Systematic Dimensional Analysis of the Scaling Relationship for Gradient and Shim Coil Design Parameters

Purpose To demonstrate systematic, linear algebra–based, dimensional analysis to derive a scaling relationship among the design parameters of MRI gradient and harmonic shim coils. Theory and Methods The dimensions of five physical quantities relevant for gradient coil design (inductance, gradient am...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 88; no. 4; pp. 1901 - 1911
Main Authors Lee, Seung‐Kyun, Bernstein, Matt A.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To demonstrate systematic, linear algebra–based, dimensional analysis to derive a scaling relationship among the design parameters of MRI gradient and harmonic shim coils. Theory and Methods The dimensions of five physical quantities relevant for gradient coil design (inductance, gradient amplitude, inner diameter [d$$ d $$], current, and the permeability of free space) were decomposed into fundamental units, and their exponents were arranged into a dimensional matrix. The resulting set of homogenous equations was solved using standard linear algebraic methods. Inclusion of the number of turns as an additional unit yielded a 5 × 5 dimensional matrix with a unique, nontrivial solution. The analysis was extended to harmonic shim coils. The gradient coil scaling relationship was compared with data from 24 published gradient coil sets. Results Only when the unit of turns was included did the linear algebra–based analysis uniquely produce the known scaling relationship that gradient inductance is proportional to gradient efficiency squared times d5$$ {d}^5 $$. By applying the same methodology to an lth order shim coil, a novel result is obtained: Shim inductance is proportional to its efficiency squared times d2l+3$$ {d}^{2l+3} $$. The predicted power‐law relationship between inductance‐normalized gradient efficiency and the diameter accounted for > 92% of the efficiency variation of the surveyed gradient coils. A dimensionless parameter is proposed as an intrinsic figure‐of‐merit of gradient coil efficiency. Conclusion Systematic application of linear algebra–based dimensional analysis can provide new insight in gradient and shim coil design by revealing fundamental scaling relations and helping to guide the design and comparison of coils with different diameters.
AbstractList To demonstrate systematic, linear algebra-based, dimensional analysis to derive a scaling relationship among the design parameters of MRI gradient and harmonic shim coils. The dimensions of five physical quantities relevant for gradient coil design (inductance, gradient amplitude, inner diameter [ ], current, and the permeability of free space) were decomposed into fundamental units, and their exponents were arranged into a dimensional matrix. The resulting set of homogenous equations was solved using standard linear algebraic methods. Inclusion of the number of turns as an additional unit yielded a 5 × 5 dimensional matrix with a unique, nontrivial solution. The analysis was extended to harmonic shim coils. The gradient coil scaling relationship was compared with data from 24 published gradient coil sets. Only when the unit of turns was included did the linear algebra-based analysis uniquely produce the known scaling relationship that gradient inductance is proportional to gradient efficiency squared times . By applying the same methodology to an lth order shim coil, a novel result is obtained: Shim inductance is proportional to its efficiency squared times . The predicted power-law relationship between inductance-normalized gradient efficiency and the diameter accounted for > 92% of the efficiency variation of the surveyed gradient coils. A dimensionless parameter is proposed as an intrinsic figure-of-merit of gradient coil efficiency. Systematic application of linear algebra-based dimensional analysis can provide new insight in gradient and shim coil design by revealing fundamental scaling relations and helping to guide the design and comparison of coils with different diameters.
PURPOSETo demonstrate systematic, linear algebra-based, dimensional analysis to derive a scaling relationship among the design parameters of MRI gradient and harmonic shim coils. THEORY AND METHODSThe dimensions of five physical quantities relevant for gradient coil design (inductance, gradient amplitude, inner diameter [ d$$ d $$ ], current, and the permeability of free space) were decomposed into fundamental units, and their exponents were arranged into a dimensional matrix. The resulting set of homogenous equations was solved using standard linear algebraic methods. Inclusion of the number of turns as an additional unit yielded a 5 × 5 dimensional matrix with a unique, nontrivial solution. The analysis was extended to harmonic shim coils. The gradient coil scaling relationship was compared with data from 24 published gradient coil sets. RESULTSOnly when the unit of turns was included did the linear algebra-based analysis uniquely produce the known scaling relationship that gradient inductance is proportional to gradient efficiency squared times d5$$ {d}^5 $$ . By applying the same methodology to an lth order shim coil, a novel result is obtained: Shim inductance is proportional to its efficiency squared times d2l+3$$ {d}^{2l+3} $$ . The predicted power-law relationship between inductance-normalized gradient efficiency and the diameter accounted for > 92% of the efficiency variation of the surveyed gradient coils. A dimensionless parameter is proposed as an intrinsic figure-of-merit of gradient coil efficiency. CONCLUSIONSystematic application of linear algebra-based dimensional analysis can provide new insight in gradient and shim coil design by revealing fundamental scaling relations and helping to guide the design and comparison of coils with different diameters.
Purpose To demonstrate systematic, linear algebra–based, dimensional analysis to derive a scaling relationship among the design parameters of MRI gradient and harmonic shim coils. Theory and Methods The dimensions of five physical quantities relevant for gradient coil design (inductance, gradient amplitude, inner diameter [d$$ d $$], current, and the permeability of free space) were decomposed into fundamental units, and their exponents were arranged into a dimensional matrix. The resulting set of homogenous equations was solved using standard linear algebraic methods. Inclusion of the number of turns as an additional unit yielded a 5 × 5 dimensional matrix with a unique, nontrivial solution. The analysis was extended to harmonic shim coils. The gradient coil scaling relationship was compared with data from 24 published gradient coil sets. Results Only when the unit of turns was included did the linear algebra–based analysis uniquely produce the known scaling relationship that gradient inductance is proportional to gradient efficiency squared times d5$$ {d}^5 $$. By applying the same methodology to an lth order shim coil, a novel result is obtained: Shim inductance is proportional to its efficiency squared times d2l+3$$ {d}^{2l+3} $$. The predicted power‐law relationship between inductance‐normalized gradient efficiency and the diameter accounted for > 92% of the efficiency variation of the surveyed gradient coils. A dimensionless parameter is proposed as an intrinsic figure‐of‐merit of gradient coil efficiency. Conclusion Systematic application of linear algebra–based dimensional analysis can provide new insight in gradient and shim coil design by revealing fundamental scaling relations and helping to guide the design and comparison of coils with different diameters.
Purpose To demonstrate systematic, linear algebra–based, dimensional analysis to derive a scaling relationship among the design parameters of MRI gradient and harmonic shim coils. Theory and Methods The dimensions of five physical quantities relevant for gradient coil design (inductance, gradient amplitude, inner diameter [], current, and the permeability of free space) were decomposed into fundamental units, and their exponents were arranged into a dimensional matrix. The resulting set of homogenous equations was solved using standard linear algebraic methods. Inclusion of the number of turns as an additional unit yielded a 5 × 5 dimensional matrix with a unique, nontrivial solution. The analysis was extended to harmonic shim coils. The gradient coil scaling relationship was compared with data from 24 published gradient coil sets. Results Only when the unit of turns was included did the linear algebra–based analysis uniquely produce the known scaling relationship that gradient inductance is proportional to gradient efficiency squared times . By applying the same methodology to an l th order shim coil, a novel result is obtained: Shim inductance is proportional to its efficiency squared times . The predicted power‐law relationship between inductance‐normalized gradient efficiency and the diameter accounted for > 92% of the efficiency variation of the surveyed gradient coils. A dimensionless parameter is proposed as an intrinsic figure‐of‐merit of gradient coil efficiency. Conclusion Systematic application of linear algebra–based dimensional analysis can provide new insight in gradient and shim coil design by revealing fundamental scaling relations and helping to guide the design and comparison of coils with different diameters. Click here for author‐reader discussions
Author Lee, Seung‐Kyun
Bernstein, Matt A.
AuthorAffiliation 1. GE Global Research, Niskayuna, NY 12309
2. Department of Radiology, Mayo Clinic, Rochester, MN 55905
AuthorAffiliation_xml – name: 1. GE Global Research, Niskayuna, NY 12309
– name: 2. Department of Radiology, Mayo Clinic, Rochester, MN 55905
Author_xml – sequence: 1
  givenname: Seung‐Kyun
  orcidid: 0000-0001-7625-3141
  surname: Lee
  fullname: Lee, Seung‐Kyun
  organization: GE Global Research
– sequence: 2
  givenname: Matt A.
  orcidid: 0000-0003-3770-0441
  surname: Bernstein
  fullname: Bernstein, Matt A.
  email: mbernstein@mayo.edu
  organization: Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35666832$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1uEzEURi1URNOWBS-ALLGBxbT-G894g1Sl0CK1ompgbTmeOxlXYzu1J6C8PQ5pK0Bi47vw0bmf7neEDkIMgNAbSk4pIezMJ3_KFKfyBZrRmrGK1UocoBlpBKk4VeIQHeV8TwhRqhGv0CGvpZQtZzM0LLZ5Am8mZ_GF8xCyi8GM-Lw82-wyjj2eBsALa0YXVvgOxsLGkAe3xn1M-DKZzkGYsAkdXgzO43l0I76A7FYB35pkPEyQ8gl62Zsxw-vHeYy-f_70bX5VXX-9_DI_v66sEFxWSyBLKsE0XU3qtmlaxY2tmewMb6EXklvZNlSKlnYMWGeNtJ2yfQOCdJJIwo_Rx713vVl66GyJlsyo18l5k7Y6Gqf__glu0Kv4Q6uyqhWsCN4_ClJ82ECetHfZwjiaAHGTNZPlqkQw2hT03T_ofdykcrkdpeqaiJbvEn3YUzbFnBP0z2Eo0bv-dOlP_-6vsG__TP9MPhVWgLM98NONsP2_Sd_c3eyVvwBNa6eE
CitedBy_id crossref_primary_10_1016_j_mri_2023_07_009
crossref_primary_10_1002_mrm_29874
crossref_primary_10_1002_mrm_30113
crossref_primary_10_1002_mrm_29452
crossref_primary_10_1063_5_0151057
Cites_doi 10.1016/j.neuroimage.2013.05.078
10.1002/mrm.26954
10.1002/mrm.1910260202
10.1002/mrm.10263
10.1097/00004728-199911000-00002
10.1002/mrm.27382
10.1002/mrm.26044
10.1002/mrm.27175
10.1002/cmr.b.20082
10.1088/1361-6560/ab99e2
10.1002/cmr.a.20163
10.1002/mrm.1910390214
10.1002/mrm.27110
10.1088/2057-1976/ab8d97
10.1002/mrm.28087
10.1016/0730-725X(93)90209-V
10.1016/j.jmr.2011.07.005
10.1002/mrm.22850
10.1002/mrm.24766
10.1002/mrm.1910190210
10.1002/9780470495032
10.1016/j.neuroimage.2017.06.013
ContentType Journal Article
Copyright 2022 International Society for Magnetic Resonance in Medicine.
2022 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2022 International Society for Magnetic Resonance in Medicine.
– notice: 2022 International Society for Magnetic Resonance in Medicine
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.29316
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Biochemistry Abstracts 1
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1911
ExternalDocumentID 10_1002_mrm_29316
35666832
MRM29316
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: U01‐EB024450
– fundername: NIBIB NIH HHS
  grantid: U01 EB024450
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
G8K
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4436-be0b16ea7d505877893ac526da38ef463c68716481d2e2dca6cd9cf7e40d60603
IEDL.DBID DR2
ISSN 0740-3194
IngestDate Tue Sep 17 21:29:46 EDT 2024
Fri Aug 16 08:29:37 EDT 2024
Fri Sep 13 10:31:23 EDT 2024
Fri Aug 23 00:46:54 EDT 2024
Tue Aug 27 13:46:33 EDT 2024
Sat Aug 24 00:59:29 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords inductance
gradient coil
dimensional analysis
shim coil
turns
Language English
License 2022 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4436-be0b16ea7d505877893ac526da38ef463c68716481d2e2dca6cd9cf7e40d60603
Notes Funding information
National Institutes of Health, Grant/Award Number: U01‐EB024450
Seung‐Kyun Lee and Matt A. Bernstein contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors contributed equally to this work.
ORCID 0000-0003-3770-0441
0000-0001-7625-3141
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9893842
PMID 35666832
PQID 2695504830
PQPubID 1016391
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9893842
proquest_miscellaneous_2674004217
proquest_journals_2695504830
crossref_primary_10_1002_mrm_29316
pubmed_primary_35666832
wiley_primary_10_1002_mrm_29316_MRM29316
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 36A
2020; 6
1998; 39
1991; 19
2011; 212
2002; 48
2019; 81
2020; 83
1993; 11
2018; 168
2016; 76
2009
2007; 31B
1924; 19
2013; 80
2018; 80
1997
1999; 23
2011; 66
2013; 70
1907; 4
1992; 26
2020; 65
2018; 79
e_1_2_8_28_1
e_1_2_8_29_1
Rosa EB (e_1_2_8_25_1) 1907; 4
e_1_2_8_24_1
Szirtes T (e_1_2_8_15_1) 1997
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Curtis HL (e_1_2_8_26_1) 1924; 19
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 70
  start-page: 241
  year: 2013
  end-page: 247
  article-title: Integrated parallel reception, excitation, and shimming (iPRES)
  publication-title: Magn Reson Med.
– volume: 26
  start-page: 191
  year: 1992
  end-page: 206
  article-title: Design and evaluation of shielded gradient coils
  publication-title: Magn Reson Med.
– volume: 80
  start-page: 1714
  year: 2018
  end-page: 25
  article-title: Dynamic B0 shimming of the human brain at 9.4 T with a 16‐channel multi‐coil shim setup
  publication-title: Magn Reson Med.
– year: 2009
– volume: 80
  start-page: 220
  year: 2013
  end-page: 33
  article-title: Pushing the limits of in vivo diffusion MRI for the human connectome project
  publication-title: Neuroimage.
– volume: 4
  start-page: 149
  year: 1907
  end-page: 160
  article-title: On the self‐inductance of circles
  publication-title: J Res NIST.
– start-page: 1349
  end-page: 53
– volume: 39
  start-page: 270
  year: 1998
  end-page: 278
  article-title: Constrained length minimum inductance gradient coil design
  publication-title: Magn Reson Med.
– volume: 81
  start-page: 686
  year: 2019
  end-page: 701
  article-title: Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations
  publication-title: Magn Reson Med.
– volume: 31B
  start-page: 1
  year: 2007
  end-page: 11
  article-title: Toward designing asymmetric head gradient coils for high‐resolution imaging
  publication-title: Concepts Magn Reson Part B.
– volume: 48
  start-page: 707
  year: 2002
  end-page: 714
  article-title: Asymmetrical gradient coil for head imaging
  publication-title: Magn Reson Med.
– volume: 36A
  start-page: 223
  year: 2010
  end-page: 242
  article-title: Theory of gradient coil design methods for magnetic resonance imaging
  publication-title: Concepts Magn Reson Part A.
– volume: 79
  start-page: 3256
  year: 2018
  end-page: 3266
  article-title: A high‐performance gradient insert for rapid and short‐T2 imaging at full duty cycle
  publication-title: Magn Reson Med.
– volume: 65
  start-page: 15NT02
  year: 2020
  article-title: Reducing PNS with minimal performance penalties via simple pulse sequence modifications on a high‐performance compact 3T scanner
  publication-title: Phys Med Biol.
– volume: 6
  start-page: 045022
  year: 2020
  article-title: Design and construction of a gradient coil for high resolution marmoset imaging
  publication-title: Biomed Phys Eng Express.
– volume: 83
  start-page: 2356
  year: 2020
  end-page: 69
  article-title: Highly efficient head‐only magnetic field insert gradient coil for achieving simultaneous high gradient amplitude and slew rate at 3.0T (MAGNUS) for brain microstructure imaging
  publication-title: Magn Reson Med.
– volume: 23
  start-page: 808
  year: 1999
  end-page: 820
  article-title: Design and assembly of an 8 tesla whole‐body MR scanner
  publication-title: J Comput Assist Tomogr.
– volume: 76
  start-page: 1939
  year: 2016
  end-page: 50
  article-title: Peripheral nerve stimulation characteristics of an asymmetric head‐only gradient coil compatible with a high‐channel‐count receiver array
  publication-title: Magn Reson Med.
– volume: 19
  start-page: 247
  year: 1991
  end-page: 253
  article-title: Echo‐planar imaging of diffusion and perfusion
  publication-title: Magn Reson Med.
– volume: 168
  start-page: 71
  year: 2018
  end-page: 87
  article-title: In vivo B0 field shimming methods for MRI at 7T
  publication-title: Neuroimage
– volume: 19
  start-page: 541
  year: 1924
  end-page: 576
  article-title: Formulae, tables, and curves for computing the mutual inductance of two coaxial circles
  publication-title: J Res NIST.
– volume: 11
  start-page: 903
  year: 1993
  end-page: 920
  article-title: Gradient coil design: a review of methods
  publication-title: Magn Reson Imaging.
– volume: 80
  start-page: 2232
  year: 2018
  end-page: 45
  article-title: Lightweight, compact, and high‐performance 3T MR system for imaging the brain and extremities
  publication-title: Magn Reson Med.
– year: 1997
– volume: 212
  start-page: 280
  year: 2011
  end-page: 288
  article-title: Dynamic multi‐coil shimming of the human brain at 7 T
  publication-title: J Magn Reson.
– volume: 66
  start-page: 893
  year: 2011
  end-page: 900
  article-title: Multicoil shimming of the mouse brain
  publication-title: Magn Reson Med.
– ident: e_1_2_8_31_1
– ident: e_1_2_8_37_1
– ident: e_1_2_8_14_1
– ident: e_1_2_8_34_1
  doi: 10.1016/j.neuroimage.2013.05.078
– ident: e_1_2_8_17_1
– ident: e_1_2_8_28_1
  doi: 10.1002/mrm.26954
– ident: e_1_2_8_3_1
  doi: 10.1002/mrm.1910260202
– ident: e_1_2_8_33_1
– ident: e_1_2_8_29_1
  doi: 10.1002/mrm.10263
– volume: 4
  start-page: 149
  year: 1907
  ident: e_1_2_8_25_1
  article-title: On the self‐inductance of circles
  publication-title: J Res NIST.
  contributor:
    fullname: Rosa EB
– ident: e_1_2_8_30_1
  doi: 10.1097/00004728-199911000-00002
– volume-title: Applied Dimensional Analysis and Modeling
  year: 1997
  ident: e_1_2_8_15_1
  contributor:
    fullname: Szirtes T
– ident: e_1_2_8_32_1
– ident: e_1_2_8_36_1
– ident: e_1_2_8_9_1
  doi: 10.1002/mrm.27382
– ident: e_1_2_8_7_1
  doi: 10.1002/mrm.26044
– ident: e_1_2_8_4_1
– ident: e_1_2_8_13_1
– ident: e_1_2_8_11_1
  doi: 10.1002/mrm.27175
– ident: e_1_2_8_23_1
  doi: 10.1002/cmr.b.20082
– ident: e_1_2_8_8_1
  doi: 10.1088/1361-6560/ab99e2
– ident: e_1_2_8_24_1
– ident: e_1_2_8_5_1
  doi: 10.1002/cmr.a.20163
– ident: e_1_2_8_6_1
  doi: 10.1002/mrm.1910390214
– ident: e_1_2_8_35_1
– ident: e_1_2_8_21_1
  doi: 10.1002/mrm.27110
– volume: 19
  start-page: 541
  year: 1924
  ident: e_1_2_8_26_1
  article-title: Formulae, tables, and curves for computing the mutual inductance of two coaxial circles
  publication-title: J Res NIST.
  contributor:
    fullname: Curtis HL
– ident: e_1_2_8_38_1
– ident: e_1_2_8_27_1
  doi: 10.1088/2057-1976/ab8d97
– ident: e_1_2_8_12_1
  doi: 10.1002/mrm.28087
– ident: e_1_2_8_2_1
  doi: 10.1016/0730-725X(93)90209-V
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jmr.2011.07.005
– ident: e_1_2_8_19_1
  doi: 10.1002/mrm.22850
– ident: e_1_2_8_18_1
  doi: 10.1002/mrm.24766
– ident: e_1_2_8_10_1
  doi: 10.1002/mrm.1910190210
– ident: e_1_2_8_16_1
  doi: 10.1002/9780470495032
– ident: e_1_2_8_22_1
  doi: 10.1016/j.neuroimage.2017.06.013
SSID ssj0009974
Score 2.4712293
Snippet Purpose To demonstrate systematic, linear algebra–based, dimensional analysis to derive a scaling relationship among the design parameters of MRI gradient and...
To demonstrate systematic, linear algebra-based, dimensional analysis to derive a scaling relationship among the design parameters of MRI gradient and harmonic...
PurposeTo demonstrate systematic, linear algebra–based, dimensional analysis to derive a scaling relationship among the design parameters of MRI gradient and...
PURPOSETo demonstrate systematic, linear algebra-based, dimensional analysis to derive a scaling relationship among the design parameters of MRI gradient and...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1901
SubjectTerms Design
Design parameters
Diameters
Dimensional analysis
Efficiency
Equipment Design
gradient coil
Inductance
Linear algebra
Magnetic Resonance Imaging - methods
Mathematical analysis
Matrices (mathematics)
Matrix algebra
Permeability
Scaling
shim coil
Shim coils
turns
Title Systematic Dimensional Analysis of the Scaling Relationship for Gradient and Shim Coil Design Parameters
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29316
https://www.ncbi.nlm.nih.gov/pubmed/35666832
https://www.proquest.com/docview/2695504830/abstract/
https://search.proquest.com/docview/2674004217
https://pubmed.ncbi.nlm.nih.gov/PMC9893842
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LS-RAEIcLEZS9rK77MDorvYsHLxkznU6ngycZXyzMsjgKHhZCv8IMOplhHhf_eqs7k-gowrK3QLpJ0lXV_at05QvAYSJMQpUyYRGzOGTowaHSmQgZJs_CoBsVHurT-82vbtmvu-RuDU7qb2EqPkTzws1Fhp-vXYBLNTt-hoaOpqM2rlUdh9t2ID0niK6f0VFZVhGYU-bmmYzVVKGIHjc9V9eiNwLzbZ3kS_3qF6CLLfhb33pVd3LfXsxVWz--ojr-57Ntw8elMCWnlSd9gjVb7sBmb7n1vgMbvlZUzz7DoN_Qn8mZ-zlABfYgNd-EjAuCspL00fy4MJKm3m4wnBDUyORy6uvM5kSWhvQHwxHpjocP5MwXk5A_0tWLOejnF7i9OL_pXoXLHzaEmrGYh8pGqsOtTA3qKpGmqIWkTig3Mha2YDzW3OdnqJGppUZLrk2mi9SyyGAiFcVfYb0cl3YXiKLYviMzbSwmrCIShaVCJRYFLEoYwwL4WZsun1RcjrwiMNMcRy_3oxdAqzZqvgzNWU55hlkZE3EUwI_mNAaV2ymRpR0vXJvUzW2YrgXwrfKB5ioxCmCO82AA6Yp3NA0csHv1TDkceHB3hgMiGPY88sZ__8bz3nXPH-z9e9N9-EDdpxm-0LAF6_Ppwn5HwTRXBz4yngCnERIM
link.rule.ids 230,315,786,790,891,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFH6aUrX00oWtodC6VQ9cMmQcx3GkXiq2KRBUMSBxQVG8RDOik0GzXPrreXYmoVOEhLhF8rOS2G_5nv38GeB7JHREpdR-EbLQZ6jBvlSJ8Bkmz0KjGhWO1Cc9491LdnwVXbXgR30WpuKHaBbcrGU4f20N3C5I796zhg7HwzYGqw5_AS_R3COXUJ3fk0clScXBHDPraRJW8woFdLfpuhiNHkDMh5WS_yJYF4IO38F1_fFV5clNezaVbfX3P17H5_7de3g7x6bkZ6VMH6BlyhV4nc5331fglSsXVZNV6PcaAmiyb-8HqLg9SE1xQkYFQWRJeqgBGBtJU3LXH9wShMnkaOxKzaYkLzXp9QdDsjca_CH7rp6E_M5tyZjl_VyDy8ODi72uP7-zwVeMhdyXJpAdbvJYI7QScYxwKFcR5ToPhSkYDxV3KRrCZGqoVjlXOlFFbFigMZcKwnVYKkel-QhEUpTv5InSBnNWEYjCUCEjgxgWUYxmHnyr5y67rag5soqEmWY4epkbPQ-26lnN5tY5yShPMDFjIgw8-No0o13ZzZK8NKOZlYmte8OMzYONSgmat4SIgTm6Qg_iBfVoBCxn92JLOeg77u4EB0Qw7LnjZv_xD8_S89Q9bD5d9Assdy_S0-z019nJJ3hD7UkNV3e4BUvT8cxsI36ays_OTO4AxI0WLg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH8CpqFdYDA2At3wph24pE0dx3G009SuY4MiREHigBTFH1Gr0bQq7WV__Z6dJqxDSBO3SLYVx-_r9-LnnwE-R0JHVErt5yELfYYa7EuVCJ9h8iw0qlHuSH365_zkmv28iW7W4Et1Fqbkh6h_uFnLcP7aGvhU560H0tDxbNzEWNXm6_CC8ZBale5ePnBHJUlJwRwz62gSVtEKBbRVD10NRo8Q5uNCyb8BrItAvW24reZeFp78ai7msql-_0Pr-MyPew1bS2RKvpaqtANrptiFzf5y730XXrpiUXX_BoaDmv6ZdO3tACWzB6kITsgkJ4gryQDlj5GR1AV3w9GUIEgm32eu0GxOskKTwXA0Jp3J6I50XTUJuchswZhl_dyD6963q86Jv7yxwVeMhdyXJpBtbrJYI7AScYxgKFMR5ToLhclRSoq7BA1BMjVUq4wrnag8NizQmEkF4VvYKCaF2QciKfZvZ4nSBjNWEYjcUCEjgwgWMYxmHnyqRJdOS2KOtKRgpimuXupWz4NGJdR0aZv3KeUJpmVMhIEHH-tmtCq7VZIVZrKwfWLr3DBf8-BdqQP1W0JEwBwdoQfxinbUHSxj92pLMRo65u4EF0QwHHnshP_0xNP-Zd89HPx_1yPYvOj20rMf56eH8IraYxqu6LABG_PZwrxH8DSXH5yR_AF6DxTd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+Dimensional+Analysis+of+the+Scaling+Relationship+for+Gradient+and+Shim+Coil+Design+Parameters&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Lee%2C+Seung%E2%80%90Kyun&rft.au=Bernstein%2C+Matt+A.&rft.date=2022-10-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=88&rft.issue=4&rft.spage=1901&rft.epage=1911&rft_id=info:doi/10.1002%2Fmrm.29316&rft.externalDBID=10.1002%252Fmrm.29316&rft.externalDocID=MRM29316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon