329109
10.1002/jmri.21277
10.3389/fnsys.2013.00101
10.1371/journal.pone.0124577
10.1038/nn1444
10.1006/nimg.2000.0599
10.1002/mrm.1910340409
10.1016/j.neuroimage.2015.02.064
10.1016/j.neuroimage.2013.09.018
10.1155/2013/935154
10.1109/ISBI.2012.6235549
10.1002/mrm.22361
10.1002/hbm.20336
10.1002/hbm.20136
10.1016/j.cub.2005.06.026
10.1016/j.ijpsycho.2007.05.015
10.1152/jn.01017.2009
10.1016/j.neuroimage.2014.03.034
10.1006/nimg.2002.1131
10.1016/j.otohns.2004.03.015
10.1126/science.1063736
10.1006/nimg.1998.0361
10.1016/S1053-8119(03)00049-1
10.1111/j.1469-8986.2005.00271.x
10.1002/hbm.21186
10.1146/annurev-psych-120710-100412
10.1016/j.mri.2010.10.012
10.1038/nmeth.1635
10.1016/j.neuron.2007.12.009
10.1016/j.tics.2005.12.004
10.1109/PRNI.2012.19
10.1162/0898929053467550
10.1002/hbm.21452
10.1016/j.neuroimage.2015.01.057
10.1016/j.neuroimage.2012.12.075
10.1016/j.neuroimage.2010.04.246
10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
10.1016/j.neuroimage.2013.11.046
10.1093/brain/60.4.389
10.1016/j.neuroimage.2015.02.063
10.1016/j.neulet.2014.08.025
10.1016/j.mri.2007.03.009
10.1016/j.neuroimage.2013.01.067
10.1002/hbm.21116
10.1126/science.1234330
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.23767
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Research Database
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Decoding fMRI Events in SMN
EISSN 1097-0193
EndPage 5794
ExternalDocumentID PMC5632561
28815863
10_1002_hbm_23767
HBM23767
Genre article
Validation Study
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: G0901321
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4437-8481847633ee3d3757f7c9df3595c9123aa990caea56863cf55e5554c8e9f8413
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 14:13:13 EDT 2025
Fri Sep 05 07:30:14 EDT 2025
Sat Jul 26 02:30:37 EDT 2025
Mon Jul 21 05:51:12 EDT 2025
Thu Apr 24 23:09:10 EDT 2025
Tue Jul 01 01:10:48 EDT 2025
Wed Jan 22 16:54:20 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords meta-analysis
functional MRI
paradigm free mapping
activation likelihood estimation
decoding
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4437-8481847633ee3d3757f7c9df3595c9123aa990caea56863cf55e5554c8e9f8413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-5114-335X
OpenAccessLink http://eprints.nottingham.ac.uk/44731/
PMID 28815863
PQID 1947411109
PQPubID 996345
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5632561
proquest_miscellaneous_1930488195
proquest_journals_1947411109
pubmed_primary_28815863
crossref_citationtrail_10_1002_hbm_23767
crossref_primary_10_1002_hbm_23767
wiley_primary_10_1002_hbm_23767_HBM23767
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2017
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2017
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2002; 16
2015a; 112
2010; 103
1995; 34
2000; 44
2003; 19
2012; 59
2015b; 112
2013; 7
2010; 63
2005; 25
2007; 28
2004; 131
2001; 293
2013; 2013
2000; 12
2008; 27
2011; 72
1999; 11
2008; 67
2012a
2014; 95
2010; 5
2011; 29
2007; 25
2012; 63
2014; 90
2012
2006; 10
1937; 60
2015; 10
2005; 42
2011; 32
2008; 57
2013; 340
2014; 84
2012; 33
2011; 8
2012; 109
1993; 56
2009; 30
2013; 34
2015; 111
2013; 73
2005; 8
2005; 15
2014; 581
2005; 17
2010; 52
2012b; 7
1998; 8
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 581
  start-page: 69
  year: 2014
  end-page: 74
  article-title: Effector‐independent brain activity during motor imagery of the upper and lower limbs: An fMRI study
  publication-title: Neurosci Lett
– volume: 12
  start-page: 1013
  year: 2000
  end-page: 1023
  article-title: Mental imagery of faces and places activates corresponding stimulus‐specific brain regions
  publication-title: J Cogn Neurosci
– volume: 59
  start-page: 2349
  year: 2012
  end-page: 2361
  article-title: Activation likelihood estimation meta‐analysis revisited
  publication-title: NeuroImage
– volume: 72
  start-page: 692
  year: 2011
  end-page: 697
  article-title: Inferring mental states from neuroimaging data: From reverse inference to large‐scale decoding
  publication-title: Neuron
– volume: 7
  year: 2013
  article-title: Decomposition of spontaneous brain activity into distinct fMRI co‐activation patterns
  publication-title: Front Syst Neurosci
– volume: 34
  start-page: 501
  year: 2013
  end-page: 518
  article-title: Paradigm free mapping with sparse regression automatically detects single‐trial functional magnetic resonance imaging blood oxygenation level dependent responses
  publication-title: Hum Brain Mapp
– volume: 25
  start-page: 155
  year: 2005
  end-page: 164
  article-title: ALE meta‐analysis: Controlling the false discovery rate and performing statistical contrasts
  publication-title: Hum Brain Mapp
– volume: 84
  start-page: 1061
  year: 2014
  end-page: 1069
  article-title: Reverse inference is not a fallacy per se: Cognitive processes can be inferred from functional imaging data
  publication-title: NeuroImage
– volume: 8
  start-page: 679
  year: 2005
  end-page: 685
  article-title: Decoding the visual and subjective contents of the human brain
  publication-title: Nat Neurosci
– volume: 63
  start-page: 1144
  year: 2010
  end-page: 1153
  article-title: Multiband multislice GE‐EPI at 7 Tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI
  publication-title: Magn Reson Med
– volume: 32
  start-page: 1400
  year: 2011
  end-page: 1418
  article-title: Detection and characterization of single‐trial fMRI bold responses: Paradigm free mapping
  publication-title: Hum Brain Mapp
– volume: 42
  start-page: 1
  year: 2005
  end-page: 15
  article-title: Committee report: Guidelines for human startle eyeblink electromyographic studies
  publication-title: Psychophysiology
– volume: 10
  start-page: e0124577
  year: 2015
  article-title: Functional connectivity in MRI is driven by spontaneous BOLD events
  publication-title: PLoS One
– volume: 34
  start-page: 1319
  year: 2013
  end-page: 1329
  article-title: Periods of rest in fMRI contain individual spontaneous events which are related to slowly fluctuating spontaneous activity
  publication-title: Hum Brain Mapp
– volume: 57
  start-page: 452
  year: 2008
  end-page: 462
  article-title: Enhanced intersubject correlations during movie viewing correlate with successful episodic encoding
  publication-title: Neuron
– volume: 7
  start-page: e35860
  year: 2012b
  article-title: Decoding semi‐constrained brain activity from fMRI using support vector machines and Gaussian processes
  publication-title: PLoS One
– volume: 34
  start-page: 537
  year: 1995
  end-page: 541
  article-title: Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI
  publication-title: Magn Reson Med
– start-page: 322
  year: 2012
  end-page: 325
– volume: 27
  start-page: 607
  year: 2008
  end-page: 616
  article-title: Improved artifact correction for combined electroencephalography/functional MRI by means of synchronization and use of vectorcardiogram recordings
  publication-title: J Magn Reson Imaging
– volume: 84
  start-page: 1042
  year: 2014
  end-page: 1052
  article-title: A comparison of statistical methods for detecting context‐modulated functional connectivity in fMRI
  publication-title: NeuroImage
– volume: 44
  start-page: 162
  year: 2000
  end-page: 167
  article-title: Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR
  publication-title: Magn Reson Med
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  article-title: Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers
  publication-title: NeuroImage
– volume: 15
  start-page: 1301
  year: 2005
  end-page: 1307
  article-title: Predicting the stream of consciousness from activity in human visual cortex
  publication-title: Curr Biol
– volume: 28
  start-page: 1117
  year: 2007
  end-page: 1127
  article-title: fMRI analysis for motor paradigms using EMG‐based designs: A validation study
  publication-title: Hum Brain Mapp
– volume: 52
  start-page: 571
  year: 2010
  end-page: 582
  article-title: Mapping sources of correlation in resting state FMRI, with artifact detection and removal
  publication-title: NeuroImage
– volume: 67
  start-page: 189
  year: 2008
  end-page: 199
  article-title: Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength
  publication-title: Int J Psychophysiol
– volume: 63
  start-page: 483
  year: 2012
  end-page: 509
  article-title: Decoding patterns of human brain activity
  publication-title: Annu Rev Psychol
– volume: 29
  start-page: 353
  year: 2011
  end-page: 364
  article-title: Neuronal event detection in fMRI time series using iterative deconvolution techniques
  publication-title: Magn Reson Imaging
– volume: 2013
  year: 2013
  article-title: Effective preprocessing procedures virtually eliminate distance‐dependent motion artifacts in resting state fMRI
  publication-title: J Appl Math
– volume: 112
  start-page: 278
  year: 2015a
  end-page: 287
  article-title: Evaluation of ICA‐AROMA and alternative strategies for motion artifact removal in resting state fMRI
  publication-title: NeuroImage
– volume: 293
  start-page: 2425
  year: 2001
  end-page: 2430
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex
  publication-title: Science
– volume: 131
  start-page: 977
  year: 2004
  end-page: 985
  article-title: Surface electromyographic studies of swallowing in normal subjects: A review of 440 adults. Report 3. Qualitative data
  publication-title: Otolaryngol Head Neck Surg
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  article-title: ICA‐based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: NeuroImage
– volume: 10
  start-page: 59
  year: 2006
  end-page: 63
  article-title: Can cognitive processes be inferred from neuroimaging data?
  publication-title: Trends Cogn Sci
– volume: 17
  start-page: 580
  year: 2005
  end-page: 590
  article-title: Partially distributed representations of objects and faces in ventral temporal cortex
  publication-title: J Cogn Neurosci
– volume: 8
  start-page: 665
  year: 2011
  end-page: U95
  article-title: Large‐scale automated synthesis of human functional neuroimaging data
  publication-title: Nature Methods
– volume: 340
  start-page: 639
  year: 2013
  end-page: 642
  article-title: Neural decoding of visual imagery during sleep
  publication-title: Science
– volume: 19
  start-page: 261
  year: 2003
  end-page: 270
  article-title: Functional magnetic resonance imaging (fMRI) “brain reading”: Detecting and classifying distributed patterns of fMRI activity in human visual cortex
  publication-title: NeuroImage
– volume: 11
  start-page: 80
  year: 1999
  end-page: 95
  article-title: Conceptual processing during the conscious resting state. A functional MRI study
  publication-title: J Cogn Neurosci
– volume: 60
  start-page: 389
  year: 1937
  end-page: 443
  article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation
  publication-title: Brain
– volume: 8
  start-page: 229
  year: 1998
  end-page: 239
  article-title: Identification of EEG events in the MR scanner: The problem of pulse artifact and a method for its subtraction
  publication-title: NeuroImage
– volume: 56
  start-page: 329
  year: 1993
  end-page: 333
  article-title: Penfield's homunculus: A note on cerebral cartography
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 12
  start-page: 230
  year: 2000
  end-page: 239
  article-title: A method for removing imaging artifact from continuous EEG recorded during functional MRI
  publication-title: NeuroImage
– volume: 5
  start-page: e15710
  year: 2010
  article-title: Multiplexed echo planar imaging for sub‐second whole brain fMRI and fast diffusion imaging
  publication-title: PLoS One
– volume: 33
  start-page: 1
  year: 2012
  end-page: 13
  article-title: Minimizing within‐experiment and within‐group effects in activation likelihood estimation meta‐analyses
  publication-title: Hum Brain Mapp
– volume: 112
  start-page: 267
  year: 2015b
  end-page: 277
  article-title: ICA‐AROMA: A robust ICA‐based strategy for removing motion artifacts from fMRI data
  publication-title: NeuroImage
– volume: 16
  start-page: 765
  year: 2002
  end-page: 780
  article-title: Meta‐analysis of the functional neuroanatomy of single‐word reading: Method and validation
  publication-title: NeuroImage
– year: 2012a
– volume: 30
  start-page: 2907
  year: 2009
  end-page: 2926
  article-title: Coordinate‐based activation likelihood estimation meta‐analysis of neuroimaging data: A random‐effects approach based on empirical estimates of spatial uncertainty
  publication-title: Hum Brain Mapp
– volume: 103
  start-page: 2544
  year: 2010
  end-page: 2556
  article-title: Mapping human somatosensory cortex in individual subjects with 7T functional MRI
  publication-title: J Neurophysiol
– volume: 109
  start-page: 3131
  year: 2012
  end-page: 3136
  article-title: Temporally‐independent functional modes of spontaneous brain activity
  publication-title: Proc Natl Acad Sci USA
– volume: 73
  start-page: 121
  year: 2013
  end-page: 134
  article-title: Total activation: fMRI deconvolution through spatio‐temporal regularization
  publication-title: NeuroImage
– volume: 25
  start-page: 894
  year: 2007
  end-page: 901
  article-title: Modelling large motion events in fMRI studies of patients with epilepsy
  publication-title: Magn Reson Imaging
– volume: 111
  start-page: 476
  year: 2015
  end-page: 488
  article-title: Introducing co‐activation pattern metrics to quantify spontaneous brain network dynamics
  publication-title: NeuroImage
– ident: e_1_2_7_47_1
  doi: 10.1136/jnnp.56.4.329
– ident: e_1_2_7_40_1
  doi: 10.1002/hbm.21513
– ident: e_1_2_7_14_1
  doi: 10.1016/j.neuroimage.2011.09.017
– ident: e_1_2_7_5_1
  doi: 10.1162/089892999563265
– ident: e_1_2_7_16_1
  doi: 10.1371/journal.pone.0015710
– ident: e_1_2_7_49_1
  doi: 10.1371/journal.pone.0035860
– ident: e_1_2_7_15_1
  doi: 10.1002/hbm.20718
– ident: e_1_2_7_36_1
  doi: 10.1162/08989290051137549
– ident: e_1_2_7_42_1
  doi: 10.1016/j.neuron.2011.11.001
– ident: e_1_2_7_50_1
  doi: 10.1073/pnas.1121329109
– ident: e_1_2_7_35_1
  doi: 10.1002/jmri.21277
– ident: e_1_2_7_32_1
  doi: 10.3389/fnsys.2013.00101
– ident: e_1_2_7_2_1
  doi: 10.1371/journal.pone.0124577
– ident: e_1_2_7_28_1
  doi: 10.1038/nn1444
– ident: e_1_2_7_3_1
  doi: 10.1006/nimg.2000.0599
– ident: e_1_2_7_6_1
  doi: 10.1002/mrm.1910340409
– ident: e_1_2_7_39_1
– ident: e_1_2_7_44_1
  doi: 10.1016/j.neuroimage.2015.02.064
– ident: e_1_2_7_11_1
  doi: 10.1016/j.neuroimage.2013.09.018
– ident: e_1_2_7_26_1
  doi: 10.1155/2013/935154
– ident: e_1_2_7_8_1
  doi: 10.1109/ISBI.2012.6235549
– ident: e_1_2_7_34_1
  doi: 10.1002/mrm.22361
– ident: e_1_2_7_55_1
  doi: 10.1002/hbm.20336
– ident: e_1_2_7_30_1
  doi: 10.1002/hbm.20136
– ident: e_1_2_7_22_1
  doi: 10.1016/j.cub.2005.06.026
– ident: e_1_2_7_13_1
  doi: 10.1016/j.ijpsycho.2007.05.015
– ident: e_1_2_7_46_1
  doi: 10.1152/jn.01017.2009
– ident: e_1_2_7_19_1
  doi: 10.1016/j.neuroimage.2014.03.034
– ident: e_1_2_7_52_1
  doi: 10.1006/nimg.2002.1131
– ident: e_1_2_7_54_1
  doi: 10.1016/j.otohns.2004.03.015
– ident: e_1_2_7_21_1
  doi: 10.1126/science.1063736
– ident: e_1_2_7_4_1
  doi: 10.1006/nimg.1998.0361
– ident: e_1_2_7_12_1
  doi: 10.1016/S1053-8119(03)00049-1
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1469-8986.2005.00271.x
– ident: e_1_2_7_53_1
  doi: 10.1002/hbm.21186
– ident: e_1_2_7_51_1
  doi: 10.1146/annurev-psych-120710-100412
– ident: e_1_2_7_23_1
  doi: 10.1016/j.mri.2010.10.012
– ident: e_1_2_7_56_1
  doi: 10.1038/nmeth.1635
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuron.2007.12.009
– ident: e_1_2_7_41_1
  doi: 10.1016/j.tics.2005.12.004
– ident: e_1_2_7_48_1
  doi: 10.1109/PRNI.2012.19
– ident: e_1_2_7_37_1
  doi: 10.1162/0898929053467550
– ident: e_1_2_7_9_1
  doi: 10.1002/hbm.21452
– ident: e_1_2_7_10_1
  doi: 10.1016/j.neuroimage.2015.01.057
– ident: e_1_2_7_25_1
  doi: 10.1016/j.neuroimage.2012.12.075
– ident: e_1_2_7_27_1
  doi: 10.1016/j.neuroimage.2010.04.246
– ident: e_1_2_7_18_1
  doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
– ident: e_1_2_7_45_1
  doi: 10.1016/j.neuroimage.2013.11.046
– ident: e_1_2_7_38_1
  doi: 10.1093/brain/60.4.389
– ident: e_1_2_7_43_1
  doi: 10.1016/j.neuroimage.2015.02.063
– ident: e_1_2_7_33_1
  doi: 10.1016/j.neulet.2014.08.025
– ident: e_1_2_7_31_1
  doi: 10.1016/j.mri.2007.03.009
– ident: e_1_2_7_29_1
  doi: 10.1016/j.neuroimage.2013.01.067
– ident: e_1_2_7_17_1
  doi: 10.1002/hbm.21116
– ident: e_1_2_7_24_1
  doi: 10.1126/science.1234330
SSID ssj0011501
Score 2.2838826
Snippet Most functional MRI (fMRI) studies map task‐driven brain activity using a block or event‐related paradigm. Sparse paradigm free mapping (SPFM) can detect the...
Most functional MRI (fMRI) studies map task-driven brain activity using a block or event-related paradigm. Sparse paradigm free mapping (SPFM) can detect the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5778
SubjectTerms activation likelihood estimation
Blinking - physiology
Brain
Brain - diagnostic imaging
Brain - physiology
Brain mapping
Brain Mapping - methods
Decoding
Deglutition - physiology
Electromyography
Eye
Eye movements
Eye Movements - physiology
Fingers - physiology
Functional Laterality
Functional magnetic resonance imaging
functional MRI
Humans
Interstimulus interval
Likelihood Functions
Magnetic Resonance Imaging - methods
Mapping
Mathematical analysis
Meta-analysis
Motor Activity - physiology
Mouth - physiology
Muscle, Skeletal - physiology
Neural Pathways - diagnostic imaging
Neural Pathways - physiology
paradigm free mapping
Proof of Concept Study
Rest
Sensorimotor system
Spatial distribution
Statistical analysis
Swallowing
Toes - physiology
Title Decoding fMRI events in sensorimotor motor network using sparse paradigm free mapping and activation likelihood estimates
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23767
https://www.ncbi.nlm.nih.gov/pubmed/28815863
https://www.proquest.com/docview/1947411109
https://www.proquest.com/docview/1930488195
https://pubmed.ncbi.nlm.nih.gov/PMC5632561
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5VPSAuPFoebku1IIS4OGW9XjsWp9KHAlI4VFTqAcnaXe-mUWsH2cmh_fXMrB-QFiTEJYriieJ1Zub7dnfmW4C3cYG4IR0PrcoK2mbUodKSh5KnOtIu0c4f0zn9mkzO4y8X8mIDPva9MK0-xLDgRpHh8zUFuNLNwS_R0EtdjqikgzrJuUhIN__4bJCOIqLjJ1sIsWGGGbhXFfoQHQzfXMeiewTzfp3k7_zVA9DpY_je33pbd3I1Wi31yNzeUXX8z7E9gUcdMWWHrSc9hQ1bbcH2YYWT8vKGvWO-VNSvwW_Bg2m3I78NN8c4fyX8Y2569pl5PaiGzSvW4Px4UZMnLGrWvlZtyTmjWvsZw1RWN5aR9ngxn5XM1dayUpFexIypqmDUctEuGLPr-RWOiBSYGamClESQn8H56cm3o0nYHecQmjgWiIUxkoMY85mwVhQilalLTVY4ag02GSKoUgiNRlklk3EijJPSSmQ7ZmwzN0awfQ6b1aKyL4GlYxOlRlB3C9ITR4eH6KgoRKZiHpnIBPC-_2Nz02md05Eb13mr0hzl-IRz_4QDeDOY_mgFPv5ktNd7R97FeJNzdKuYk2JrAK-HyxidtOWiKrtYkY2gFMkzGcCL1pmGX4nwc4kDDSBdc7PBgJS_169U80uvAC4TgVSV4zC9F_39xvPJp6l_s_PvprvwMCLu4hsu92BzWa_sK2ReS73vQ-wnmG0rxw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQEvDDYGGQMMQoiXdCS2k0bay2BMHSx7mDZpLyhyHLurtqQobR-2v5475wPKQEK8RFVyVe30Pn5n3_0M8FYUGDekDXyjkoK2GXNf5TLwZRDnYW6j3LpjOtPjaHQmvpzL8xXY7XphGn6IfsGNLMP5azJwWpDe-ckaepGXA6rpiO_AXYFAg1Kv_ZOePIqgjku3MMj6CfrgjlfoQ7jTf3U5Gt2CmLcrJX9FsC4EHazBt27wTeXJ5WAxzwf65jdex_-d3SN42GJTttco02NYMdU6bOxVmJeX1-wdc9Wibhl-He6l7ab8BlzvYwpLIZDZ9OSQOUqoGZtUbIYp8rQmZZjWrLlWTdU5o3L7MUNvVs8MI_rxYjIuma2NYaUiyogxU1XBqOuiWTNmV5NLnBKRMDMiBikJIz-Bs4PPp59Gfnuig6-F4BgOBeIDgS6NG8MLHsvYxjopLHUH6wSDqFIYHbUySkbDiGsrpZEIePTQJHaI8XYTVqtpZZ4Bi4c6jDWnBhdEKJbOD8nDouCJEkGoQ-3B--6fzXRLd06nblxlDVFzmOEbztwb9uBNL_q94fj4k9B2px5Za-azLEC9EgGRtnrwun-MBkq7Lqoy0wXJcPKSQSI9eNpoU_8rId6XOFEP4iU96wWI_Hv5STW5cCTgMuKIVgOcplOjvw88G31M3Yetfxd9BfdHp-lRdnR4_PU5PAgJyrj-y21YndcL8wKB2Dx_6eztBzrcL-Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6NIU28jLHByNjAIIR4SUcSO2m0p41RdUAnNDFpD0iR49hdtSWd0vZh_Hru7CRQBhLipaqaqxqnd_d9tu8-A7zmBeKGMIGvZVrQNmPuy1wEvgiSPMxNnBt7TOfoNB6e848X4mIFDtpeGKcP0S24UWTYfE0BflOY_Z-ioZd52aOSjuQe3OcxMgliRGeddhQxHTvbQoz1U0zBrazQu3C_--oyGN1hmHcLJX8lsBaBBg_hW3vvrvDkqreY5z31_TdZx_8c3AasN8yUHTpXegQrutqErcMKZ-XlLXvDbK2oXYTfhLVRsyW_BbfHOIElAGRmdHbCrCDUjE0qNsMJ8rQmV5jWzL1WruacUbH9mGEuq2eakfh4MRmXzNRas1KSYMSYyapg1HPhVozZ9eQKR0QSzIxkQUpiyI_hfPDh6_uh35zn4CvOIwRDjuyAY0KLtI6KKBGJSVRaGOoNVilCqJSIjUpqKeJ-HCkjhBZId1Rfp6aPaPsEVqtppZ8CS_oqTFRE7S3ITwydHpKHRRGlkgehCpUHb9s_NlON2DmduXGdOZnmMMMnnNkn7MGrzvTGKXz8yWi39Y6sCfJZFqBb8YAkWz142V3G8KQ9F1np6YJsIsqRQSo82HbO1P1KiJ8LHKgHyZKbdQYk_b18pZpcWglwEUfIVQMcpvWiv994Njwa2Tc7_276Ata-HA-yzyenn57Bg5B4jG2-3IXVeb3Qe8jC5vlzG20_AI-lLpU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+fMRI+events+in+sensorimotor+motor+network+using+sparse+paradigm+free+mapping+and+activation+likelihood+estimates&rft.jtitle=Human+brain+mapping&rft.au=Tan%2C+Francisca+M&rft.au=Caballero-Gaudes%2C+C%C3%A9sar&rft.au=Mullinger%2C+Karen+J&rft.au=Cho%2C+Siu-Yeung&rft.date=2017-11-01&rft.eissn=1097-0193&rft.volume=38&rft.issue=11&rft.spage=5778&rft_id=info:doi/10.1002%2Fhbm.23767&rft_id=info%3Apmid%2F28815863&rft.externalDocID=28815863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon