Accounting for the role of hematocrit in between‐subject variations of MRI‐derived baseline cerebral hemodynamic parameters and functional BOLD responses
Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between‐subject variation of Hct thus causes variation in task‐based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T1...
Saved in:
Published in | Human brain mapping Vol. 39; no. 1; pp. 344 - 353 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.01.2018
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between‐subject variation of Hct thus causes variation in task‐based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T1 values by comparison with the conventional lab test. Together with CBF measured using phase‐contrast MRI, this noninvasive estimation of Hct, instead of using a population‐averaged Hct value, enabled more individual determination of oxygen delivery (DO2), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2). The inverse correlation of CBF and Hct explained about 80% of between‐subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO2 to maintain constant CMRO2. Furthermore, we compared the relationships of visual task‐evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%–33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%–22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344–353, 2018. © 2017 Wiley Periodicals, Inc. |
---|---|
AbstractList | Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T1 values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2 ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO2 to maintain constant CMRO2 . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc.Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T1 values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2 ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO2 to maintain constant CMRO2 . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc. Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between‐subject variation of Hct thus causes variation in task‐based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T1 values by comparison with the conventional lab test. Together with CBF measured using phase‐contrast MRI, this noninvasive estimation of Hct, instead of using a population‐averaged Hct value, enabled more individual determination of oxygen delivery (DO2), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2). The inverse correlation of CBF and Hct explained about 80% of between‐subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO2 to maintain constant CMRO2. Furthermore, we compared the relationships of visual task‐evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%–33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%–22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344–353, 2018. © 2017 Wiley Periodicals, Inc. Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between‐subject variation of Hct thus causes variation in task‐based BOLD fMRI signal changes. We first verified in healthy volunteers ( n = 12) that Hct values can be derived reliably from venous blood T 1 values by comparison with the conventional lab test. Together with CBF measured using phase‐contrast MRI, this noninvasive estimation of Hct, instead of using a population‐averaged Hct value, enabled more individual determination of oxygen delivery (DO 2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ). The inverse correlation of CBF and Hct explained about 80% of between‐subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO 2 to maintain constant CMRO 2 . Furthermore, we compared the relationships of visual task‐evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%–33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%–22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344–353, 2018 . © 2017 Wiley Periodicals, Inc. Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO to maintain constant CMRO . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc. |
Author | Strouse, John J. Liu, Peiying Qin, Qin Xu, Feng Hua, Jun Pekar, James J. Lu, Hanzhang van Zijl, Peter C.M. Li, Wenbo |
AuthorAffiliation | 2 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute Baltimore Maryland 4 Division of Hematology, Department of Medicine Duke University Durham North Carolina 3 Developing Brain Research Lab Children's National Medical Center Washington DC Washington 1 The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research Johns Hopkins University School of Medicine Baltimore Maryland |
AuthorAffiliation_xml | – name: 1 The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research Johns Hopkins University School of Medicine Baltimore Maryland – name: 2 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute Baltimore Maryland – name: 4 Division of Hematology, Department of Medicine Duke University Durham North Carolina – name: 3 Developing Brain Research Lab Children's National Medical Center Washington DC Washington |
Author_xml | – sequence: 1 givenname: Feng surname: Xu fullname: Xu, Feng organization: Children's National Medical Center – sequence: 2 givenname: Wenbo surname: Li fullname: Li, Wenbo organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute – sequence: 3 givenname: Peiying surname: Liu fullname: Liu, Peiying organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute – sequence: 4 givenname: Jun surname: Hua fullname: Hua, Jun organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute – sequence: 5 givenname: John J. surname: Strouse fullname: Strouse, John J. organization: Duke University – sequence: 6 givenname: James J. surname: Pekar fullname: Pekar, James J. organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute – sequence: 7 givenname: Hanzhang surname: Lu fullname: Lu, Hanzhang organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute – sequence: 8 givenname: Peter C.M. surname: van Zijl fullname: van Zijl, Peter C.M. organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute – sequence: 9 givenname: Qin orcidid: 0000-0002-6432-2944 surname: Qin fullname: Qin, Qin email: qin@mri.jhu.edu organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29024300$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt1qFDEUgINU7I9e-AIS8KZebJtMZiYzN0Jbqy1sKYheh0xy0s0yk6xJZsve-Qi-QF_OJzHTrUULCoGEnO98nMM5-2jHeQcIvabkiBJSHC-64ahgTVk_Q3uUtHxGaMt2pnddzdqS0120H-OSEEorQl-g3aIlRckI2UN3J0r50SXrbrDxAacF4OB7wN7gBQwyeRVswtbhDtItgPv5_UccuyWohNcyWJmsd3Girz5f5piGYNegcScj9NYBVhCgC7KfbF5vnByswisZ5AAJQsTSaWxGpyZPpk6v5x9wgLjKVogv0XMj-wivHu4D9PXj-Zezi9n8-tPl2cl8psqS1bOi7CQ3lGnDmSaKNpK1RhvNKeWKd43JHw2rZGlqxSRvSJNPTYzUXSUro9gBer_1rsZuAK3ApVyyWAU7yLARXlrxd8TZhbjxa1Fx2rQVz4LDB0Hw30aISQw2Kuh76cCPUdC2YkXLqqbJ6Nsn6NKPIfc-UbxoW14XNFNv_qzosZTfk8vAuy2ggo8xgHlEKBHTVoi8FeJ-KzJ7_IRVNt1PLjdj-_9l3NoeNv9Wi4vTq23GL3j7zjo |
CitedBy_id | crossref_primary_10_1089_brain_2021_0125 crossref_primary_10_1093_cercor_bhaa293 crossref_primary_10_1007_s00330_021_08406_7 crossref_primary_10_3389_fnins_2020_00336 crossref_primary_10_1111_psyp_13796 crossref_primary_10_3174_ajnr_A5727 crossref_primary_10_1002_ajh_26203 crossref_primary_10_1002_mrm_29272 crossref_primary_10_1002_jmri_27638 crossref_primary_10_1016_j_mri_2021_09_012 crossref_primary_10_1002_mrm_27972 crossref_primary_10_1002_mrm_28422 crossref_primary_10_1002_jmri_27210 crossref_primary_10_1177_0271678X221077338 crossref_primary_10_3389_fphys_2021_656746 crossref_primary_10_1002_mrm_29381 crossref_primary_10_34067_KID_0000000000000292 crossref_primary_10_1002_mrm_30035 crossref_primary_10_1002_mrm_29300 crossref_primary_10_1002_ima_22986 crossref_primary_10_1002_jmri_25989 crossref_primary_10_1093_noajnl_vdae212 crossref_primary_10_1016_j_neuroimage_2020_117196 crossref_primary_10_1177_0271678X19865449 crossref_primary_10_1016_j_neuroimage_2023_120039 |
Cites_doi | 10.1002/mrm.25463 10.1002/hbm.20846 10.1002/mrm.1910390506 10.1016/j.neuroimage.2014.04.078 10.1002/mrm.10519 10.1038/jcbfm.2009.6 10.1155/2013/701529 10.1118/1.595994 10.1007/BF03027383 10.1016/j.neurobiolaging.2014.12.019 10.1002/mrm.21994 10.3109/03091909109023704 10.1002/mrm.25197 10.1097/CCM.0b013e3182227e2d 10.1038/nm0298-159 10.1002/nbm.2847 10.1002/jmri.21527 10.1038/jcbfm.2011.35 10.1002/mrm.20892 10.1016/j.comppsych.2006.11.001 10.1097/00004647-199809000-00011 10.1038/jcbfm.2010.49 10.1212/WNL.39.3.344 10.1161/01.STR.23.3.423 10.1016/j.neuroimage.2011.11.061 10.1002/mrm.22484 10.1002/nbm.2998 10.1002/mrm.24295 10.1038/jcbfm.2010.13 10.1002/mrm.21790 10.1016/j.neuroimage.2008.11.032 10.1002/mrm.22556 10.1002/mrm.1910230106 10.1177/0271678X16646124 10.1046/j.1523-1755.2002.00142.x 10.1002/mrm.21627 10.1093/brain/awf047 10.1002/hbm.22053 10.1152/jappl.1987.62.3.1090 10.1371/journal.pone.0097363 10.1002/(SICI)1097-0193(1997)5:5<341::AID-HBM2>3.0.CO;2-3 10.1038/jcbfm.2012.23 10.1002/mrm.22723 10.1016/j.neuroimage.2012.01.029 10.1002/mrm.1910130112 10.1002/nbm.2954 10.1080/00220970109600656 10.1097/00004647-199912000-00001 10.1038/jcbfm.2013.17 10.1002/mrm.24918 10.1002/(SICI)1522-2586(199901)9:1<119::AID-JMRI16>3.0.CO;2-F 10.1093/cercor/bhq224 10.1002/mrm.24547 10.1038/jcbfm.1992.105 10.1214/aoms/1177729885 10.1002/mrm.25875 10.1002/mrm.21686 10.1016/S0730-725X(03)00083-3 10.1152/ajpheart.1986.251.1.H63 10.1002/nbm.1559 10.1093/brain/108.1.81 10.1002/mrm.1910400611 10.1007/s11336-012-9309-x 10.1002/mrm.20178 10.1097/ACO.0b013e328316bb6f 10.1007/s11682-011-9133-4 10.1097/00004424-199302000-00004 10.1161/01.STR.17.4.692 10.1002/mrm.22970 10.1681/ASN.V104854 10.1016/S0730-725X(01)00460-X 10.1002/jmri.1880010303 10.1002/mrm.10370 |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. – notice: 2018 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.23846 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Role of Hematocrit for Cerebral Hemodynamic Parameters and BOLD Response |
EISSN | 1097-0193 |
EndPage | 353 |
ExternalDocumentID | PMC5718957 29024300 10_1002_hbm_23846 HBM23846 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: K25 HL121192 ; P41 EB015909 – fundername: American Society of Hematology funderid: Scholar Award – fundername: NHLBI NIH HHS grantid: K25 HL121192 – fundername: NIBIB NIH HHS grantid: P41 EB015909 – fundername: ; grantid: K25 HL121192 ; P41 EB015909 – fundername: ; grantid: Scholar Award |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4436-24ba7f13df73d0c18a39fdfd7117c7b8f8a3835a4f6c3a780880860fadb5a5fc3 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 14:24:01 EDT 2025 Fri Jul 11 06:08:43 EDT 2025 Tue Aug 26 09:32:51 EDT 2025 Mon Jul 21 06:06:09 EDT 2025 Tue Jul 01 01:10:48 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Wed Jan 22 17:04:21 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | OEF MRI CBF DO2 Hct BOLD CMRO2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4436-24ba7f13df73d0c18a39fdfd7117c7b8f8a3835a4f6c3a780880860fadb5a5fc3 |
Notes | Feng Xu and Wenbo Li contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6432-2944 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.23846 |
PMID | 29024300 |
PQID | 1972997621 |
PQPubID | 996345 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5718957 proquest_miscellaneous_1953293588 proquest_journals_1972997621 pubmed_primary_29024300 crossref_primary_10_1002_hbm_23846 crossref_citationtrail_10_1002_hbm_23846 wiley_primary_10_1002_hbm_23846_HBM23846 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Antonio – name: Hoboken |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2018 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
References | 2009; 45 2012; 60 2015; 36 2013; 26 1990; 13 1993; 28 1991; 15 2016b 2015; 73 1950; 21 2015; 74 1986; 251 2013; 70 1997; 5 2003; 50 1992; 12 2016; 36 2010; 64 1998b; 18 2013; 2013 1999; 19 2008; 28 2001; 19 2011a; 65 1984 2011; 21 1999; 10 2003; 49 2008; 21 2011; 24 2014; 9 2012; 67 2008; 60 2010; 30 2014; 98 1989; 39 2012; 62 1987; 14 2010; 31 1991; 1 2009; 62 2013a; 34 2006; 55 2011b; 65 2011; 31 1986; 17 2013c; 78 1985; 108 2011; 39 2001; 69 2011; 5 2012; 32 2009; 29 1999; 9 2004; 52 1998; 39 2005; 19 2013b; 69 1987; 62 2013; 33 2002; 61 2002; 125 2014; 72 1998a; 40 1992; 23 1998; 4 2003; 21 2016a; 76 2007; 48 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 Lu H (e_1_2_6_49_1) 2011; 21 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_5_1 Li W (e_1_2_6_38_1) 2016 e_1_2_6_7_1 Chanarin I (e_1_2_6_9_1) 1984 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 45 start-page: 420 year: 2009 end-page: 430 article-title: Inter‐subject variability in hypercapnic normalization of the BOLD fMRI response publication-title: NeuroImage – volume: 21 start-page: 805 year: 2008 end-page: 810 article-title: The measurement of dyshemoglobins and total hemoglobin by pulse oximetry publication-title: Curr Opin Anaesthesiol – volume: 26 start-page: 885 year: 2013 end-page: 886 article-title: MRI measures of cerebral physiology publication-title: NMR Biomed – volume: 19 start-page: 1289 year: 1999 end-page: 1295 article-title: Determination of oxygen extraction ratios by magnetic resonance imaging publication-title: J Cereb Blood Flow Metab – volume: 251 start-page: H63 year: 1986 end-page: H70 article-title: Effect of hematocrit on cerebral blood flow publication-title: Am J Physiol – volume: 49 start-page: 568 year: 2003 end-page: 571 article-title: Effects of hematocrit and oxygen saturation level on blood spin‐lattice relaxation publication-title: Magn Reson Med – volume: 21 start-page: 27 year: 1950 end-page: 58 article-title: Sample criteria for testing outlying observations publication-title: Ann Math Stat – volume: 26 start-page: 887 year: 2013 end-page: 891 article-title: New developments in arterial spin labeling pulse sequences publication-title: NMR Biomed – volume: 72 start-page: 149 year: 2014 end-page: 159 article-title: Quantitative oxygenation venography from MRI phase publication-title: Magn Reson Med – volume: 10 start-page: 854 year: 1999 end-page: 863 article-title: Effect of normalization of hematocrit on brain circulation and metabolism in hemodialysis patients publication-title: J Am Soc Nephrol – volume: 65 start-page: 1297 year: 2011b end-page: 1304 article-title: Fast measurement of blood T(1) in the human jugular vein at 3 Tesla publication-title: Magn Reson Med – volume: 23 start-page: 37 year: 1992 end-page: 45 article-title: Perfusion imaging publication-title: Magn Reson Med – volume: 9 start-page: e97363 year: 2014 article-title: Resting brain perfusion and selected vascular risk factors in healthy elderly subjects publication-title: PLoS One – volume: 19 start-page: 1055 year: 2001 end-page: 1062 article-title: Influence of baseline hematocrit and hemodilution on BOLD fMRI activation publication-title: Magn Reson Imag – volume: 18 start-page: 1018 year: 1998b end-page: 1021 article-title: Experimental hypoxemic hypoxia: Effects of variation in hematocrit on magnetic resonance T2*‐weighted brain images publication-title: J Cereb Blood Flow Metab – volume: 40 start-page: 857 year: 1998a end-page: 864 article-title: Effects of acute normovolemic hemodilution on T2*‐weighted images of rat brain publication-title: Magn Reson Med – volume: 36 start-page: 1417 year: 2015 end-page: 1423 article-title: Hemoglobin, hematocrit, and changes in cerebral blood flow: The second manifestations of arterial disease‐magnetic resonance study publication-title: Neurobiol Aging – volume: 69 start-page: 675 year: 2013b end-page: 681 article-title: Test‐retest reproducibility of a rapid method to measure brain oxygen metabolism publication-title: Magn Reson Med – volume: 60 start-page: 717 year: 2012 end-page: 727 article-title: Test‐retest variability underlying fMRI measurements publication-title: NeuroImage – volume: 70 start-page: 1153 year: 2013 end-page: 1159 article-title: Hematocrit and oxygenation dependence of blood (1)H(2)O T(1) at 7 Tesla publication-title: Magn Reson Med – volume: 50 start-page: 263 year: 2003 end-page: 274 article-title: Functional magnetic resonance Imaging based on changes in vascular space occupancy publication-title: Magn Reson Med – volume: 30 start-page: 1598 year: 2010 end-page: 1607 article-title: MRI estimation of global brain oxygen consumption rate publication-title: J Cereb Blood Flow Metab – volume: 60 start-page: 357 year: 2008 end-page: 363 article-title: Quantitative evaluation of oxygenation in venous vessels using T2‐relaxation‐under‐spin‐tagging MRI publication-title: Magn Reson Med – volume: 14 start-page: 903 year: 1987 end-page: 913 article-title: Magnetic‐resonance‐imaging of stationary blood ‐ A review publication-title: Med Phys – volume: 12 start-page: 745 year: 1992 end-page: 749 article-title: Increased cerebral blood flow in anemic patients on long‐term hemodialytic treatment publication-title: J Cereb Blood Flow Metab – volume: 15 start-page: 170 year: 1991 end-page: 176 article-title: An evaluation of the accuracy of flow measurements using magnetic resonance imaging (MRI) publication-title: J Med Eng Technol – volume: 39 start-page: 344 year: 1989 end-page: 348 article-title: Cerebral hyperemia, stroke, and transfusion in sickle cell disease publication-title: Neurology – volume: 24 start-page: 80 year: 2011 end-page: 88 article-title: A method for rapid in vivo measurement of blood T1 publication-title: NMR Biomed – volume: 39 start-page: 702 year: 1998 end-page: 708 article-title: Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) publication-title: Magn Reson Med – volume: 5 start-page: 295 year: 2011 end-page: 306 article-title: Hemodynamic responses to visual stimulation in children with sickle cell anemia publication-title: Brain Imag Behav – volume: 78 start-page: 308 year: 2013c end-page: 321 article-title: An introduction to normalization and calibration methods in functional MRI publication-title: Psychometrika – volume: 4 start-page: 159 year: 1998 end-page: 167 article-title: Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging publication-title: Nat Med – volume: 5 start-page: 341 year: 1997 end-page: 346 article-title: In vivo measurement of blood oxygen saturation using magnetic resonance imaging: A direct validation of the blood oxygen level‐dependent concept in functional brain imaging publication-title: Hum Brain Mapp – volume: 26 start-page: 987 year: 2013 end-page: 1003 article-title: A review of calibrated blood oxygenation level‐dependent (BOLD) methods for the measurement of task‐induced changes in brain oxygen metabolism publication-title: NMR Biomed – volume: 62 start-page: 1090 year: 1987 end-page: 1096 article-title: Effect of hematocrit on cerebral blood flow with induced polycythemia publication-title: J Appl Physiol – volume: 69 start-page: 203 year: 2001 end-page: 224 article-title: Estimating R shrinkage in multiple regression: A comparison of different analytical methods publication-title: J Exp Educ – volume: 62 start-page: 1092 year: 2012 end-page: 1102 article-title: The BOLD post‐stimulus undershoot, one of the most debated issues in fMRI publication-title: NeuroImage – volume: 74 start-page: 945 year: 2015 end-page: 952 article-title: Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2) using quantitative susceptibility mapping (QSM) publication-title: Magn Reson Med – volume: 39 start-page: 2277 year: 2011 end-page: 2282 article-title: Accuracy of a continuous noninvasive hemoglobin monitor in intensive care unit patients publication-title: Crit Care Med – volume: 2013 start-page: 701529 year: 2013 article-title: How noninvasive haemoglobin measurement with pulse co‐oximetry can change your practice: An expert review publication-title: Emerg Med Int – volume: 32 start-page: 1188 year: 2012 end-page: 1206 article-title: Biophysical and physiological origins of blood oxygenation level‐dependent fMRI signals publication-title: J Cereb Blood Flow Metab – volume: 125 start-page: 595 year: 2002 end-page: 607 article-title: Variability of cerebral blood volume and oxygen extraction: Stages of cerebral haemodynamic impairment revisited publication-title: Brain – volume: 34 start-page: 2078 year: 2013a end-page: 2088 article-title: A comparison of physiologic modulators of fMRI signals publication-title: Hum Brain Mapp – volume: 36 start-page: 1244 year: 2016 end-page: 1256 article-title: Comparison of non‐invasive MRI measurements of cerebral blood flow in a large multisite cohort publication-title: J Cereb Blood Flow Metab – volume: 28 start-page: 1527 year: 2008 end-page: 1532 article-title: Measurement of common carotid artery lumen dynamics during the cardiac cycle using magnetic resonance TrueFISP cine imaging publication-title: J Magn Reson Imag – volume: 1 start-page: 275 year: 1991 end-page: 283 article-title: Estimating oxygen‐saturation of blood in vivo with MR imaging at 1.5T publication-title: J Magn Reson Imag – volume: 21 start-page: 599 year: 2003 end-page: 607 article-title: Influence of baseline hematocrit on between‐subject BOLD signal change using gradient echo and asymmetric spin echo EPI publication-title: Magn Reson Imag – volume: 98 start-page: 176 year: 2014 end-page: 183 article-title: Age‐related increase of resting metabolic rate in the human brain publication-title: NeuroImage – volume: 64 start-page: 1140 year: 2010 end-page: 1147 article-title: In vivo venous blood T1 measurement using inversion recovery true‐FISP in children and adults publication-title: Magn Reson Med – volume: 62 start-page: 141 year: 2009 end-page: 148 article-title: Noninvasive quantification of whole‐brain cerebral metabolic rate of oxygen (CMRO ) by MRI publication-title: Magn Reson Med – volume: 108 start-page: 81 year: 1985 end-page: 93 article-title: Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man publication-title: Brain – volume: 13 start-page: 133 year: 1990 end-page: 144 article-title: Magnetic‐relaxation in blood and blood‐clots publication-title: Magn Reson Med – volume: 60 start-page: 364 year: 2008 end-page: 372 article-title: Baseline blood oxygenation modulates response amplitude: Physiologic basis for intersubject variations in functional MRI signals publication-title: Magn Reson Med – volume: 73 start-page: 102 year: 2015 end-page: 116 article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia publication-title: Magn Reson Med – volume: 52 start-page: 679 year: 2004 end-page: 682 article-title: Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla publication-title: Magn Reson Med – year: 1984 – volume: 17 start-page: 692 year: 1986 end-page: 698 article-title: Measurement of regional cerebral blood flow, blood volume and oxygen metabolism in patients with sickle cell disease using positron emission tomography publication-title: Stroke – volume: 55 start-page: 967 year: 2006 end-page: 973 article-title: MR susceptometry for measuring global brain oxygen extraction publication-title: Magn Reson Med – volume: 30 start-page: 1296 year: 2010 end-page: 1305 article-title: Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans publication-title: J Cereb Blood Flow Metab – volume: 60 start-page: 1488 year: 2008 end-page: 1497 article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields publication-title: Magn Reson Med – volume: 65 start-page: 471 year: 2011a end-page: 479 article-title: Determination of whole‐brain oxygen extraction fractions by fast measurement of blood T(2) in the jugular vein publication-title: Magn Reson Med – volume: 33 start-page: 787 year: 2013 end-page: 792 article-title: Sources of variability of resting cerebral blood flow in healthy subjects: A study using (1)(3)(3)Xe SPECT measurements publication-title: J Cereb Blood Flow Metab – volume: 29 start-page: 803 year: 2009 end-page: 810 article-title: Hemodynamic etiology of elevated flow velocity and stroke in sickle‐cell disease publication-title: J Cereb Blood Flow Metab – volume: 48 start-page: 103 year: 2007 end-page: 112 article-title: Anxiety, respiration, and cerebral blood flow: Implications for functional brain imaging publication-title: Compr Psychiatry – year: 2016b article-title: Fast measurement of blood T1 in the human carotid artery at 3T: Accuracy, precision, and reproducibility publication-title: Magn Reson Med – volume: 31 start-page: 80 year: 2010 end-page: 87 article-title: Improving fMRI sensitivity by normalization of basal physiologic state publication-title: Hum Brain Mapp – volume: 23 start-page: 423 year: 1992 end-page: 426 article-title: Effect of hemodilution on cerebral hemodynamics and oxygen metabolism publication-title: Stroke – volume: 61 start-page: 564 year: 2002 end-page: 569 article-title: Cerebral blood flow and vasodilatory capacity in anemia secondary to chronic renal failure publication-title: Kidney Int – volume: 76 start-page: 270 year: 2016a end-page: 281 article-title: Quantitative theory for the longitudinal relaxation time of blood water publication-title: Magn Reson Med – volume: 19 start-page: 65 year: 2005 end-page: 74 article-title: Human cerebral circulation: Positron emission tomography studies publication-title: Ann Nucl Med – volume: 31 start-page: 1599 year: 2011 end-page: 1611 article-title: Physiological origin for the BOLD poststimulus undershoot in human brain: Vascular compliance versus oxygen metabolism publication-title: J Cereb Blood Flow Metab – volume: 28 start-page: 109 year: 1993 end-page: 115 article-title: Magnetic resonance imaging of blood flow with a phase subtraction technique. In vitro and in vivo validation publication-title: Invest Radiol – volume: 67 start-page: 42 year: 2012 end-page: 49 article-title: Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation publication-title: Magn Reson Med – volume: 21 start-page: 1426 year: 2011 end-page: 1434 article-title: Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb publication-title: Cortex – volume: 9 start-page: 119 year: 1999 end-page: 127 article-title: Construction of a protocol for measuring blood flow by two‐dimensional phase‐contrast MRA publication-title: J Magn Reson Imag – ident: e_1_2_6_75_1 doi: 10.1002/mrm.25463 – ident: e_1_2_6_50_1 doi: 10.1002/hbm.20846 – ident: e_1_2_6_69_1 doi: 10.1002/mrm.1910390506 – ident: e_1_2_6_56_1 doi: 10.1016/j.neuroimage.2014.04.078 – ident: e_1_2_6_47_1 doi: 10.1002/mrm.10519 – ident: e_1_2_6_57_1 doi: 10.1038/jcbfm.2009.6 – ident: e_1_2_6_42_1 doi: 10.1155/2013/701529 – ident: e_1_2_6_6_1 doi: 10.1118/1.595994 – ident: e_1_2_6_32_1 doi: 10.1007/BF03027383 – ident: e_1_2_6_63_1 doi: 10.1016/j.neurobiolaging.2014.12.019 – ident: e_1_2_6_72_1 doi: 10.1002/mrm.21994 – ident: e_1_2_6_74_1 doi: 10.3109/03091909109023704 – ident: e_1_2_6_2_1 doi: 10.1002/mrm.25197 – ident: e_1_2_6_19_1 doi: 10.1097/CCM.0b013e3182227e2d – ident: e_1_2_6_65_1 doi: 10.1038/nm0298-159 – ident: e_1_2_6_5_1 doi: 10.1002/nbm.2847 – ident: e_1_2_6_10_1 doi: 10.1002/jmri.21527 – ident: e_1_2_6_29_1 doi: 10.1038/jcbfm.2011.35 – ident: e_1_2_6_18_1 doi: 10.1002/mrm.20892 – ident: e_1_2_6_20_1 doi: 10.1016/j.comppsych.2006.11.001 – ident: e_1_2_6_41_1 doi: 10.1097/00004647-199809000-00011 – ident: e_1_2_6_33_1 doi: 10.1038/jcbfm.2010.49 – ident: e_1_2_6_58_1 doi: 10.1212/WNL.39.3.344 – ident: e_1_2_6_28_1 doi: 10.1161/01.STR.23.3.423 – ident: e_1_2_6_61_1 doi: 10.1016/j.neuroimage.2011.11.061 – ident: e_1_2_6_71_1 doi: 10.1002/mrm.22484 – ident: e_1_2_6_16_1 doi: 10.1002/nbm.2998 – ident: e_1_2_6_44_1 doi: 10.1002/mrm.24295 – ident: e_1_2_6_31_1 doi: 10.1038/jcbfm.2010.13 – ident: e_1_2_6_11_1 doi: 10.1002/mrm.21790 – ident: e_1_2_6_39_1 doi: 10.1016/j.neuroimage.2008.11.032 – ident: e_1_2_6_59_1 doi: 10.1002/mrm.22556 – ident: e_1_2_6_13_1 doi: 10.1002/mrm.1910230106 – ident: e_1_2_6_14_1 doi: 10.1177/0271678X16646124 – ident: e_1_2_6_35_1 doi: 10.1046/j.1523-1755.2002.00142.x – ident: e_1_2_6_51_1 doi: 10.1002/mrm.21627 – ident: e_1_2_6_12_1 doi: 10.1093/brain/awf047 – ident: e_1_2_6_43_1 doi: 10.1002/hbm.22053 – ident: e_1_2_6_53_1 doi: 10.1152/jappl.1987.62.3.1090 – ident: e_1_2_6_25_1 doi: 10.1371/journal.pone.0097363 – ident: e_1_2_6_24_1 doi: 10.1002/(SICI)1097-0193(1997)5:5<341::AID-HBM2>3.0.CO;2-3 – ident: e_1_2_6_34_1 doi: 10.1038/jcbfm.2012.23 – year: 2016 ident: e_1_2_6_38_1 article-title: Fast measurement of blood T1 in the human carotid artery at 3T: Accuracy, precision, and reproducibility publication-title: Magn Reson Med – ident: e_1_2_6_60_1 doi: 10.1002/mrm.22723 – ident: e_1_2_6_64_1 doi: 10.1016/j.neuroimage.2012.01.029 – ident: e_1_2_6_8_1 doi: 10.1002/mrm.1910130112 – ident: e_1_2_6_68_1 doi: 10.1002/nbm.2954 – ident: e_1_2_6_73_1 doi: 10.1080/00220970109600656 – ident: e_1_2_6_55_1 doi: 10.1097/00004647-199912000-00001 – ident: e_1_2_6_26_1 doi: 10.1038/jcbfm.2013.17 – ident: e_1_2_6_17_1 doi: 10.1002/mrm.24918 – ident: e_1_2_6_3_1 doi: 10.1002/(SICI)1522-2586(199901)9:1<119::AID-JMRI16>3.0.CO;2-F – volume: 21 start-page: 1426 year: 2011 ident: e_1_2_6_49_1 article-title: Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb publication-title: Cortex doi: 10.1093/cercor/bhq224 – ident: e_1_2_6_21_1 doi: 10.1002/mrm.24547 – ident: e_1_2_6_67_1 doi: 10.1038/jcbfm.1992.105 – ident: e_1_2_6_22_1 doi: 10.1214/aoms/1177729885 – ident: e_1_2_6_37_1 doi: 10.1002/mrm.25875 – ident: e_1_2_6_52_1 doi: 10.1002/mrm.21686 – ident: e_1_2_6_23_1 doi: 10.1016/S0730-725X(03)00083-3 – ident: e_1_2_6_30_1 doi: 10.1152/ajpheart.1986.251.1.H63 – ident: e_1_2_6_66_1 doi: 10.1002/nbm.1559 – ident: e_1_2_6_7_1 doi: 10.1093/brain/108.1.81 – ident: e_1_2_6_40_1 doi: 10.1002/mrm.1910400611 – ident: e_1_2_6_45_1 doi: 10.1007/s11336-012-9309-x – ident: e_1_2_6_46_1 doi: 10.1002/mrm.20178 – volume-title: Blood and Its Disease year: 1984 ident: e_1_2_6_9_1 – ident: e_1_2_6_4_1 doi: 10.1097/ACO.0b013e328316bb6f – ident: e_1_2_6_76_1 doi: 10.1007/s11682-011-9133-4 – ident: e_1_2_6_15_1 doi: 10.1097/00004424-199302000-00004 – ident: e_1_2_6_27_1 doi: 10.1161/01.STR.17.4.692 – ident: e_1_2_6_48_1 doi: 10.1002/mrm.22970 – ident: e_1_2_6_54_1 doi: 10.1681/ASN.V104854 – ident: e_1_2_6_36_1 doi: 10.1016/S0730-725X(01)00460-X – ident: e_1_2_6_70_1 doi: 10.1002/jmri.1880010303 – ident: e_1_2_6_62_1 doi: 10.1002/mrm.10370 |
SSID | ssj0011501 |
Score | 2.3725193 |
Snippet | Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between‐subject variation of Hct thus causes variation in... Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 344 |
SubjectTerms | Adult Biological Variation, Individual Blood flow BOLD Brain Brain - diagnostic imaging Brain - physiology Brain Mapping CBF Cerebral blood flow Cerebrovascular Circulation - physiology CMRO2 Correlation DO2 Female Functional magnetic resonance imaging Hct Hematocrit Humans Linear Models Magnetic Resonance Imaging Male Metabolic rate MRI OEF Oxygen Oxygen - blood Perfusion Variation Visual Perception - physiology Visual tasks |
Title | Accounting for the role of hematocrit in between‐subject variations of MRI‐derived baseline cerebral hemodynamic parameters and functional BOLD responses |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23846 https://www.ncbi.nlm.nih.gov/pubmed/29024300 https://www.proquest.com/docview/1972997621 https://www.proquest.com/docview/1953293588 https://pubmed.ncbi.nlm.nih.gov/PMC5718957 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5KH8QXL62XaJVRRHzJNpnM5IJPrVpWcRWKhT4IYa50sZvIZrdQn_wJ_gH_nL_Ec2ayqWsVxLewczbJMOfynTMn3xDypMoNt45h2yBoMNdWxJJlPOa5Y6VkhStz_Bp58i4fH_E3x-J4gzxffQsT-CGGghtahvfXaOBSdbsXpKEnajaCeMORbht7tRAQHQ7UUQh0fLIFITauwAOvWIUStjv8cz0WXQKYl_skf8WvPgAdXCcfV68e-k4-jZYLNdJffmN1_M-53SDXemBK94Im3SQbttki23sNJOWzc_qU-lZRX4PfIlcm_Y78Nvl-cdwEBfxLAU9S7FikraOeD7YFt7Sg04b2HWE_vn7rlgqrP_QM8vRQMETpyeFrGDNgEWfWUIyuOA-q7Rz3tk_xbq05b-RsqikSls-wkaejsjEUg3OoadL9929f0nlo_LXdLXJ08OrDi3HcH_kQa86zPGZcycKlmXFFZhKdljKrnHGmSNNCF6p08ANgRsldrjNZlOAjISdLnDRKSOF0dptsNm1j7xJqK8NTpSFLLgW3wkEodkwLlWQSnpLyiDxbLX6tez50PJbjtA5MzqyGVaj9KkTk8SD6OZCA_EloZ6VBde8HuhoPdasA8bE0Io-GYbBg3JaRjW2XKCMyhtvRZUTuBIUbnsIqZIxMkogUa6o4CCA7-PpIMz3xLOECUEclCpim17S_v3g93p_4i3v_LnqfXAXkWIZa1A7ZXMyX9gGgs4V66M3wJ3p7O5k |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC2FIAEXloRlIECDEOLiid1ubxKXBIgmMA5SlEi5RFa7F2VExoNmiRROfAI_wM_xJVS1lzAEJMTNmq6x3eqqrlfV5VcAL7JYC2M5lQ2iBgtlIk_yUHgitjyVPLFpTF8j53vx4FC8P4qOVuB1-y1MzQ_RJdzIMtx-TQZOCenNC9bQk3LcR4cj4itwlTp6u4BqvyOPIqjjwi10sl6Ge3DLK-Tzze6vy97oEsS8XCn5K4J1LmjnFhy3L19XnnzqL-ZlX335jdfxf2d3G2422JRt1cp0B1ZMtQbrWxXG5eNz9pK5alGXhl-Da3lzKL8O3y86TjCEwAwhJaOiRTaxzFHCTnBnmrNRxZqisB9fv80WJSWA2BmG6nXOkKTz_V0c02gUZ0YzcrA0EabMlI63T-luE31eyfFIMeIsH1Mtz4zJSjPyz3Vak21_HL5l07r218zuwuHOu4M3A6_p-uApIcLY46KUiQ1CbZNQ-ypIZZhZbXUSBIlKytTiDwgbpbCxCmWS4jaJYZlvpS4jGVkV3oPValKZB8BMpkVQKgyU00iYyKI3tlxFpR9KfEogevCqXf1CNZTo1JnjtKjJnHmBq1C4VejB8070c80D8iehjVaFimYrmBXU1y1D0MeDHjzrhtGI6WRGVmayIJko5HQinfbgfq1x3VN4RqSRvt-DZEkXOwEiCF8eqUYnjig8QuCRRQlO06na31-8GGzn7uLhv4s-heuDg3xYDHf3PjyCGwgk0zo1tQGr8-nCPEawNi-fOJv8CfZPP7Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB2VIlW8cGm5GAosCCFenNrr9U08tYQohaagikp9qGSt96JGNE6VS6XyxCfwA_wcX8LM2nEJBQnxZmUntlc7lzOz47MAL_JEC2M5tQ2iBgtlYl_ySPgisTyTPLVZQl8jD_aT_qF4dxQfrcDrxbcwNT9EW3Ajy3D-mgz8TNutS9LQk3LUwXgjkmtwXSRBRirdPWi5owjpuGwLY6yfowte0AoFfKv963IwuoIwrzZK_gpgXQTq3YLjxbvXjSefO_NZ2VFffqN1_M_J3YabDTJl27Uq3YEVU63DxnaFWfnogr1krlfUFeHXYW3QbMlvwPfL8yYYAmCGgJJRyyIbW-YIYcfol2ZsWLGmJezH12_TeUnlH3aOiXpdMSTpwcEujmk0iXOjGYVXmgdTZkKb26d0t7G-qORoqBgxlo-ok2fKZKUZRee6qMl2Pux12aTu_DXTu3DYe_vpTd9vznzwlRBR4nNRytSGkbZppAMVZjLKrbY6DcNUpWVm8QcEjVLYREUyzdBJYlIWWKnLWMZWRfdgtRpX5gEwk2sRlgrT5CwWJrYYiy1XcRlEEp8SCg9eLRa_UA0hOp3LcVrUVM68wFUo3Cp48LwVPatZQP4ktLnQoKJxBNOCTnXLEfLx0INn7TCaMO3LyMqM5yQTR5z2ozMP7tcK1z6F50QZGQQepEuq2AoQPfjySDU8cTThMcKOPE5xmk7T_v7iRX9n4C4e_rvoU1j72O0Ve7v77x_BDUSRWV2X2oTV2WRuHiNSm5VPnEX-BDpGPmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accounting+for+the+role+of+hematocrit+in+between-subject+variations+of+MRI-derived+baseline+cerebral+hemodynamic+parameters+and+functional+BOLD+responses&rft.jtitle=Human+brain+mapping&rft.au=Xu%2C+Feng&rft.au=Li%2C+Wenbo&rft.au=Liu%2C+Peiying&rft.au=Hua%2C+Jun&rft.date=2018-01-01&rft.eissn=1097-0193&rft.volume=39&rft.issue=1&rft.spage=344&rft_id=info:doi/10.1002%2Fhbm.23846&rft_id=info%3Apmid%2F29024300&rft.externalDocID=29024300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |