Root anatomical traits determined leaf-level physiology and responses to precipitation change of herbaceous species in a temperate steppe

• Root anatomy plays important roles in the control of leaf water relations. However, few studies have evaluated whether and how anatomical traits of absorptive roots influence leaf physiology of herbaceous species in a temperate grassland. • We measured absorptive root anatomical traits and leaf ph...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 229; no. 3; pp. 1481 - 1491
Main Authors Zhou, Meng, Bai, Wenming, Li, Qingmei, Guo, Yumeng, Zhang, Wen-Hao
Format Journal Article
LanguageEnglish
Published England Wiley 01.02.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • Root anatomy plays important roles in the control of leaf water relations. However, few studies have evaluated whether and how anatomical traits of absorptive roots influence leaf physiology of herbaceous species in a temperate grassland. • We measured absorptive root anatomical traits and leaf physiological traits of 15 herbaceous species in a temperate steppe and monitored their responses to increased precipitation in a field stimulating experiment. • Root anatomical and leaf physiological traits differed among monocotyledonous grasses, monocotyledonous liliaceous species and dicotyledonous forbs. The species with higher stele: root diameter, lower root diameter and cortex thickness exhibited higher transpiration rates and stomatal conductance, but lower intrinsic water-use efficiency. Increased precipitation enhanced transpiration and stomatal conductance of forbs and lilies, but it enhanced photosynthesis in lilies exclusively. The sensitive response of lilies to precipitation may be related to their large root diameter and cortex thickness. • In summary, we observed distinct differences in anatomical traits of absorptive roots among plant groups in temperate steppes. These differences drove variations in leaf physiological traits and their diverse responses to precipitation change. These findings highlight the important roles of root anatomical traits in driving leaf-level physiological processes in temperate grasslands.
AbstractList Root anatomy plays important roles in the control of leaf water relations. However, few studies have evaluated whether and how anatomical traits of absorptive roots influence leaf physiology of herbaceous species in a temperate grassland. We measured absorptive root anatomical traits and leaf physiological traits of 15 herbaceous species in a temperate steppe and monitored their responses to increased precipitation in a field stimulating experiment. Root anatomical and leaf physiological traits differed among monocotyledonous grasses, monocotyledonous liliaceous species and dicotyledonous forbs. The species with higher stele: root diameter, lower root diameter and cortex thickness exhibited higher transpiration rates and stomatal conductance, but lower intrinsic water‐use efficiency. Increased precipitation enhanced transpiration and stomatal conductance of forbs and lilies, but it enhanced photosynthesis in lilies exclusively. The sensitive response of lilies to precipitation may be related to their large root diameter and cortex thickness. In summary, we observed distinct differences in anatomical traits of absorptive roots among plant groups in temperate steppes. These differences drove variations in leaf physiological traits and their diverse responses to precipitation change. These findings highlight the important roles of root anatomical traits in driving leaf‐level physiological processes in temperate grasslands.
Summary Root anatomy plays important roles in the control of leaf water relations. However, few studies have evaluated whether and how anatomical traits of absorptive roots influence leaf physiology of herbaceous species in a temperate grassland. We measured absorptive root anatomical traits and leaf physiological traits of 15 herbaceous species in a temperate steppe and monitored their responses to increased precipitation in a field stimulating experiment. Root anatomical and leaf physiological traits differed among monocotyledonous grasses, monocotyledonous liliaceous species and dicotyledonous forbs. The species with higher stele: root diameter, lower root diameter and cortex thickness exhibited higher transpiration rates and stomatal conductance, but lower intrinsic water‐use efficiency. Increased precipitation enhanced transpiration and stomatal conductance of forbs and lilies, but it enhanced photosynthesis in lilies exclusively. The sensitive response of lilies to precipitation may be related to their large root diameter and cortex thickness. In summary, we observed distinct differences in anatomical traits of absorptive roots among plant groups in temperate steppes. These differences drove variations in leaf physiological traits and their diverse responses to precipitation change. These findings highlight the important roles of root anatomical traits in driving leaf‐level physiological processes in temperate grasslands. See also the Commentary on this article by Long & Medeiros, 229: 1186–1188.
Root anatomy plays important roles in the control of leaf water relations. However, few studies have evaluated whether and how anatomical traits of absorptive roots influence leaf physiology of herbaceous species in a temperate grassland. We measured absorptive root anatomical traits and leaf physiological traits of 15 herbaceous species in a temperate steppe and monitored their responses to increased precipitation in a field stimulating experiment. Root anatomical and leaf physiological traits differed among monocotyledonous grasses, monocotyledonous liliaceous species and dicotyledonous forbs. The species with higher stele: root diameter, lower root diameter and cortex thickness exhibited higher transpiration rates and stomatal conductance, but lower intrinsic water-use efficiency. Increased precipitation enhanced transpiration and stomatal conductance of forbs and lilies, but it enhanced photosynthesis in lilies exclusively. The sensitive response of lilies to precipitation may be related to their large root diameter and cortex thickness. In summary, we observed distinct differences in anatomical traits of absorptive roots among plant groups in temperate steppes. These differences drove variations in leaf physiological traits and their diverse responses to precipitation change. These findings highlight the important roles of root anatomical traits in driving leaf-level physiological processes in temperate grasslands.Root anatomy plays important roles in the control of leaf water relations. However, few studies have evaluated whether and how anatomical traits of absorptive roots influence leaf physiology of herbaceous species in a temperate grassland. We measured absorptive root anatomical traits and leaf physiological traits of 15 herbaceous species in a temperate steppe and monitored their responses to increased precipitation in a field stimulating experiment. Root anatomical and leaf physiological traits differed among monocotyledonous grasses, monocotyledonous liliaceous species and dicotyledonous forbs. The species with higher stele: root diameter, lower root diameter and cortex thickness exhibited higher transpiration rates and stomatal conductance, but lower intrinsic water-use efficiency. Increased precipitation enhanced transpiration and stomatal conductance of forbs and lilies, but it enhanced photosynthesis in lilies exclusively. The sensitive response of lilies to precipitation may be related to their large root diameter and cortex thickness. In summary, we observed distinct differences in anatomical traits of absorptive roots among plant groups in temperate steppes. These differences drove variations in leaf physiological traits and their diverse responses to precipitation change. These findings highlight the important roles of root anatomical traits in driving leaf-level physiological processes in temperate grasslands.
• Root anatomy plays important roles in the control of leaf water relations. However, few studies have evaluated whether and how anatomical traits of absorptive roots influence leaf physiology of herbaceous species in a temperate grassland. • We measured absorptive root anatomical traits and leaf physiological traits of 15 herbaceous species in a temperate steppe and monitored their responses to increased precipitation in a field stimulating experiment. • Root anatomical and leaf physiological traits differed among monocotyledonous grasses, monocotyledonous liliaceous species and dicotyledonous forbs. The species with higher stele: root diameter, lower root diameter and cortex thickness exhibited higher transpiration rates and stomatal conductance, but lower intrinsic water-use efficiency. Increased precipitation enhanced transpiration and stomatal conductance of forbs and lilies, but it enhanced photosynthesis in lilies exclusively. The sensitive response of lilies to precipitation may be related to their large root diameter and cortex thickness. • In summary, we observed distinct differences in anatomical traits of absorptive roots among plant groups in temperate steppes. These differences drove variations in leaf physiological traits and their diverse responses to precipitation change. These findings highlight the important roles of root anatomical traits in driving leaf-level physiological processes in temperate grasslands.
Root anatomy plays important roles in the control of leaf water relations. However, few studies have evaluated whether and how anatomical traits of absorptive roots influence leaf physiology of herbaceous species in a temperate grassland. We measured absorptive root anatomical traits and leaf physiological traits of 15 herbaceous species in a temperate steppe and monitored their responses to increased precipitation in a field stimulating experiment. Root anatomical and leaf physiological traits differed among monocotyledonous grasses, monocotyledonous liliaceous species and dicotyledonous forbs. The species with higher stele: root diameter, lower root diameter and cortex thickness exhibited higher transpiration rates and stomatal conductance, but lower intrinsic water‐use efficiency. Increased precipitation enhanced transpiration and stomatal conductance of forbs and lilies, but it enhanced photosynthesis in lilies exclusively. The sensitive response of lilies to precipitation may be related to their large root diameter and cortex thickness. In summary, we observed distinct differences in anatomical traits of absorptive roots among plant groups in temperate steppes. These differences drove variations in leaf physiological traits and their diverse responses to precipitation change. These findings highlight the important roles of root anatomical traits in driving leaf‐level physiological processes in temperate grasslands. See also the Commentary on this article by Long & Medeiros, 229: 1186–1188 .
Author Zhang, Wen-Hao
Bai, Wenming
Guo, Yumeng
Zhou, Meng
Li, Qingmei
Author_xml – sequence: 1
  givenname: Meng
  surname: Zhou
  fullname: Zhou, Meng
– sequence: 2
  givenname: Wenming
  surname: Bai
  fullname: Bai, Wenming
– sequence: 3
  givenname: Qingmei
  surname: Li
  fullname: Li, Qingmei
– sequence: 4
  givenname: Yumeng
  surname: Guo
  fullname: Guo, Yumeng
– sequence: 5
  givenname: Wen-Hao
  surname: Zhang
  fullname: Zhang, Wen-Hao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32645210$$D View this record in MEDLINE/PubMed
BookMark eNqN0U9rFDEYBvAgFbutHvwASsCLHqbNv83MHEtRKxQVUfAWMpl3ulkySUyyyn4Ev7VZd9dDUTCXXH7PS_I-Z-jEBw8IPaXkgtZz6ePqgsq2bx-gBRWybzrK2xO0IIR1jRTy6yk6y3lNCOmXkj1Cp5xJsWSULNDPTyEUrL0uYbZGO1yStiXjEQqk2XoYsQM9NQ6-g8Nxtc02uHC3rZERJ8gx-AwZl4BjAmOjLbrY4LFZaX8HOEx4BWnQBsIm4xwrqdp6rHGBOULSBXAuECM8Rg8n7TI8Odzn6Mub15-vb5rbD2_fXV_dNkYI3jZc644y0Q1Da0ZKQQzTxIHynoiR9cMoJtYaQltt-ACM67afBtDQD4yB7FjHz9HL_dyYwrcN5KJmmw04p_3ukYqJvmOcd538D8o4kYL0rNIX9-g6bJKvH6mqXRLJJSdVPT-ozTDDqGKys05bdeyjgss9MCnknGBS5rDRXS9OUaJ2javauPrdeE28upc4Dv2bPUz_YR1s_w3V-483x8SzfWKdS0h_EqwlhNIl4b8AqE_GFQ
CitedBy_id crossref_primary_10_1016_j_pld_2023_01_007
crossref_primary_10_1007_s11104_023_06473_x
crossref_primary_10_1007_s11427_022_2338_1
crossref_primary_10_1016_j_pld_2022_01_002
crossref_primary_10_1111_ele_13951
crossref_primary_10_1016_j_jaridenv_2024_105195
crossref_primary_10_1111_1365_2745_13909
crossref_primary_10_1016_j_ecolind_2022_109422
crossref_primary_10_1111_nph_20374
crossref_primary_10_3389_fpls_2022_961214
crossref_primary_10_3390_plants10112474
crossref_primary_10_1016_j_ecolind_2022_109144
crossref_primary_10_1007_s11104_024_07003_z
crossref_primary_10_1007_s00344_022_10887_9
crossref_primary_10_3389_fpls_2021_692715
crossref_primary_10_1016_j_scitotenv_2023_166978
crossref_primary_10_32604_phyton_2023_046078
crossref_primary_10_1016_j_agwat_2022_108106
crossref_primary_10_3390_plants13081075
crossref_primary_10_1007_s11104_024_06863_9
crossref_primary_10_1007_s11104_022_05817_3
crossref_primary_10_1111_nph_17326
crossref_primary_10_1002_eap_3082
crossref_primary_10_1016_j_fcr_2025_109786
crossref_primary_10_1007_s11104_024_06730_7
crossref_primary_10_1016_j_envexpbot_2024_105943
crossref_primary_10_1007_s11104_023_06381_0
crossref_primary_10_1002_eap_2863
crossref_primary_10_1111_nph_16962
crossref_primary_10_1016_j_scitotenv_2024_176027
crossref_primary_10_1016_j_pld_2024_09_008
crossref_primary_10_1093_jxb_erae083
crossref_primary_10_1111_nph_17590
crossref_primary_10_1007_s11104_021_05149_8
crossref_primary_10_1111_1365_2745_14268
crossref_primary_10_1186_s12870_023_04469_4
crossref_primary_10_1016_j_ecolind_2021_107838
crossref_primary_10_1111_gcb_16392
crossref_primary_10_3389_fpls_2022_993127
crossref_primary_10_3390_plants13223205
crossref_primary_10_1111_ppl_14253
crossref_primary_10_1016_j_envexpbot_2023_105530
crossref_primary_10_1111_nph_17978
crossref_primary_10_1016_j_plaphy_2025_109813
crossref_primary_10_1016_j_scitotenv_2023_167156
crossref_primary_10_1093_jpe_rtad045
crossref_primary_10_3390_toxics11080675
crossref_primary_10_1093_aob_mcad096
Cites_doi 10.1111/j.1469-8137.1991.tb00035.x
10.1093/jxb/43.3.319
10.1093/treephys/tps122
10.1111/j.1469-8137.2006.01912.x
10.1007/s12229-012-9096-1
10.1111/j.1365-2486.2009.01894.x
10.1890/16-0147.1
10.1093/treephys/tpv094
10.1093/treephys/tpp087
10.5194/bgd-10-13427-2013
10.1111/nph.14344
10.1146/annurev.pp.39.060188.001333
10.2135/cropsci1999.0011183X003900010027x
10.1111/ele.12559
10.1046/j.1469-8137.2002.00397.x
10.1626/pps.16.1
10.1046/j.1365-2745.2001.00576.x
10.1016/j.plantsci.2009.06.001
10.1007/s11430-009-0123-y
10.1093/jxb/50.331.201
10.1111/j.1365-2486.2009.02019.x
10.1111/1365-2745.12977
10.1007/s11104-010-0525-9
10.1111/nph.13363
10.1371/journal.pone.0057599
10.1146/annurev.pp.40.060189.002443
10.1111/j.1399-3054.2010.01351.x
10.1016/B978-012425060-4/50007-3
10.1111/j.1469-8137.2007.02237.x
10.1007/s11427-008-0029-5
10.21273/JASHS.125.2.260
10.1111/j.1365-2486.2011.02423.x
10.1023/B:CLIM.0000018513.60904.fe
10.1111/j.1365-3040.2006.01625.x
10.1111/nph.12842
10.1007/s004420050145
10.1111/j.1365-2486.2008.01807.x
10.1111/j.1469-8137.2009.03092.x
10.1007/s11258-009-9668-2
10.1007/s11104-015-2484-7
10.1093/jexbot/49.322.775
10.1023/A:1026223516580
10.1093/treephys/tpu019
10.1086/665823
10.1046/j.0016-8025.2001.00799.x
10.1371/journal.pone.0057153
10.1023/A:1004494432610
10.1111/j.1469-8137.2008.02573.x
10.1016/j.envexpbot.2012.01.004
10.1016/j.envexpbot.2018.08.025
10.1016/j.scienta.2013.04.007
10.1111/j.1469-8137.2004.01127.x
10.1111/1365-2435.13420
ContentType Journal Article
Copyright 2020 The Author © 2020 New Phytologist Foundation
2020 The Authors New Phytologist © 2020 New Phytologist Foundation
2020 The Authors New Phytologist © 2020 New Phytologist Foundation.
Copyright © 2021 New Phytologist Trust
Copyright_xml – notice: 2020 The Author © 2020 New Phytologist Foundation
– notice: 2020 The Authors New Phytologist © 2020 New Phytologist Foundation
– notice: 2020 The Authors New Phytologist © 2020 New Phytologist Foundation.
– notice: Copyright © 2021 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.16797
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE

MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1491
ExternalDocumentID 32645210
10_1111_nph_16797
NPH16797
27001150
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Chinese Academy of Sciences
– fundername: China Postdoctoral Science Foundation
– fundername: National Natural Science Foundation of China
  funderid: 31670481; 31971506
– fundername: State Key Basic Research Development Program of China
  funderid: 2016YFC0500706
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASGY
AASVR
ABEFU
ABEML
ABXSQ
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4437-3aa81248bb7cd11e4bff3e13904d29bd4f27c017ac3be23a79fbeae9b22e68283
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:25:27 EDT 2025
Fri Jul 11 12:35:31 EDT 2025
Fri Jul 25 11:52:44 EDT 2025
Wed Feb 19 02:29:49 EST 2025
Thu Apr 24 23:13:03 EDT 2025
Tue Jul 01 02:28:35 EDT 2025
Wed Jan 22 17:20:27 EST 2025
Thu Jul 03 21:34:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords water-use strategy
precipitation change
temperate steppe
leaf physiology
herbaceous species
root anatomical traits
Language English
License 2020 The Authors New Phytologist © 2020 New Phytologist Foundation.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4437-3aa81248bb7cd11e4bff3e13904d29bd4f27c017ac3be23a79fbeae9b22e68283
Notes Long & Medeiros, 229: 1186–1188
See also the Commentary on this article by
.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2708-2221
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.16797
PMID 32645210
PQID 2475063630
PQPubID 2026848
PageCount 11
ParticipantIDs proquest_miscellaneous_2498233886
proquest_miscellaneous_2423064092
proquest_journals_2475063630
pubmed_primary_32645210
crossref_citationtrail_10_1111_nph_16797
crossref_primary_10_1111_nph_16797
wiley_primary_10_1111_nph_16797_NPH16797
jstor_primary_27001150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210201
February 2021
2021-02-00
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210201
  day: 1
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2021
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 1989; 40
1998; 49
2004; 63
2010; 16
2002; 154
2004; 163
1997; 110
1988; 39
2010; 185
2010; 340
2007; 30
2011; 17
2013; 8
2001; 89
2016; 36
1999; 208
1991; 119
2012; 173
2013; 16
2009; 53
2000; 125
2007; 173
2013; 10
2013; 157
2016a; 19
1999; 50
1992; 43
2003; 169
2014; 203
2009; 15
2018; 106
2010; 207
2019; 33
2017; 68
2016b; 97
2009; 177
1995
2015; 207
2012; 79
2008; 51
2012; 78
2009; 29
2015; 393
2008; 180
2002; 25
2013; 33
2020
2010; 139
1999; 39
2018; 156
2016; 213
2008; 177
2014; 34
2016; 172
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
R Development Core Team (e_1_2_7_42_1) 2020
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
Prince SJ (e_1_2_7_40_1) 2017; 68
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Lens F (e_1_2_7_24_1) 2016; 172
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
33085085 - New Phytol. 2021 Feb;229(3):1186-1188
References_xml – volume: 172
  start-page: 661
  year: 2016
  end-page: 667
  article-title: Herbaceous angiosperms are not more vulnerable to drought‐induced embolism than angiosperm trees
  publication-title: Plant Physiology
– volume: 163
  start-page: 507
  year: 2004
  end-page: 517
  article-title: Variation in xylem structure and function in stems and roots of trees to 20 m depth
  publication-title: New Phytologist
– volume: 51
  start-page: 263
  year: 2008
  end-page: 270
  article-title: Above‐ and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia
  publication-title: Science in China Series C: Life Sciences
– volume: 110
  start-page: 160
  year: 1997
  end-page: 168
  article-title: Whole‐plant nitrogen‐ and water‐relations traits, and their associated trade‐offs, in adjacent muskeg and upland boreal spruce species
  publication-title: Oecologia
– volume: 33
  start-page: 2030
  year: 2019
  end-page: 2041
  article-title: The response of root traits to precipitation change of herbaceous species in temperate steppes
  publication-title: Functional Ecology
– volume: 29
  start-page: 1537
  year: 2009
  end-page: 1549
  article-title: Xylem anatomy correlates with gas exchange, water‐use efficiency and growth performance under contrasting water regimes: evidence from x hybrids
  publication-title: Tree Physiology
– volume: 393
  start-page: 215
  year: 2015
  end-page: 227
  article-title: Root morphology, histology and chemistry of nine fern species (pteridophyta) in a temperate forest
  publication-title: Plant and Soil
– volume: 154
  start-page: 275
  year: 2002
  end-page: 304
  article-title: Coevolution of roots and mycorrhizas of land plants
  publication-title: New Phytologist
– volume: 10
  start-page: 13427
  year: 2013
  end-page: 13454
  article-title: Inter‐annual precipitation fluctuations alter the responses of above‐ and belowground biomass to water and N enrichment
  publication-title: Biogeosciences Discussions
– volume: 139
  start-page: 159
  year: 2010
  end-page: 169
  article-title: Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks
  publication-title: Physiologia Plantarum
– volume: 15
  start-page: 1544
  year: 2009
  end-page: 1556
  article-title: Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe
  publication-title: Global Change Biology
– volume: 119
  start-page: 345
  year: 1991
  end-page: 360
  article-title: The hydraulic architecture of trees and other woody plants
  publication-title: New Phytologist
– volume: 30
  start-page: 291
  year: 2007
  end-page: 309
  article-title: The ecophysiology of early angiosperms
  publication-title: Plant, Cell & Environment
– volume: 203
  start-page: 863
  year: 2014
  end-page: 872
  article-title: Leading dimensions in absorptive root trait variation across 96 subtropical forest species
  publication-title: New Phytologist
– volume: 157
  start-page: 99
  year: 2013
  end-page: 107
  article-title: Stable carbon and nitrogen isotope ratios as indicators of water status and nitrogen effects on peach trees
  publication-title: Scientia Horticulturae
– volume: 34
  start-page: 415
  year: 2014
  end-page: 425
  article-title: Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species
  publication-title: Tree Physiology
– volume: 8
  year: 2013
  article-title: Variation of the linkage of root function with root branch order
  publication-title: PLoS ONE
– volume: 125
  start-page: 260
  year: 2000
  end-page: 264
  article-title: Linking hydraulic conductivity to anatomy in plants that vary in specific root length
  publication-title: Journal of the American Society for Horticultural Science
– volume: 39
  start-page: 168
  year: 1999
  end-page: 173
  article-title: Rooting, water uptake, and xylem structure adaptation to drought of two sorghum cultivars
  publication-title: Crop Science
– volume: 33
  start-page: 161
  year: 2013
  end-page: 174
  article-title: Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root‐to‐shoot flow path in tropical rainforest trees
  publication-title: Tree Physiology
– volume: 63
  start-page: 351
  year: 2004
  end-page: 368
  article-title: Vulnerability of the Asian typical steppe to grazing and climate change
  publication-title: Climatic Change
– volume: 106
  start-page: 2320
  year: 2018
  end-page: 2331
  article-title: Multi‐dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes
  publication-title: Journal of Ecology
– volume: 19
  start-page: 240
  year: 2016a
  end-page: 248
  article-title: Climate determines vascular traits in the ecologically diverse genus
  publication-title: Ecology Letters
– volume: 68
  start-page: 2027
  year: 2017
  end-page: 2036
  article-title: Root xylem plasticity to improve water use and yield in water‐stressed soybean
  publication-title: Journal of Experimental Botany
– volume: 97
  start-page: 1626
  year: 2016b
  article-title: Vessel diameter and related hydraulic traits of 31 species arrayed along a gradient of water availability
  publication-title: Ecology
– volume: 25
  start-page: 251
  year: 2002
  end-page: 263
  article-title: Water deficits and hydraulic limits to leaf water supply
  publication-title: Plant, Cell & Environment
– volume: 53
  start-page: 284
  year: 2009
  end-page: 300
  article-title: A projection of future changes in summer precipitation and monsoon in East Asia
  publication-title: Science China Earth Sciences
– volume: 207
  start-page: 505
  year: 2015
  end-page: 518
  article-title: Redefining fine roots improves understanding of below‐ground contributions to terrestrial biosphere processes
  publication-title: New Phytologist
– volume: 16
  start-page: 144
  year: 2010
  end-page: 155
  article-title: Nitrogen effects on net ecosystem carbon exchange in a temperate steppe
  publication-title: Global Change Biology
– volume: 89
  start-page: 464
  year: 2001
  end-page: 480
  article-title: Water use trade‐offs and optimal adaptations to pulse‐driven arid ecosystems
  publication-title: Journal of Ecology
– volume: 173
  start-page: 584
  year: 2012
  end-page: 595
  article-title: Evolutionary patterns and biogeochemical significance of angiosperm root traits
  publication-title: International Journal of Plant Sciences
– volume: 79
  start-page: 49
  year: 2012
  end-page: 57
  article-title: Linking root traits to plant physiology and growth in . seedlings under soil compaction conditions
  publication-title: Environmental and Experimental Botany
– volume: 340
  start-page: 227
  year: 2010
  end-page: 238
  article-title: Tradeoffs between nitrogen‐ and water‐use efficiency in dominant species of the semiarid steppe of Inner Mongolia
  publication-title: Plant and Soil
– volume: 208
  start-page: 57
  year: 1999
  end-page: 71
  article-title: Axial water flux dynamics in small diameter roots of a fast growing tropical tree
  publication-title: Plant and Soil
– volume: 207
  start-page: 233
  year: 2010
  end-page: 244
  article-title: Morphological traits and water use strategies in seedlings of Mediterranean coexisting species
  publication-title: Plant Ecology
– volume: 185
  start-page: 481
  year: 2010
  end-page: 492
  article-title: The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species
  publication-title: New Phytologist
– volume: 40
  start-page: 503
  year: 1989
  end-page: 537
  article-title: Carbon isotope discrimination and photosynthesis
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 17
  start-page: 2936
  year: 2011
  end-page: 2944
  article-title: Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits
  publication-title: Global Change Biology
– volume: 213
  start-page: 1569
  year: 2016
  end-page: 1572
  article-title: The nutrient absorption–transportation hypothesis: optimizing structural traits in absorptive roots
  publication-title: New Phytologist
– volume: 16
  start-page: 1
  year: 2013
  end-page: 8
  article-title: Root anatomical traits and their possible contribution to drought tolerance in grain legumes
  publication-title: Plant Production Science
– volume: 177
  start-page: 245
  year: 2009
  end-page: 251
  article-title: Xylem hydraulic physiology: The functional backbone of terrestrial plant productivity
  publication-title: Plant Science
– volume: 49
  start-page: 775
  year: 1998
  end-page: 788
  article-title: How does water get through roots?
  publication-title: Journal of Experimental Botany
– volume: 78
  start-page: 87
  year: 2012
  end-page: 153
  article-title: Monocot xylem revisited: new information
  publication-title: New Paradigms. The Botanical Review
– volume: 169
  start-page: 131
  year: 2003
  end-page: 141
  article-title: Hydraulic properties of , and in a dune ecosystem of Eastern Spain
  publication-title: Plant Ecology
– volume: 36
  start-page: 99
  year: 2016
  end-page: 108
  article-title: Root tip morphology, anatomy, chemistry and potential hydraulic conductivity vary with soil depth in three temperate hardwood species
  publication-title: Tree Physiology
– volume: 156
  start-page: 25
  year: 2018
  end-page: 37
  article-title: Hydraulic anatomy affects genotypic variation in plant water use and shows differential organ specific plasticity to drought in
  publication-title: Environmental and Experimental Botany
– volume: 180
  start-page: 673
  year: 2008
  end-page: 683
  article-title: Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty‐three Chinese temperate tree species
  publication-title: New Phytologist
– year: 2020
– year: 1995
– volume: 43
  start-page: 319
  year: 1992
  end-page: 326
  article-title: Hydraulic conductances of the soil, the root soil air gap, and the root‐changes for desert succulents in drying soil
  publication-title: Journal of Experimental Botany
– volume: 173
  start-page: 313
  year: 2007
  end-page: 321
  article-title: Relating root structure and anatomy to whole‐plant functioning in 14 herbaceous Mediterranean species
  publication-title: New Phytologist
– volume: 8
  year: 2013
  article-title: Changing climate and overgrazing are decimating Mongolian steppes
  publication-title: PLoS ONE
– volume: 50
  start-page: 201
  year: 1999
  end-page: 209
  article-title: Root system hydraulic conductivity in species with contrasting root anatomy
  publication-title: Journal of Experimental Botany
– volume: 16
  start-page: 1306
  year: 2010
  end-page: 1316
  article-title: Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling
  publication-title: Global Change Biology
– volume: 39
  start-page: 245
  year: 1988
  end-page: 265
  article-title: Water transport in and to roots
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 177
  start-page: 209
  year: 2008
  end-page: 219
  article-title: Water‐mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe
  publication-title: New Phytologist
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1469-8137.1991.tb00035.x
– ident: e_1_2_7_32_1
  doi: 10.1093/jxb/43.3.319
– ident: e_1_2_7_46_1
  doi: 10.1093/treephys/tps122
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1469-8137.2006.01912.x
– ident: e_1_2_7_6_1
  doi: 10.1007/s12229-012-9096-1
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1365-2486.2009.01894.x
– ident: e_1_2_7_38_1
  doi: 10.1890/16-0147.1
– ident: e_1_2_7_53_1
  doi: 10.1093/treephys/tpv094
– ident: e_1_2_7_12_1
  doi: 10.1093/treephys/tpp087
– ident: e_1_2_7_20_1
  doi: 10.5194/bgd-10-13427-2013
– ident: e_1_2_7_22_1
  doi: 10.1111/nph.14344
– ident: e_1_2_7_35_1
  doi: 10.1146/annurev.pp.39.060188.001333
– ident: e_1_2_7_45_1
  doi: 10.2135/cropsci1999.0011183X003900010027x
– ident: e_1_2_7_37_1
  doi: 10.1111/ele.12559
– ident: e_1_2_7_5_1
  doi: 10.1046/j.1469-8137.2002.00397.x
– ident: e_1_2_7_41_1
  doi: 10.1626/pps.16.1
– ident: e_1_2_7_47_1
  doi: 10.1046/j.1365-2745.2001.00576.x
– ident: e_1_2_7_4_1
  doi: 10.1016/j.plantsci.2009.06.001
– ident: e_1_2_7_51_1
  doi: 10.1007/s11430-009-0123-y
– ident: e_1_2_7_43_1
  doi: 10.1093/jxb/50.331.201
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1365-2486.2009.02019.x
– ident: e_1_2_7_56_1
  doi: 10.1111/1365-2745.12977
– volume-title: R: a language and environment for statistical computing
  year: 2020
  ident: e_1_2_7_42_1
– ident: e_1_2_7_13_1
  doi: 10.1007/s11104-010-0525-9
– ident: e_1_2_7_28_1
  doi: 10.1111/nph.13363
– ident: e_1_2_7_25_1
  doi: 10.1371/journal.pone.0057599
– ident: e_1_2_7_10_1
  doi: 10.1146/annurev.pp.40.060189.002443
– volume: 68
  start-page: 2027
  year: 2017
  ident: e_1_2_7_40_1
  article-title: Root xylem plasticity to improve water use and yield in water‐stressed soybean
  publication-title: Journal of Experimental Botany
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1399-3054.2010.01351.x
– ident: e_1_2_7_23_1
  doi: 10.1016/B978-012425060-4/50007-3
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1469-8137.2007.02237.x
– ident: e_1_2_7_27_1
  doi: 10.1007/s11427-008-0029-5
– ident: e_1_2_7_18_1
  doi: 10.21273/JASHS.125.2.260
– ident: e_1_2_7_55_1
  doi: 10.1111/j.1365-2486.2011.02423.x
– ident: e_1_2_7_7_1
  doi: 10.1023/B:CLIM.0000018513.60904.fe
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1365-3040.2006.01625.x
– ident: e_1_2_7_21_1
  doi: 10.1111/nph.12842
– volume: 172
  start-page: 661
  year: 2016
  ident: e_1_2_7_24_1
  article-title: Herbaceous angiosperms are not more vulnerable to drought‐induced embolism than angiosperm trees
  publication-title: Plant Physiology
– ident: e_1_2_7_36_1
  doi: 10.1007/s004420050145
– ident: e_1_2_7_54_1
  doi: 10.1111/j.1365-2486.2008.01807.x
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1469-8137.2009.03092.x
– ident: e_1_2_7_17_1
  doi: 10.1007/s11258-009-9668-2
– ident: e_1_2_7_9_1
  doi: 10.1007/s11104-015-2484-7
– ident: e_1_2_7_50_1
  doi: 10.1093/jexbot/49.322.775
– ident: e_1_2_7_33_1
  doi: 10.1023/A:1026223516580
– ident: e_1_2_7_14_1
  doi: 10.1093/treephys/tpu019
– ident: e_1_2_7_8_1
  doi: 10.1086/665823
– ident: e_1_2_7_49_1
  doi: 10.1046/j.0016-8025.2001.00799.x
– ident: e_1_2_7_26_1
  doi: 10.1371/journal.pone.0057153
– ident: e_1_2_7_48_1
  doi: 10.1023/A:1004494432610
– ident: e_1_2_7_16_1
  doi: 10.1111/j.1469-8137.2008.02573.x
– ident: e_1_2_7_2_1
  doi: 10.1016/j.envexpbot.2012.01.004
– ident: e_1_2_7_15_1
  doi: 10.1016/j.envexpbot.2018.08.025
– ident: e_1_2_7_34_1
  doi: 10.1016/j.scienta.2013.04.007
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1469-8137.2004.01127.x
– ident: e_1_2_7_57_1
  doi: 10.1111/1365-2435.13420
– reference: 33085085 - New Phytol. 2021 Feb;229(3):1186-1188
SSID ssj0009562
Score 2.5383427
Snippet • Root anatomy plays important roles in the control of leaf water relations. However, few studies have evaluated whether and how anatomical traits of...
Summary Root anatomy plays important roles in the control of leaf water relations. However, few studies have evaluated whether and how anatomical traits of...
Root anatomy plays important roles in the control of leaf water relations. However, few studies have evaluated whether and how anatomical traits of absorptive...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1481
SubjectTerms Absorptivity
Conductance
cortex
diameter
Diameters
Forbs
grasses
Grasslands
herbaceous plants
herbaceous species
Herbivores
leaf characteristics
leaf physiology
Leaves
Lilium
Magnoliopsida
Photosynthesis
Physiology
Plant Leaves
Plants
Poaceae
Precipitation
precipitation change
Resistance
root anatomical traits
root anatomy
Roots
Species
stele
Steppes
Stomata
Stomatal conductance
temperate steppe
Thickness
Transpiration
water
Water relations
water use efficiency
water‐use strategy
Title Root anatomical traits determined leaf-level physiology and responses to precipitation change of herbaceous species in a temperate steppe
URI https://www.jstor.org/stable/27001150
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16797
https://www.ncbi.nlm.nih.gov/pubmed/32645210
https://www.proquest.com/docview/2475063630
https://www.proquest.com/docview/2423064092
https://www.proquest.com/docview/2498233886
Volume 229
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqigMX3oWFggbEoZesurbXScQJENWKQ4UqKu0BKfJjIhCrJGqyBzj13gu_kV_CjPNQiwpC3CJ5rDjOjP3Z8_mzEC9VZjNV2jQxzh4m2iiZuLDUSdCc5ZRlnrvItjg2q1P9fr1c74hX41mYXh9i2nDjyIjjNQe4de2lIK-az3POIfBJcuZqMSA6kZcEd40cFZiNNutBVYhZPFPNK3NRT0e8Dmhexa1x4jm6LT6NTe75Jl_n287N_fff1Bz_85vuiFsDIIXXvQfdFTtY3RM33tQEGr_dFxcndd2BrWhpHnUFgK-U6FoIA4sGA2zQlj_Pf2yYfQRxoyTu1FOlAGc9Axdb6GpoWEijGTTBoT9xDHUJ5DXOeqy3LfC5T1q6w5cKLLBqFks-I5AnNg0-EKdH7z6-XSXD_Q2J11rR2GUtw4fMudSHxQK1K0uFBDkPdZC5C7qUqacRwXrlUCqb5qVDi7mTEg2tBNWe2K3qCh8JMMsQcpOhM56qLWXmnU8DLoyU1uoUZ-Jg_JOFHz6EO2RTjIsc6toidu1MvJhMm17R4zqjvegOk0XMzxN4non90T-KIdrbQmrCXUYZRcXPp2KKU06-2Io7sGDcylnTXP7NJs-kUllmZuJh73tTAwhma4Ja9IaD6EF_bntx_GEVHx7_u-kTcVMyWSfS0ffFbne2xaeEtjr3LIbVL177KO4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VggSXlkcLSwuYqodesuraXieRuEDVaoGyQlUr7aWK_IpArJKomz2UE3cu_EZ-CTPOQy0qCHGLlLHiODPON57PnwF2RaITkes4UkbvR1IJHhk3lpGTVOXkeZqawLaYqsmZfDcbz1bgVbcXptGH6BfcKDLCfE0BTgvSV6K8qD4NqYgQ34LbdKJ3SKhO-BXJXcU7DWYl1azVFSIeT9_02t-oISTeBDWvI9fw6zlah_Ou0w3j5MtwWZuh_fqbnuP_vtV9WGsxKXvdONEDWPHFQ7jzpkTcePkIvp-UZc10gdl5kBZgdKpEvWCuJdJ4x-Ze5z-__ZgTAYmFtZKwWI-NHLtoSLh-weqSVaSlUbWy4KzZdMzKnKHjGG19uVww2vqJ2Tv7XDDNSDiLVJ89Q2esKr8BZ0eHpweTqD3CIbJSCpy-tCYEkRgTWzcaeWnyXHhEnfvS8dQ4mfPY4qSgrTCeCx2nufHap4ZzrzAZFJuwWpSFfwJMjZ1LVeKNsthszBNrbOz8SHGutYz9APa6T5nZ9kVoQOZZl-fg0GZhaAew05tWjajHTUabwR96i1CiR_w8gO3OQbI24BcZlwi9lFACb7_sb2OoUv1FFzSAGUFXKpym_G82acKFSBI1gMeN8_UdQKQtEW3hE_aCC_2579n04yRcPP130xdwd3L64Tg7fjt9vwX3OHF3Ajt9G1bri6V_huCrNs9DjP0CwrctCQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VghCX8iwsFDCIQy9Z7dpeJxEnoKyWh1ZVRaU9IEV-RSBWSdTNHtpT71z6G_tLmHEealFBiFskjxXHmbE_ez5_BnglEp2IXMeRMnoUSSV4ZNxERk5SlpPnaWoC22KuZofy42Ky2IDX3VmYRh-i33CjyAjjNQV45fILQV5U34aUQ4ivwXWpRgm59N4Bv6C4q3gnwaykWrSyQkTj6atemowaPuJVSPMycA0zz_Q2fO3a3BBOfgzXtRnak9_kHP_zo-7AVotI2ZvGhe7Chi_uwY23JaLG4_vw86Asa6YLXJsHYQFGd0rUK-ZaGo13bOl1fn56tiT6EQs7JWGrHis5dtRQcP2K1SWrSEmjakXBWXPkmJU5Q7cx2vpyvWJ08BPX7ux7wTQj2SzSfPYMXbGq_AM4nL7_8m4WtRc4RFZKgYOX1oQfEmNi68ZjL02eC4-YcyQdT42TOY8tDgnaCuO50HGaG699ajj3CpeCYhs2i7Lwj4CpiXOpSrxRFqtNeGKNjZ0fK861lrEfwG73JzPbfgh1yDLrVjnYtVno2gG87E2rRtLjKqPt4A69RUjQI3oewE7nH1kb7quMSwReSiiBxS_6YgxUyr7ogjowI-BKadOU_80mTbgQSaIG8LDxvb4BiLMlYi18w27woD-3PZvvz8LD4383fQ439_em2ecP809P4BYn4k6gpu_AZn209k8RedXmWYiwX0TJK8E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Root+anatomical+traits+determined+leaf%E2%80%90level+physiology+and+responses+to+precipitation+change+of+herbaceous+species+in+a+temperate+steppe&rft.jtitle=The+New+phytologist&rft.au=Zhou%2C+Meng&rft.au=Bai%2C+Wenming&rft.au=Li%2C+Qingmei&rft.au=Guo%2C+Yumeng&rft.date=2021-02-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=229&rft.issue=3&rft.spage=1481&rft.epage=1491&rft_id=info:doi/10.1111%2Fnph.16797&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_16797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon