Measurement of Murine Single‐Kidney Glomerular Filtration Rate Using Dynamic Contrast‐Enhanced MRI
Purpose To develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI (DCE‐MRI). Methods This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T1) measure...
Saved in:
Published in | Magnetic resonance in medicine Vol. 79; no. 6; pp. 2935 - 2943 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI (DCE‐MRI).
Methods
This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T1) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two‐compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model‐derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)‐inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland‐Altman analysis.
Results
The compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE‐MRI method offered assessment of single‐kidney GFR and perfusion, comparable to the FITC‐inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference −7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods.
Conclusion
The proposed DCE‐MRI method may be useful for reliable noninvasive measurements of single‐kidney GFR and perfusion in mice. Magn Reson Med 79:2935–2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine. |
---|---|
AbstractList | Purpose
To develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI (DCE‐MRI).
Methods
This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T
1
) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two‐compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model‐derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)‐inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland‐Altman analysis.
Results
The compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE‐MRI method offered assessment of single‐kidney GFR and perfusion, comparable to the FITC‐inulin clearance (Pearson's correlation coefficient
r
= 0.95 and Spearman's correlation coefficient ρ = 0.94,
P
< 0.0001, and mean difference −7.0 ± 11.0 μL/min) and ASL (
r
= 0.92 and ρ = 0.84,
P
< 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods.
Conclusion
The proposed DCE‐MRI method may be useful for reliable noninvasive measurements of single‐kidney GFR and perfusion in mice. Magn Reson Med 79:2935–2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine. To develop and validate a method for measuring murine single-kidney glomerular filtration rate (GFR) using dynamic contrast-enhanced MRI (DCE-MRI). This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T ) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two-compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model-derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)-inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland-Altman analysis. The compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE-MRI method offered assessment of single-kidney GFR and perfusion, comparable to the FITC-inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference -7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods. The proposed DCE-MRI method may be useful for reliable noninvasive measurements of single-kidney GFR and perfusion in mice. Magn Reson Med 79:2935-2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine. Purpose To develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI (DCE‐MRI). Methods This prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T1) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two‐compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model‐derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)‐inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland‐Altman analysis. Results The compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE‐MRI method offered assessment of single‐kidney GFR and perfusion, comparable to the FITC‐inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference −7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods. Conclusion The proposed DCE‐MRI method may be useful for reliable noninvasive measurements of single‐kidney GFR and perfusion in mice. Magn Reson Med 79:2935–2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine. PURPOSETo develop and validate a method for measuring murine single-kidney glomerular filtration rate (GFR) using dynamic contrast-enhanced MRI (DCE-MRI).METHODSThis prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T1 ) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two-compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model-derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)-inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland-Altman analysis.RESULTSThe compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE-MRI method offered assessment of single-kidney GFR and perfusion, comparable to the FITC-inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference -7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods.CONCLUSIONThe proposed DCE-MRI method may be useful for reliable noninvasive measurements of single-kidney GFR and perfusion in mice. Magn Reson Med 79:2935-2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine. PurposeTo develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI (DCE‐MRI).MethodsThis prospective study was approved by the Institutional Animal Care and Use Committee. A fast longitudinal relaxation time (T1) measurement method was implemented to capture gadolinium dynamics (1 s/scan), and a modified two‐compartment model was developed to quantify GFR as well as renal perfusion using 16.4T MRI in mice 2 weeks after unilateral renal artery stenosis (RAS, n = 6) or sham (n = 8) surgeries. This approach was validated by comparing model‐derived GFR and perfusion to those obtained by fluorescein isothiocyanante (FITC)‐inulin clearance and arterial spin labeling (ASL), respectively, using the Pearson's and Spearman's rank correlations and Bland‐Altman analysis.ResultsThe compartmental model provided a good fitting to measured gadolinium dynamics in both normal and RAS kidneys. The proposed DCE‐MRI method offered assessment of single‐kidney GFR and perfusion, comparable to the FITC‐inulin clearance (Pearson's correlation coefficient r = 0.95 and Spearman's correlation coefficient ρ = 0.94, P < 0.0001, and mean difference −7.0 ± 11.0 μL/min) and ASL (r = 0.92 and ρ = 0.84, P < 0.0001, and mean difference 4.4 ± 66.1 mL/100 g/min) methods.ConclusionThe proposed DCE‐MRI method may be useful for reliable noninvasive measurements of single‐kidney GFR and perfusion in mice. Magn Reson Med 79:2935–2943, 2018. © 2017 International Society for Magnetic Resonance in Medicine. |
Author | Tang, Hui Macura, Slobodan I. Jiang, Kai Mishra, Prasanna K. Lerman, Lilach O. |
AuthorAffiliation | 2 Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA 1 Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA |
AuthorAffiliation_xml | – name: 2 Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA – name: 1 Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA |
Author_xml | – sequence: 1 givenname: Kai surname: Jiang fullname: Jiang, Kai organization: Mayo Clinic – sequence: 2 givenname: Hui surname: Tang fullname: Tang, Hui organization: Mayo Clinic – sequence: 3 givenname: Prasanna K. surname: Mishra fullname: Mishra, Prasanna K. organization: Mayo Clinic – sequence: 4 givenname: Slobodan I. surname: Macura fullname: Macura, Slobodan I. organization: Mayo Clinic – sequence: 5 givenname: Lilach O. surname: Lerman fullname: Lerman, Lilach O. email: lerman.lilach@mayo.edu organization: Mayo Clinic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29034514$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9OFTEUhxsDkQu48AVMEze6GOjfmduNibkCEpiYXGXd9HZOoWSmhXZGc3c-gs_ok9jrBaImrs7ifP3Or_nto50QAyD0kpIjSgg7HtJwxGol5TM0o5KxikkldtCMNIJUnCqxh_ZzviWEKNWI52iPKcKFpGKGXAsmTwkGCCOODrdT8gHwZx-ue_j5_ceF7wKs8VkfB0hTbxI-9f2YzOhjwEszAr7KhcUf1sEM3uJFDGWbx_L0JNyYYKHD7fL8EO0602d48TAP0NXpyZfFx-ry09n54v1lZYXgsloBZbIuGaHmlrm6c67mtaslNFRIs7LAiWiY7RjrQNCVc9SC5Y2Yd0xJLvgBerf13k2rAToLmzS9vkt-MGmto_H6703wN_o6ftVyXu7TpgjePAhSvJ8gj3rw2ULfmwBxypoqSWVdyA36-h_0Nk4plO9pRiiVgik6L9TbLWVTzDmBewpDid60p0t7-nd7hX31Z_on8rGuAhxvgW--h_X_TbpdtlvlL_6XqMc |
CitedBy_id | crossref_primary_10_1152_ajpheart_00676_2022 crossref_primary_10_3390_pharmaceutics12080775 crossref_primary_10_1371_journal_pone_0219605 crossref_primary_10_1016_j_trsl_2019_02_009 crossref_primary_10_1016_j_mri_2019_05_024 crossref_primary_10_1002_anie_202103071 crossref_primary_10_1161_HYPERTENSIONAHA_120_16218 crossref_primary_10_3390_ijms24065325 crossref_primary_10_1002_anie_201901525 crossref_primary_10_1016_j_mri_2019_08_029 crossref_primary_10_1002_jbio_201900246 crossref_primary_10_1002_jmri_27370 crossref_primary_10_1152_ajprenal_00064_2022 crossref_primary_10_3389_fvets_2024_1406343 crossref_primary_10_1002_ange_202103071 crossref_primary_10_1002_nbm_4287 crossref_primary_10_1021_acs_analchem_1c05140 crossref_primary_10_1002_mrm_27345 crossref_primary_10_1002_ange_201901525 crossref_primary_10_1038_s41598_018_31887_4 crossref_primary_10_1152_ajprenal_00128_2018 crossref_primary_10_1038_s41467_023_40747_3 crossref_primary_10_1097_RLI_0000000000000843 crossref_primary_10_1038_s41366_022_01103_5 crossref_primary_10_1002_term_3299 |
Cites_doi | 10.1152/ajprenal.00351.2015 10.1002/mrm.25533 10.1097/RLI.0b013e3181583b0c 10.1002/nbm.2939 10.1016/S0730-725X(97)00034-9 10.1371/journal.pone.0079992 10.1002/nbm.3143 10.1152/ajprenal.00324.2003 10.1002/jmri.24874 10.1055/s-0042-102540 10.1152/ajprenal.00114.2005 10.1016/j.mric.2008.07.001 10.1002/jmri.22335 10.1002/mrm.21489 10.1148/radiol.13122495 10.1042/cs0610385 10.1002/mrm.22544 10.1186/1532-429X-15-98 10.1016/j.urology.2007.03.057 10.1148/radiol.11101338 10.1152/ajprenal.00347.2006 10.1053/j.ajkd.2014.04.010 10.1016/0002-8703(62)90223-5 10.1002/jmri.1880080610 10.1148/radiol.2016160566 10.1002/jmri.20699 10.1002/jmri.21642 10.1097/RLI.0b013e31815597c5 10.1002/jmri.24521 10.1093/ndt/gfr148 10.1097/RLI.0b013e3181a8afa1 10.1371/journal.pone.0105087 10.1002/mrm.21169 10.1007/s10334-016-0538-3 10.1371/journal.pone.0113459 10.1002/mrm.20026 10.4161/org.19308 10.1002/mrm.10034 10.1016/S0730-725X(00)00134-X 10.1002/jmri.20401 10.1002/jmri.20173 10.1136/gut.51.5.736 |
ContentType | Journal Article |
Copyright | 2017 International Society for Magnetic Resonance in Medicine 2017 International Society for Magnetic Resonance in Medicine. 2018 International Society for Magnetic Resonance in Medicine |
Copyright_xml | – notice: 2017 International Society for Magnetic Resonance in Medicine – notice: 2017 International Society for Magnetic Resonance in Medicine. – notice: 2018 International Society for Magnetic Resonance in Medicine |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 K9. M7Z P64 7X8 5PM |
DOI | 10.1002/mrm.26955 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 2943 |
ExternalDocumentID | 10_1002_mrm_26955 29034514 MRM26955 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: DK104273 ; DK102325 ; DK73608 ; HL123160 – fundername: NIDDK NIH HHS grantid: U01 DK104273 – fundername: NIDDK NIH HHS grantid: R01 DK102325 – fundername: NIDDK NIH HHS grantid: R01 DK073608 – fundername: NIDDK NIH HHS grantid: R01 DK120292 – fundername: NHLBI NIH HHS grantid: R01 HL123160 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N G8K GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT ABDPE CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 K9. M7Z P64 7X8 5PM |
ID | FETCH-LOGICAL-c4435-be1256974e63c2f6dff636f65e7145abce30472cd22de41bff1cec3748d295343 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 |
IngestDate | Tue Sep 17 21:26:18 EDT 2024 Sat Oct 26 05:05:35 EDT 2024 Thu Oct 10 22:02:11 EDT 2024 Fri Aug 23 00:46:46 EDT 2024 Sat Nov 02 12:15:28 EDT 2024 Sat Aug 24 00:55:58 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | renal perfusion renal artery stenosis glomerular filtration rate compartmental model dynamic contrast-enhanced MRI |
Language | English |
License | 2017 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4435-be1256974e63c2f6dff636f65e7145abce30472cd22de41bff1cec3748d295343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc5843517?pdf=render |
PMID | 29034514 |
PQID | 2011542918 |
PQPubID | 1016391 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5843517 proquest_miscellaneous_1951565177 proquest_journals_2011542918 crossref_primary_10_1002_mrm_26955 pubmed_primary_29034514 wiley_primary_10_1002_mrm_26955_MRM26955 |
PublicationCentury | 2000 |
PublicationDate | June 2018 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 259 2009; 44 2004; 286 2004; 20 2013; 26 2002; 51 2015; 74 2008; 16 2014; 27 2008; 59 2011; 33 2016; 188 2007; 70 2006; 290 2014; 270 1981; 61 2013; 8 2014; 40 2007; 57 2005; 22 2009; 29 2014; 64 2002; 47 1974; 47 2010; 64 2000; 18 2013; 15 2004; 51 2006; 24 2007; 292 1997; 15 2015; 42 2016; 310 2008; 43 2017; 283 2011; 26 2016; 29 2014; 9 1962; 63 2012; 8 1998; 8 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Andriole VT (e_1_2_6_43_1) 1974; 47 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 9 start-page: e105087 year: 2014 article-title: Quantitative estimation of renal function with dynamic contrast‐enhanced MRI using a modified two‐compartment model publication-title: PLoS One – volume: 270 start-page: 409 year: 2014 end-page: 415 article-title: Effect of iodinated contrast media on renal function evaluated with dynamic three‐dimensional MR renography publication-title: Radiology – volume: 40 start-page: 1022 year: 2014 end-page: 1040 article-title: Non‐Cartesian parallel imaging reconstruction publication-title: J Magn Reson Imaging – volume: 15 start-page: 98 year: 2013 article-title: Evolution of cardiac and renal impairment detected by high‐field cardiovascular magnetic resonance in mice with renal artery stenosis publication-title: J Cardiovasc Magn Reson – volume: 8 start-page: 10 year: 2012 end-page: 17 article-title: Development of the kidney medulla publication-title: Organogenesis – volume: 9 start-page: e113459 year: 2014 article-title: A novel mouse model of advanced diabetic kidney disease publication-title: PLoS One – volume: 51 start-page: 736 year: 2002 end-page: 741 article-title: Renal tubular events following passage from the supine to the standing position in patients with compensated liver cirrhosis: loss of tubuloglomerular feedback publication-title: Gut – volume: 47 start-page: 268 year: 1974 end-page: 276 article-title: The influence of postural changes on the glomerular filtration rate in nephroptosis publication-title: Yale J Biol Med – volume: 24 start-page: 1117 year: 2006 end-page: 1123 article-title: Measurement of single kidney function using dynamic contrast‐enhanced MRI: comparison of two models in human subjects publication-title: J Magn Reson Imaging – volume: 8 start-page: 1240 year: 1998 end-page: 1245 article-title: In vivo quantitative mapping of cardiac perfusion in rats using a noninvasive MR spin‐labeling method publication-title: J Magn Reson Imaging – volume: 44 start-page: 469 year: 2009 end-page: 475 article-title: Morphologic and dynamic renal imaging with assessment of glomerular filtration rate in a pcy‐mouse model using a clinical 3.0 Tesla scanner publication-title: Invest Radiol – volume: 8 start-page: e79992 year: 2013 article-title: Simultaneous measurement of kidney function by dynamic contrast enhanced MRI and FITC‐sinistrin clearance in rats at 3 tesla: initial results publication-title: PLoS One – volume: 286 start-page: F590 year: 2004 end-page: 596 article-title: Serial determination of glomerular filtration rate in conscious mice using FITC‐inulin clearance publication-title: Am J Physiol Renal Physiol – volume: 290 start-page: F958 year: 2006 end-page: F974 article-title: Functional MRI of the kidney: tools for translational studies of pathophysiology of renal disease publication-title: Am J Physiol Renal Physiol – volume: 43 start-page: 40 year: 2008 end-page: 48 article-title: MRI‐measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model publication-title: Invest Radiol – volume: 22 start-page: 406 year: 2005 end-page: 414 article-title: Glomerular filtration rate measured using the Patlak plot technique and contrast‐enhanced dynamic MRI with different amounts of gadolinium‐DTPA publication-title: J Magn Reson Imaging – volume: 61 start-page: 385 year: 1981 end-page: 389 article-title: A non‐invasive gamma‐camera technique for the measurement of intrarenal flow distribution in man publication-title: Clin Sci (Lond) – volume: 310 start-page: F174 year: 2016 end-page: F182 article-title: Dynamic contrast‐enhanced quantitative susceptibility mapping with ultrashort echo time MRI for evaluating renal function publication-title: Am J Physiol Renal Physiol – volume: 42 start-page: 999 year: 2015 end-page: 1008 article-title: Fast imaging strategies for mouse kidney perfusion measurement with pseudocontinuous arterial spin labeling (pCASL) at ultra high magnetic field (11.75 tesla) publication-title: J Magn Reson Imaging – volume: 29 start-page: 417 year: 2016 end-page: 433 article-title: 7 T renal MRI: challenges and promises publication-title: MAGMA – volume: 64 start-page: 411 year: 2014 end-page: 424 article-title: Measuring GFR: a systematic review publication-title: Am J Kidney Dis – volume: 16 start-page: 597 year: 2008 end-page: 611 article-title: Assessment of renal function with dynamic contrast‐enhanced MR imaging publication-title: Magn Reson Imaging Clin N Am – volume: 18 start-page: 587 year: 2000 end-page: 595 article-title: Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI publication-title: Magn Reson Imaging – volume: 15 start-page: 637 year: 1997 end-page: 649 article-title: Magnetic resonance renography: optimisation of pulse sequence parameters and Gd‐DTPA dose, and comparison with radionuclide renography publication-title: Magn Reson Imaging – volume: 57 start-page: 1012 year: 2007 end-page: 1018 article-title: Quantitative determination of Gd‐DTPA concentration in T1‐weighted MR renography studies publication-title: Magn Reson Med – volume: 33 start-page: 1270 year: 2011 end-page: 1283 article-title: Magnetic resonance imaging evaluation of renal structure and function related to disease: technical review of image acquisition, postprocessing, and mathematical modeling steps publication-title: J Magn Reson Imaging – volume: 63 start-page: 78 year: 1962 end-page: 85 article-title: Effect of postural changes on cardiac and renal function in hypertensive subjects publication-title: Am Heart J – volume: 292 start-page: F1548 year: 2007 end-page: 1559 article-title: Renal function measurements from MR renography and a simplified multicompartmental model publication-title: Am J Physiol Renal Physiol – volume: 43 start-page: 120 year: 2008 end-page: 128 article-title: Temporal constraints in renal perfusion imaging with a 2‐compartment model publication-title: Invest Radiol – volume: 27 start-page: 996 year: 2014 end-page: 1004 article-title: Arterial spin labeling‐fast imaging with steady‐state free precession (ASL‐FISP): a rapid and quantitative perfusion technique for high‐field MRI publication-title: NMR Biomed – volume: 26 start-page: 1225 year: 2013 end-page: 1232 article-title: Quantitative mouse renal perfusion using arterial spin labeling publication-title: NMR Biomed – volume: 20 start-page: 843 year: 2004 end-page: 849 article-title: Glomerular filtration rate: assessment with dynamic contrast‐enhanced MRI and a cortical‐compartment model in the rabbit kidney publication-title: J Magn Reson Imaging – volume: 29 start-page: 371 year: 2009 end-page: 382 article-title: Estimates of glomerular filtration rate from MR renography and tracer kinetic models publication-title: J Magn Reson Imaging – volume: 64 start-page: 1296 year: 2010 end-page: 1303 article-title: Rapid T1 mapping of mouse myocardium with saturation recovery Look‐Locker method publication-title: Magn Reson Med – volume: 188 start-page: 551 year: 2016 end-page: 558 article-title: Fast abdominal magnetic resonance imaging publication-title: Rofo – volume: 74 start-page: 1370 year: 2015 end-page: 1379 article-title: Rapid multislice T1 mapping of mouse myocardium: Application to quantification of manganese uptake in alpha‐Dystrobrevin knockout mice publication-title: Magn Reson Med – volume: 70 start-page: 227 year: 2007 end-page: 229 article-title: Effect of body position on renal parenchyma perfusion as measured by nuclear scintigraphy publication-title: Urology – volume: 47 start-page: 127 year: 2002 end-page: 134 article-title: Effect of essential hypertension on kidney function as measured in rat by dynamic MRI publication-title: Magn Reson Med – volume: 59 start-page: 278 year: 2008 end-page: 288 article-title: Functional assessment of the kidney from magnetic resonance and computed tomography renography: impulse retention approach to a multicompartment model publication-title: Magn Reson Med – volume: 26 start-page: 3101 year: 2011 end-page: 3108 article-title: Two non‐invasive GFR‐estimation methods in rat models of polycystic kidney disease: 3.0 Tesla dynamic contrast‐enhanced MRI and optical imaging publication-title: Nephrol Dial Transplant – volume: 259 start-page: 462 year: 2011 end-page: 470 article-title: Kidney function: glomerular filtration rate measurement with MR renography in patients with cirrhosis publication-title: Radiology – volume: 51 start-page: 1017 year: 2004 end-page: 1025 article-title: Calculation of the renal perfusion and glomerular filtration rate from the renal impulse response obtained with MRI publication-title: Magn Reson Med – volume: 283 start-page: 77 year: 2017 end-page: 86 article-title: Noninvasive assessment of renal fibrosis with magnetization transfer MR imaging: validation and evaluation in murine renal artery stenosis publication-title: Radiology – ident: e_1_2_6_42_1 doi: 10.1152/ajprenal.00351.2015 – ident: e_1_2_6_27_1 doi: 10.1002/mrm.25533 – ident: e_1_2_6_22_1 doi: 10.1097/RLI.0b013e3181583b0c – ident: e_1_2_6_29_1 doi: 10.1002/nbm.2939 – ident: e_1_2_6_5_1 doi: 10.1016/S0730-725X(97)00034-9 – ident: e_1_2_6_17_1 doi: 10.1371/journal.pone.0079992 – ident: e_1_2_6_35_1 doi: 10.1002/nbm.3143 – ident: e_1_2_6_23_1 doi: 10.1152/ajprenal.00324.2003 – ident: e_1_2_6_36_1 doi: 10.1002/jmri.24874 – ident: e_1_2_6_40_1 doi: 10.1055/s-0042-102540 – ident: e_1_2_6_2_1 doi: 10.1152/ajprenal.00114.2005 – ident: e_1_2_6_3_1 doi: 10.1016/j.mric.2008.07.001 – ident: e_1_2_6_4_1 doi: 10.1002/jmri.22335 – ident: e_1_2_6_14_1 doi: 10.1002/mrm.21489 – ident: e_1_2_6_21_1 doi: 10.1148/radiol.13122495 – ident: e_1_2_6_32_1 doi: 10.1042/cs0610385 – volume: 47 start-page: 268 year: 1974 ident: e_1_2_6_43_1 article-title: The influence of postural changes on the glomerular filtration rate in nephroptosis publication-title: Yale J Biol Med contributor: fullname: Andriole VT – ident: e_1_2_6_28_1 doi: 10.1002/mrm.22544 – ident: e_1_2_6_25_1 doi: 10.1186/1532-429X-15-98 – ident: e_1_2_6_38_1 doi: 10.1016/j.urology.2007.03.057 – ident: e_1_2_6_9_1 doi: 10.1148/radiol.11101338 – ident: e_1_2_6_13_1 doi: 10.1152/ajprenal.00347.2006 – ident: e_1_2_6_33_1 doi: 10.1053/j.ajkd.2014.04.010 – ident: e_1_2_6_39_1 doi: 10.1016/0002-8703(62)90223-5 – ident: e_1_2_6_24_1 doi: 10.1002/jmri.1880080610 – ident: e_1_2_6_26_1 doi: 10.1148/radiol.2016160566 – ident: e_1_2_6_11_1 doi: 10.1002/jmri.20699 – ident: e_1_2_6_16_1 doi: 10.1002/jmri.21642 – ident: e_1_2_6_15_1 doi: 10.1097/RLI.0b013e31815597c5 – ident: e_1_2_6_41_1 doi: 10.1002/jmri.24521 – ident: e_1_2_6_18_1 doi: 10.1093/ndt/gfr148 – ident: e_1_2_6_34_1 doi: 10.1097/RLI.0b013e3181a8afa1 – ident: e_1_2_6_30_1 doi: 10.1371/journal.pone.0105087 – ident: e_1_2_6_7_1 doi: 10.1002/mrm.21169 – ident: e_1_2_6_8_1 doi: 10.1007/s10334-016-0538-3 – ident: e_1_2_6_37_1 doi: 10.1371/journal.pone.0113459 – ident: e_1_2_6_20_1 doi: 10.1002/mrm.20026 – ident: e_1_2_6_31_1 doi: 10.4161/org.19308 – ident: e_1_2_6_19_1 doi: 10.1002/mrm.10034 – ident: e_1_2_6_6_1 doi: 10.1016/S0730-725X(00)00134-X – ident: e_1_2_6_10_1 doi: 10.1002/jmri.20401 – ident: e_1_2_6_12_1 doi: 10.1002/jmri.20173 – ident: e_1_2_6_44_1 doi: 10.1136/gut.51.5.736 |
SSID | ssj0009974 |
Score | 2.451436 |
Snippet | Purpose
To develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI (DCE‐MRI).... To develop and validate a method for measuring murine single-kidney glomerular filtration rate (GFR) using dynamic contrast-enhanced MRI (DCE-MRI). This... PurposeTo develop and validate a method for measuring murine single‐kidney glomerular filtration rate (GFR) using dynamic contrast‐enhanced MRI... PURPOSETo develop and validate a method for measuring murine single-kidney glomerular filtration rate (GFR) using dynamic contrast-enhanced MRI... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2935 |
SubjectTerms | Animals Arteries - pathology Body Weight compartmental model Contrast Media - chemistry Correlation analysis Correlation coefficient Correlation coefficients dynamic contrast‐enhanced MRI Fluorescein Fluorescein-5-isothiocyanate - chemistry Gadolinium Glomerular Filtration Rate Image Interpretation, Computer-Assisted - methods Image Processing, Computer-Assisted Inulin Inulin - chemistry Kidney - diagnostic imaging Kidney Function Tests - methods Kidneys Magnetic Resonance Imaging Mice Perfusion Prospective Studies Relaxation time Renal artery renal artery stenosis renal perfusion Reproducibility of Results Rodents Spin labeling Spin Labels Stenosis |
Title | Measurement of Murine Single‐Kidney Glomerular Filtration Rate Using Dynamic Contrast‐Enhanced MRI |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26955 https://www.ncbi.nlm.nih.gov/pubmed/29034514 https://www.proquest.com/docview/2011542918 https://www.proquest.com/docview/1951565177 https://pubmed.ncbi.nlm.nih.gov/PMC5843517 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2qKoHY8CiPBgoyiAWbTBvbScZihWiHAgqLgUpdIEW2c62OmMmgycyirPgEvpEv4drJZBgqJMQukh_x6_oeXR8fAzx3BhOdGBkjChtLjTY2wtAXOVOlHefK-oB-8SE7PZPvztPzHXi5vgvT6kP0ATdvGWG_9gauTXO4EQ2dLWYDnqnUXzBPRO7pXMfjjXSUUq0Ccy79PqPkWlXoiB_2Jbd90RWAeZUn-Tt-DQ5odAs-r5ve8k6-DFZLM7Df_lB1_M--3YabHTBlr9qVdAd2sN6D60V39L4H1wJX1DZ3wRWbuCKbO1b4gD2yj-QEp_jz-4_3k6rGS_ZmOp_hwrNc2Wgy7dR52ZiwLQs8BXZ8WevZxDIvkLXQzZKKntQXgZHAivHbe3A2Ovn0-jTunmuIrSTQFdOsE36iYcdMWO6yyrlMZC5LMU9kqo1Ff8THbcV5hTIxziUWrZe_qbhKhRT3Ybee17gPTKJTuas45lrJSgpthv7RdlER_rGpGkbwbD1x5ddWlaNs9Zd5SWNXhrGL4GA9pWVnmE3Jg_4QVwnV8bRPJpPy5yS6xvmqKRNCnYRzkzyP4EG7Avq_cHUkJIHMCPKttdFn8HLd2yn15CLIdhPUE1RpBC_C1P-94WUxLsLHw3_P-ghuUNeGLYntAHaXixU-Jri0NE-CXfwCMk0U9w |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIh6XAuUVKGAQBy7ZNraTrKVeEO2ypU0PSyv1UkWJM1ZX7GbRPg7lxE_gN_aXdOw8lqVCQtws-RHb4_F8mpl8BnhvcgyyIJc-otC-zFD7ucipRMZUZYZzpa1DPzmO-qfyy1l4tga7zb8wFT9E63CzmuHua6vg1iG9vWQNHU_HHR6pMLwFt0ndhX24YW-wJI9SquJgjqW9aZRseIV2-HbbddUa3YCYNzMlf0ewzgT1HsB5M_kq8-RbZzHPO_rHH7yO_7u6h7BRY1P2sTpMj2ANy024m9TR902449JF9ewxmGTpWmQTwxLrs0f2lezgCK9-_jocFiVess-jyRinNtGV9YajmqCXDQjeMpeqwPYuy2w81MxyZE2z2Zy67pcXLimBJYODJ3Da2z_51PfrFxt8LQl3-SR4glC07xgJzU1UGBOJyEQhxoEMs1yjjfJxXXBeoAxyYwKN2jLgFFyFQoqnsF5OSnwOTKJRsSk4xpmShRRZ3rXvtouCIJAOVdeDd43k0u8VMUdaUTDzlPYudXvnwVYj07TWzVnKHQURVwGN8batJq2yoZKsxMlilgYEPAnqBnHswbPqCLRf4WpHSMKZHsQrh6NtYBm7V2vK4YVj7ia0J2hQDz442f994mkySFzhxb83fQP3-ifJUXp0cHz4Eu7TMrtVTtsWrM-nC3xF6Gmev3ZKcg1UXRkP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RVRcCrSFBgoY1AOXbBvbSdbihGiXlpIKLVTqoVKUOGN1xW622sehnPgJ_EZ-CWPnsSwVEuJmyY_YHo_n08zkM8CeyTHIglz6iEL7MkPt5yKnEhlTlRnOlbYO_eQsOj6XHy7CixV40_wLU_FDtA43qxnuvrYKfl2Y_QVp6Ggy6vBIheEq3JERIV-LiPoL7iilKgrmWNqLRsmGVuiA77ddl43RLYR5O1HydwDrLFDvPlw2c68ST7525rO8o7_9Qev4n4t7ABs1MmVvq6P0EFaw3IT1pI69b8Jdlyyqp1tgkoVjkY0NS6zHHtlnsoJD_Pn9x-mgKPGGvR-ORzixaa6sNxjW9LysT-CWuUQFdnhTZqOBZpYha5JNZ9T1qLxyKQks6Z9sw3nv6Mu7Y79-r8HXklCXT2InAEXbjpHQ3ESFMZGITBRiHMgwyzXaGB_XBecFyiA3JtCoLf9NwVUopHgEa-W4xB1gEo2KTcExzpQspMjyrn21XRQEgHSouh68agSXXle0HGlFwMxT2rvU7Z0Hu41I01ozpyl3BERcBTTGy7aadMoGSrISx_NpGhDsJKAbxLEHj6sT0H6FqwMhCWV6EC-djbaB5eterikHV463m7CeoEE9eO1E__eJp0k_cYUn_970Bax_OuylH0_OTp_CPVplt0po24W12WSOzwg6zfLnTkV-AQYvF74 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+Murine+Single%E2%80%90Kidney+Glomerular+Filtration+Rate+Using+Dynamic+Contrast%E2%80%90Enhanced+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Jiang%2C+Kai&rft.au=Tang%2C+Hui&rft.au=Mishra%2C+Prasanna+K.&rft.au=Macura%2C+Slobodan+I.&rft.date=2018-06-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=79&rft.issue=6&rft.spage=2935&rft.epage=2943&rft_id=info:doi/10.1002%2Fmrm.26955&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_26955 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |