The effects of insecticides on two splice variants of the glutamate‐gated chloride channel receptor of the major malaria vector, Anopheles gambiae

Background and Purpose Between half to 1 million people die annually from malaria. Anopheles gambiae mosquitoes are major malaria vectors. Unfortunately, resistance has emerged to the agents currently used to control A. gambiae, creating a demand for novel control measures. The pentameric glutamate‐...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of pharmacology Vol. 177; no. 1; pp. 175 - 187
Main Authors Atif, Mohammed, Lynch, Joseph W., Keramidas, Angelo
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.01.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and Purpose Between half to 1 million people die annually from malaria. Anopheles gambiae mosquitoes are major malaria vectors. Unfortunately, resistance has emerged to the agents currently used to control A. gambiae, creating a demand for novel control measures. The pentameric glutamate‐gated chloride channel (GluCl) expressed in the muscle and nerve cells of these organisms are a potentially important biological target for malaria control. The pharmacological properties of Anophiline GluCl receptors are, however, largely unknown. Accordingly, we compared the efficacy of four insecticides (lindane, fipronil, picrotoxin, and ivermectin) on two A. gambiae GluCl receptor splice variants with the aim of providing a molecular basis for designing novel anti‐malaria treatments. Experimental Approach The A. gambiae GluCl receptor b1 and c splice variants were expressed homomerically in Xenopus laevis oocytes and studied with electrophysiological techniques, using two‐electrode voltage‐clamp. Key Results The b1 and c GluCl receptors were activated with similar potencies by glutamate and ivermectin. Fipronil was more potent than picrotoxin and lindane at inhibiting glutamate‐ and ivermectin‐gated currents. Importantly, b1 GluCl receptors exhibited reduced sensitivity to picrotoxin and lindane. They also recovered from these effects to a greater extent than c GluCl receptors Conclusions and Implications The two splice variant subunits exhibited differential sensitivities to multiple, structurally divergent insecticides, without accompanying changes in the sensitivity to the endogenous neurotransmitter, glutamate, implying that drug resistance may be caused by alterations in relative subunit expression levels, without affecting physiological function. Our results strongly suggest that it should be feasible to develop novel subunit‐specific pharmacological agents.
AbstractList Background and PurposeBetween half to 1 million people die annually from malaria. Anopheles gambiae mosquitoes are major malaria vectors. Unfortunately, resistance has emerged to the agents currently used to control A. gambiae, creating a demand for novel control measures. The pentameric glutamate‐gated chloride channel (GluCl) expressed in the muscle and nerve cells of these organisms are a potentially important biological target for malaria control. The pharmacological properties of Anophiline GluCl receptors are, however, largely unknown. Accordingly, we compared the efficacy of four insecticides (lindane, fipronil, picrotoxin, and ivermectin) on two A. gambiae GluCl receptor splice variants with the aim of providing a molecular basis for designing novel anti‐malaria treatments.Experimental ApproachThe A. gambiae GluCl receptor b1 and c splice variants were expressed homomerically in Xenopus laevis oocytes and studied with electrophysiological techniques, using two‐electrode voltage‐clamp.Key ResultsThe b1 and c GluCl receptors were activated with similar potencies by glutamate and ivermectin. Fipronil was more potent than picrotoxin and lindane at inhibiting glutamate‐ and ivermectin‐gated currents. Importantly, b1 GluCl receptors exhibited reduced sensitivity to picrotoxin and lindane. They also recovered from these effects to a greater extent than c GluCl receptorsConclusions and ImplicationsThe two splice variant subunits exhibited differential sensitivities to multiple, structurally divergent insecticides, without accompanying changes in the sensitivity to the endogenous neurotransmitter, glutamate, implying that drug resistance may be caused by alterations in relative subunit expression levels, without affecting physiological function. Our results strongly suggest that it should be feasible to develop novel subunit‐specific pharmacological agents.
Background and Purpose Between half to 1 million people die annually from malaria. Anopheles gambiae mosquitoes are major malaria vectors. Unfortunately, resistance has emerged to the agents currently used to control A. gambiae , creating a demand for novel control measures. The pentameric glutamate‐gated chloride channel (GluCl) expressed in the muscle and nerve cells of these organisms are a potentially important biological target for malaria control. The pharmacological properties of Anophiline GluCl receptors are, however, largely unknown. Accordingly, we compared the efficacy of four insecticides (lindane, fipronil, picrotoxin, and ivermectin) on two A. gambiae GluCl receptor splice variants with the aim of providing a molecular basis for designing novel anti‐malaria treatments. Experimental Approach The A. gambiae GluCl receptor b1 and c splice variants were expressed homomerically in Xenopus laevis oocytes and studied with electrophysiological techniques, using two‐electrode voltage‐clamp. Key Results The b1 and c GluCl receptors were activated with similar potencies by glutamate and ivermectin. Fipronil was more potent than picrotoxin and lindane at inhibiting glutamate‐ and ivermectin‐gated currents. Importantly, b1 GluCl receptors exhibited reduced sensitivity to picrotoxin and lindane. They also recovered from these effects to a greater extent than c GluCl receptors Conclusions and Implications The two splice variant subunits exhibited differential sensitivities to multiple, structurally divergent insecticides, without accompanying changes in the sensitivity to the endogenous neurotransmitter, glutamate, implying that drug resistance may be caused by alterations in relative subunit expression levels, without affecting physiological function. Our results strongly suggest that it should be feasible to develop novel subunit‐specific pharmacological agents.
Background and Purpose Between half to 1 million people die annually from malaria. Anopheles gambiae mosquitoes are major malaria vectors. Unfortunately, resistance has emerged to the agents currently used to control A. gambiae, creating a demand for novel control measures. The pentameric glutamate‐gated chloride channel (GluCl) expressed in the muscle and nerve cells of these organisms are a potentially important biological target for malaria control. The pharmacological properties of Anophiline GluCl receptors are, however, largely unknown. Accordingly, we compared the efficacy of four insecticides (lindane, fipronil, picrotoxin, and ivermectin) on two A. gambiae GluCl receptor splice variants with the aim of providing a molecular basis for designing novel anti‐malaria treatments. Experimental Approach The A. gambiae GluCl receptor b1 and c splice variants were expressed homomerically in Xenopus laevis oocytes and studied with electrophysiological techniques, using two‐electrode voltage‐clamp. Key Results The b1 and c GluCl receptors were activated with similar potencies by glutamate and ivermectin. Fipronil was more potent than picrotoxin and lindane at inhibiting glutamate‐ and ivermectin‐gated currents. Importantly, b1 GluCl receptors exhibited reduced sensitivity to picrotoxin and lindane. They also recovered from these effects to a greater extent than c GluCl receptors Conclusions and Implications The two splice variant subunits exhibited differential sensitivities to multiple, structurally divergent insecticides, without accompanying changes in the sensitivity to the endogenous neurotransmitter, glutamate, implying that drug resistance may be caused by alterations in relative subunit expression levels, without affecting physiological function. Our results strongly suggest that it should be feasible to develop novel subunit‐specific pharmacological agents.
Between half to 1 million people die annually from malaria. Anopheles gambiae mosquitoes are major malaria vectors. Unfortunately, resistance has emerged to the agents currently used to control A. gambiae, creating a demand for novel control measures. The pentameric glutamate-gated chloride channel (GluCl) expressed in the muscle and nerve cells of these organisms are a potentially important biological target for malaria control. The pharmacological properties of Anophiline GluCl receptors are, however, largely unknown. Accordingly, we compared the efficacy of four insecticides (lindane, fipronil, picrotoxin, and ivermectin) on two A. gambiae GluCl receptor splice variants with the aim of providing a molecular basis for designing novel anti-malaria treatments. The A. gambiae GluCl receptor b1 and c splice variants were expressed homomerically in Xenopus laevis oocytes and studied with electrophysiological techniques, using two-electrode voltage-clamp. The b1 and c GluCl receptors were activated with similar potencies by glutamate and ivermectin. Fipronil was more potent than picrotoxin and lindane at inhibiting glutamate- and ivermectin-gated currents. Importantly, b1 GluCl receptors exhibited reduced sensitivity to picrotoxin and lindane. They also recovered from these effects to a greater extent than c GluCl receptors CONCLUSIONS AND IMPLICATIONS: The two splice variant subunits exhibited differential sensitivities to multiple, structurally divergent insecticides, without accompanying changes in the sensitivity to the endogenous neurotransmitter, glutamate, implying that drug resistance may be caused by alterations in relative subunit expression levels, without affecting physiological function. Our results strongly suggest that it should be feasible to develop novel subunit-specific pharmacological agents.
Author Keramidas, Angelo
Atif, Mohammed
Lynch, Joseph W.
AuthorAffiliation 1 Queensland Brain Institute The University of Queensland Brisbane QLD Australia
AuthorAffiliation_xml – name: 1 Queensland Brain Institute The University of Queensland Brisbane QLD Australia
Author_xml – sequence: 1
  givenname: Mohammed
  surname: Atif
  fullname: Atif, Mohammed
  organization: The University of Queensland
– sequence: 2
  givenname: Joseph W.
  surname: Lynch
  fullname: Lynch, Joseph W.
  email: j.lynch@uq.edu.au
  organization: The University of Queensland
– sequence: 3
  givenname: Angelo
  surname: Keramidas
  fullname: Keramidas, Angelo
  email: a.keramidas@uq.edu.au
  organization: The University of Queensland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31479507$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFu1DAQhi1URLelB14AWeKERFo7jmPngtRWtEWqBIf2bDnOeONVYgc7u1VvPAIHnpAnwSVtBQfmMjOab_4Z6T9Aez54QOgNJcc0x0k79ce0kpy_QCtaibrgTNI9tCKEiIJSKffRQUobQvJQ8Fdon-Wi4USs0M-bHjBYC2ZOOFjsfMqlM66D3Hs83wWcpsEZwDsdnfYLNuet9bCd9ahn-PX9xzqnDpt-CDFv5kJ7DwOOYGCaQ3xaGfUmN6MeHqTwLl8K8QM-9WHqYcgH13psnYbX6KXVQ4Kjx3yIbi8-3ZxfFddfLj-fn14XpqoYL4CbsqwENLyDphSSUNkKayzYmtctaVrKDTGGyaojzIiGQG2pEaU2srJcSnaIPi6607YdoTPg56gHNUU36nivgnbq34l3vVqHnaobUUtRZ4F3jwIxfNtCmtUmbKPPP6uSVYzVnBGRqfcLZWJIKYJ9vkCJejBQZQPVHwMz-_bvl57JJ8cycLIAd26A-_8rqbOvV4vkb6mOqz8
CitedBy_id crossref_primary_10_1016_j_pestbp_2020_104743
crossref_primary_10_1371_journal_ppat_1008863
crossref_primary_10_1002_ejoc_202101531
crossref_primary_10_1128_mSphere_00218_21
crossref_primary_10_3389_fnins_2020_00879
crossref_primary_10_1038_s42003_023_04907_x
Cites_doi 10.1111/j.1365-2583.1993.tb00134.x
10.1038/nbt.4245
10.1111/bph.14153
10.1186/1475-2875-13-417
10.1007/s10158-005-0004-9
10.1007/s10158-005-0008-5
10.1371/journal.ppat.1007570
10.1136/bmjgh-2016-000198
10.1046/j.1471-4159.2001.00124.x
10.1038/363449a0
10.1016/S0140-6736(18)30324-6
10.1093/nar/gkx1121
10.1111/j.1476-5381.2011.01722.x
10.1111/j.1476-5381.1995.tb15896.x
10.1038/sj.bjp.0703824
10.2174/0929867324666170206142019
10.1038/bjp.2008.309
10.1038/s41564-018-0214-7
10.1371/journal.ppat.1006663
10.1038/nature15535
10.1021/acschembio.6b00926
10.1016/S0140-6736(13)60024-0
10.1097/ALN.0b013e31822550f7
10.1038/nature24995
10.1016/j.ibmb.2017.12.001
10.1038/sj.bjp.0703937
10.1016/j.actatropica.2017.07.030
10.1074/jbc.R112.406280
10.1074/jbc.270.23.13799
10.1038/nrdp.2017.50
10.1016/j.ibmb.2018.12.005
10.1016/j.ibmb.2017.05.006
10.1038/nature10139
10.1038/nature01280
10.1016/j.actatropica.2017.06.028
10.1073/pnas.1302089111
10.1111/jnc.13290
10.1111/j.1365-2583.2005.00544.x
10.1111/bph.13879
10.1016/j.ijantimicag.2018.07.005
10.1007/s00018-012-1133-z
10.1016/0014-5793(93)81070-G
10.1111/j.1476-5381.2010.00872.x
10.1002/ps.4677
10.3389/fnmol.2016.00041
10.1016/S0140-6736(15)00417-1
10.2174/0929867324666170613075736
10.1124/jpet.103.051839
10.1111/j.1365-2583.2008.00806.x
10.1016/j.ibmb.2013.02.002
10.1111/j.1365-2583.2010.01017.x
10.1242/jeb.118570
10.1016/j.ijpara.2010.07.010
10.1016/j.pestbp.2009.07.008
10.1016/j.ibmb.2011.03.012
10.1371/journal.pone.0097468
10.1038/s41586-018-0832-5
10.1085/jgp.200309004
10.1038/371707a0
10.1073/pnas.240464697
10.3389/fnmol.2015.00055
ContentType Journal Article
Copyright 2019 The British Pharmacological Society
2019 The British Pharmacological Society.
2020 The British Pharmacological Society
Copyright_xml – notice: 2019 The British Pharmacological Society
– notice: 2019 The British Pharmacological Society.
– notice: 2020 The British Pharmacological Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
K9.
NAPCQ
5PM
DOI 10.1111/bph.14855
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Atif et al
EISSN 1476-5381
EndPage 187
ExternalDocumentID 10_1111_bph_14855
31479507
BPH14855
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Health and Medical Research Council
  funderid: NHMRC grant APP1080976
– fundername: National Health and Medical Research Council
  grantid: NHMRC grant APP1080976
– fundername: ;
  grantid: NHMRC grant APP1080976
GroupedDBID ---
.3N
.55
.GJ
05W
0R~
1OC
23N
24P
2WC
31~
33P
36B
3O-
3SF
3V.
4.4
52U
52V
53G
5GY
6J9
7RV
7X7
8-0
8-1
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
A00
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
B0M
BAFTC
BAWUL
BBNVY
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BMXJE
BPHCQ
BRXPI
BVXVI
C45
CAG
CCPQU
COF
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
ECV
EJD
EMB
EMK
EMOBN
ENC
ESX
EX3
F5P
FUBAC
FYUFA
G-S
GODZA
GX1
H.X
HCIFZ
HGLYW
HMCUK
HYE
HZ~
J5H
KBYEO
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LSO
LUTES
LW6
LYRES
M1P
M7P
MEWTI
MK0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N9A
NAPCQ
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
PROAC
PSQYO
Q.N
Q2X
QB0
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
TUS
UKHRP
UPT
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WVDHM
WXSBR
X7M
XV2
Y6R
YHG
ZGI
ZXP
ZZTAW
~8M
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
K9.
5PM
ID FETCH-LOGICAL-c4435-e5c2247e95de9278018b7fcfef656b09b15c0cc384d03c790e6f1c72ac84f5883
IEDL.DBID RPM
ISSN 0007-1188
IngestDate Tue Sep 17 21:19:46 EDT 2024
Thu Oct 10 23:07:18 EDT 2024
Fri Aug 23 01:30:40 EDT 2024
Sat Sep 28 08:33:25 EDT 2024
Sat Aug 24 01:10:44 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2019 The British Pharmacological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4435-e5c2247e95de9278018b7fcfef656b09b15c0cc384d03c790e6f1c72ac84f5883
Notes Present Address: Angelo Keramidas, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
OpenAccessLink https://bpspubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/bph.14855
PMID 31479507
PQID 2343365307
PQPubID 42104
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6976876
proquest_journals_2343365307
crossref_primary_10_1111_bph_14855
pubmed_primary_31479507
wiley_primary_10_1111_bph_14855_BPH14855
PublicationCentury 2000
PublicationDate January 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle British journal of pharmacology
PublicationTitleAlternate Br J Pharmacol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2004; 123
2011; 115
2017; 86
2010; 97
2012; 165
2017; 2
2012; 287
2017; 3
2010; 19
2019; 15
1994; 371
2016; 387
2013; 70
2019; 565
2017; 552
1993; 325
1993; 2
1993; 363
2011; 474
2018; 46
2018; 175
2017; 73
2001; 132
2015; 135
2000; 97
2014; 13
2015; 218
2014; 9
2008; 155
2018; 36
2019; 4
2013; 43
2017; 24
2018; 104
2008; 17
1995; 115
2017; 174
2015; 526
2010; 160
2017; 176
2014; 111
2015; 8
1995; 3
2010; 40
1995; 270
2018; 391
2003; 306
2017; 13
2017; 12
2005; 5
2011; 41
2018; 52
2018; 93
2003; 421
2014; 383
2016; 9
2005; 14
2001; 76
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Gurley D. (e_1_2_10_19_1) 1995; 3
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 104
  start-page: 58
  year: 2018
  end-page: 64
  article-title: Function and pharmacology of glutamate‐gated chloride channel exon 9 splice variants from the diamondback moth
  publication-title: Insect Biochemistry and Molecular Biology
– volume: 218
  start-page: 1478
  year: 2015
  end-page: 1486
  article-title: Characterization of the target of ivermectin, the glutamate‐gated chloride channel, from
  publication-title: The Journal of Experimental Biology
– volume: 287
  start-page: 40232
  year: 2012
  end-page: 40238
  article-title: Glutamate‐gated chloride channels
  publication-title: The Journal of Biological Chemistry
– volume: 2
  start-page: 149
  year: 1993
  end-page: 154
  article-title: Conservation of cyclodiene insecticide resistance‐associated mutations in insects
  publication-title: Insect Molecular Biology
– volume: 24
  start-page: 2925
  year: 2017
  end-page: 2934
  article-title: Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors
  publication-title: Current Medicinal Chemistry
– volume: 36
  start-page: 1062
  year: 2018
  end-page: 1066
  article-title: A CRISPR‐Cas9 gene drive targeting causes complete population suppression in caged mosquitoes
  publication-title: Nature Biotechnology
– volume: 24
  start-page: 2935
  year: 2017
  end-page: 2945
  article-title: Mechanisms of action, resistance and toxicity of insecticides targeting GABA receptors
  publication-title: Current Medicinal Chemistry
– volume: 391
  start-page: 1608
  year: 2018
  end-page: 1621
  article-title: Malaria
  publication-title: Lancet
– volume: 132
  start-page: 205
  year: 2001
  end-page: 212
  article-title: Effects of γ‐HCH and δ‐HCH on human recombinant GABA receptors: Dependence on GABA receptor subunit combination
  publication-title: British Journal of Pharmacology
– volume: 52
  start-page: 593
  year: 2018
  end-page: 598
  article-title: Mutations in GluCl associated with field ivermectin‐resistant head lice from Senegal
  publication-title: International Journal of Antimicrobial Agents
– volume: 70
  start-page: 1241
  year: 2013
  end-page: 1253
  article-title: An outline of desensitization in pentameric ligand‐gated ion channel receptors
  publication-title: Cellular and Molecular Life Sciences
– volume: 383
  start-page: 723
  year: 2014
  end-page: 735
  article-title: Malaria
  publication-title: Lancet
– volume: 115
  start-page: 909
  year: 1995
  end-page: 912
  article-title: Actions of the insecticide fipronil, on dieldrin‐sensitive and‐ resistant GABA receptors of
  publication-title: British Journal of Pharmacology
– volume: 165
  start-page: 2707
  year: 2012
  end-page: 2720
  article-title: Mechanism of action of the insecticides, lindane and fipronil, on glycine receptor chloride channels
  publication-title: British Journal of Pharmacology
– volume: 40
  start-page: 1477
  year: 2010
  end-page: 1481
  article-title: A glycine residue essential for high ivermectin sensitivity in Cys‐loop ion channel receptors
  publication-title: International Journal for Parasitology
– volume: 135
  start-page: 705
  year: 2015
  end-page: 713
  article-title: The neonicotinoid imidacloprid, and the pyrethroid deltamethrin, are antagonists of the insect Rdl GABA receptor
  publication-title: Journal of Neurochemistry
– volume: 41
  start-page: 484
  year: 2011
  end-page: 491
  article-title: Identification and distribution of a GABA receptor mutation conferring dieldrin resistance in the malaria vector in Africa
  publication-title: Insect Biochemistry and Molecular Biology
– volume: 176
  start-page: 126
  year: 2017
  end-page: 133
  article-title: Preliminary efficacy investigations of oral fipronil against when administered to Zebu cattle ( ) under field conditions
  publication-title: Acta Tropica
– volume: 14
  start-page: 179
  year: 2005
  end-page: 183
  article-title: Independent mutations in the locus confer dieldrin resistance to and
  publication-title: Insect Molecular Biology
– volume: 93
  start-page: 1
  year: 2018
  end-page: 11
  article-title: Species specific RNA A‐to‐I editing of mosquito RDL modulates GABA potency and influences agonistic, potentiating and antagonistic actions of ivermectin
  publication-title: Insect Biochemistry and Molecular Biology
– volume: 86
  start-page: 50
  year: 2017
  end-page: 57
  article-title: Mutations on M3 helix of glutamate‐gated chloride channel confer unequal resistance to abamectin by two different mechanisms
  publication-title: Insect Biochemistry and Molecular Biology
– volume: 3
  start-page: 13
  year: 1995
  end-page: 20
  article-title: Point mutations in the M2 region of the alpha, beta, or gamma subunit of the GABAA channel that abolish block by picrotoxin
  publication-title: Receptors & Channels
– volume: 387
  start-page: 1785
  year: 2016
  end-page: 1788
  article-title: Averting a malaria disaster: Will insecticide resistance derail malaria control?
  publication-title: Lancet
– volume: 474
  start-page: 54
  year: 2011
  end-page: 60
  article-title: Principles of activation and permeation in an anion‐selective Cys‐loop receptor
  publication-title: Nature
– volume: 12
  start-page: 805
  year: 2017
  end-page: 813
  article-title: Probing the structural mechanism of partial agonism in glycine receptors using the fluorescent artificial amino acid, ANAP
  publication-title: ACS Chemical Biology
– volume: 160
  start-page: 1577
  year: 2010
  end-page: 1579
  article-title: Animal research: Reporting in vivo experiments: The ARRIVE guidelines
  publication-title: British Journal of Pharmacology
– volume: 270
  start-page: 13799
  year: 1995
  end-page: 13806
  article-title: Mutations affecting the glycine receptor agonist transduction mechanism convert the competitive antagonist, picrotoxin, into an allosteric potentiator
  publication-title: The Journal of Biological Chemistry
– volume: 123
  start-page: 341
  year: 2004
  end-page: 356
  article-title: Gating dynamics of the acetylcholine receptor extracellular domain
  publication-title: The Journal of General Physiology
– volume: 73
  start-page: 2413
  year: 2017
  end-page: 2418
  article-title: A G326E substitution in the glutamate‐gated chloride channel 3 (GluCl3) of the two‐spotted spider mite abolishes the agonistic activity of macrocyclic lactones
  publication-title: Pest Management Science
– volume: 526
  start-page: 207
  year: 2015
  end-page: 211
  article-title: The effect of malaria control on in Africa between 2000 and 2015
  publication-title: Nature
– volume: 9
  start-page: 41
  year: 2016
  article-title: The intracellular loop of the glycine receptor: It's not all about the size
  publication-title: Frontiers in Molecular Neuroscience
– volume: 111
  start-page: 3286
  year: 2014
  end-page: 3291
  article-title: Impact of climate change on global malaria distribution
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 15
  year: 2019
  article-title: GluClR‐mediated inhibitory postsynaptic currents reveal targets for ivermectin and potential mechanisms of ivermectin resistance
  publication-title: PLoS Pathogens
– volume: 17
  start-page: 341
  year: 2008
  end-page: 350
  article-title: Role of a serine residue (S278) in the pore‐facing region of the housefly ‐glutamate‐gated chloride channel in determining sensitivity to noncompetitive antagonists
  publication-title: Insect Molecular Biology
– volume: 4
  start-page: 20
  year: 2019
  end-page: 34
  article-title: Vector biology meets disease control: Using basic research to fight vector‐borne diseases
  publication-title: Nature Microbiology
– volume: 97
  start-page: 149
  year: 2010
  end-page: 152
  article-title: Glutamate‐activated chloride channels: Unique fipronil targets present in insects but not in mammals
  publication-title: Pesticide Biochemistry and Physiology
– volume: 174
  start-page: S130
  issue: Suppl 1
  year: 2017
  end-page: S159
  article-title: The Concise Guide to PHARMACOLOGY 2017/18: Ligand‐gated ion channels
  publication-title: British Journal of Pharmacology
– volume: 132
  start-page: 1247
  year: 2001
  end-page: 1254
  article-title: GLC‐3: A novel fipronil and BIDN‐sensitive, but picrotoxinin‐insensitive, ‐glutamate‐gated chloride channel subunit from
  publication-title: British Journal of Pharmacology
– volume: 371
  start-page: 707
  year: 1994
  end-page: 711
  article-title: Cloning of an avermectin‐sensitive glutamate‐gated chloride channel from
  publication-title: Nature
– volume: 19
  start-page: 583
  year: 2010
  end-page: 591
  article-title: A point mutation in a glutamate‐gated chloride channel confers abamectin resistance in the two‐spotted spider mite, Koch
  publication-title: Insect Molecular Biology
– volume: 306
  start-page: 914
  year: 2003
  end-page: 924
  article-title: Differential actions of fipronil and dieldrin insecticides on GABA‐gated chloride channels in cockroach neurons
  publication-title: The Journal of Pharmacology and Experimental Therapeutics
– volume: 363
  start-page: 449
  year: 1993
  end-page: 451
  article-title: A point mutation in a Drosophila GABA receptor confers insecticide resistance
  publication-title: Nature
– volume: 5
  start-page: 157
  year: 2005
  end-page: 164
  article-title: Differential blocking actions of 4′‐ethynyl‐4‐ ‐propylbicycloorthobenzoate (EBOB) and γ‐hexachlorocyclohexane (γ‐HCH) on γ‐aminobutyric acid‐ and glutamate‐induced responses of American cockroach neurons
  publication-title: Invertebrate Neuroscience
– volume: 115
  start-page: 464
  year: 2011
  end-page: 473
  article-title: A single phenylalanine residue in the main intracellular loop of α1 γ‐aminobutyric acid type A and glycine receptors influences their sensitivity to propofol
  publication-title: Anesthesiology
– volume: 2
  year: 2017
  article-title: Going beyond personal protection against mosquito bites to eliminate malaria transmission: Population suppression of malaria vectors that exploit both human and animal blood
  publication-title: BMJ Global Health
– volume: 565
  start-page: 454
  year: 2019
  end-page: 459
  article-title: GABA receptor signalling mechanisms revealed by structural pharmacology
  publication-title: Nature
– volume: 175
  start-page: 987
  year: 2018
  end-page: 993
  article-title: Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers
  publication-title: British Journal of Pharmacology
– volume: 3
  start-page: 17050
  year: 2017
  article-title: Malaria
  publication-title: Nature Reviews. Disease Primers
– volume: 13
  year: 2017
  article-title: Effects of glutamate and ivermectin on single glutamate‐gated chloride channels of the parasitic nematode
  publication-title: PLoS Pathogens
– volume: 325
  start-page: 187
  year: 1993
  end-page: 190
  article-title: Cloning and sequencing of the cyclodiene insecticide resistance gene from the yellow fever mosquito . Conservation of the gene and resistance associated mutation with
  publication-title: FEBS Letters
– volume: 421
  start-page: 272
  year: 2003
  end-page: 275
  article-title: Coupling of agonist binding to channel gating in the GABA(A) receptor
  publication-title: Nature
– volume: 76
  start-page: 1109
  year: 2001
  end-page: 1120
  article-title: A single β subunit M2 domain residue controls the picrotoxin sensitivity of αβ heteromeric glycine receptor chloride channels
  publication-title: Journal of Neurochemistry
– volume: 46
  start-page: D1091
  year: 2018
  end-page: D1106
  article-title: The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: Updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY
  publication-title: Nucleic Acids Research
– volume: 97
  start-page: 13949
  year: 2000
  end-page: 13954
  article-title: Drug‐resistant indicate glutamate‐gated chloride channels are targets for the antiparasitics nodulisporic acid and ivermectin
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 8
  start-page: 55
  year: 2015
  article-title: Functional characterization of ivermectin binding sites in α1β2γ2L GABA(A) receptors
  publication-title: Frontiers in Molecular Neuroscience
– volume: 9
  year: 2014
  article-title: Actions of agonists, fipronil and ivermectin on the predominant splice and edit variant (RDL , I/V) of the GABA receptor expressed in oocytes
  publication-title: PLoS ONE
– volume: 552
  start-page: 96
  year: 2017
  end-page: 100
  article-title: Genetic diversity of the African malaria vector
  publication-title: Nature
– volume: 43
  start-page: 366
  year: 2013
  end-page: 375
  article-title: Meta‐diamide insecticides acting on distinct sites of RDL GABA receptor from those for conventional noncompetitive antagonists
  publication-title: Insect Biochemistry and Molecular Biology
– volume: 155
  start-page: 783
  year: 2008
  end-page: 794
  article-title: The insecticide fipronil and its metabolite fipronil sulphone inhibit the rat α1β2γ2L GABA receptor
  publication-title: British Journal of Pharmacology
– volume: 174
  start-page: 91
  year: 2017
  end-page: 96
  article-title: Current vector control challenges in the fight against malaria
  publication-title: Acta Tropica
– volume: 5
  start-page: 119
  year: 2005
  end-page: 133
  article-title: Ion channels: Molecular targets of neuroactive insecticides
  publication-title: Invertebrate Neuroscience
– volume: 13
  start-page: 417
  year: 2014
  article-title: Evaluation of ivermectin mass drug administration for malaria transmission control across different West African environments
  publication-title: Malaria Journal
– ident: e_1_2_10_57_1
  doi: 10.1111/j.1365-2583.1993.tb00134.x
– ident: e_1_2_10_35_1
  doi: 10.1038/nbt.4245
– ident: e_1_2_10_15_1
  doi: 10.1111/bph.14153
– ident: e_1_2_10_3_1
  doi: 10.1186/1475-2875-13-417
– ident: e_1_2_10_50_1
  doi: 10.1007/s10158-005-0004-9
– ident: e_1_2_10_27_1
  doi: 10.1007/s10158-005-0008-5
– ident: e_1_2_10_8_1
  doi: 10.1371/journal.ppat.1007570
– ident: e_1_2_10_33_1
  doi: 10.1136/bmjgh-2016-000198
– ident: e_1_2_10_51_1
  doi: 10.1046/j.1471-4159.2001.00124.x
– ident: e_1_2_10_18_1
  doi: 10.1038/363449a0
– ident: e_1_2_10_6_1
  doi: 10.1016/S0140-6736(18)30324-6
– ident: e_1_2_10_20_1
  doi: 10.1093/nar/gkx1121
– ident: e_1_2_10_28_1
  doi: 10.1111/j.1476-5381.2011.01722.x
– ident: e_1_2_10_25_1
  doi: 10.1111/j.1476-5381.1995.tb15896.x
– ident: e_1_2_10_42_1
  doi: 10.1038/sj.bjp.0703824
– ident: e_1_2_10_26_1
  doi: 10.2174/0929867324666170206142019
– ident: e_1_2_10_38_1
  doi: 10.1038/bjp.2008.309
– ident: e_1_2_10_52_1
  doi: 10.1038/s41564-018-0214-7
– ident: e_1_2_10_7_1
  doi: 10.1371/journal.ppat.1006663
– ident: e_1_2_10_10_1
  doi: 10.1038/nature15535
– ident: e_1_2_10_53_1
  doi: 10.1021/acschembio.6b00926
– ident: e_1_2_10_60_1
  doi: 10.1016/S0140-6736(13)60024-0
– ident: e_1_2_10_45_1
  doi: 10.1097/ALN.0b013e31822550f7
– ident: e_1_2_10_5_1
  doi: 10.1038/nature24995
– ident: e_1_2_10_55_1
  doi: 10.1016/j.ibmb.2017.12.001
– ident: e_1_2_10_24_1
  doi: 10.1038/sj.bjp.0703937
– ident: e_1_2_10_49_1
  doi: 10.1016/j.actatropica.2017.07.030
– ident: e_1_2_10_61_1
  doi: 10.1074/jbc.R112.406280
– ident: e_1_2_10_40_1
  doi: 10.1074/jbc.270.23.13799
– ident: e_1_2_10_48_1
  doi: 10.1038/nrdp.2017.50
– ident: e_1_2_10_58_1
  doi: 10.1016/j.ibmb.2018.12.005
– ident: e_1_2_10_59_1
  doi: 10.1016/j.ibmb.2017.05.006
– ident: e_1_2_10_22_1
  doi: 10.1038/nature10139
– ident: e_1_2_10_30_1
  doi: 10.1038/nature01280
– ident: e_1_2_10_9_1
  doi: 10.1016/j.actatropica.2017.06.028
– ident: e_1_2_10_12_1
  doi: 10.1073/pnas.1302089111
– ident: e_1_2_10_54_1
  doi: 10.1111/jnc.13290
– ident: e_1_2_10_16_1
  doi: 10.1111/j.1365-2583.2005.00544.x
– ident: e_1_2_10_2_1
  doi: 10.1111/bph.13879
– ident: e_1_2_10_4_1
  doi: 10.1016/j.ijantimicag.2018.07.005
– ident: e_1_2_10_31_1
  doi: 10.1007/s00018-012-1133-z
– ident: e_1_2_10_56_1
  doi: 10.1016/0014-5793(93)81070-G
– ident: e_1_2_10_32_1
  doi: 10.1111/j.1476-5381.2010.00872.x
– ident: e_1_2_10_43_1
  doi: 10.1002/ps.4677
– ident: e_1_2_10_36_1
  doi: 10.3389/fnmol.2016.00041
– ident: e_1_2_10_21_1
  doi: 10.1016/S0140-6736(15)00417-1
– ident: e_1_2_10_11_1
  doi: 10.2174/0929867324666170613075736
– ident: e_1_2_10_63_1
  doi: 10.1124/jpet.103.051839
– ident: e_1_2_10_23_1
  doi: 10.1111/j.1365-2583.2008.00806.x
– ident: e_1_2_10_46_1
  doi: 10.1016/j.ibmb.2013.02.002
– ident: e_1_2_10_34_1
  doi: 10.1111/j.1365-2583.2010.01017.x
– ident: e_1_2_10_44_1
  doi: 10.1242/jeb.118570
– ident: e_1_2_10_39_1
  doi: 10.1016/j.ijpara.2010.07.010
– ident: e_1_2_10_47_1
  doi: 10.1016/j.pestbp.2009.07.008
– ident: e_1_2_10_62_1
  doi: 10.1016/j.ibmb.2011.03.012
– ident: e_1_2_10_37_1
  doi: 10.1371/journal.pone.0097468
– ident: e_1_2_10_41_1
  doi: 10.1038/s41586-018-0832-5
– ident: e_1_2_10_13_1
  doi: 10.1085/jgp.200309004
– ident: e_1_2_10_14_1
  doi: 10.1038/371707a0
– ident: e_1_2_10_29_1
  doi: 10.1073/pnas.240464697
– ident: e_1_2_10_17_1
  doi: 10.3389/fnmol.2015.00055
– volume: 3
  start-page: 13
  year: 1995
  ident: e_1_2_10_19_1
  article-title: Point mutations in the M2 region of the alpha, beta, or gamma subunit of the GABAA channel that abolish block by picrotoxin
  publication-title: Receptors & Channels
  contributor:
    fullname: Gurley D.
SSID ssj0014775
Score 2.4016883
Snippet Background and Purpose Between half to 1 million people die annually from malaria. Anopheles gambiae mosquitoes are major malaria vectors. Unfortunately,...
Between half to 1 million people die annually from malaria. Anopheles gambiae mosquitoes are major malaria vectors. Unfortunately, resistance has emerged to...
Background and Purpose Between half to 1 million people die annually from malaria. Anopheles gambiae mosquitoes are major malaria vectors. Unfortunately,...
Background and PurposeBetween half to 1 million people die annually from malaria. Anopheles gambiae mosquitoes are major malaria vectors. Unfortunately,...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 175
SubjectTerms Alternative splicing
Amino Acid Sequence
Animals
Anopheles - genetics
Anopheles - metabolism
Anopheles gambiae
Chloride Channels - genetics
Chloride Channels - metabolism
Chlorides
Dose-Response Relationship, Drug
Drug resistance
Female
Fipronil
Gametocytes
Glutamic Acid - pharmacology
Insecticide resistance
Insecticides
Insecticides - pharmacology
Ivermectin
Ivermectin - pharmacology
Lindane
Malaria
Mosquito Vectors - genetics
Mosquito Vectors - metabolism
Muscles
Oocytes
Oocytes - drug effects
Oocytes - metabolism
Picrotoxin
Protein Isoforms - genetics
Protein Isoforms - metabolism
Receptor mechanisms
Research Paper
Research Papers
Vector-borne diseases
Vectors
Xenopus laevis
Title The effects of insecticides on two splice variants of the glutamate‐gated chloride channel receptor of the major malaria vector, Anopheles gambiae
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.14855
https://www.ncbi.nlm.nih.gov/pubmed/31479507
https://www.proquest.com/docview/2343365307
https://pubmed.ncbi.nlm.nih.gov/PMC6976876
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED7EmboUfVdNGhBFEXSwYkkUTWpMg6ZGgRQeEsCbwGeswpKN2E2RrT8hQ35hf0mPlJQHgi7dRJCiCN2R9x159xHgI2ICYRKGbolF3yRXzsaF0yI2wqlMJdRQ6ROcT76PJ2f5txmbbQHrc2FC0L5W1UGzqA-aah5iK1e1HvVxYqPpydEYbSjO4tEABpzS3kXvjg5yzttrCzz7YSpERyfkw3fUao4rg2D-uhqKDQvmb5G9b48egczHsZL3MWwwQsfP4GmHHslhO8rnsGWbF7A_bemnr4bk9C6baj0k-2R6R0x99RJusJp0ARxk6UjVrP1ypytjsdyQza8lWfvzbEsu0YX2ETK-GUJEco4KKhHc2j-_r_3GmyF67mP3jCU-dbixC4JLp12hB9-_UssfWKjlwndFLsPpwJAcNp7IAP8wOZe1qqR9BWfHX06PJnF3K0Osc8RWsWUazT63BTO2yDhaOKG40846hIYqKVTKdKI1FblJqOZFYscu1TyTWuSOCUFfw3azbOxbIMqTMarcplImeWoM9pMKV1DtBJeoPBF86GVTrlryjbJ3WlCWZZBlBLu91Mpu_q3LjOaUjhkuYBG8aQV420Mv-Qj4A9HeNvCM2w9rUBED83aneBF8Ckrw70GVn6eT8PDuvz-yA08y79uH7Z5d2N5c_LTvEQBt1B4Mvs7SvaD2fwH_cAqd
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qZQEb3pRAAQuhisVkJonjibMsFdUAnWoWU9Rd5GcnMMmMOmlRWfEJLPhCvoTrPPqgYgG7RHacWDm2z7WPjwFeIyfgOmAYlhiMTWJpjZ9axX3NrYxkQDUVboPzeH84Oog_HLLDNWDdXphatK9k3i_nRb_MZ7W2clmoQacTG0zGO0McQ7EVD27ATWyvEeuC9HbxIE6S5uAC538Yct4aCjkBj1zOsG_gzB1YQzFjytw5spdHpGs087pa8jKLrYeh3bvwqatAoz750j-pZF99-8Pb8Z9reA_utMSUbDfJ92HNlA9ga9I4W5_1yPRio9aqR7bI5MLz-uwh_MRk0mpDyMKSvFy5nlTl2uB9SaqvC7JyS-WGnGJ07sQ3LhuyT3KE2BfIm82v7z_cnJ4mauZkgdoQtyu5NHOCvbJZVovj7pFCfMabQsxdUeS0Xnjoke3SeSRg1ciRKGQuzCM42H033Rn57YEPvoqRtvmGKWQUiUmZNmmU4ODJZWKVNRZZpwxSGTIVKEV5rAOqkjQwQxuqJBKKx5ZxTh_DerkozRMg0vk8ytiEQgRxqDWWE3KbUmV5IhCXHrzqfnq2bHw9si4eQpBkNUg82OzgkLVNe5VFNKZ0yLBv9GCjQcZ5CR2kPEiuYOY8gzPzvpqCCKhNvds_7sGbGl1__6js7WRUXzz975e8hFuj6Xgv23u___EZ3I7cFEI9q7QJ69XxiXmOPKuSL-pW9RvM4Suz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWgSIgN70dKAQuhisVkJomTsbMshdHwaJVFK1VsIj87oZNM1EmLyopPYMEX8iVcO0k7pWLTXaI4Tizfa59rH5-L0BvABEwFCYQlGmKTWBjtp0YyXzEjIhEQRbg94LyzO57ux58OkoOVVF-OtC9FMazm5bAqZo5bWZdy1PPERtnO9hjmUPDiUa3M6Ca6BT4b0T5Q7zYQYkrb5AVWAzFkrBMVsiQeUc9gfGCJTVpDoGCa2Fyyq7PSFah5lTG5imTdVDS5h772jWgZKEfDk0YM5Y9_9B2v1cr76G4HUPFWW-QBuqGrh2gzaxWuzwZ47-LA1nKAN3F2oX199gj9hse444jghcFFtbQjqiyUhvsKN98XeGm3zDU-hSjdknBsMUCh-BB8gAN-1n9-_rJrewrLmaUHKo3t6eRKzzGMzrpuFsf9KyX_Bjcln9uq8KnbgBjgrcpqJUDz8CEvRcH1Y7Q_-bC3PfW7xA--jAG--TqRgCyoThOl04jCJMoENdJoA-hTBKkIExlISVisAiJpGuixCSWNuGSxSRgjT9Bataj0M4SF1XsUsQ45D-JQKagnZCYl0jDKwT499Lrv-Lxu9T3yPi4CQ8mdoXhoozeJvHPxZR6RmJBxAmOkh5621nFeQ29WHqKX7Oa8gBX1vvwErMCJe3e97qG3zsL-_1P5u2zqLtav_ZFX6Hb2fpJ_-bj7-Tm6E9mVBLe4tIHWmuMT_QLgViNeOsf6CwafLjM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+insecticides+on+two+splice+variants+of+the+glutamate%E2%80%90gated+chloride+channel+receptor+of+the+major+malaria+vector%2C+Anopheles+gambiae&rft.jtitle=British+journal+of+pharmacology&rft.au=Atif%2C+Mohammed&rft.au=Lynch%2C+Joseph+W.&rft.au=Keramidas%2C+Angelo&rft.date=2020-01-01&rft.issn=0007-1188&rft.eissn=1476-5381&rft.volume=177&rft.issue=1&rft.spage=175&rft.epage=187&rft_id=info:doi/10.1111%2Fbph.14855&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_bph_14855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon