Speciation of reactive sulfur species and their reactions with alkylating agents: do we have any clue about what is present inside the cell?
Background and Purpose Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis‐induced artifactual oxidation render current...
Saved in:
Published in | British journal of pharmacology Vol. 176; no. 4; pp. 646 - 670 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.02.2019
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract |
Background and Purpose
Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis‐induced artifactual oxidation render current state‐of‐the‐art protocols to rely on alkylation‐based stabilization of labile cysteine derivatives before cell/tissue rupture. An untested assumption in these procedures is that for all cysteine derivatives, alkylation rates are faster than their dynamic interchange. However, when the interconversion of cysteine derivatives is not rate limiting, electrophilic labelling is under Curtin–Hammett control; hence, the final alkylated mixture may not represent the speciation that prevailed before alkylation.
Experimental Approach
Buffered aqueous solutions of inorganic, organic, cysteine, GSH and GAPDH polysulfide species were used. Additional experiments in human plasma and serum revealed that monobromobimane can extract sulfide from the endogenous sulfur pool by shifting speciation equilibria, suggesting caution should be exercised when interpreting experimental results using this tool.
Key Results
In the majority of cases, the speciation of alkylated polysulfide/thiol derivatives depended on the experimental conditions. Alkylation perturbed sulfur speciation in both a concentration‐ and time‐dependent manner and strong alkylating agents cleaved polysulfur chains. Moreover, the labelling of sulfenic acids with dimedone also affected cysteine speciation, suggesting that part of the endogenous pool of products previously believed to represent sulfenic acid species may represent polysulfides.
Conclusions and Implications
We highlight methodological caveats potentially arising from these pitfalls and conclude that current derivatization strategies often fail to adequately capture physiological speciation of sulfur species.
Linked Articles
This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc |
---|---|
AbstractList | Background and PurposePosttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis‐induced artifactual oxidation render current state‐of‐the‐art protocols to rely on alkylation‐based stabilization of labile cysteine derivatives before cell/tissue rupture. An untested assumption in these procedures is that for all cysteine derivatives, alkylation rates are faster than their dynamic interchange. However, when the interconversion of cysteine derivatives is not rate limiting, electrophilic labelling is under Curtin–Hammett control; hence, the final alkylated mixture may not represent the speciation that prevailed before alkylation.Experimental ApproachBuffered aqueous solutions of inorganic, organic, cysteine, GSH and GAPDH polysulfide species were used. Additional experiments in human plasma and serum revealed that monobromobimane can extract sulfide from the endogenous sulfur pool by shifting speciation equilibria, suggesting caution should be exercised when interpreting experimental results using this tool.Key ResultsIn the majority of cases, the speciation of alkylated polysulfide/thiol derivatives depended on the experimental conditions. Alkylation perturbed sulfur speciation in both a concentration‐ and time‐dependent manner and strong alkylating agents cleaved polysulfur chains. Moreover, the labelling of sulfenic acids with dimedone also affected cysteine speciation, suggesting that part of the endogenous pool of products previously believed to represent sulfenic acid species may represent polysulfides.Conclusions and ImplicationsWe highlight methodological caveats potentially arising from these pitfalls and conclude that current derivatization strategies often fail to adequately capture physiological speciation of sulfur species.Linked ArticlesThis article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc Background and Purpose Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis‐induced artifactual oxidation render current state‐of‐the‐art protocols to rely on alkylation‐based stabilization of labile cysteine derivatives before cell/tissue rupture. An untested assumption in these procedures is that for all cysteine derivatives, alkylation rates are faster than their dynamic interchange. However, when the interconversion of cysteine derivatives is not rate limiting, electrophilic labelling is under Curtin–Hammett control; hence, the final alkylated mixture may not represent the speciation that prevailed before alkylation. Experimental Approach Buffered aqueous solutions of inorganic, organic, cysteine, GSH and GAPDH polysulfide species were used. Additional experiments in human plasma and serum revealed that monobromobimane can extract sulfide from the endogenous sulfur pool by shifting speciation equilibria, suggesting caution should be exercised when interpreting experimental results using this tool. Key Results In the majority of cases, the speciation of alkylated polysulfide/thiol derivatives depended on the experimental conditions. Alkylation perturbed sulfur speciation in both a concentration‐ and time‐dependent manner and strong alkylating agents cleaved polysulfur chains. Moreover, the labelling of sulfenic acids with dimedone also affected cysteine speciation, suggesting that part of the endogenous pool of products previously believed to represent sulfenic acid species may represent polysulfides. Conclusions and Implications We highlight methodological caveats potentially arising from these pitfalls and conclude that current derivatization strategies often fail to adequately capture physiological speciation of sulfur species. Linked Articles This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc Background and Purpose Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis‐induced artifactual oxidation render current state‐of‐the‐art protocols to rely on alkylation‐based stabilization of labile cysteine derivatives before cell/tissue rupture. An untested assumption in these procedures is that for all cysteine derivatives, alkylation rates are faster than their dynamic interchange. However, when the interconversion of cysteine derivatives is not rate limiting, electrophilic labelling is under Curtin–Hammett control; hence, the final alkylated mixture may not represent the speciation that prevailed before alkylation. Experimental Approach Buffered aqueous solutions of inorganic, organic, cysteine, GSH and GAPDH polysulfide species were used. Additional experiments in human plasma and serum revealed that monobromobimane can extract sulfide from the endogenous sulfur pool by shifting speciation equilibria, suggesting caution should be exercised when interpreting experimental results using this tool. Key Results In the majority of cases, the speciation of alkylated polysulfide/thiol derivatives depended on the experimental conditions. Alkylation perturbed sulfur speciation in both a concentration‐ and time‐dependent manner and strong alkylating agents cleaved polysulfur chains. Moreover, the labelling of sulfenic acids with dimedone also affected cysteine speciation, suggesting that part of the endogenous pool of products previously believed to represent sulfenic acid species may represent polysulfides. Conclusions and Implications We highlight methodological caveats potentially arising from these pitfalls and conclude that current derivatization strategies often fail to adequately capture physiological speciation of sulfur species. Linked Articles This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc BACKGROUND AND PURPOSE: Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis-induced artifactual oxidation render current state-of-the-art protocols to rely on alkylation-based stabilization of labile cysteine derivatives before cell/tissue rupture. An untested assumption in these procedures is that for all cysteine derivatives, alkylation rates are faster than their dynamic interchange. However, when the interconversion of cysteine derivatives is not rate limiting, electrophilic labelling is under Curtin-Hammett control; hence, the final alkylated mixture may not represent the speciation that prevailed before alkylation. Buffered aqueous solutions of inorganic, organic, cysteine, GSH and GAPDH polysulfide species were used. Additional experiments in human plasma and serum revealed that monobromobimane can extract sulfide from the endogenous sulfur pool by shifting speciation equilibria, suggesting caution should be exercised when interpreting experimental results using this tool. In the majority of cases, the speciation of alkylated polysulfide/thiol derivatives depended on the experimental conditions. Alkylation perturbed sulfur speciation in both a concentration- and time-dependent manner and strong alkylating agents cleaved polysulfur chains. Moreover, the labelling of sulfenic acids with dimedone also affected cysteine speciation, suggesting that part of the endogenous pool of products previously believed to represent sulfenic acid species may represent polysulfides. We highlight methodological caveats potentially arising from these pitfalls and conclude that current derivatization strategies often fail to adequately capture physiological speciation of sulfur species. This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc. |
Author | Minnion, Magda Bianco, Christopher Vliet, Albert Sutton, Thomas R Pluth, Michael D Koster, Grielof Fukuto, Jon M Ida, Tomoaki Bogdándi, Virág Ditrói, Tamás Toscano, John P Feelisch, Martin Henthorn, Hillary A Nagy, Péter Akaike, Takaaki |
AuthorAffiliation | 4 Department of Chemistry Johns Hopkins University Baltimore MD USA 7 Department of Chemistry Sonoma State University Rohnert Park CA USA 6 Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont Burlington VT USA 1 Department of Molecular Immunology and Toxicology National Institute of Oncology Budapest Hungary 2 Department of Environmental Medicine and Molecular Toxicology Tohoku University Graduate School of Medicine Sendai Japan 3 Clinical and Experimental Sciences, Faculty of Medicine University Hospital Southampton NHS Foundation Trust, University of Southampton Southampton UK 5 Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology University of Oregon Eugene OR USA |
AuthorAffiliation_xml | – name: 4 Department of Chemistry Johns Hopkins University Baltimore MD USA – name: 7 Department of Chemistry Sonoma State University Rohnert Park CA USA – name: 3 Clinical and Experimental Sciences, Faculty of Medicine University Hospital Southampton NHS Foundation Trust, University of Southampton Southampton UK – name: 2 Department of Environmental Medicine and Molecular Toxicology Tohoku University Graduate School of Medicine Sendai Japan – name: 1 Department of Molecular Immunology and Toxicology National Institute of Oncology Budapest Hungary – name: 6 Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont Burlington VT USA – name: 5 Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology University of Oregon Eugene OR USA |
Author_xml | – sequence: 1 givenname: Virág surname: Bogdándi fullname: Bogdándi, Virág organization: National Institute of Oncology – sequence: 2 givenname: Tomoaki surname: Ida fullname: Ida, Tomoaki organization: Tohoku University Graduate School of Medicine – sequence: 3 givenname: Thomas R surname: Sutton fullname: Sutton, Thomas R organization: University Hospital Southampton NHS Foundation Trust, University of Southampton – sequence: 4 givenname: Christopher surname: Bianco fullname: Bianco, Christopher organization: Johns Hopkins University – sequence: 5 givenname: Tamás surname: Ditrói fullname: Ditrói, Tamás organization: National Institute of Oncology – sequence: 6 givenname: Grielof surname: Koster fullname: Koster, Grielof organization: University Hospital Southampton NHS Foundation Trust, University of Southampton – sequence: 7 givenname: Hillary A surname: Henthorn fullname: Henthorn, Hillary A organization: University of Oregon – sequence: 8 givenname: Magda surname: Minnion fullname: Minnion, Magda organization: University Hospital Southampton NHS Foundation Trust, University of Southampton – sequence: 9 givenname: John P surname: Toscano fullname: Toscano, John P organization: Johns Hopkins University – sequence: 10 givenname: Albert surname: Vliet fullname: Vliet, Albert organization: University of Vermont – sequence: 11 givenname: Michael D orcidid: 0000-0003-3604-653X surname: Pluth fullname: Pluth, Michael D organization: University of Oregon – sequence: 12 givenname: Martin surname: Feelisch fullname: Feelisch, Martin organization: University Hospital Southampton NHS Foundation Trust, University of Southampton – sequence: 13 givenname: Jon M orcidid: 0000-0002-0014-160X surname: Fukuto fullname: Fukuto, Jon M organization: Sonoma State University – sequence: 14 givenname: Takaaki orcidid: 0000-0001-5675-3341 surname: Akaike fullname: Akaike, Takaaki email: takaike@med.tohoku.ac.jp organization: Tohoku University Graduate School of Medicine – sequence: 15 givenname: Péter orcidid: 0000-0003-3393-235X surname: Nagy fullname: Nagy, Péter email: peter.nagy@oncol.hu organization: National Institute of Oncology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29909607$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFvFCEYhompsdvqwT9gSDx5mBaGmQE8aLSp1qSJJuqZMPDNDpXCCDPd7H_wR5d110YPcgCS7-HhTd4TdBRiAISeU3JGyzrvp_GMNkw2j9CKNryrWiboEVoRQnhFqRDH6CTnG0LKkLdP0HEtJZEd4Sv06-sExunZxYDjgBNoM7s7wHnxw5Jw3k0hYx0snkdw6UDEkPHGzSPW_sfWl-dhjfUawpxfYxvxBvCoi0WHLTZ-KZc-LjPejHrGLuMpQS4sdiE7CzsxNuD926fo8aB9hmeH8xR9_3D57eKquv788dPFu-vKNA1rKtMzYWknrW4Gabix7WBqI3pG-4YD7yzQtqeyN1YA4Vpwympb80HqFso-sFP0Zu-dlv4WrClZkvZqSu5Wp62K2ql_J8GNah3vVMeajghSBC8PghR_LpBndROXFEpmVdeyY0QIKgr1ak-ZFHNOMDz8QInaFadKcep3cYV98XekB_JPUwU43wMb52H7f5N6_-Vqr7wH5DeoAQ |
CitedBy_id | crossref_primary_10_1016_j_cbpa_2023_102368 crossref_primary_10_1002_ange_202203684 crossref_primary_10_3389_fmolb_2022_975988 crossref_primary_10_1021_jacs_2c07380 crossref_primary_10_1042_BSR20221006 crossref_primary_10_1016_j_cbpa_2024_102440 crossref_primary_10_1016_j_redox_2023_102617 crossref_primary_10_1021_acs_joc_0c02412 crossref_primary_10_1021_acs_inorgchem_3c00593 crossref_primary_10_1039_C9CC08347B crossref_primary_10_1016_j_jphs_2024_04_005 crossref_primary_10_1002_anie_202401003 crossref_primary_10_3390_antiox11050939 crossref_primary_10_1021_acs_analchem_4c00700 crossref_primary_10_3390_molecules26237160 crossref_primary_10_1111_bph_14579 crossref_primary_10_1126_sciadv_aax8358 crossref_primary_10_1016_j_vascn_2021_106957 crossref_primary_10_1088_2516_1075_aca945 crossref_primary_10_1089_ars_2020_8049 crossref_primary_10_1021_acs_accounts_9b00562 crossref_primary_10_1002_anie_201908950 crossref_primary_10_1039_C8CS00826D crossref_primary_10_1038_s41598_023_43692_9 crossref_primary_10_1002_rcm_9291 crossref_primary_10_1016_j_niox_2021_09_002 crossref_primary_10_1002_ange_202401003 crossref_primary_10_1111_bph_14372 crossref_primary_10_1021_acs_inorgchem_4c01084 crossref_primary_10_1111_bph_16271 crossref_primary_10_3390_antiox11122359 crossref_primary_10_3390_antiox12051105 crossref_primary_10_1111_bph_14641 crossref_primary_10_1016_j_abb_2020_108391 crossref_primary_10_1016_j_redox_2022_102517 crossref_primary_10_1021_acs_inorgchem_1c00787 crossref_primary_10_1111_bph_14523 crossref_primary_10_1016_j_electacta_2019_04_119 crossref_primary_10_1016_j_freeradbiomed_2019_04_006 crossref_primary_10_1016_j_niox_2020_11_004 crossref_primary_10_1021_acs_chemrev_3c00683 crossref_primary_10_1038_s41589_020_00671_9 crossref_primary_10_1016_j_jchromb_2020_122516 crossref_primary_10_1126_sciadv_abe7006 crossref_primary_10_3390_antiox8020048 crossref_primary_10_1002_ange_201908950 crossref_primary_10_1016_j_foodchem_2023_135610 crossref_primary_10_1042_EBC20190049 crossref_primary_10_1089_ars_2019_7777 crossref_primary_10_1073_pnas_2100050118 crossref_primary_10_1111_bph_14551 crossref_primary_10_1016_j_redox_2020_101731 crossref_primary_10_1038_s41467_018_06790_1 crossref_primary_10_1002_pmic_202200194 crossref_primary_10_1128_aem_01941_21 crossref_primary_10_1002_chem_202200540 crossref_primary_10_1016_j_redox_2022_102502 crossref_primary_10_1042_BCJ20200897 crossref_primary_10_2131_jts_46_91 crossref_primary_10_1016_j_redox_2024_103130 crossref_primary_10_12677_AAC_2022_122019 crossref_primary_10_1074_jbc_REV120_011304 crossref_primary_10_3390_biom11111553 crossref_primary_10_1039_D0DT01384F crossref_primary_10_1016_j_redox_2019_101179 crossref_primary_10_3390_molecules28155654 crossref_primary_10_1016_j_aca_2020_02_017 crossref_primary_10_1074_jbc_RA120_014728 crossref_primary_10_1089_ars_2021_0170 crossref_primary_10_1093_cvr_cvz202 crossref_primary_10_1002_chem_202203906 crossref_primary_10_3390_antiox9111160 crossref_primary_10_1016_j_ab_2024_115458 crossref_primary_10_1021_acs_chemrestox_8b00340 crossref_primary_10_1021_jacs_8b08469 crossref_primary_10_1002_anie_202203684 crossref_primary_10_1016_j_redox_2023_102629 crossref_primary_10_1021_acs_inorgchem_9b01978 crossref_primary_10_1089_ars_2019_7889 crossref_primary_10_1126_sciadv_adg8631 crossref_primary_10_1089_ars_2022_0064 crossref_primary_10_1089_ars_2020_8078 crossref_primary_10_1089_ars_2020_8077 crossref_primary_10_1161_ATVBAHA_120_314084 crossref_primary_10_1016_j_redox_2020_101800 crossref_primary_10_1089_ars_2020_8073 crossref_primary_10_3390_molecules24152768 crossref_primary_10_3390_antiox10071065 crossref_primary_10_1016_j_aca_2021_339016 crossref_primary_10_1016_j_jinorgbio_2023_112313 crossref_primary_10_1016_j_redox_2024_103222 crossref_primary_10_1016_j_redox_2021_102111 |
Cites_doi | 10.1021/ja0737218 10.1126/sciadv.1500968 10.1126/science.233.4763.563 10.1016/j.bbrc.2016.10.022 10.1016/0013-4686(59)80009-8 10.1021/es062637 10.1038/nchembio.1834 10.1016/0016-7037(63)90050-4 10.1111/bph.12769 10.1021/tx100266a 10.1016/j.ab.2011.01.044 10.1111/bph.14372 10.1007/s00604-004-0179-5 10.1111/bph.12369 10.1051/water/19780901027 10.1016/j.redox.2018.02.012 10.1016/bs.mie.2014.11.036 10.1126/scisignal.290re7 10.1089/ars.2010.3678 10.1093/oxfordjournals.jbchem.a133393 10.1038/s41467-017-01311-y 10.1021/ed063p42 10.1016/j.bbagen.2013.05.037 10.1021/jacs.6b03456 10.1111/bph.14153 10.1021/bi300778t 10.1002/anie.201305876 10.1073/pnas.1509277112 10.1021/ac051854a 10.1074/jbc.M115.672816 10.1007/b13183 10.1021/ic50116a047 10.1016/0165-022X(86)90102-8 10.1021/ic00235a003 10.1126/scisignal.2000464 10.1073/pnas.1321232111 10.1089/ars.2017.7076 10.1016/j.freeradbiomed.2017.10.384 10.1016/j.redox.2017.10.006 10.1016/j.freeradbiomed.2013.01.021 10.1016/j.freeradbiomed.2014.09.007 10.1021/cr300163e 10.1016/j.abb.2011.09.015 10.1074/jbc.M117.774943 10.1007/b13182 10.1021/acs.inorgchem.6b01660 10.3891/acta.chem.scand.53-0513 10.1016/S1872-0854(10)04006-3 10.1021/es049514e 10.1093/nar/gkx1121 10.1039/C5DT03355A 10.1111/j.1751-908X.2009.00907.x 10.1039/c3cs60119f 10.1016/j.redox.2017.10.012 10.1016/B978-1-4831-9982-5.50004-X 10.1021/ic50112a009 10.1016/B978-0-12-804273-1.00005-3 10.1038/330148a0 10.1016/j.freeradbiomed.2010.10.705 10.1038/srep29808 10.1038/srep45995 10.1038/nrm3391 10.1146/annurev.pharmtox.44.101802.121735 10.1016/j.freeradbiomed.2013.02.017 10.7554/eLife.10067 10.1016/j.freeradbiomed.2011.01.025 10.1111/bph.12368 10.1111/bph.13877 10.1089/ars.2012.5041 10.1089/ars.2017.7083 10.1016/j.redox.2017.02.021 10.1016/j.freeradbiomed.2015.08.017 10.1038/ncomms13386 10.1111/j.1476-5381.2010.00704.x |
ContentType | Journal Article |
Copyright | 2018 The British Pharmacological Society 2018 The British Pharmacological Society. 2019 The British Pharmacological Society |
Copyright_xml | – notice: 2018 The British Pharmacological Society – notice: 2018 The British Pharmacological Society. – notice: 2019 The British Pharmacological Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7TK K9. NAPCQ 5PM |
DOI | 10.1111/bph.14394 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Calcium & Calcified Tissue Abstracts Neurosciences Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | Speciation of reactive sulfur species |
EISSN | 1476-5381 |
EndPage | 670 |
ExternalDocumentID | 10_1111_bph_14394 29909607 BPH14394 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Science Foundation funderid: CHE‐1454747; CHE‐1566065 – fundername: National Institutes of Health funderid: R21AG055022‐01 – fundername: National Research, Development and Innovation Office funderid: K 109843; KH17_126766 – fundername: Grants‐in‐Aid for Scientific Research funderid: 16K15208; 25253020 – fundername: Grant‐in‐Aid for Scientific Research on Innovative Areas funderid: 15K21759; 26111001; 26111008 – fundername: Grant‐in‐Aid for Scientific Research on Innovative Areas grantid: 15K21759; 26111001; 26111008 – fundername: Grants‐in‐Aid for Scientific Research grantid: 16K15208; 25253020 – fundername: National Science Foundation grantid: CHE‐1454747; CHE‐1566065 – fundername: National Institutes of Health grantid: R21AG055022‐01 – fundername: National Research, Development and Innovation Office grantid: K 109843; KH17_126766 |
GroupedDBID | --- .3N .55 .GJ 05W 0R~ 1OC 23N 24P 2WC 31~ 33P 36B 3O- 3SF 3V. 4.4 52U 52V 53G 5GY 6J9 7RV 7X7 8-0 8-1 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 8UM A00 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABDBF ABPVW ABQWH ABUWG ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AZBYB AZVAB B0M BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BKEYQ BMXJE BPHCQ BRXPI BVXVI C45 CAG CCPQU COF CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS ECV EJD EMB EMK EMOBN ENC ESX EX3 F5P FUBAC FYUFA G-S GODZA GX1 H.X HCIFZ HGLYW HMCUK HYE HZ~ J5H KBYEO LATKE LEEKS LH4 LITHE LK8 LOXES LSO LUTES LW6 LYRES M1P M7P MEWTI MK0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N9A NAPCQ NF~ O66 O9- OIG OK1 OVD P2P P2W P4E PQQKQ PROAC PSQYO Q.N Q2X QB0 RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 TUS UKHRP UPT WBKPD WH7 WHWMO WIH WIJ WIK WIN WOHZO WOW WVDHM WXSBR X7M XV2 Y6R YHG ZGI ZXP ZZTAW ~8M ~S- CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7TK K9. 5PM |
ID | FETCH-LOGICAL-c4434-cb38d169da4f9c7cd5fc2c8b31b47e76de15b19bcd8e07a87132d27f9a5e7f9f3 |
IEDL.DBID | RPM |
ISSN | 0007-1188 |
IngestDate | Tue Sep 17 21:18:59 EDT 2024 Thu Oct 10 21:59:44 EDT 2024 Fri Aug 23 01:30:39 EDT 2024 Sat Nov 02 12:22:48 EDT 2024 Sat Aug 24 00:53:16 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2018 The British Pharmacological Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4434-cb38d169da4f9c7cd5fc2c8b31b47e76de15b19bcd8e07a87132d27f9a5e7f9f3 |
Notes | These authors contributed equally to this study. |
ORCID | 0000-0001-5675-3341 0000-0002-0014-160X 0000-0003-3393-235X 0000-0003-3604-653X |
OpenAccessLink | https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/bph.14394 |
PMID | 29909607 |
PQID | 2296308818 |
PQPubID | 42104 |
PageCount | 25 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6346080 proquest_journals_2296308818 crossref_primary_10_1111_bph_14394 pubmed_primary_29909607 wiley_primary_10_1111_bph_14394_BPH14394 |
PublicationCentury | 2000 |
PublicationDate | February 2019 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | British journal of pharmacology |
PublicationTitleAlternate | Br J Pharmacol |
PublicationYear | 2019 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 2017; 7 2017; 8 2011; 516 2006; 78 1777 2011; 15 2014; 171 2012; 13 2017; 113 1959; 1 1978; 9 1981; 89 2018; 46 2012; 51 2018; 175 2013; 19 2015; 46 2015; 89 2015; 172 2015; 290 2013; 58 2004; 38 2015; 44 2013; 60 2013; 113 1999; 53 1972; 11 2014; 53 2011; 413 2004; 44 1963; 27 2007; 129 2015; 4 2003b; 231 2004; 146 1986; 233 2017; 27 1986; 13 1822; 20 2013; 42 2015; 11 2017; 292 2017; 174 2010; 160 2014; 111 2014; 1840 2016; 55 2016; 480 2010b; 4 2009; 33 2016; 6 2016; 7 2016; 2 1987; 330 2010a; 23 1986; 63 2017; 14 2015; 554 2015; 112 1986; 25 2011; 50 2017; 12 2017 1961 2016; 138 2007; 41 2009; 2 2003a; 231 2018; 16 2014; 77 2018; 14 2019; 176 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 Berzelius J (e_1_2_9_7_1) 1822; 20 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 Doka E (e_1_2_9_21_1) 2017 e_1_2_9_2_1 Vasas A (e_1_2_9_75_1) 2015; 46 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 14 start-page: 485 year: 2018 end-page: 491 article-title: Chemical trapping and characterization of small oxoacids of sulfur (SOS) generated in aqueous oxidations of H S publication-title: Redox Biol – volume: 554 start-page: 3 year: 2015 end-page: 29 article-title: Mechanistic chemical perspective of hydrogen sulfide signaling publication-title: Methods Enzymol – volume: 60 start-page: 325 year: 2013 end-page: 335 article-title: Exposing cells to H O : a quantitative comparison between continuous low‐dose and one‐time high‐dose treatments publication-title: Free Radic Biol Med – volume: 51 start-page: 6804 year: 2012 end-page: 6815 article-title: Human sulfide: quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite publication-title: Biochemistry – volume: 27 start-page: 684 year: 2017 end-page: 712 article-title: The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine publication-title: Antioxid Redox Signal – volume: 292 start-page: 5584 year: 2017 end-page: 5592 article-title: Structural and mechanistic insights into hemoglobin‐catalyzed hydrogen sulfide oxidation and the fate of polysulfide products publication-title: J Biol Chem – volume: 160 start-page: 941 year: 2010 end-page: 957 article-title: A monobromobimane‐based assay to measure the pharmacokinetic profile of reactive sulphide species in blood publication-title: Br J Pharmacol – volume: 7 year: 2017 article-title: Polysulfides (H Sn) produced from the interaction of hydrogen sulfide (H S) and nitric oxide (NO) activate TRPA1 channels publication-title: Sci Rep – volume: 19 start-page: 1749 year: 2013 end-page: 1765 article-title: Polysulfides link H S to protein thiol oxidation publication-title: Antioxid Redox Signal – volume: 12 start-page: 325 year: 2017 end-page: 339 article-title: Catalase as a sulfide‐sulfur oxido‐reductase: an ancient (and modern?) regulator of reactive sulfur species (RSS) publication-title: Redox Biol – volume: 44 start-page: 19782 year: 2015 end-page: 19785 article-title: NBu SH provides a convenient source of HS soluble in organic solution for H S and anion‐binding research publication-title: Dalton Trans – volume: 6 year: 2016 article-title: Quantitative persulfide site identification (qPerS‐SID) reveals protein targets of H S releasing donors in mammalian cells publication-title: Sci Rep – volume: 63 start-page: 42 year: 1986 article-title: The Curtin–Hammett principle and the Winstein–Holness equation: new definition and recent extensions to classical concepts publication-title: J Chem Educ – volume: 112 start-page: E4651 year: 2015 end-page: E4660 article-title: Key bioactive reaction products of the NO/H S interaction are S/N‐hybrid species, polysulfides, and nitroxyl publication-title: P Natl Acad Sci USA – volume: 14 start-page: 379 year: 2017 end-page: 385 article-title: Cysteine perthiosulfenic acid (Cys‐SSOH): a novel intermediate in thiol‐based redox signaling? publication-title: Redox Biol – volume: 516 start-page: 146 year: 2011 end-page: 153 article-title: The reaction of H S with oxidized thiols: generation of persulfides and implications to H S biology publication-title: Arch Biochem Biophys – volume: 171 start-page: 2099 year: 2014 end-page: 2122 article-title: Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms publication-title: Br J Pharmacol – volume: 111 start-page: 7606 year: 2014 end-page: 7611 article-title: Reactive cysteine persulfides and ‐polythiolation regulate oxidative stress and redox signaling publication-title: P Natl Acad Sci USA – volume: 330 start-page: 148 year: 1987 end-page: 151 article-title: A description of energy conversion in photoelectrochemical solar cells publication-title: Nature – volume: 42 start-page: 5996 year: 2013 end-page: 6005 article-title: Ubiquitous trisulfur radical anion: fundamentals and applications in materials science, electrochemistry, analytical chemistry and geochemistry publication-title: Chem Soc Rev – volume: 4 year: 2015 article-title: Quantitative H S‐mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response publication-title: Elife – start-page: 57 year: 2017 end-page: 83 – volume: 2 start-page: ra72 year: 2009 article-title: H S signals through protein ‐sulfhydration publication-title: Sci Signal – volume: 231 start-page: 99 year: 2003b end-page: 125 article-title: Inorganic polysulfanes H2Sn with n > 1 publication-title: Top Curr Chem – volume: 176 start-page: 671 year: 2019 end-page: 683 article-title: The reaction of hydrogen sulfide with disulfides: formation of a stable trisulfide and implications to biological systems publication-title: Br J Pharmacol – volume: 11 start-page: 457 year: 2015 end-page: 464 article-title: Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways publication-title: Nat Chem Biol – volume: 2 year: 2016 article-title: A novel persulfide detection method reveals protein persulfide‐ and polysulfide‐reducing functions of thioredoxin and glutathione systems publication-title: Sci Adv – volume: 172 start-page: 1516 year: 2015 end-page: 1532 article-title: Interactions of hydrogen sulfide with myeloperoxidase publication-title: Br J Pharmacol – volume: 231 start-page: 127 year: 2003a end-page: 152 article-title: Inorganic polysulfides S‐n(2‐) and radical anions S‐n (center dot‐) publication-title: Top Curr Chem – volume: 78 start-page: 2631 year: 2006 end-page: 2639 article-title: Method for the determination of inorganic polysulfide distribution in aquatic systems publication-title: Anal Chem – volume: 20 start-page: 113 year: 1822 end-page: 141 article-title: De la Composition des Sulfures Alcalins publication-title: Ann Chim Phys – volume: 175 start-page: 987 year: 2018 end-page: 993 article-title: Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers publication-title: Br J Pharmacol – volume: 46 start-page: D1091 year: 2018 end-page: D1106 article-title: The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY publication-title: Nucleic Acids Res – volume: 53 start-page: 513 year: 1999 end-page: 520 article-title: Nucleophilic substitution of alkyl halides by electrogenerated polysulfide ions in , ‐dimethylacetamide publication-title: Acta Chem Scand – volume: 23 start-page: 1541 year: 2010a end-page: 1543 article-title: Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides publication-title: Chem Res Toxicol – volume: 171 start-page: 2123 year: 2014 end-page: 2146 article-title: Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects publication-title: Br J Pharmacol – volume: 174 start-page: S272 year: 2017 end-page: S359 article-title: The Concise Guide To PHARMACOLOGY 2017/18: Enzymes publication-title: Br J Pharmacol – volume: 89 start-page: 1913 year: 1981 end-page: 1921 article-title: The mechanism of the ‐cystine cleavage reaction catalyzed by rat liver γ‐cystathionase publication-title: J Biochem – volume: 15 start-page: 379 year: 2011 end-page: 391 article-title: Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling? publication-title: Antioxid Redox Signal – volume: 50 start-page: 1021 year: 2011 end-page: 1031 article-title: Measurement of plasma hydrogen sulfide in vivo and in vitro publication-title: Free Radic Biol Med – volume: 55 start-page: 12618 year: 2016 end-page: 12625 article-title: The intersection of NO and H S: persulfides generate NO from nitrite through polysulfide formation publication-title: Inorg Chem – volume: 16 start-page: 359 year: 2018 end-page: 380 article-title: A robust and versatile mass spectrometry platform for comprehensive assessment of the thiol redox metabolome publication-title: Redox Biol – volume: 480 start-page: 180 year: 2016 end-page: 186 article-title: Protein polysulfidation‐dependent persulfide dioxygenase activity of ethylmalonic encephalopathy protein 1 publication-title: Biochem Biophys Res Commun – volume: 138 start-page: 8476 year: 2016 end-page: 8488 article-title: Hydrogen sulfide oxidation by myoglobin publication-title: J Am Chem Soc – volume: 58 start-page: 109 year: 2013 end-page: 117 article-title: Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry publication-title: Free Radic Biol Med – volume: 2 start-page: re7 year: 2009 article-title: Transduction of redox signaling by electrophile–protein reactions publication-title: Sci Signal – volume: 33 start-page: 415 year: 2009 end-page: 435 article-title: Protocol for quantitative detection of elemental sulfur and polysulfide zero‐valent sulfur distribution in natural aquatic samples publication-title: Geostand Geoanal Res – volume: 46 start-page: 93 year: 2015 end-page: 101 article-title: Kinetic and thermodynamic studies on the disulfide‐bond reducing potential of hydrogen sulfide. Nitric oxide: biology and chemistry/official journal of the Nitric Oxide publication-title: Society – volume: 1840 start-page: 876 year: 2014 end-page: 891 article-title: Chemical aspects of hydrogen sulfide measurements in physiological samples publication-title: Biochim Biophys Acta – volume: 53 start-page: 575 year: 2014 end-page: 581 article-title: Detection of protein ‐sulfhydration by a tag‐switch technique publication-title: Angew Chem Int Ed Engl – volume: 27 start-page: 1265 year: 1963 end-page: 1298 article-title: The geologic role of polysulfides – part I. The distribution of ionic species in aqueous sodium polysulfide solutions publication-title: Geochim Cosmochim Acta – volume: 77 start-page: 82 year: 2014 end-page: 94 article-title: Redox chemistry and chemical biology of H S, hydropersulfides, and derived species: implications of their possible biological activity and utility publication-title: Free Radic Biol Med – volume: 44 start-page: 325 year: 2004 end-page: 347 article-title: Protein sulfenic acids in redox signaling publication-title: Annu Rev Pharmacol Toxicol – volume: 50 start-page: 196 year: 2011 end-page: 205 article-title: Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest publication-title: Free Radic Biol Med – volume: 7 year: 2016 article-title: Sulfheme formation during homocysteine S‐oxygenation by catalase in cancers and neurodegenerative diseases publication-title: Nat Commun – volume: 27 start-page: 619 year: 2017 end-page: 621 article-title: Hydrogen sulfide and polysulfide signaling publication-title: Antioxid Redox Signal – volume: 11 start-page: 2525 year: 1972 end-page: 2527 article-title: Characterization of the trisulfur radical anion S3− in blue solutions of alkali polysulfides in hexamethylphosphoramide publication-title: Inorg Chem – volume: 233 start-page: 563 year: 1986 end-page: 566 article-title: Hydrogen sulfide oxidation is coupled to oxidative phosphorylation in mitochondria of publication-title: Science – volume: 113 start-page: 4633 year: 2013 end-page: 4679 article-title: Cysteine‐mediated redox signaling: chemistry, biology, and tools for discovery publication-title: Chem Rev – volume: 129 start-page: 14082 year: 2007 end-page: 14091 article-title: Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid publication-title: J Am Chem Soc – volume: 4 start-page: 183 year: 2010b end-page: 222 article-title: Redox chemistry of biological thiols publication-title: Advances in Molecular Toxicology – start-page: 1 year: 1961 end-page: 6 – volume: 25 start-page: 2486 year: 1986 end-page: 2489 article-title: Numerical analysis of aqueous polysulfide solutions and its application to cadmium chalcogenide polysulfide photoelectrochemical solar cells publication-title: Inorg Chem – volume: 146 start-page: 229 year: 2004 end-page: 237 article-title: Electrospray ionization mass spectrometric analysis of aqueous polysulfide solutions publication-title: Microchim Acta – volume: 113 start-page: 551 year: 2017 end-page: 563 article-title: Mechanisms of myeloperoxidase catalyzed oxidation of H S by H O or O to produce potent protein Cys‐polysulfide‐inducing species publication-title: Free Radic Biol Med – volume: 1 start-page: 58 year: 1959 end-page: 69 article-title: Constantes de dissociation de l'hydrogène sulfuré publication-title: Electrochim Acta – volume: 89 start-page: 662 year: 2015 end-page: 667 article-title: Reactions of isolated persulfides provide insights into the interplay between H S and persulfide reactivity publication-title: Free Radic Biol Med – volume: 9 start-page: 24 year: 1978 end-page: 33 article-title: Constantes de formation des ions polysulfures S‐26, S‐25 et S‐24 en phase aqueuse publication-title: J Fr Hydrol – year: 2017 – volume: 41 start-page: 2395 year: 2007 end-page: 2400 article-title: Equilibrium distribution of polysulfide ions in aqueous solutions at different temperatures by rapid single phase derivatization publication-title: Environ Sci Technol – volume: 413 start-page: 1 year: 2011 end-page: 7 article-title: Sulfur signaling: is the agent sulfide or sulfane? publication-title: Anal Biochem – volume: 13 start-page: 499 year: 2012 end-page: 507 article-title: H S signalling through protein sulfhydration and beyond publication-title: Nat Rev Mol Cell Biol – volume: 11 start-page: 1201 year: 1972 end-page: 1207 article-title: Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20.deg publication-title: Inorg Chem – year: 1777 – volume: 13 start-page: 231 year: 1986 end-page: 249 article-title: Methodologies for the application of monobromobimane to the simultaneous analysis of soluble and protein thiol components of biological systems publication-title: J Biochem Biophys Methods – volume: 290 start-page: 26866 year: 2015 end-page: 26880 article-title: Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide publication-title: J Biol Chem – volume: 8 start-page: 1177 year: 2017 article-title: Cysteinyl‐tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics publication-title: Nat Commun – volume: 38 start-page: 6633 year: 2004 end-page: 6644 article-title: Equilibrium distribution of polysulfide ions in aqueous solutions at 25 degrees C: a new approach for the study of polysulfides' equilibria publication-title: Environ Sci Technol – ident: e_1_2_9_53_1 doi: 10.1021/ja0737218 – volume-title: Methods in Molecular Biology year: 2017 ident: e_1_2_9_21_1 contributor: fullname: Doka E – ident: e_1_2_9_22_1 doi: 10.1126/sciadv.1500968 – ident: e_1_2_9_64_1 doi: 10.1126/science.233.4763.563 – ident: e_1_2_9_35_1 doi: 10.1016/j.bbrc.2016.10.022 – ident: e_1_2_9_47_1 doi: 10.1016/0013-4686(59)80009-8 – ident: e_1_2_9_39_1 doi: 10.1021/es062637 – ident: e_1_2_9_48_1 doi: 10.1038/nchembio.1834 – ident: e_1_2_9_15_1 doi: 10.1016/0016-7037(63)90050-4 – ident: e_1_2_9_60_1 doi: 10.1111/bph.12769 – ident: e_1_2_9_54_1 doi: 10.1021/tx100266a – ident: e_1_2_9_74_1 doi: 10.1016/j.ab.2011.01.044 – ident: e_1_2_9_8_1 doi: 10.1111/bph.14372 – ident: e_1_2_9_29_1 doi: 10.1007/s00604-004-0179-5 – ident: e_1_2_9_73_1 doi: 10.1111/bph.12369 – ident: e_1_2_9_11_1 doi: 10.1051/water/19780901027 – ident: e_1_2_9_66_1 – ident: e_1_2_9_72_1 doi: 10.1016/j.redox.2018.02.012 – ident: e_1_2_9_52_1 doi: 10.1016/bs.mie.2014.11.036 – ident: e_1_2_9_65_1 doi: 10.1126/scisignal.290re7 – ident: e_1_2_9_10_1 doi: 10.1089/ars.2010.3678 – ident: e_1_2_9_78_1 doi: 10.1093/oxfordjournals.jbchem.a133393 – ident: e_1_2_9_3_1 doi: 10.1038/s41467-017-01311-y – ident: e_1_2_9_67_1 doi: 10.1021/ed063p42 – ident: e_1_2_9_56_1 doi: 10.1016/j.bbagen.2013.05.037 – ident: e_1_2_9_9_1 doi: 10.1021/jacs.6b03456 – ident: e_1_2_9_20_1 doi: 10.1111/bph.14153 – ident: e_1_2_9_34_1 doi: 10.1021/bi300778t – ident: e_1_2_9_79_1 doi: 10.1002/anie.201305876 – ident: e_1_2_9_17_1 doi: 10.1073/pnas.1509277112 – ident: e_1_2_9_37_1 doi: 10.1021/ac051854a – ident: e_1_2_9_19_1 doi: 10.1074/jbc.M115.672816 – ident: e_1_2_9_70_1 doi: 10.1007/b13183 – ident: e_1_2_9_13_1 doi: 10.1021/ic50116a047 – ident: e_1_2_9_18_1 doi: 10.1016/0165-022X(86)90102-8 – ident: e_1_2_9_45_1 doi: 10.1021/ic00235a003 – ident: e_1_2_9_51_1 doi: 10.1126/scisignal.2000464 – ident: e_1_2_9_33_1 doi: 10.1073/pnas.1321232111 – ident: e_1_2_9_41_1 doi: 10.1089/ars.2017.7076 – ident: e_1_2_9_26_1 doi: 10.1016/j.freeradbiomed.2017.10.384 – ident: e_1_2_9_32_1 doi: 10.1016/j.redox.2017.10.006 – ident: e_1_2_9_43_1 doi: 10.1016/j.freeradbiomed.2013.01.021 – ident: e_1_2_9_58_1 doi: 10.1016/j.freeradbiomed.2014.09.007 – ident: e_1_2_9_62_1 doi: 10.1021/cr300163e – ident: e_1_2_9_24_1 doi: 10.1016/j.abb.2011.09.015 – ident: e_1_2_9_76_1 doi: 10.1074/jbc.M117.774943 – ident: e_1_2_9_71_1 doi: 10.1007/b13182 – ident: e_1_2_9_6_1 doi: 10.1021/acs.inorgchem.6b01660 – ident: e_1_2_9_2_1 doi: 10.3891/acta.chem.scand.53-0513 – ident: e_1_2_9_55_1 doi: 10.1016/S1872-0854(10)04006-3 – ident: e_1_2_9_38_1 doi: 10.1021/es049514e – volume: 20 start-page: 113 year: 1822 ident: e_1_2_9_7_1 article-title: De la Composition des Sulfures Alcalins publication-title: Ann Chim Phys contributor: fullname: Berzelius J – ident: e_1_2_9_30_1 doi: 10.1093/nar/gkx1121 – ident: e_1_2_9_31_1 doi: 10.1039/C5DT03355A – ident: e_1_2_9_36_1 doi: 10.1111/j.1751-908X.2009.00907.x – ident: e_1_2_9_14_1 doi: 10.1039/c3cs60119f – ident: e_1_2_9_42_1 doi: 10.1016/j.redox.2017.10.012 – ident: e_1_2_9_23_1 doi: 10.1016/B978-1-4831-9982-5.50004-X – ident: e_1_2_9_27_1 doi: 10.1021/ic50112a009 – ident: e_1_2_9_40_1 doi: 10.1016/B978-0-12-804273-1.00005-3 – ident: e_1_2_9_44_1 doi: 10.1038/330148a0 – ident: e_1_2_9_12_1 doi: 10.1016/j.freeradbiomed.2010.10.705 – ident: e_1_2_9_46_1 doi: 10.1038/srep29808 – ident: e_1_2_9_49_1 doi: 10.1038/srep45995 – ident: e_1_2_9_61_1 doi: 10.1038/nrm3391 – ident: e_1_2_9_63_1 doi: 10.1146/annurev.pharmtox.44.101802.121735 – ident: e_1_2_9_69_1 doi: 10.1016/j.freeradbiomed.2013.02.017 – ident: e_1_2_9_25_1 doi: 10.7554/eLife.10067 – ident: e_1_2_9_68_1 doi: 10.1016/j.freeradbiomed.2011.01.025 – ident: e_1_2_9_50_1 doi: 10.1111/bph.12368 – ident: e_1_2_9_4_1 doi: 10.1111/bph.13877 – ident: e_1_2_9_28_1 doi: 10.1089/ars.2012.5041 – ident: e_1_2_9_16_1 doi: 10.1089/ars.2017.7083 – ident: e_1_2_9_57_1 doi: 10.1016/j.redox.2017.02.021 – ident: e_1_2_9_5_1 doi: 10.1016/j.freeradbiomed.2015.08.017 – volume: 46 start-page: 93 year: 2015 ident: e_1_2_9_75_1 article-title: Kinetic and thermodynamic studies on the disulfide‐bond reducing potential of hydrogen sulfide. Nitric oxide: biology and chemistry/official journal of the Nitric Oxide publication-title: Society contributor: fullname: Vasas A – ident: e_1_2_9_59_1 doi: 10.1038/ncomms13386 – ident: e_1_2_9_77_1 doi: 10.1111/j.1476-5381.2010.00704.x |
SSID | ssj0014775 |
Score | 2.5969377 |
Snippet |
Background and Purpose
Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in... BACKGROUND AND PURPOSE: Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in... Background and PurposePosttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 646 |
SubjectTerms | Adult Alkylating agents Alkylating Agents - chemistry Alkylation Blood plasma Cysteine Glyceraldehyde-3-phosphate dehydrogenase Humans Iodoacetamide - chemistry Labeling Lysis Maleimides - chemistry Methyl Methanesulfonate - analogs & derivatives Methyl Methanesulfonate - chemistry Oxidation Research Paper Speciation Species Sulfenic acid Sulfides Sulfur Sulfur Compounds - analysis Sulfur Compounds - blood Sulfur Compounds - chemistry Themed Section: Research Papers |
Title | Speciation of reactive sulfur species and their reactions with alkylating agents: do we have any clue about what is present inside the cell? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.14394 https://www.ncbi.nlm.nih.gov/pubmed/29909607 https://www.proquest.com/docview/2296308818 https://pubmed.ncbi.nlm.nih.gov/PMC6346080 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7inHopTfpSm4ShlNBDlHi1K62VS2lDU1NI8SEB38S-VJs4solsgv9DfnRmV1JSE3rpRSxomV34RvPQvAA-W54x66O6pcmzWDDCwk-Aj41Mbd9klrSOrx2--J0Nr8SvcTregrSrhQlJ-0ZPj6vZzXE1nYTcysWNOenyxE5GF2cZF5lvh9iDHjFo56K3oQMhZTO2wHc_pLPbdkI-fUcvJiQZeO6H8XgxTNa73NRHz4zM57mSf9uwQQmdv4KXrfWI35pb7sCWq3bhcNS0n14f4eVTNVV9hIc4empMvX4N982weQ8FzkskczEIO6xXs3J1i77okvxmVJXFED9odxBfov9di2p2vfapc9UfVL4iqz5FO8c7hxNFVEiqoJmtaOFznfFuopY4rXHR1DfhNAwG9YTRBwu-voGr8x-XZ8O4ncYQGyG4iI3mA8uy3CpR5kYam5YmMQPNmRbSycw6lmqWa2MHri8VOWI8sYksc5U6epb8LWxX88q9BzTC5Z4tOKlNodNMC25KxhzXiij2dQSfOkyKRdN0o-icFcKwCBhGsNehVbTfXV0kCQkUEpxsEMG7BrhHCh3iEcgNSB83-E7bm2-IAUPH7ZbhIvgSwP_3pYrvo2FYfPjvQz7CCzLK8iYzfA-2l7crt0-Gz1IfQO_nmB0Edn8AEFsFsw |
link.rule.ids | 230,315,730,783,787,888,27937,27938,53805,53807 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2VcoALLd8uLYwQqjjUaexde-NeKqioAjRVDinqzfJ-mERNnaiOVYXfwI9mdm23hIoDXKyVbO3amrezs943bwDeaRYH2p7q5iqJfR6QLWwFeF-JSHdVrGnVsbnDg9O4f8a_nEfnaxC1uTCOtK_kpFNMLzvFZOy4lfNLtd_yxPaHg6OY8djKId6D-zRfu1G7SW8OD7gQdeECq39IozeCQpbAI-dj8g0sseV4rCOm-F2srkh3wsy7bMnfo1i3DB1vwLf2A2r2yUWnWsiO-vGHtuM_f-EmPGoCU_xQ334Ma6Z4ArvDWtl6uYej20Stcg93cXireb18Cj_rOvbWyjjLkSJR50exrKZ5dYU2n5O25JgVGt3RRPMEQR7tn2DMphdLy8orvmNmk73KA9QzvDY4zqgXcliophU1LI0ar8fZAiclzuvUKZy4mqO2Y7TnEIfP4Oz40-io7zeFHnzFOeO-kqyngzjRGc8TJZSOchWqnmSB5MKIWJsgkkEile6Zrshoj8dCHYo8ySJD15w9h_ViVpiXgIqbxCKO0YrMZRRLzlQeBIbJjHrsSg_etsZO57WeR9rugwgcqQOHB9stDNJmSpdpGJKvIp8c9Dx4USPipocWSh6IFazcPGBFvFfvkOWdmHdjaQ_eO1T9_aXSj8O-a2z99yBv4EF_NDhJTz6ffn0FDyn2S2oC-jasL64qs0Px1UK-drPpFzkEJrQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BkRAXyhuXAiOEKg51EmfX3pgLgkIUHq18aKWKi-V9mERNHauOVYXfwI9mZm23DRWXXixLXq3Xmm9nZ73ffMPYW8OjwNCpbq7jyBcB2oIqwPtahmagI4OrDuUO7x9EkyPx7Tg8vlLqy5H2tZr1ivlpr5hNHbeyPNX9jifWT_b3Ii4ikkMsTd6_ze6EJJrebdTbAwQhZVO8gDQQcQStqBCReFQ5Rf_AYyrJQ84YY3i5vipdCzWvMyavRrJuKRpvsp_dRzQMlJNevVQ9_fsffccbfeUDdr8NUOFj0-Qhu2WLR2wnaRSuV7tweJmwVe3CDiSX2terx-xPU8-erA2LHDAidf4Uqnqe12dAeZ24NYesMOCOKNoWCH2gP8KQzU9WxM4rfkFGSV_VezALOLcwzbAXdFyg5zXeEJ0azqfZEmYVlE0KFcxc7VHqGOg84sMTdjT-crg38duCD74WggtfKz4yQRSbTOSxltqEuR7qkeKBEtLKyNggVEGstBnZgcxwr8eHZijzOAstXnP-lG0Ui8I-Z6CFjQl5HFdmocJICa7zILBcZdjjQHnsTWfwtGx0PdJuP4QASR1APLbdQSFtp3aVDofos9A3ByOPPWtQcdFDByePyTW8XDQgMe_1J2h9J-rdWttj7xyy_j-o9FMycTdbN37Ja3Y3-TxOf3w9-P6C3cMQMG546NtsY3lW25cYZi3VKzeh_gJYkyk0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speciation+of+reactive+sulfur+species+and+their+reactions+with+alkylating+agents%3A+do+we+have+any+clue+about+what+is+present+inside+the+cell%3F&rft.jtitle=British+journal+of+pharmacology&rft.au=Bogd%C3%A1ndi%2C+Vir%C3%A1g&rft.au=Ida%2C+Tomoaki&rft.au=Sutton%2C+Thomas+R&rft.au=Bianco%2C+Christopher&rft.date=2019-02-01&rft.issn=0007-1188&rft.eissn=1476-5381&rft.volume=176&rft.issue=4&rft.spage=646&rft.epage=670&rft_id=info:doi/10.1111%2Fbph.14394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_bph_14394 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon |