Accounting for the role of hematocrit in between‐subject variations of MRI‐derived baseline cerebral hemodynamic parameters and functional BOLD responses

Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between‐subject variation of Hct thus causes variation in task‐based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T1...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 39; no. 1; pp. 344 - 353
Main Authors Xu, Feng, Li, Wenbo, Liu, Peiying, Hua, Jun, Strouse, John J., Pekar, James J., Lu, Hanzhang, van Zijl, Peter C.M., Qin, Qin
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.01.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between‐subject variation of Hct thus causes variation in task‐based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T1 values by comparison with the conventional lab test. Together with CBF measured using phase‐contrast MRI, this noninvasive estimation of Hct, instead of using a population‐averaged Hct value, enabled more individual determination of oxygen delivery (DO2), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2). The inverse correlation of CBF and Hct explained about 80% of between‐subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO2 to maintain constant CMRO2. Furthermore, we compared the relationships of visual task‐evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%–33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%–22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344–353, 2018. © 2017 Wiley Periodicals, Inc.
AbstractList Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T1 values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2 ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO2 to maintain constant CMRO2 . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc.Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T1 values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2 ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO2 to maintain constant CMRO2 . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc.
Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between‐subject variation of Hct thus causes variation in task‐based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T1 values by comparison with the conventional lab test. Together with CBF measured using phase‐contrast MRI, this noninvasive estimation of Hct, instead of using a population‐averaged Hct value, enabled more individual determination of oxygen delivery (DO2), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2). The inverse correlation of CBF and Hct explained about 80% of between‐subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO2 to maintain constant CMRO2. Furthermore, we compared the relationships of visual task‐evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%–33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%–22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344–353, 2018. © 2017 Wiley Periodicals, Inc.
Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between‐subject variation of Hct thus causes variation in task‐based BOLD fMRI signal changes. We first verified in healthy volunteers ( n  = 12) that Hct values can be derived reliably from venous blood T 1 values by comparison with the conventional lab test. Together with CBF measured using phase‐contrast MRI, this noninvasive estimation of Hct, instead of using a population‐averaged Hct value, enabled more individual determination of oxygen delivery (DO 2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO 2 ). The inverse correlation of CBF and Hct explained about 80% of between‐subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO 2 to maintain constant CMRO 2 . Furthermore, we compared the relationships of visual task‐evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%–33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%–22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344–353, 2018 . © 2017 Wiley Periodicals, Inc.
Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO to maintain constant CMRO . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc.
Author Strouse, John J.
Liu, Peiying
Qin, Qin
Xu, Feng
Hua, Jun
Pekar, James J.
Lu, Hanzhang
van Zijl, Peter C.M.
Li, Wenbo
AuthorAffiliation 2 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute Baltimore Maryland
4 Division of Hematology, Department of Medicine Duke University Durham North Carolina
3 Developing Brain Research Lab Children's National Medical Center Washington DC Washington
1 The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research Johns Hopkins University School of Medicine Baltimore Maryland
AuthorAffiliation_xml – name: 1 The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research Johns Hopkins University School of Medicine Baltimore Maryland
– name: 2 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute Baltimore Maryland
– name: 4 Division of Hematology, Department of Medicine Duke University Durham North Carolina
– name: 3 Developing Brain Research Lab Children's National Medical Center Washington DC Washington
Author_xml – sequence: 1
  givenname: Feng
  surname: Xu
  fullname: Xu, Feng
  organization: Children's National Medical Center
– sequence: 2
  givenname: Wenbo
  surname: Li
  fullname: Li, Wenbo
  organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
– sequence: 3
  givenname: Peiying
  surname: Liu
  fullname: Liu, Peiying
  organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
– sequence: 4
  givenname: Jun
  surname: Hua
  fullname: Hua, Jun
  organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
– sequence: 5
  givenname: John J.
  surname: Strouse
  fullname: Strouse, John J.
  organization: Duke University
– sequence: 6
  givenname: James J.
  surname: Pekar
  fullname: Pekar, James J.
  organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
– sequence: 7
  givenname: Hanzhang
  surname: Lu
  fullname: Lu, Hanzhang
  organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
– sequence: 8
  givenname: Peter C.M.
  surname: van Zijl
  fullname: van Zijl, Peter C.M.
  organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
– sequence: 9
  givenname: Qin
  orcidid: 0000-0002-6432-2944
  surname: Qin
  fullname: Qin, Qin
  email: qin@mri.jhu.edu
  organization: F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29024300$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1qFDEUgINU7I9e-AIS8KZebJtMZiYzN0Jbqy1sKYheh0xy0s0yk6xJZsve-Qi-QF_OJzHTrUULCoGEnO98nMM5-2jHeQcIvabkiBJSHC-64ahgTVk_Q3uUtHxGaMt2pnddzdqS0120H-OSEEorQl-g3aIlRckI2UN3J0r50SXrbrDxAacF4OB7wN7gBQwyeRVswtbhDtItgPv5_UccuyWohNcyWJmsd3Girz5f5piGYNegcScj9NYBVhCgC7KfbF5vnByswisZ5AAJQsTSaWxGpyZPpk6v5x9wgLjKVogv0XMj-wivHu4D9PXj-Zezi9n8-tPl2cl8psqS1bOi7CQ3lGnDmSaKNpK1RhvNKeWKd43JHw2rZGlqxSRvSJNPTYzUXSUro9gBer_1rsZuAK3ApVyyWAU7yLARXlrxd8TZhbjxa1Fx2rQVz4LDB0Hw30aISQw2Kuh76cCPUdC2YkXLqqbJ6Nsn6NKPIfc-UbxoW14XNFNv_qzosZTfk8vAuy2ggo8xgHlEKBHTVoi8FeJ-KzJ7_IRVNt1PLjdj-_9l3NoeNv9Wi4vTq23GL3j7zjo
CitedBy_id crossref_primary_10_1089_brain_2021_0125
crossref_primary_10_1093_cercor_bhaa293
crossref_primary_10_1007_s00330_021_08406_7
crossref_primary_10_3389_fnins_2020_00336
crossref_primary_10_1111_psyp_13796
crossref_primary_10_3174_ajnr_A5727
crossref_primary_10_1002_ajh_26203
crossref_primary_10_1002_mrm_29272
crossref_primary_10_1002_jmri_27638
crossref_primary_10_1016_j_mri_2021_09_012
crossref_primary_10_1002_mrm_27972
crossref_primary_10_1002_mrm_28422
crossref_primary_10_1002_jmri_27210
crossref_primary_10_1177_0271678X221077338
crossref_primary_10_3389_fphys_2021_656746
crossref_primary_10_1002_mrm_29381
crossref_primary_10_34067_KID_0000000000000292
crossref_primary_10_1002_mrm_30035
crossref_primary_10_1002_mrm_29300
crossref_primary_10_1002_ima_22986
crossref_primary_10_1002_jmri_25989
crossref_primary_10_1093_noajnl_vdae212
crossref_primary_10_1016_j_neuroimage_2020_117196
crossref_primary_10_1177_0271678X19865449
crossref_primary_10_1016_j_neuroimage_2023_120039
Cites_doi 10.1002/mrm.25463
10.1002/hbm.20846
10.1002/mrm.1910390506
10.1016/j.neuroimage.2014.04.078
10.1002/mrm.10519
10.1038/jcbfm.2009.6
10.1155/2013/701529
10.1118/1.595994
10.1007/BF03027383
10.1016/j.neurobiolaging.2014.12.019
10.1002/mrm.21994
10.3109/03091909109023704
10.1002/mrm.25197
10.1097/CCM.0b013e3182227e2d
10.1038/nm0298-159
10.1002/nbm.2847
10.1002/jmri.21527
10.1038/jcbfm.2011.35
10.1002/mrm.20892
10.1016/j.comppsych.2006.11.001
10.1097/00004647-199809000-00011
10.1038/jcbfm.2010.49
10.1212/WNL.39.3.344
10.1161/01.STR.23.3.423
10.1016/j.neuroimage.2011.11.061
10.1002/mrm.22484
10.1002/nbm.2998
10.1002/mrm.24295
10.1038/jcbfm.2010.13
10.1002/mrm.21790
10.1016/j.neuroimage.2008.11.032
10.1002/mrm.22556
10.1002/mrm.1910230106
10.1177/0271678X16646124
10.1046/j.1523-1755.2002.00142.x
10.1002/mrm.21627
10.1093/brain/awf047
10.1002/hbm.22053
10.1152/jappl.1987.62.3.1090
10.1371/journal.pone.0097363
10.1002/(SICI)1097-0193(1997)5:5<341::AID-HBM2>3.0.CO;2-3
10.1038/jcbfm.2012.23
10.1002/mrm.22723
10.1016/j.neuroimage.2012.01.029
10.1002/mrm.1910130112
10.1002/nbm.2954
10.1080/00220970109600656
10.1097/00004647-199912000-00001
10.1038/jcbfm.2013.17
10.1002/mrm.24918
10.1002/(SICI)1522-2586(199901)9:1<119::AID-JMRI16>3.0.CO;2-F
10.1093/cercor/bhq224
10.1002/mrm.24547
10.1038/jcbfm.1992.105
10.1214/aoms/1177729885
10.1002/mrm.25875
10.1002/mrm.21686
10.1016/S0730-725X(03)00083-3
10.1152/ajpheart.1986.251.1.H63
10.1002/nbm.1559
10.1093/brain/108.1.81
10.1002/mrm.1910400611
10.1007/s11336-012-9309-x
10.1002/mrm.20178
10.1097/ACO.0b013e328316bb6f
10.1007/s11682-011-9133-4
10.1097/00004424-199302000-00004
10.1161/01.STR.17.4.692
10.1002/mrm.22970
10.1681/ASN.V104854
10.1016/S0730-725X(01)00460-X
10.1002/jmri.1880010303
10.1002/mrm.10370
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
– notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.23846
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Role of Hematocrit for Cerebral Hemodynamic Parameters and BOLD Response
EISSN 1097-0193
EndPage 353
ExternalDocumentID PMC5718957
29024300
10_1002_hbm_23846
HBM23846
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: K25 HL121192 ; P41 EB015909
– fundername: American Society of Hematology
  funderid: Scholar Award
– fundername: NHLBI NIH HHS
  grantid: K25 HL121192
– fundername: NIBIB NIH HHS
  grantid: P41 EB015909
– fundername: ;
  grantid: K25 HL121192 ; P41 EB015909
– fundername: ;
  grantid: Scholar Award
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4436-24ba7f13df73d0c18a39fdfd7117c7b8f8a3835a4f6c3a780880860fadb5a5fc3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 14:24:01 EDT 2025
Fri Jul 11 06:08:43 EDT 2025
Tue Aug 26 09:32:51 EDT 2025
Mon Jul 21 06:06:09 EDT 2025
Tue Jul 01 01:10:48 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Wed Jan 22 17:04:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords OEF
MRI
CBF
DO2
Hct
BOLD
CMRO2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4436-24ba7f13df73d0c18a39fdfd7117c7b8f8a3835a4f6c3a780880860fadb5a5fc3
Notes Feng Xu and Wenbo Li contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6432-2944
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.23846
PMID 29024300
PQID 1972997621
PQPubID 996345
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5718957
proquest_miscellaneous_1953293588
proquest_journals_1972997621
pubmed_primary_29024300
crossref_primary_10_1002_hbm_23846
crossref_citationtrail_10_1002_hbm_23846
wiley_primary_10_1002_hbm_23846_HBM23846
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Antonio
– name: Hoboken
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2018
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2009; 45
2012; 60
2015; 36
2013; 26
1990; 13
1993; 28
1991; 15
2016b
2015; 73
1950; 21
2015; 74
1986; 251
2013; 70
1997; 5
2003; 50
1992; 12
2016; 36
2010; 64
1998b; 18
2013; 2013
1999; 19
2008; 28
2001; 19
2011a; 65
1984
2011; 21
1999; 10
2003; 49
2008; 21
2011; 24
2014; 9
2012; 67
2008; 60
2010; 30
2014; 98
1989; 39
2012; 62
1987; 14
2010; 31
1991; 1
2009; 62
2013a; 34
2006; 55
2011b; 65
2011; 31
1986; 17
2013c; 78
1985; 108
2011; 39
2001; 69
2011; 5
2012; 32
2009; 29
1999; 9
2004; 52
1998; 39
2005; 19
2013b; 69
1987; 62
2013; 33
2002; 61
2002; 125
2014; 72
1998a; 40
1992; 23
1998; 4
2003; 21
2016a; 76
2007; 48
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
Lu H (e_1_2_6_49_1) 2011; 21
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_5_1
Li W (e_1_2_6_38_1) 2016
e_1_2_6_7_1
Chanarin I (e_1_2_6_9_1) 1984
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 45
  start-page: 420
  year: 2009
  end-page: 430
  article-title: Inter‐subject variability in hypercapnic normalization of the BOLD fMRI response
  publication-title: NeuroImage
– volume: 21
  start-page: 805
  year: 2008
  end-page: 810
  article-title: The measurement of dyshemoglobins and total hemoglobin by pulse oximetry
  publication-title: Curr Opin Anaesthesiol
– volume: 26
  start-page: 885
  year: 2013
  end-page: 886
  article-title: MRI measures of cerebral physiology
  publication-title: NMR Biomed
– volume: 19
  start-page: 1289
  year: 1999
  end-page: 1295
  article-title: Determination of oxygen extraction ratios by magnetic resonance imaging
  publication-title: J Cereb Blood Flow Metab
– volume: 251
  start-page: H63
  year: 1986
  end-page: H70
  article-title: Effect of hematocrit on cerebral blood flow
  publication-title: Am J Physiol
– volume: 49
  start-page: 568
  year: 2003
  end-page: 571
  article-title: Effects of hematocrit and oxygen saturation level on blood spin‐lattice relaxation
  publication-title: Magn Reson Med
– volume: 21
  start-page: 27
  year: 1950
  end-page: 58
  article-title: Sample criteria for testing outlying observations
  publication-title: Ann Math Stat
– volume: 26
  start-page: 887
  year: 2013
  end-page: 891
  article-title: New developments in arterial spin labeling pulse sequences
  publication-title: NMR Biomed
– volume: 72
  start-page: 149
  year: 2014
  end-page: 159
  article-title: Quantitative oxygenation venography from MRI phase
  publication-title: Magn Reson Med
– volume: 10
  start-page: 854
  year: 1999
  end-page: 863
  article-title: Effect of normalization of hematocrit on brain circulation and metabolism in hemodialysis patients
  publication-title: J Am Soc Nephrol
– volume: 65
  start-page: 1297
  year: 2011b
  end-page: 1304
  article-title: Fast measurement of blood T(1) in the human jugular vein at 3 Tesla
  publication-title: Magn Reson Med
– volume: 23
  start-page: 37
  year: 1992
  end-page: 45
  article-title: Perfusion imaging
  publication-title: Magn Reson Med
– volume: 9
  start-page: e97363
  year: 2014
  article-title: Resting brain perfusion and selected vascular risk factors in healthy elderly subjects
  publication-title: PLoS One
– volume: 19
  start-page: 1055
  year: 2001
  end-page: 1062
  article-title: Influence of baseline hematocrit and hemodilution on BOLD fMRI activation
  publication-title: Magn Reson Imag
– volume: 18
  start-page: 1018
  year: 1998b
  end-page: 1021
  article-title: Experimental hypoxemic hypoxia: Effects of variation in hematocrit on magnetic resonance T2*‐weighted brain images
  publication-title: J Cereb Blood Flow Metab
– volume: 40
  start-page: 857
  year: 1998a
  end-page: 864
  article-title: Effects of acute normovolemic hemodilution on T2*‐weighted images of rat brain
  publication-title: Magn Reson Med
– volume: 36
  start-page: 1417
  year: 2015
  end-page: 1423
  article-title: Hemoglobin, hematocrit, and changes in cerebral blood flow: The second manifestations of arterial disease‐magnetic resonance study
  publication-title: Neurobiol Aging
– volume: 69
  start-page: 675
  year: 2013b
  end-page: 681
  article-title: Test‐retest reproducibility of a rapid method to measure brain oxygen metabolism
  publication-title: Magn Reson Med
– volume: 60
  start-page: 717
  year: 2012
  end-page: 727
  article-title: Test‐retest variability underlying fMRI measurements
  publication-title: NeuroImage
– volume: 70
  start-page: 1153
  year: 2013
  end-page: 1159
  article-title: Hematocrit and oxygenation dependence of blood (1)H(2)O T(1) at 7 Tesla
  publication-title: Magn Reson Med
– volume: 50
  start-page: 263
  year: 2003
  end-page: 274
  article-title: Functional magnetic resonance Imaging based on changes in vascular space occupancy
  publication-title: Magn Reson Med
– volume: 30
  start-page: 1598
  year: 2010
  end-page: 1607
  article-title: MRI estimation of global brain oxygen consumption rate
  publication-title: J Cereb Blood Flow Metab
– volume: 60
  start-page: 357
  year: 2008
  end-page: 363
  article-title: Quantitative evaluation of oxygenation in venous vessels using T2‐relaxation‐under‐spin‐tagging MRI
  publication-title: Magn Reson Med
– volume: 14
  start-page: 903
  year: 1987
  end-page: 913
  article-title: Magnetic‐resonance‐imaging of stationary blood ‐ A review
  publication-title: Med Phys
– volume: 12
  start-page: 745
  year: 1992
  end-page: 749
  article-title: Increased cerebral blood flow in anemic patients on long‐term hemodialytic treatment
  publication-title: J Cereb Blood Flow Metab
– volume: 15
  start-page: 170
  year: 1991
  end-page: 176
  article-title: An evaluation of the accuracy of flow measurements using magnetic resonance imaging (MRI)
  publication-title: J Med Eng Technol
– volume: 39
  start-page: 344
  year: 1989
  end-page: 348
  article-title: Cerebral hyperemia, stroke, and transfusion in sickle cell disease
  publication-title: Neurology
– volume: 24
  start-page: 80
  year: 2011
  end-page: 88
  article-title: A method for rapid in vivo measurement of blood T1
  publication-title: NMR Biomed
– volume: 39
  start-page: 702
  year: 1998
  end-page: 708
  article-title: Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II)
  publication-title: Magn Reson Med
– volume: 5
  start-page: 295
  year: 2011
  end-page: 306
  article-title: Hemodynamic responses to visual stimulation in children with sickle cell anemia
  publication-title: Brain Imag Behav
– volume: 78
  start-page: 308
  year: 2013c
  end-page: 321
  article-title: An introduction to normalization and calibration methods in functional MRI
  publication-title: Psychometrika
– volume: 4
  start-page: 159
  year: 1998
  end-page: 167
  article-title: Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging
  publication-title: Nat Med
– volume: 5
  start-page: 341
  year: 1997
  end-page: 346
  article-title: In vivo measurement of blood oxygen saturation using magnetic resonance imaging: A direct validation of the blood oxygen level‐dependent concept in functional brain imaging
  publication-title: Hum Brain Mapp
– volume: 26
  start-page: 987
  year: 2013
  end-page: 1003
  article-title: A review of calibrated blood oxygenation level‐dependent (BOLD) methods for the measurement of task‐induced changes in brain oxygen metabolism
  publication-title: NMR Biomed
– volume: 62
  start-page: 1090
  year: 1987
  end-page: 1096
  article-title: Effect of hematocrit on cerebral blood flow with induced polycythemia
  publication-title: J Appl Physiol
– volume: 69
  start-page: 203
  year: 2001
  end-page: 224
  article-title: Estimating R shrinkage in multiple regression: A comparison of different analytical methods
  publication-title: J Exp Educ
– volume: 62
  start-page: 1092
  year: 2012
  end-page: 1102
  article-title: The BOLD post‐stimulus undershoot, one of the most debated issues in fMRI
  publication-title: NeuroImage
– volume: 74
  start-page: 945
  year: 2015
  end-page: 952
  article-title: Quantitative mapping of cerebral metabolic rate of oxygen (CMRO2) using quantitative susceptibility mapping (QSM)
  publication-title: Magn Reson Med
– volume: 39
  start-page: 2277
  year: 2011
  end-page: 2282
  article-title: Accuracy of a continuous noninvasive hemoglobin monitor in intensive care unit patients
  publication-title: Crit Care Med
– volume: 2013
  start-page: 701529
  year: 2013
  article-title: How noninvasive haemoglobin measurement with pulse co‐oximetry can change your practice: An expert review
  publication-title: Emerg Med Int
– volume: 32
  start-page: 1188
  year: 2012
  end-page: 1206
  article-title: Biophysical and physiological origins of blood oxygenation level‐dependent fMRI signals
  publication-title: J Cereb Blood Flow Metab
– volume: 125
  start-page: 595
  year: 2002
  end-page: 607
  article-title: Variability of cerebral blood volume and oxygen extraction: Stages of cerebral haemodynamic impairment revisited
  publication-title: Brain
– volume: 34
  start-page: 2078
  year: 2013a
  end-page: 2088
  article-title: A comparison of physiologic modulators of fMRI signals
  publication-title: Hum Brain Mapp
– volume: 36
  start-page: 1244
  year: 2016
  end-page: 1256
  article-title: Comparison of non‐invasive MRI measurements of cerebral blood flow in a large multisite cohort
  publication-title: J Cereb Blood Flow Metab
– volume: 28
  start-page: 1527
  year: 2008
  end-page: 1532
  article-title: Measurement of common carotid artery lumen dynamics during the cardiac cycle using magnetic resonance TrueFISP cine imaging
  publication-title: J Magn Reson Imag
– volume: 1
  start-page: 275
  year: 1991
  end-page: 283
  article-title: Estimating oxygen‐saturation of blood in vivo with MR imaging at 1.5T
  publication-title: J Magn Reson Imag
– volume: 21
  start-page: 599
  year: 2003
  end-page: 607
  article-title: Influence of baseline hematocrit on between‐subject BOLD signal change using gradient echo and asymmetric spin echo EPI
  publication-title: Magn Reson Imag
– volume: 98
  start-page: 176
  year: 2014
  end-page: 183
  article-title: Age‐related increase of resting metabolic rate in the human brain
  publication-title: NeuroImage
– volume: 64
  start-page: 1140
  year: 2010
  end-page: 1147
  article-title: In vivo venous blood T1 measurement using inversion recovery true‐FISP in children and adults
  publication-title: Magn Reson Med
– volume: 62
  start-page: 141
  year: 2009
  end-page: 148
  article-title: Noninvasive quantification of whole‐brain cerebral metabolic rate of oxygen (CMRO ) by MRI
  publication-title: Magn Reson Med
– volume: 108
  start-page: 81
  year: 1985
  end-page: 93
  article-title: Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man
  publication-title: Brain
– volume: 13
  start-page: 133
  year: 1990
  end-page: 144
  article-title: Magnetic‐relaxation in blood and blood‐clots
  publication-title: Magn Reson Med
– volume: 60
  start-page: 364
  year: 2008
  end-page: 372
  article-title: Baseline blood oxygenation modulates response amplitude: Physiologic basis for intersubject variations in functional MRI signals
  publication-title: Magn Reson Med
– volume: 73
  start-page: 102
  year: 2015
  end-page: 116
  article-title: Recommended implementation of arterial spin‐labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia
  publication-title: Magn Reson Med
– volume: 52
  start-page: 679
  year: 2004
  end-page: 682
  article-title: Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla
  publication-title: Magn Reson Med
– year: 1984
– volume: 17
  start-page: 692
  year: 1986
  end-page: 698
  article-title: Measurement of regional cerebral blood flow, blood volume and oxygen metabolism in patients with sickle cell disease using positron emission tomography
  publication-title: Stroke
– volume: 55
  start-page: 967
  year: 2006
  end-page: 973
  article-title: MR susceptometry for measuring global brain oxygen extraction
  publication-title: Magn Reson Med
– volume: 30
  start-page: 1296
  year: 2010
  end-page: 1305
  article-title: Interindividual variations of cerebral blood flow, oxygen delivery, and metabolism in relation to hemoglobin concentration measured by positron emission tomography in humans
  publication-title: J Cereb Blood Flow Metab
– volume: 60
  start-page: 1488
  year: 2008
  end-page: 1497
  article-title: Continuous flow‐driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields
  publication-title: Magn Reson Med
– volume: 65
  start-page: 471
  year: 2011a
  end-page: 479
  article-title: Determination of whole‐brain oxygen extraction fractions by fast measurement of blood T(2) in the jugular vein
  publication-title: Magn Reson Med
– volume: 33
  start-page: 787
  year: 2013
  end-page: 792
  article-title: Sources of variability of resting cerebral blood flow in healthy subjects: A study using (1)(3)(3)Xe SPECT measurements
  publication-title: J Cereb Blood Flow Metab
– volume: 29
  start-page: 803
  year: 2009
  end-page: 810
  article-title: Hemodynamic etiology of elevated flow velocity and stroke in sickle‐cell disease
  publication-title: J Cereb Blood Flow Metab
– volume: 48
  start-page: 103
  year: 2007
  end-page: 112
  article-title: Anxiety, respiration, and cerebral blood flow: Implications for functional brain imaging
  publication-title: Compr Psychiatry
– year: 2016b
  article-title: Fast measurement of blood T1 in the human carotid artery at 3T: Accuracy, precision, and reproducibility
  publication-title: Magn Reson Med
– volume: 31
  start-page: 80
  year: 2010
  end-page: 87
  article-title: Improving fMRI sensitivity by normalization of basal physiologic state
  publication-title: Hum Brain Mapp
– volume: 23
  start-page: 423
  year: 1992
  end-page: 426
  article-title: Effect of hemodilution on cerebral hemodynamics and oxygen metabolism
  publication-title: Stroke
– volume: 61
  start-page: 564
  year: 2002
  end-page: 569
  article-title: Cerebral blood flow and vasodilatory capacity in anemia secondary to chronic renal failure
  publication-title: Kidney Int
– volume: 76
  start-page: 270
  year: 2016a
  end-page: 281
  article-title: Quantitative theory for the longitudinal relaxation time of blood water
  publication-title: Magn Reson Med
– volume: 19
  start-page: 65
  year: 2005
  end-page: 74
  article-title: Human cerebral circulation: Positron emission tomography studies
  publication-title: Ann Nucl Med
– volume: 31
  start-page: 1599
  year: 2011
  end-page: 1611
  article-title: Physiological origin for the BOLD poststimulus undershoot in human brain: Vascular compliance versus oxygen metabolism
  publication-title: J Cereb Blood Flow Metab
– volume: 28
  start-page: 109
  year: 1993
  end-page: 115
  article-title: Magnetic resonance imaging of blood flow with a phase subtraction technique. In vitro and in vivo validation
  publication-title: Invest Radiol
– volume: 67
  start-page: 42
  year: 2012
  end-page: 49
  article-title: Calibration and validation of TRUST MRI for the estimation of cerebral blood oxygenation
  publication-title: Magn Reson Med
– volume: 21
  start-page: 1426
  year: 2011
  end-page: 1434
  article-title: Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb
  publication-title: Cortex
– volume: 9
  start-page: 119
  year: 1999
  end-page: 127
  article-title: Construction of a protocol for measuring blood flow by two‐dimensional phase‐contrast MRA
  publication-title: J Magn Reson Imag
– ident: e_1_2_6_75_1
  doi: 10.1002/mrm.25463
– ident: e_1_2_6_50_1
  doi: 10.1002/hbm.20846
– ident: e_1_2_6_69_1
  doi: 10.1002/mrm.1910390506
– ident: e_1_2_6_56_1
  doi: 10.1016/j.neuroimage.2014.04.078
– ident: e_1_2_6_47_1
  doi: 10.1002/mrm.10519
– ident: e_1_2_6_57_1
  doi: 10.1038/jcbfm.2009.6
– ident: e_1_2_6_42_1
  doi: 10.1155/2013/701529
– ident: e_1_2_6_6_1
  doi: 10.1118/1.595994
– ident: e_1_2_6_32_1
  doi: 10.1007/BF03027383
– ident: e_1_2_6_63_1
  doi: 10.1016/j.neurobiolaging.2014.12.019
– ident: e_1_2_6_72_1
  doi: 10.1002/mrm.21994
– ident: e_1_2_6_74_1
  doi: 10.3109/03091909109023704
– ident: e_1_2_6_2_1
  doi: 10.1002/mrm.25197
– ident: e_1_2_6_19_1
  doi: 10.1097/CCM.0b013e3182227e2d
– ident: e_1_2_6_65_1
  doi: 10.1038/nm0298-159
– ident: e_1_2_6_5_1
  doi: 10.1002/nbm.2847
– ident: e_1_2_6_10_1
  doi: 10.1002/jmri.21527
– ident: e_1_2_6_29_1
  doi: 10.1038/jcbfm.2011.35
– ident: e_1_2_6_18_1
  doi: 10.1002/mrm.20892
– ident: e_1_2_6_20_1
  doi: 10.1016/j.comppsych.2006.11.001
– ident: e_1_2_6_41_1
  doi: 10.1097/00004647-199809000-00011
– ident: e_1_2_6_33_1
  doi: 10.1038/jcbfm.2010.49
– ident: e_1_2_6_58_1
  doi: 10.1212/WNL.39.3.344
– ident: e_1_2_6_28_1
  doi: 10.1161/01.STR.23.3.423
– ident: e_1_2_6_61_1
  doi: 10.1016/j.neuroimage.2011.11.061
– ident: e_1_2_6_71_1
  doi: 10.1002/mrm.22484
– ident: e_1_2_6_16_1
  doi: 10.1002/nbm.2998
– ident: e_1_2_6_44_1
  doi: 10.1002/mrm.24295
– ident: e_1_2_6_31_1
  doi: 10.1038/jcbfm.2010.13
– ident: e_1_2_6_11_1
  doi: 10.1002/mrm.21790
– ident: e_1_2_6_39_1
  doi: 10.1016/j.neuroimage.2008.11.032
– ident: e_1_2_6_59_1
  doi: 10.1002/mrm.22556
– ident: e_1_2_6_13_1
  doi: 10.1002/mrm.1910230106
– ident: e_1_2_6_14_1
  doi: 10.1177/0271678X16646124
– ident: e_1_2_6_35_1
  doi: 10.1046/j.1523-1755.2002.00142.x
– ident: e_1_2_6_51_1
  doi: 10.1002/mrm.21627
– ident: e_1_2_6_12_1
  doi: 10.1093/brain/awf047
– ident: e_1_2_6_43_1
  doi: 10.1002/hbm.22053
– ident: e_1_2_6_53_1
  doi: 10.1152/jappl.1987.62.3.1090
– ident: e_1_2_6_25_1
  doi: 10.1371/journal.pone.0097363
– ident: e_1_2_6_24_1
  doi: 10.1002/(SICI)1097-0193(1997)5:5<341::AID-HBM2>3.0.CO;2-3
– ident: e_1_2_6_34_1
  doi: 10.1038/jcbfm.2012.23
– year: 2016
  ident: e_1_2_6_38_1
  article-title: Fast measurement of blood T1 in the human carotid artery at 3T: Accuracy, precision, and reproducibility
  publication-title: Magn Reson Med
– ident: e_1_2_6_60_1
  doi: 10.1002/mrm.22723
– ident: e_1_2_6_64_1
  doi: 10.1016/j.neuroimage.2012.01.029
– ident: e_1_2_6_8_1
  doi: 10.1002/mrm.1910130112
– ident: e_1_2_6_68_1
  doi: 10.1002/nbm.2954
– ident: e_1_2_6_73_1
  doi: 10.1080/00220970109600656
– ident: e_1_2_6_55_1
  doi: 10.1097/00004647-199912000-00001
– ident: e_1_2_6_26_1
  doi: 10.1038/jcbfm.2013.17
– ident: e_1_2_6_17_1
  doi: 10.1002/mrm.24918
– ident: e_1_2_6_3_1
  doi: 10.1002/(SICI)1522-2586(199901)9:1<119::AID-JMRI16>3.0.CO;2-F
– volume: 21
  start-page: 1426
  year: 2011
  ident: e_1_2_6_49_1
  article-title: Alterations in cerebral metabolic rate and blood supply across the adult lifespan. Cereb
  publication-title: Cortex
  doi: 10.1093/cercor/bhq224
– ident: e_1_2_6_21_1
  doi: 10.1002/mrm.24547
– ident: e_1_2_6_67_1
  doi: 10.1038/jcbfm.1992.105
– ident: e_1_2_6_22_1
  doi: 10.1214/aoms/1177729885
– ident: e_1_2_6_37_1
  doi: 10.1002/mrm.25875
– ident: e_1_2_6_52_1
  doi: 10.1002/mrm.21686
– ident: e_1_2_6_23_1
  doi: 10.1016/S0730-725X(03)00083-3
– ident: e_1_2_6_30_1
  doi: 10.1152/ajpheart.1986.251.1.H63
– ident: e_1_2_6_66_1
  doi: 10.1002/nbm.1559
– ident: e_1_2_6_7_1
  doi: 10.1093/brain/108.1.81
– ident: e_1_2_6_40_1
  doi: 10.1002/mrm.1910400611
– ident: e_1_2_6_45_1
  doi: 10.1007/s11336-012-9309-x
– ident: e_1_2_6_46_1
  doi: 10.1002/mrm.20178
– volume-title: Blood and Its Disease
  year: 1984
  ident: e_1_2_6_9_1
– ident: e_1_2_6_4_1
  doi: 10.1097/ACO.0b013e328316bb6f
– ident: e_1_2_6_76_1
  doi: 10.1007/s11682-011-9133-4
– ident: e_1_2_6_15_1
  doi: 10.1097/00004424-199302000-00004
– ident: e_1_2_6_27_1
  doi: 10.1161/01.STR.17.4.692
– ident: e_1_2_6_48_1
  doi: 10.1002/mrm.22970
– ident: e_1_2_6_54_1
  doi: 10.1681/ASN.V104854
– ident: e_1_2_6_36_1
  doi: 10.1016/S0730-725X(01)00460-X
– ident: e_1_2_6_70_1
  doi: 10.1002/jmri.1880010303
– ident: e_1_2_6_62_1
  doi: 10.1002/mrm.10370
SSID ssj0011501
Score 2.3725193
Snippet Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between‐subject variation of Hct thus causes variation in...
Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 344
SubjectTerms Adult
Biological Variation, Individual
Blood flow
BOLD
Brain
Brain - diagnostic imaging
Brain - physiology
Brain Mapping
CBF
Cerebral blood flow
Cerebrovascular Circulation - physiology
CMRO2
Correlation
DO2
Female
Functional magnetic resonance imaging
Hct
Hematocrit
Humans
Linear Models
Magnetic Resonance Imaging
Male
Metabolic rate
MRI
OEF
Oxygen
Oxygen - blood
Perfusion
Variation
Visual Perception - physiology
Visual tasks
Title Accounting for the role of hematocrit in between‐subject variations of MRI‐derived baseline cerebral hemodynamic parameters and functional BOLD responses
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.23846
https://www.ncbi.nlm.nih.gov/pubmed/29024300
https://www.proquest.com/docview/1972997621
https://www.proquest.com/docview/1953293588
https://pubmed.ncbi.nlm.nih.gov/PMC5718957
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5KH8QXL62XaJVRRHzJNpnM5IJPrVpWcRWKhT4IYa50sZvIZrdQn_wJ_gH_nL_Ec2ayqWsVxLewczbJMOfynTMn3xDypMoNt45h2yBoMNdWxJJlPOa5Y6VkhStz_Bp58i4fH_E3x-J4gzxffQsT-CGGghtahvfXaOBSdbsXpKEnajaCeMORbht7tRAQHQ7UUQh0fLIFITauwAOvWIUStjv8cz0WXQKYl_skf8WvPgAdXCcfV68e-k4-jZYLNdJffmN1_M-53SDXemBK94Im3SQbttki23sNJOWzc_qU-lZRX4PfIlcm_Y78Nvl-cdwEBfxLAU9S7FikraOeD7YFt7Sg04b2HWE_vn7rlgqrP_QM8vRQMETpyeFrGDNgEWfWUIyuOA-q7Rz3tk_xbq05b-RsqikSls-wkaejsjEUg3OoadL9929f0nlo_LXdLXJ08OrDi3HcH_kQa86zPGZcycKlmXFFZhKdljKrnHGmSNNCF6p08ANgRsldrjNZlOAjISdLnDRKSOF0dptsNm1j7xJqK8NTpSFLLgW3wkEodkwLlWQSnpLyiDxbLX6tez50PJbjtA5MzqyGVaj9KkTk8SD6OZCA_EloZ6VBde8HuhoPdasA8bE0Io-GYbBg3JaRjW2XKCMyhtvRZUTuBIUbnsIqZIxMkogUa6o4CCA7-PpIMz3xLOECUEclCpim17S_v3g93p_4i3v_LnqfXAXkWIZa1A7ZXMyX9gGgs4V66M3wJ3p7O5k
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC2FIAEXloRlIECDEOLiid1ubxKXBIgmMA5SlEi5RFa7F2VExoNmiRROfAI_wM_xJVS1lzAEJMTNmq6x3eqqrlfV5VcAL7JYC2M5lQ2iBgtlIk_yUHgitjyVPLFpTF8j53vx4FC8P4qOVuB1-y1MzQ_RJdzIMtx-TQZOCenNC9bQk3LcR4cj4itwlTp6u4BqvyOPIqjjwi10sl6Ge3DLK-Tzze6vy97oEsS8XCn5K4J1LmjnFhy3L19XnnzqL-ZlX335jdfxf2d3G2422JRt1cp0B1ZMtQbrWxXG5eNz9pK5alGXhl-Da3lzKL8O3y86TjCEwAwhJaOiRTaxzFHCTnBnmrNRxZqisB9fv80WJSWA2BmG6nXOkKTz_V0c02gUZ0YzcrA0EabMlI63T-luE31eyfFIMeIsH1Mtz4zJSjPyz3Vak21_HL5l07r218zuwuHOu4M3A6_p-uApIcLY46KUiQ1CbZNQ-ypIZZhZbXUSBIlKytTiDwgbpbCxCmWS4jaJYZlvpS4jGVkV3oPValKZB8BMpkVQKgyU00iYyKI3tlxFpR9KfEogevCqXf1CNZTo1JnjtKjJnHmBq1C4VejB8070c80D8iehjVaFimYrmBXU1y1D0MeDHjzrhtGI6WRGVmayIJko5HQinfbgfq1x3VN4RqSRvt-DZEkXOwEiCF8eqUYnjig8QuCRRQlO06na31-8GGzn7uLhv4s-heuDg3xYDHf3PjyCGwgk0zo1tQGr8-nCPEawNi-fOJv8CfZPP7Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtNAEB2VIlW8cGm5GAosCCFenNrr9U08tYQohaagikp9qGSt96JGNE6VS6XyxCfwA_wcX8LM2nEJBQnxZmUntlc7lzOz47MAL_JEC2M5tQ2iBgtlYl_ySPgisTyTPLVZQl8jD_aT_qF4dxQfrcDrxbcwNT9EW3Ajy3D-mgz8TNutS9LQk3LUwXgjkmtwXSRBRirdPWi5owjpuGwLY6yfowte0AoFfKv963IwuoIwrzZK_gpgXQTq3YLjxbvXjSefO_NZ2VFffqN1_M_J3YabDTJl27Uq3YEVU63DxnaFWfnogr1krlfUFeHXYW3QbMlvwPfL8yYYAmCGgJJRyyIbW-YIYcfol2ZsWLGmJezH12_TeUnlH3aOiXpdMSTpwcEujmk0iXOjGYVXmgdTZkKb26d0t7G-qORoqBgxlo-ok2fKZKUZRee6qMl2Pux12aTu_DXTu3DYe_vpTd9vznzwlRBR4nNRytSGkbZppAMVZjLKrbY6DcNUpWVm8QcEjVLYREUyzdBJYlIWWKnLWMZWRfdgtRpX5gEwk2sRlgrT5CwWJrYYiy1XcRlEEp8SCg9eLRa_UA0hOp3LcVrUVM68wFUo3Cp48LwVPatZQP4ktLnQoKJxBNOCTnXLEfLx0INn7TCaMO3LyMqM5yQTR5z2ozMP7tcK1z6F50QZGQQepEuq2AoQPfjySDU8cTThMcKOPE5xmk7T_v7iRX9n4C4e_rvoU1j72O0Ve7v77x_BDUSRWV2X2oTV2WRuHiNSm5VPnEX-BDpGPmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accounting+for+the+role+of+hematocrit+in+between-subject+variations+of+MRI-derived+baseline+cerebral+hemodynamic+parameters+and+functional+BOLD+responses&rft.jtitle=Human+brain+mapping&rft.au=Xu%2C+Feng&rft.au=Li%2C+Wenbo&rft.au=Liu%2C+Peiying&rft.au=Hua%2C+Jun&rft.date=2018-01-01&rft.eissn=1097-0193&rft.volume=39&rft.issue=1&rft.spage=344&rft_id=info:doi/10.1002%2Fhbm.23846&rft_id=info%3Apmid%2F29024300&rft.externalDocID=29024300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon