Measurement of Murine Single‐Kidney Glomerular Filtration Rate Using Dynamic Contrast‐Enhanced MRI

Purpose To develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI (DCE‐MRI). Methods This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T1) measure...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 79; no. 6; pp. 2935 - 2943
Main Authors Jiang, Kai, Tang, Hui, Mishra, Prasanna K., Macura, Slobodan I., Lerman, Lilach O.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI (DCE‐MRI). Methods This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T1) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two‐compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model‐derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)‐inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland‐Altman analysis. Results The compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE‐MRI method offered assessment of single‐kidney GFR and perfusion, comparable to the FITC‐inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference −7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods. Conclusion The proposed DCE‐MRI method may be useful for reliable noninvasive measurements of single‐kidney GFR and perfusion in mice. Magn Reson Med 79:2935–2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
AbstractList Purpose To develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI (DCE‐MRI). Methods This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T 1 ) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two‐compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model‐derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)‐inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland‐Altman analysis. Results The compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE‐MRI method offered assessment of single‐kidney GFR and perfusion, comparable to the FITC‐inulin clearance (Pearson's correlation coefficient r  = 0.95 and Spearman's correlation coefficient ρ = 0.94, P  < 0.0001, and mean difference −7.0 ± 11.0 μL/min) and ASL ( r  = 0.92 and ρ = 0.84, P  < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods. Conclusion The proposed DCE‐MRI method may be useful for reliable noninvasive measurements of single‐kidney GFR and perfusion in mice. Magn Reson Med 79:2935–2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
To develop and validate a method for measuring murine single-kidney glomerular filtration rate (GFR) using dynamic contrast-enhanced MRI (DCE-MRI). This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T ) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two-compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model-derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)-inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland-Altman analysis. The compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE-MRI method offered assessment of single-kidney GFR and perfusion, comparable to the FITC-inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference -7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods. The proposed DCE-MRI method may be useful for reliable noninvasive measurements of single-kidney GFR and perfusion in mice. Magn Reson Med 79:2935-2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Purpose To develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI (DCE‐MRI). Methods This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T1) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two‐compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model‐derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)‐inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland‐Altman analysis. Results The compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE‐MRI method offered assessment of single‐kidney GFR and perfusion, comparable to the FITC‐inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference −7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods. Conclusion The proposed DCE‐MRI method may be useful for reliable noninvasive measurements of single‐kidney GFR and perfusion in mice. Magn Reson Med 79:2935–2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
PURPOSETo develop and validate a method for measuring murine single-kidney glomerular filtration rate (GFR) using dynamic contrast-enhanced MRI (DCE-MRI).METHODSThis prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T1 ) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two-compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model-derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)-inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland-Altman analysis.RESULTSThe compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE-MRI method offered assessment of single-kidney GFR and perfusion, comparable to the FITC-inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference -7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods.CONCLUSIONThe proposed DCE-MRI method may be useful for reliable noninvasive measurements of single-kidney GFR and perfusion in mice. Magn Reson Med 79:2935-2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
PurposeTo develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI (DCE‐MRI).MethodsThis prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T1) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two‐compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model‐derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)‐inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland‐Altman analysis.ResultsThe compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE‐MRI method offered assessment of single‐kidney GFR and perfusion, comparable to the FITC‐inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference −7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods.ConclusionThe proposed DCE‐MRI method may be useful for reliable noninvasive measurements of single‐kidney GFR and perfusion in mice. Magn Reson Med 79:2935–2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Author Tang, Hui
Macura, Slobodan I.
Jiang, Kai
Mishra, Prasanna K.
Lerman, Lilach O.
AuthorAffiliation 2 Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
1 Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
AuthorAffiliation_xml – name: 2 Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
– name: 1 Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
Author_xml – sequence: 1
  givenname: Kai
  surname: Jiang
  fullname: Jiang, Kai
  organization: Mayo Clinic
– sequence: 2
  givenname: Hui
  surname: Tang
  fullname: Tang, Hui
  organization: Mayo Clinic
– sequence: 3
  givenname: Prasanna K.
  surname: Mishra
  fullname: Mishra, Prasanna K.
  organization: Mayo Clinic
– sequence: 4
  givenname: Slobodan I.
  surname: Macura
  fullname: Macura, Slobodan I.
  organization: Mayo Clinic
– sequence: 5
  givenname: Lilach O.
  surname: Lerman
  fullname: Lerman, Lilach O.
  email: lerman.lilach@mayo.edu
  organization: Mayo Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29034514$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9OFTEUhxsDkQu48AVMEze6GOjfmduNibkCEpiYXGXd9HZOoWSmhXZGc3c-gs_ok9jrBaImrs7ifP3Or_nto50QAyD0kpIjSgg7HtJwxGol5TM0o5KxikkldtCMNIJUnCqxh_ZzviWEKNWI52iPKcKFpGKGXAsmTwkGCCOODrdT8gHwZx-ue_j5_ceF7wKs8VkfB0hTbxI-9f2YzOhjwEszAr7KhcUf1sEM3uJFDGWbx_L0JNyYYKHD7fL8EO0602d48TAP0NXpyZfFx-ry09n54v1lZYXgsloBZbIuGaHmlrm6c67mtaslNFRIs7LAiWiY7RjrQNCVc9SC5Y2Yd0xJLvgBerf13k2rAToLmzS9vkt-MGmto_H6703wN_o6ftVyXu7TpgjePAhSvJ8gj3rw2ULfmwBxypoqSWVdyA36-h_0Nk4plO9pRiiVgik6L9TbLWVTzDmBewpDid60p0t7-nd7hX31Z_on8rGuAhxvgW--h_X_TbpdtlvlL_6XqMc
CitedBy_id crossref_primary_10_1152_ajpheart_00676_2022
crossref_primary_10_3390_pharmaceutics12080775
crossref_primary_10_1371_journal_pone_0219605
crossref_primary_10_1016_j_trsl_2019_02_009
crossref_primary_10_1016_j_mri_2019_05_024
crossref_primary_10_1002_anie_202103071
crossref_primary_10_1161_HYPERTENSIONAHA_120_16218
crossref_primary_10_3390_ijms24065325
crossref_primary_10_1002_anie_201901525
crossref_primary_10_1016_j_mri_2019_08_029
crossref_primary_10_1002_jbio_201900246
crossref_primary_10_1002_jmri_27370
crossref_primary_10_1152_ajprenal_00064_2022
crossref_primary_10_3389_fvets_2024_1406343
crossref_primary_10_1002_ange_202103071
crossref_primary_10_1002_nbm_4287
crossref_primary_10_1021_acs_analchem_1c05140
crossref_primary_10_1002_mrm_27345
crossref_primary_10_1002_ange_201901525
crossref_primary_10_1038_s41598_018_31887_4
crossref_primary_10_1152_ajprenal_00128_2018
crossref_primary_10_1038_s41467_023_40747_3
crossref_primary_10_1097_RLI_0000000000000843
crossref_primary_10_1038_s41366_022_01103_5
crossref_primary_10_1002_term_3299
Cites_doi 10.1152/ajprenal.00351.2015
10.1002/mrm.25533
10.1097/RLI.0b013e3181583b0c
10.1002/nbm.2939
10.1016/S0730-725X(97)00034-9
10.1371/journal.pone.0079992
10.1002/nbm.3143
10.1152/ajprenal.00324.2003
10.1002/jmri.24874
10.1055/s-0042-102540
10.1152/ajprenal.00114.2005
10.1016/j.mric.2008.07.001
10.1002/jmri.22335
10.1002/mrm.21489
10.1148/radiol.13122495
10.1042/cs0610385
10.1002/mrm.22544
10.1186/1532-429X-15-98
10.1016/j.urology.2007.03.057
10.1148/radiol.11101338
10.1152/ajprenal.00347.2006
10.1053/j.ajkd.2014.04.010
10.1016/0002-8703(62)90223-5
10.1002/jmri.1880080610
10.1148/radiol.2016160566
10.1002/jmri.20699
10.1002/jmri.21642
10.1097/RLI.0b013e31815597c5
10.1002/jmri.24521
10.1093/ndt/gfr148
10.1097/RLI.0b013e3181a8afa1
10.1371/journal.pone.0105087
10.1002/mrm.21169
10.1007/s10334-016-0538-3
10.1371/journal.pone.0113459
10.1002/mrm.20026
10.4161/org.19308
10.1002/mrm.10034
10.1016/S0730-725X(00)00134-X
10.1002/jmri.20401
10.1002/jmri.20173
10.1136/gut.51.5.736
ContentType Journal Article
Copyright 2017 International Society for Magnetic Resonance in Medicine
2017 International Society for Magnetic Resonance in Medicine.
2018 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2017 International Society for Magnetic Resonance in Medicine
– notice: 2017 International Society for Magnetic Resonance in Medicine.
– notice: 2018 International Society for Magnetic Resonance in Medicine
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.26955
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2943
ExternalDocumentID 10_1002_mrm_26955
29034514
MRM26955
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: DK104273 ; DK102325 ; DK73608 ; HL123160
– fundername: NIDDK NIH HHS
  grantid: U01 DK104273
– fundername: NIDDK NIH HHS
  grantid: R01 DK102325
– fundername: NIDDK NIH HHS
  grantid: R01 DK073608
– fundername: NIDDK NIH HHS
  grantid: R01 DK120292
– fundername: NHLBI NIH HHS
  grantid: R01 HL123160
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
G8K
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
ABDPE
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4435-be1256974e63c2f6dff636f65e7145abce30472cd22de41bff1cec3748d295343
IEDL.DBID DR2
ISSN 0740-3194
IngestDate Tue Sep 17 21:26:18 EDT 2024
Sat Oct 26 05:05:35 EDT 2024
Thu Oct 10 22:02:11 EDT 2024
Fri Aug 23 00:46:46 EDT 2024
Sat Nov 02 12:15:28 EDT 2024
Sat Aug 24 00:55:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords renal perfusion
renal artery stenosis
glomerular filtration rate
compartmental model
dynamic contrast-enhanced MRI
Language English
License 2017 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4435-be1256974e63c2f6dff636f65e7145abce30472cd22de41bff1cec3748d295343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc5843517?pdf=render
PMID 29034514
PQID 2011542918
PQPubID 1016391
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843517
proquest_miscellaneous_1951565177
proquest_journals_2011542918
crossref_primary_10_1002_mrm_26955
pubmed_primary_29034514
wiley_primary_10_1002_mrm_26955_MRM26955
PublicationCentury 2000
PublicationDate June 2018
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 259
2009; 44
2004; 286
2004; 20
2013; 26
2002; 51
2015; 74
2008; 16
2014; 27
2008; 59
2011; 33
2016; 188
2007; 70
2006; 290
2014; 270
1981; 61
2013; 8
2014; 40
2007; 57
2005; 22
2009; 29
2014; 64
2002; 47
1974; 47
2010; 64
2000; 18
2013; 15
2004; 51
2006; 24
2007; 292
1997; 15
2015; 42
2016; 310
2008; 43
2017; 283
2011; 26
2016; 29
2014; 9
1962; 63
2012; 8
1998; 8
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Andriole VT (e_1_2_6_43_1) 1974; 47
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 9
  start-page: e105087
  year: 2014
  article-title: Quantitative estimation of renal function with dynamic contrast‐enhanced MRI using a modified two‐compartment model
  publication-title: PLoS One
– volume: 270
  start-page: 409
  year: 2014
  end-page: 415
  article-title: Effect of iodinated contrast media on renal function evaluated with dynamic three‐dimensional MR renography
  publication-title: Radiology
– volume: 40
  start-page: 1022
  year: 2014
  end-page: 1040
  article-title: Non‐Cartesian parallel imaging reconstruction
  publication-title: J Magn Reson Imaging
– volume: 15
  start-page: 98
  year: 2013
  article-title: Evolution of cardiac and renal impairment detected by high‐field cardiovascular magnetic resonance in mice with renal artery stenosis
  publication-title: J Cardiovasc Magn Reson
– volume: 8
  start-page: 10
  year: 2012
  end-page: 17
  article-title: Development of the kidney medulla
  publication-title: Organogenesis
– volume: 9
  start-page: e113459
  year: 2014
  article-title: A novel mouse model of advanced diabetic kidney disease
  publication-title: PLoS One
– volume: 51
  start-page: 736
  year: 2002
  end-page: 741
  article-title: Renal tubular events following passage from the supine to the standing position in patients with compensated liver cirrhosis: loss of tubuloglomerular feedback
  publication-title: Gut
– volume: 47
  start-page: 268
  year: 1974
  end-page: 276
  article-title: The influence of postural changes on the glomerular filtration rate in nephroptosis
  publication-title: Yale J Biol Med
– volume: 24
  start-page: 1117
  year: 2006
  end-page: 1123
  article-title: Measurement of single kidney function using dynamic contrast‐enhanced MRI: comparison of two models in human subjects
  publication-title: J Magn Reson Imaging
– volume: 8
  start-page: 1240
  year: 1998
  end-page: 1245
  article-title: In vivo quantitative mapping of cardiac perfusion in rats using a noninvasive MR spin‐labeling method
  publication-title: J Magn Reson Imaging
– volume: 44
  start-page: 469
  year: 2009
  end-page: 475
  article-title: Morphologic and dynamic renal imaging with assessment of glomerular filtration rate in a pcy‐mouse model using a clinical 3.0 Tesla scanner
  publication-title: Invest Radiol
– volume: 8
  start-page: e79992
  year: 2013
  article-title: Simultaneous measurement of kidney function by dynamic contrast enhanced MRI and FITC‐sinistrin clearance in rats at 3 tesla: initial results
  publication-title: PLoS One
– volume: 286
  start-page: F590
  year: 2004
  end-page: 596
  article-title: Serial determination of glomerular filtration rate in conscious mice using FITC‐inulin clearance
  publication-title: Am J Physiol Renal Physiol
– volume: 290
  start-page: F958
  year: 2006
  end-page: F974
  article-title: Functional MRI of the kidney: tools for translational studies of pathophysiology of renal disease
  publication-title: Am J Physiol Renal Physiol
– volume: 43
  start-page: 40
  year: 2008
  end-page: 48
  article-title: MRI‐measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model
  publication-title: Invest Radiol
– volume: 22
  start-page: 406
  year: 2005
  end-page: 414
  article-title: Glomerular filtration rate measured using the Patlak plot technique and contrast‐enhanced dynamic MRI with different amounts of gadolinium‐DTPA
  publication-title: J Magn Reson Imaging
– volume: 61
  start-page: 385
  year: 1981
  end-page: 389
  article-title: A non‐invasive gamma‐camera technique for the measurement of intrarenal flow distribution in man
  publication-title: Clin Sci (Lond)
– volume: 310
  start-page: F174
  year: 2016
  end-page: F182
  article-title: Dynamic contrast‐enhanced quantitative susceptibility mapping with ultrashort echo time MRI for evaluating renal function
  publication-title: Am J Physiol Renal Physiol
– volume: 42
  start-page: 999
  year: 2015
  end-page: 1008
  article-title: Fast imaging strategies for mouse kidney perfusion measurement with pseudocontinuous arterial spin labeling (pCASL) at ultra high magnetic field (11.75 tesla)
  publication-title: J Magn Reson Imaging
– volume: 29
  start-page: 417
  year: 2016
  end-page: 433
  article-title: 7 T renal MRI: challenges and promises
  publication-title: MAGMA
– volume: 64
  start-page: 411
  year: 2014
  end-page: 424
  article-title: Measuring GFR: a systematic review
  publication-title: Am J Kidney Dis
– volume: 16
  start-page: 597
  year: 2008
  end-page: 611
  article-title: Assessment of renal function with dynamic contrast‐enhanced MR imaging
  publication-title: Magn Reson Imaging Clin N Am
– volume: 18
  start-page: 587
  year: 2000
  end-page: 595
  article-title: Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI
  publication-title: Magn Reson Imaging
– volume: 15
  start-page: 637
  year: 1997
  end-page: 649
  article-title: Magnetic resonance renography: optimisation of pulse sequence parameters and Gd‐DTPA dose, and comparison with radionuclide renography
  publication-title: Magn Reson Imaging
– volume: 57
  start-page: 1012
  year: 2007
  end-page: 1018
  article-title: Quantitative determination of Gd‐DTPA concentration in T1‐weighted MR renography studies
  publication-title: Magn Reson Med
– volume: 33
  start-page: 1270
  year: 2011
  end-page: 1283
  article-title: Magnetic resonance imaging evaluation of renal structure and function related to disease: technical review of image acquisition, postprocessing, and mathematical modeling steps
  publication-title: J Magn Reson Imaging
– volume: 63
  start-page: 78
  year: 1962
  end-page: 85
  article-title: Effect of postural changes on cardiac and renal function in hypertensive subjects
  publication-title: Am Heart J
– volume: 292
  start-page: F1548
  year: 2007
  end-page: 1559
  article-title: Renal function measurements from MR renography and a simplified multicompartmental model
  publication-title: Am J Physiol Renal Physiol
– volume: 43
  start-page: 120
  year: 2008
  end-page: 128
  article-title: Temporal constraints in renal perfusion imaging with a 2‐compartment model
  publication-title: Invest Radiol
– volume: 27
  start-page: 996
  year: 2014
  end-page: 1004
  article-title: Arterial spin labeling‐fast imaging with steady‐state free precession (ASL‐FISP): a rapid and quantitative perfusion technique for high‐field MRI
  publication-title: NMR Biomed
– volume: 26
  start-page: 1225
  year: 2013
  end-page: 1232
  article-title: Quantitative mouse renal perfusion using arterial spin labeling
  publication-title: NMR Biomed
– volume: 20
  start-page: 843
  year: 2004
  end-page: 849
  article-title: Glomerular filtration rate: assessment with dynamic contrast‐enhanced MRI and a cortical‐compartment model in the rabbit kidney
  publication-title: J Magn Reson Imaging
– volume: 29
  start-page: 371
  year: 2009
  end-page: 382
  article-title: Estimates of glomerular filtration rate from MR renography and tracer kinetic models
  publication-title: J Magn Reson Imaging
– volume: 64
  start-page: 1296
  year: 2010
  end-page: 1303
  article-title: Rapid T1 mapping of mouse myocardium with saturation recovery Look‐Locker method
  publication-title: Magn Reson Med
– volume: 188
  start-page: 551
  year: 2016
  end-page: 558
  article-title: Fast abdominal magnetic resonance imaging
  publication-title: Rofo
– volume: 74
  start-page: 1370
  year: 2015
  end-page: 1379
  article-title: Rapid multislice T1 mapping of mouse myocardium: Application to quantification of manganese uptake in alpha‐Dystrobrevin knockout mice
  publication-title: Magn Reson Med
– volume: 70
  start-page: 227
  year: 2007
  end-page: 229
  article-title: Effect of body position on renal parenchyma perfusion as measured by nuclear scintigraphy
  publication-title: Urology
– volume: 47
  start-page: 127
  year: 2002
  end-page: 134
  article-title: Effect of essential hypertension on kidney function as measured in rat by dynamic MRI
  publication-title: Magn Reson Med
– volume: 59
  start-page: 278
  year: 2008
  end-page: 288
  article-title: Functional assessment of the kidney from magnetic resonance and computed tomography renography: impulse retention approach to a multicompartment model
  publication-title: Magn Reson Med
– volume: 26
  start-page: 3101
  year: 2011
  end-page: 3108
  article-title: Two non‐invasive GFR‐estimation methods in rat models of polycystic kidney disease: 3.0 Tesla dynamic contrast‐enhanced MRI and optical imaging
  publication-title: Nephrol Dial Transplant
– volume: 259
  start-page: 462
  year: 2011
  end-page: 470
  article-title: Kidney function: glomerular filtration rate measurement with MR renography in patients with cirrhosis
  publication-title: Radiology
– volume: 51
  start-page: 1017
  year: 2004
  end-page: 1025
  article-title: Calculation of the renal perfusion and glomerular filtration rate from the renal impulse response obtained with MRI
  publication-title: Magn Reson Med
– volume: 283
  start-page: 77
  year: 2017
  end-page: 86
  article-title: Noninvasive assessment of renal fibrosis with magnetization transfer MR imaging: validation and evaluation in murine renal artery stenosis
  publication-title: Radiology
– ident: e_1_2_6_42_1
  doi: 10.1152/ajprenal.00351.2015
– ident: e_1_2_6_27_1
  doi: 10.1002/mrm.25533
– ident: e_1_2_6_22_1
  doi: 10.1097/RLI.0b013e3181583b0c
– ident: e_1_2_6_29_1
  doi: 10.1002/nbm.2939
– ident: e_1_2_6_5_1
  doi: 10.1016/S0730-725X(97)00034-9
– ident: e_1_2_6_17_1
  doi: 10.1371/journal.pone.0079992
– ident: e_1_2_6_35_1
  doi: 10.1002/nbm.3143
– ident: e_1_2_6_23_1
  doi: 10.1152/ajprenal.00324.2003
– ident: e_1_2_6_36_1
  doi: 10.1002/jmri.24874
– ident: e_1_2_6_40_1
  doi: 10.1055/s-0042-102540
– ident: e_1_2_6_2_1
  doi: 10.1152/ajprenal.00114.2005
– ident: e_1_2_6_3_1
  doi: 10.1016/j.mric.2008.07.001
– ident: e_1_2_6_4_1
  doi: 10.1002/jmri.22335
– ident: e_1_2_6_14_1
  doi: 10.1002/mrm.21489
– ident: e_1_2_6_21_1
  doi: 10.1148/radiol.13122495
– ident: e_1_2_6_32_1
  doi: 10.1042/cs0610385
– volume: 47
  start-page: 268
  year: 1974
  ident: e_1_2_6_43_1
  article-title: The influence of postural changes on the glomerular filtration rate in nephroptosis
  publication-title: Yale J Biol Med
  contributor:
    fullname: Andriole VT
– ident: e_1_2_6_28_1
  doi: 10.1002/mrm.22544
– ident: e_1_2_6_25_1
  doi: 10.1186/1532-429X-15-98
– ident: e_1_2_6_38_1
  doi: 10.1016/j.urology.2007.03.057
– ident: e_1_2_6_9_1
  doi: 10.1148/radiol.11101338
– ident: e_1_2_6_13_1
  doi: 10.1152/ajprenal.00347.2006
– ident: e_1_2_6_33_1
  doi: 10.1053/j.ajkd.2014.04.010
– ident: e_1_2_6_39_1
  doi: 10.1016/0002-8703(62)90223-5
– ident: e_1_2_6_24_1
  doi: 10.1002/jmri.1880080610
– ident: e_1_2_6_26_1
  doi: 10.1148/radiol.2016160566
– ident: e_1_2_6_11_1
  doi: 10.1002/jmri.20699
– ident: e_1_2_6_16_1
  doi: 10.1002/jmri.21642
– ident: e_1_2_6_15_1
  doi: 10.1097/RLI.0b013e31815597c5
– ident: e_1_2_6_41_1
  doi: 10.1002/jmri.24521
– ident: e_1_2_6_18_1
  doi: 10.1093/ndt/gfr148
– ident: e_1_2_6_34_1
  doi: 10.1097/RLI.0b013e3181a8afa1
– ident: e_1_2_6_30_1
  doi: 10.1371/journal.pone.0105087
– ident: e_1_2_6_7_1
  doi: 10.1002/mrm.21169
– ident: e_1_2_6_8_1
  doi: 10.1007/s10334-016-0538-3
– ident: e_1_2_6_37_1
  doi: 10.1371/journal.pone.0113459
– ident: e_1_2_6_20_1
  doi: 10.1002/mrm.20026
– ident: e_1_2_6_31_1
  doi: 10.4161/org.19308
– ident: e_1_2_6_19_1
  doi: 10.1002/mrm.10034
– ident: e_1_2_6_6_1
  doi: 10.1016/S0730-725X(00)00134-X
– ident: e_1_2_6_10_1
  doi: 10.1002/jmri.20401
– ident: e_1_2_6_12_1
  doi: 10.1002/jmri.20173
– ident: e_1_2_6_44_1
  doi: 10.1136/gut.51.5.736
SSID ssj0009974
Score 2.451436
Snippet Purpose To develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI (DCE‐MRI)....
To develop and validate a method for measuring murine single-kidney glomerular filtration rate (GFR) using dynamic contrast-enhanced MRI (DCE-MRI). This...
PurposeTo develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI...
PURPOSETo develop and validate a method for measuring murine single-kidney glomerular filtration rate (GFR) using dynamic contrast-enhanced MRI...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2935
SubjectTerms Animals
Arteries - pathology
Body Weight
compartmental model
Contrast Media - chemistry
Correlation analysis
Correlation coefficient
Correlation coefficients
dynamic contrast‐enhanced MRI
Fluorescein
Fluorescein-5-isothiocyanate - chemistry
Gadolinium
Glomerular Filtration Rate
Image Interpretation, Computer-Assisted - methods
Image Processing, Computer-Assisted
Inulin
Inulin - chemistry
Kidney - diagnostic imaging
Kidney Function Tests - methods
Kidneys
Magnetic Resonance Imaging
Mice
Perfusion
Prospective Studies
Relaxation time
Renal artery
renal artery stenosis
renal perfusion
Reproducibility of Results
Rodents
Spin labeling
Spin Labels
Stenosis
Title Measurement of Murine Single‐Kidney Glomerular Filtration Rate Using Dynamic Contrast‐Enhanced MRI
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26955
https://www.ncbi.nlm.nih.gov/pubmed/29034514
https://www.proquest.com/docview/2011542918
https://www.proquest.com/docview/1951565177
https://pubmed.ncbi.nlm.nih.gov/PMC5843517
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2qKoHY8CiPBgoyiAWbTBvbScZihWiHAgqLgUpdIEW2c62OmMmgycyirPgEvpEv4drJZBgqJMQukh_x6_oeXR8fAzx3BhOdGBkjChtLjTY2wtAXOVOlHefK-oB-8SE7PZPvztPzHXi5vgvT6kP0ATdvGWG_9gauTXO4EQ2dLWYDnqnUXzBPRO7pXMfjjXSUUq0Ccy79PqPkWlXoiB_2Jbd90RWAeZUn-Tt-DQ5odAs-r5ve8k6-DFZLM7Df_lB1_M--3YabHTBlr9qVdAd2sN6D60V39L4H1wJX1DZ3wRWbuCKbO1b4gD2yj-QEp_jz-4_3k6rGS_ZmOp_hwrNc2Wgy7dR52ZiwLQs8BXZ8WevZxDIvkLXQzZKKntQXgZHAivHbe3A2Ovn0-jTunmuIrSTQFdOsE36iYcdMWO6yyrlMZC5LMU9kqo1Ff8THbcV5hTIxziUWrZe_qbhKhRT3Ybee17gPTKJTuas45lrJSgpthv7RdlER_rGpGkbwbD1x5ddWlaNs9Zd5SWNXhrGL4GA9pWVnmE3Jg_4QVwnV8bRPJpPy5yS6xvmqKRNCnYRzkzyP4EG7Avq_cHUkJIHMCPKttdFn8HLd2yn15CLIdhPUE1RpBC_C1P-94WUxLsLHw3_P-ghuUNeGLYntAHaXixU-Jri0NE-CXfwCMk0U9w
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh6XAuUVKGAQBy7ZNraTrKVeEO2ypU0PSyv1UkWJM1ZX7GbRPg7lxE_gN_aXdOw8lqVCQtws-RHb4_F8mpl8BnhvcgyyIJc-otC-zFD7ucipRMZUZYZzpa1DPzmO-qfyy1l4tga7zb8wFT9E63CzmuHua6vg1iG9vWQNHU_HHR6pMLwFt0ndhX24YW-wJI9SquJgjqW9aZRseIV2-HbbddUa3YCYNzMlf0ewzgT1HsB5M_kq8-RbZzHPO_rHH7yO_7u6h7BRY1P2sTpMj2ANy024m9TR902449JF9ewxmGTpWmQTwxLrs0f2lezgCK9-_jocFiVess-jyRinNtGV9YajmqCXDQjeMpeqwPYuy2w81MxyZE2z2Zy67pcXLimBJYODJ3Da2z_51PfrFxt8LQl3-SR4glC07xgJzU1UGBOJyEQhxoEMs1yjjfJxXXBeoAxyYwKN2jLgFFyFQoqnsF5OSnwOTKJRsSk4xpmShRRZ3rXvtouCIJAOVdeDd43k0u8VMUdaUTDzlPYudXvnwVYj07TWzVnKHQURVwGN8batJq2yoZKsxMlilgYEPAnqBnHswbPqCLRf4WpHSMKZHsQrh6NtYBm7V2vK4YVj7ia0J2hQDz442f994mkySFzhxb83fQP3-ifJUXp0cHz4Eu7TMrtVTtsWrM-nC3xF6Gmev3ZKcg1UXRkP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RVRcCrSFBgoY1AOXbBvbSdbihGiXlpIKLVTqoVKUOGN1xW622sehnPgJ_EZ-CWPnsSwVEuJmyY_YHo_n08zkM8CeyTHIglz6iEL7MkPt5yKnEhlTlRnOlbYO_eQsOj6XHy7CixV40_wLU_FDtA43qxnuvrYKfl2Y_QVp6Ggy6vBIheEq3JERIV-LiPoL7iilKgrmWNqLRsmGVuiA77ddl43RLYR5O1HydwDrLFDvPlw2c68ST7525rO8o7_9Qev4n4t7ABs1MmVvq6P0EFaw3IT1pI69b8Jdlyyqp1tgkoVjkY0NS6zHHtlnsoJD_Pn9x-mgKPGGvR-ORzixaa6sNxjW9LysT-CWuUQFdnhTZqOBZpYha5JNZ9T1qLxyKQks6Z9sw3nv6Mu7Y79-r8HXklCXT2InAEXbjpHQ3ESFMZGITBRiHMgwyzXaGB_XBecFyiA3JtCoLf9NwVUopHgEa-W4xB1gEo2KTcExzpQspMjyrn21XRQEgHSouh68agSXXle0HGlFwMxT2rvU7Z0Hu41I01ozpyl3BERcBTTGy7aadMoGSrISx_NpGhDsJKAbxLEHj6sT0H6FqwMhCWV6EC-djbaB5eterikHV463m7CeoEE9eO1E__eJp0k_cYUn_970Bax_OuylH0_OTp_CPVplt0po24W12WSOzwg6zfLnTkV-AQYvF74
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+Murine+Single%E2%80%90Kidney+Glomerular+Filtration+Rate+Using+Dynamic+Contrast%E2%80%90Enhanced+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Jiang%2C+Kai&rft.au=Tang%2C+Hui&rft.au=Mishra%2C+Prasanna+K.&rft.au=Macura%2C+Slobodan+I.&rft.date=2018-06-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=79&rft.issue=6&rft.spage=2935&rft.epage=2943&rft_id=info:doi/10.1002%2Fmrm.26955&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_26955
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon