Speciation of reactive sulfur species and their reactions with alkylating agents: do we have any clue about what is present inside the cell?

  Background and Purpose Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis‐induced artifactual oxidation render current...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of pharmacology Vol. 176; no. 4; pp. 646 - 670
Main Authors Bogdándi, Virág, Ida, Tomoaki, Sutton, Thomas R, Bianco, Christopher, Ditrói, Tamás, Koster, Grielof, Henthorn, Hillary A, Minnion, Magda, Toscano, John P, Vliet, Albert, Pluth, Michael D, Feelisch, Martin, Fukuto, Jon M, Akaike, Takaaki, Nagy, Péter
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.02.2019
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract   Background and Purpose Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis‐induced artifactual oxidation render current state‐of‐the‐art protocols to rely on alkylation‐based stabilization of labile cysteine derivatives before cell/tissue rupture. An untested assumption in these procedures is that for all cysteine derivatives, alkylation rates are faster than their dynamic interchange. However, when the interconversion of cysteine derivatives is not rate limiting, electrophilic labelling is under Curtin–Hammett control; hence, the final alkylated mixture may not represent the speciation that prevailed before alkylation. Experimental Approach Buffered aqueous solutions of inorganic, organic, cysteine, GSH and GAPDH polysulfide species were used. Additional experiments in human plasma and serum revealed that monobromobimane can extract sulfide from the endogenous sulfur pool by shifting speciation equilibria, suggesting caution should be exercised when interpreting experimental results using this tool. Key Results In the majority of cases, the speciation of alkylated polysulfide/thiol derivatives depended on the experimental conditions. Alkylation perturbed sulfur speciation in both a concentration‐ and time‐dependent manner and strong alkylating agents cleaved polysulfur chains. Moreover, the labelling of sulfenic acids with dimedone also affected cysteine speciation, suggesting that part of the endogenous pool of products previously believed to represent sulfenic acid species may represent polysulfides. Conclusions and Implications We highlight methodological caveats potentially arising from these pitfalls and conclude that current derivatization strategies often fail to adequately capture physiological speciation of sulfur species. Linked Articles This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc
AbstractList Background and PurposePosttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis‐induced artifactual oxidation render current state‐of‐the‐art protocols to rely on alkylation‐based stabilization of labile cysteine derivatives before cell/tissue rupture. An untested assumption in these procedures is that for all cysteine derivatives, alkylation rates are faster than their dynamic interchange. However, when the interconversion of cysteine derivatives is not rate limiting, electrophilic labelling is under Curtin–Hammett control; hence, the final alkylated mixture may not represent the speciation that prevailed before alkylation.Experimental ApproachBuffered aqueous solutions of inorganic, organic, cysteine, GSH and GAPDH polysulfide species were used. Additional experiments in human plasma and serum revealed that monobromobimane can extract sulfide from the endogenous sulfur pool by shifting speciation equilibria, suggesting caution should be exercised when interpreting experimental results using this tool.Key ResultsIn the majority of cases, the speciation of alkylated polysulfide/thiol derivatives depended on the experimental conditions. Alkylation perturbed sulfur speciation in both a concentration‐ and time‐dependent manner and strong alkylating agents cleaved polysulfur chains. Moreover, the labelling of sulfenic acids with dimedone also affected cysteine speciation, suggesting that part of the endogenous pool of products previously believed to represent sulfenic acid species may represent polysulfides.Conclusions and ImplicationsWe highlight methodological caveats potentially arising from these pitfalls and conclude that current derivatization strategies often fail to adequately capture physiological speciation of sulfur species.Linked ArticlesThis article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc
  Background and Purpose Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis‐induced artifactual oxidation render current state‐of‐the‐art protocols to rely on alkylation‐based stabilization of labile cysteine derivatives before cell/tissue rupture. An untested assumption in these procedures is that for all cysteine derivatives, alkylation rates are faster than their dynamic interchange. However, when the interconversion of cysteine derivatives is not rate limiting, electrophilic labelling is under Curtin–Hammett control; hence, the final alkylated mixture may not represent the speciation that prevailed before alkylation. Experimental Approach Buffered aqueous solutions of inorganic, organic, cysteine, GSH and GAPDH polysulfide species were used. Additional experiments in human plasma and serum revealed that monobromobimane can extract sulfide from the endogenous sulfur pool by shifting speciation equilibria, suggesting caution should be exercised when interpreting experimental results using this tool. Key Results In the majority of cases, the speciation of alkylated polysulfide/thiol derivatives depended on the experimental conditions. Alkylation perturbed sulfur speciation in both a concentration‐ and time‐dependent manner and strong alkylating agents cleaved polysulfur chains. Moreover, the labelling of sulfenic acids with dimedone also affected cysteine speciation, suggesting that part of the endogenous pool of products previously believed to represent sulfenic acid species may represent polysulfides. Conclusions and Implications We highlight methodological caveats potentially arising from these pitfalls and conclude that current derivatization strategies often fail to adequately capture physiological speciation of sulfur species. Linked Articles This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc
  Background and Purpose Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis‐induced artifactual oxidation render current state‐of‐the‐art protocols to rely on alkylation‐based stabilization of labile cysteine derivatives before cell/tissue rupture. An untested assumption in these procedures is that for all cysteine derivatives, alkylation rates are faster than their dynamic interchange. However, when the interconversion of cysteine derivatives is not rate limiting, electrophilic labelling is under Curtin–Hammett control; hence, the final alkylated mixture may not represent the speciation that prevailed before alkylation. Experimental Approach Buffered aqueous solutions of inorganic, organic, cysteine, GSH and GAPDH polysulfide species were used. Additional experiments in human plasma and serum revealed that monobromobimane can extract sulfide from the endogenous sulfur pool by shifting speciation equilibria, suggesting caution should be exercised when interpreting experimental results using this tool. Key Results In the majority of cases, the speciation of alkylated polysulfide/thiol derivatives depended on the experimental conditions. Alkylation perturbed sulfur speciation in both a concentration‐ and time‐dependent manner and strong alkylating agents cleaved polysulfur chains. Moreover, the labelling of sulfenic acids with dimedone also affected cysteine speciation, suggesting that part of the endogenous pool of products previously believed to represent sulfenic acid species may represent polysulfides. Conclusions and Implications We highlight methodological caveats potentially arising from these pitfalls and conclude that current derivatization strategies often fail to adequately capture physiological speciation of sulfur species. Linked Articles This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc
BACKGROUND AND PURPOSE: Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in providing mechanistic insights. The metastable character of these modifications and cell lysis-induced artifactual oxidation render current state-of-the-art protocols to rely on alkylation-based stabilization of labile cysteine derivatives before cell/tissue rupture. An untested assumption in these procedures is that for all cysteine derivatives, alkylation rates are faster than their dynamic interchange. However, when the interconversion of cysteine derivatives is not rate limiting, electrophilic labelling is under Curtin-Hammett control; hence, the final alkylated mixture may not represent the speciation that prevailed before alkylation. Buffered aqueous solutions of inorganic, organic, cysteine, GSH and GAPDH polysulfide species were used. Additional experiments in human plasma and serum revealed that monobromobimane can extract sulfide from the endogenous sulfur pool by shifting speciation equilibria, suggesting caution should be exercised when interpreting experimental results using this tool. In the majority of cases, the speciation of alkylated polysulfide/thiol derivatives depended on the experimental conditions. Alkylation perturbed sulfur speciation in both a concentration- and time-dependent manner and strong alkylating agents cleaved polysulfur chains. Moreover, the labelling of sulfenic acids with dimedone also affected cysteine speciation, suggesting that part of the endogenous pool of products previously believed to represent sulfenic acid species may represent polysulfides. We highlight methodological caveats potentially arising from these pitfalls and conclude that current derivatization strategies often fail to adequately capture physiological speciation of sulfur species. This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Author Minnion, Magda
Bianco, Christopher
Vliet, Albert
Sutton, Thomas R
Pluth, Michael D
Koster, Grielof
Fukuto, Jon M
Ida, Tomoaki
Bogdándi, Virág
Ditrói, Tamás
Toscano, John P
Feelisch, Martin
Henthorn, Hillary A
Nagy, Péter
Akaike, Takaaki
AuthorAffiliation 4 Department of Chemistry Johns Hopkins University Baltimore MD USA
7 Department of Chemistry Sonoma State University Rohnert Park CA USA
6 Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont Burlington VT USA
1 Department of Molecular Immunology and Toxicology National Institute of Oncology Budapest Hungary
2 Department of Environmental Medicine and Molecular Toxicology Tohoku University Graduate School of Medicine Sendai Japan
3 Clinical and Experimental Sciences, Faculty of Medicine University Hospital Southampton NHS Foundation Trust, University of Southampton Southampton UK
5 Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology University of Oregon Eugene OR USA
AuthorAffiliation_xml – name: 4 Department of Chemistry Johns Hopkins University Baltimore MD USA
– name: 7 Department of Chemistry Sonoma State University Rohnert Park CA USA
– name: 3 Clinical and Experimental Sciences, Faculty of Medicine University Hospital Southampton NHS Foundation Trust, University of Southampton Southampton UK
– name: 2 Department of Environmental Medicine and Molecular Toxicology Tohoku University Graduate School of Medicine Sendai Japan
– name: 1 Department of Molecular Immunology and Toxicology National Institute of Oncology Budapest Hungary
– name: 6 Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine University of Vermont Burlington VT USA
– name: 5 Department of Chemistry and Biochemistry, Materials Science Institute, Institute of Molecular Biology University of Oregon Eugene OR USA
Author_xml – sequence: 1
  givenname: Virág
  surname: Bogdándi
  fullname: Bogdándi, Virág
  organization: National Institute of Oncology
– sequence: 2
  givenname: Tomoaki
  surname: Ida
  fullname: Ida, Tomoaki
  organization: Tohoku University Graduate School of Medicine
– sequence: 3
  givenname: Thomas R
  surname: Sutton
  fullname: Sutton, Thomas R
  organization: University Hospital Southampton NHS Foundation Trust, University of Southampton
– sequence: 4
  givenname: Christopher
  surname: Bianco
  fullname: Bianco, Christopher
  organization: Johns Hopkins University
– sequence: 5
  givenname: Tamás
  surname: Ditrói
  fullname: Ditrói, Tamás
  organization: National Institute of Oncology
– sequence: 6
  givenname: Grielof
  surname: Koster
  fullname: Koster, Grielof
  organization: University Hospital Southampton NHS Foundation Trust, University of Southampton
– sequence: 7
  givenname: Hillary A
  surname: Henthorn
  fullname: Henthorn, Hillary A
  organization: University of Oregon
– sequence: 8
  givenname: Magda
  surname: Minnion
  fullname: Minnion, Magda
  organization: University Hospital Southampton NHS Foundation Trust, University of Southampton
– sequence: 9
  givenname: John P
  surname: Toscano
  fullname: Toscano, John P
  organization: Johns Hopkins University
– sequence: 10
  givenname: Albert
  surname: Vliet
  fullname: Vliet, Albert
  organization: University of Vermont
– sequence: 11
  givenname: Michael D
  orcidid: 0000-0003-3604-653X
  surname: Pluth
  fullname: Pluth, Michael D
  organization: University of Oregon
– sequence: 12
  givenname: Martin
  surname: Feelisch
  fullname: Feelisch, Martin
  organization: University Hospital Southampton NHS Foundation Trust, University of Southampton
– sequence: 13
  givenname: Jon M
  orcidid: 0000-0002-0014-160X
  surname: Fukuto
  fullname: Fukuto, Jon M
  organization: Sonoma State University
– sequence: 14
  givenname: Takaaki
  orcidid: 0000-0001-5675-3341
  surname: Akaike
  fullname: Akaike, Takaaki
  email: takaike@med.tohoku.ac.jp
  organization: Tohoku University Graduate School of Medicine
– sequence: 15
  givenname: Péter
  orcidid: 0000-0003-3393-235X
  surname: Nagy
  fullname: Nagy, Péter
  email: peter.nagy@oncol.hu
  organization: National Institute of Oncology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29909607$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFvFCEYhompsdvqwT9gSDx5mBaGmQE8aLSp1qSJJuqZMPDNDpXCCDPd7H_wR5d110YPcgCS7-HhTd4TdBRiAISeU3JGyzrvp_GMNkw2j9CKNryrWiboEVoRQnhFqRDH6CTnG0LKkLdP0HEtJZEd4Sv06-sExunZxYDjgBNoM7s7wHnxw5Jw3k0hYx0snkdw6UDEkPHGzSPW_sfWl-dhjfUawpxfYxvxBvCoi0WHLTZ-KZc-LjPejHrGLuMpQS4sdiE7CzsxNuD926fo8aB9hmeH8xR9_3D57eKquv788dPFu-vKNA1rKtMzYWknrW4Gabix7WBqI3pG-4YD7yzQtqeyN1YA4Vpwympb80HqFso-sFP0Zu-dlv4WrClZkvZqSu5Wp62K2ql_J8GNah3vVMeajghSBC8PghR_LpBndROXFEpmVdeyY0QIKgr1ak-ZFHNOMDz8QInaFadKcep3cYV98XekB_JPUwU43wMb52H7f5N6_-Vqr7wH5DeoAQ
CitedBy_id crossref_primary_10_1016_j_cbpa_2023_102368
crossref_primary_10_1002_ange_202203684
crossref_primary_10_3389_fmolb_2022_975988
crossref_primary_10_1021_jacs_2c07380
crossref_primary_10_1042_BSR20221006
crossref_primary_10_1016_j_cbpa_2024_102440
crossref_primary_10_1016_j_redox_2023_102617
crossref_primary_10_1021_acs_joc_0c02412
crossref_primary_10_1021_acs_inorgchem_3c00593
crossref_primary_10_1039_C9CC08347B
crossref_primary_10_1016_j_jphs_2024_04_005
crossref_primary_10_1002_anie_202401003
crossref_primary_10_3390_antiox11050939
crossref_primary_10_1021_acs_analchem_4c00700
crossref_primary_10_3390_molecules26237160
crossref_primary_10_1111_bph_14579
crossref_primary_10_1126_sciadv_aax8358
crossref_primary_10_1016_j_vascn_2021_106957
crossref_primary_10_1088_2516_1075_aca945
crossref_primary_10_1089_ars_2020_8049
crossref_primary_10_1021_acs_accounts_9b00562
crossref_primary_10_1002_anie_201908950
crossref_primary_10_1039_C8CS00826D
crossref_primary_10_1038_s41598_023_43692_9
crossref_primary_10_1002_rcm_9291
crossref_primary_10_1016_j_niox_2021_09_002
crossref_primary_10_1002_ange_202401003
crossref_primary_10_1111_bph_14372
crossref_primary_10_1021_acs_inorgchem_4c01084
crossref_primary_10_1111_bph_16271
crossref_primary_10_3390_antiox11122359
crossref_primary_10_3390_antiox12051105
crossref_primary_10_1111_bph_14641
crossref_primary_10_1016_j_abb_2020_108391
crossref_primary_10_1016_j_redox_2022_102517
crossref_primary_10_1021_acs_inorgchem_1c00787
crossref_primary_10_1111_bph_14523
crossref_primary_10_1016_j_electacta_2019_04_119
crossref_primary_10_1016_j_freeradbiomed_2019_04_006
crossref_primary_10_1016_j_niox_2020_11_004
crossref_primary_10_1021_acs_chemrev_3c00683
crossref_primary_10_1038_s41589_020_00671_9
crossref_primary_10_1016_j_jchromb_2020_122516
crossref_primary_10_1126_sciadv_abe7006
crossref_primary_10_3390_antiox8020048
crossref_primary_10_1002_ange_201908950
crossref_primary_10_1016_j_foodchem_2023_135610
crossref_primary_10_1042_EBC20190049
crossref_primary_10_1089_ars_2019_7777
crossref_primary_10_1073_pnas_2100050118
crossref_primary_10_1111_bph_14551
crossref_primary_10_1016_j_redox_2020_101731
crossref_primary_10_1038_s41467_018_06790_1
crossref_primary_10_1002_pmic_202200194
crossref_primary_10_1128_aem_01941_21
crossref_primary_10_1002_chem_202200540
crossref_primary_10_1016_j_redox_2022_102502
crossref_primary_10_1042_BCJ20200897
crossref_primary_10_2131_jts_46_91
crossref_primary_10_1016_j_redox_2024_103130
crossref_primary_10_12677_AAC_2022_122019
crossref_primary_10_1074_jbc_REV120_011304
crossref_primary_10_3390_biom11111553
crossref_primary_10_1039_D0DT01384F
crossref_primary_10_1016_j_redox_2019_101179
crossref_primary_10_3390_molecules28155654
crossref_primary_10_1016_j_aca_2020_02_017
crossref_primary_10_1074_jbc_RA120_014728
crossref_primary_10_1089_ars_2021_0170
crossref_primary_10_1093_cvr_cvz202
crossref_primary_10_1002_chem_202203906
crossref_primary_10_3390_antiox9111160
crossref_primary_10_1016_j_ab_2024_115458
crossref_primary_10_1021_acs_chemrestox_8b00340
crossref_primary_10_1021_jacs_8b08469
crossref_primary_10_1002_anie_202203684
crossref_primary_10_1016_j_redox_2023_102629
crossref_primary_10_1021_acs_inorgchem_9b01978
crossref_primary_10_1089_ars_2019_7889
crossref_primary_10_1126_sciadv_adg8631
crossref_primary_10_1089_ars_2022_0064
crossref_primary_10_1089_ars_2020_8078
crossref_primary_10_1089_ars_2020_8077
crossref_primary_10_1161_ATVBAHA_120_314084
crossref_primary_10_1016_j_redox_2020_101800
crossref_primary_10_1089_ars_2020_8073
crossref_primary_10_3390_molecules24152768
crossref_primary_10_3390_antiox10071065
crossref_primary_10_1016_j_aca_2021_339016
crossref_primary_10_1016_j_jinorgbio_2023_112313
crossref_primary_10_1016_j_redox_2024_103222
crossref_primary_10_1016_j_redox_2021_102111
Cites_doi 10.1021/ja0737218
10.1126/sciadv.1500968
10.1126/science.233.4763.563
10.1016/j.bbrc.2016.10.022
10.1016/0013-4686(59)80009-8
10.1021/es062637
10.1038/nchembio.1834
10.1016/0016-7037(63)90050-4
10.1111/bph.12769
10.1021/tx100266a
10.1016/j.ab.2011.01.044
10.1111/bph.14372
10.1007/s00604-004-0179-5
10.1111/bph.12369
10.1051/water/19780901027
10.1016/j.redox.2018.02.012
10.1016/bs.mie.2014.11.036
10.1126/scisignal.290re7
10.1089/ars.2010.3678
10.1093/oxfordjournals.jbchem.a133393
10.1038/s41467-017-01311-y
10.1021/ed063p42
10.1016/j.bbagen.2013.05.037
10.1021/jacs.6b03456
10.1111/bph.14153
10.1021/bi300778t
10.1002/anie.201305876
10.1073/pnas.1509277112
10.1021/ac051854a
10.1074/jbc.M115.672816
10.1007/b13183
10.1021/ic50116a047
10.1016/0165-022X(86)90102-8
10.1021/ic00235a003
10.1126/scisignal.2000464
10.1073/pnas.1321232111
10.1089/ars.2017.7076
10.1016/j.freeradbiomed.2017.10.384
10.1016/j.redox.2017.10.006
10.1016/j.freeradbiomed.2013.01.021
10.1016/j.freeradbiomed.2014.09.007
10.1021/cr300163e
10.1016/j.abb.2011.09.015
10.1074/jbc.M117.774943
10.1007/b13182
10.1021/acs.inorgchem.6b01660
10.3891/acta.chem.scand.53-0513
10.1016/S1872-0854(10)04006-3
10.1021/es049514e
10.1093/nar/gkx1121
10.1039/C5DT03355A
10.1111/j.1751-908X.2009.00907.x
10.1039/c3cs60119f
10.1016/j.redox.2017.10.012
10.1016/B978-1-4831-9982-5.50004-X
10.1021/ic50112a009
10.1016/B978-0-12-804273-1.00005-3
10.1038/330148a0
10.1016/j.freeradbiomed.2010.10.705
10.1038/srep29808
10.1038/srep45995
10.1038/nrm3391
10.1146/annurev.pharmtox.44.101802.121735
10.1016/j.freeradbiomed.2013.02.017
10.7554/eLife.10067
10.1016/j.freeradbiomed.2011.01.025
10.1111/bph.12368
10.1111/bph.13877
10.1089/ars.2012.5041
10.1089/ars.2017.7083
10.1016/j.redox.2017.02.021
10.1016/j.freeradbiomed.2015.08.017
10.1038/ncomms13386
10.1111/j.1476-5381.2010.00704.x
ContentType Journal Article
Copyright 2018 The British Pharmacological Society
2018 The British Pharmacological Society.
2019 The British Pharmacological Society
Copyright_xml – notice: 2018 The British Pharmacological Society
– notice: 2018 The British Pharmacological Society.
– notice: 2019 The British Pharmacological Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
K9.
NAPCQ
5PM
DOI 10.1111/bph.14394
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Speciation of reactive sulfur species
EISSN 1476-5381
EndPage 670
ExternalDocumentID 10_1111_bph_14394
29909607
BPH14394
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation
  funderid: CHE‐1454747; CHE‐1566065
– fundername: National Institutes of Health
  funderid: R21AG055022‐01
– fundername: National Research, Development and Innovation Office
  funderid: K 109843; KH17_126766
– fundername: Grants‐in‐Aid for Scientific Research
  funderid: 16K15208; 25253020
– fundername: Grant‐in‐Aid for Scientific Research on Innovative Areas
  funderid: 15K21759; 26111001; 26111008
– fundername: Grant‐in‐Aid for Scientific Research on Innovative Areas
  grantid: 15K21759; 26111001; 26111008
– fundername: Grants‐in‐Aid for Scientific Research
  grantid: 16K15208; 25253020
– fundername: National Science Foundation
  grantid: CHE‐1454747; CHE‐1566065
– fundername: National Institutes of Health
  grantid: R21AG055022‐01
– fundername: National Research, Development and Innovation Office
  grantid: K 109843; KH17_126766
GroupedDBID ---
.3N
.55
.GJ
05W
0R~
1OC
23N
24P
2WC
31~
33P
36B
3O-
3SF
3V.
4.4
52U
52V
53G
5GY
6J9
7RV
7X7
8-0
8-1
88E
8AO
8FE
8FH
8FI
8FJ
8R4
8R5
8UM
A00
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABPVW
ABQWH
ABUWG
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AZBYB
AZVAB
B0M
BAFTC
BAWUL
BBNVY
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BMXJE
BPHCQ
BRXPI
BVXVI
C45
CAG
CCPQU
COF
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
ECV
EJD
EMB
EMK
EMOBN
ENC
ESX
EX3
F5P
FUBAC
FYUFA
G-S
GODZA
GX1
H.X
HCIFZ
HGLYW
HMCUK
HYE
HZ~
J5H
KBYEO
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LSO
LUTES
LW6
LYRES
M1P
M7P
MEWTI
MK0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N9A
NAPCQ
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
PROAC
PSQYO
Q.N
Q2X
QB0
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
TUS
UKHRP
UPT
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WVDHM
WXSBR
X7M
XV2
Y6R
YHG
ZGI
ZXP
ZZTAW
~8M
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
K9.
5PM
ID FETCH-LOGICAL-c4434-cb38d169da4f9c7cd5fc2c8b31b47e76de15b19bcd8e07a87132d27f9a5e7f9f3
IEDL.DBID RPM
ISSN 0007-1188
IngestDate Tue Sep 17 21:18:59 EDT 2024
Thu Oct 10 21:59:44 EDT 2024
Fri Aug 23 01:30:39 EDT 2024
Sat Nov 02 12:22:48 EDT 2024
Sat Aug 24 00:53:16 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2018 The British Pharmacological Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4434-cb38d169da4f9c7cd5fc2c8b31b47e76de15b19bcd8e07a87132d27f9a5e7f9f3
Notes These authors contributed equally to this study.
ORCID 0000-0001-5675-3341
0000-0002-0014-160X
0000-0003-3393-235X
0000-0003-3604-653X
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1111/bph.14394
PMID 29909607
PQID 2296308818
PQPubID 42104
PageCount 25
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6346080
proquest_journals_2296308818
crossref_primary_10_1111_bph_14394
pubmed_primary_29909607
wiley_primary_10_1111_bph_14394_BPH14394
PublicationCentury 2000
PublicationDate February 2019
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle British journal of pharmacology
PublicationTitleAlternate Br J Pharmacol
PublicationYear 2019
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 2017; 7
2017; 8
2011; 516
2006; 78
1777
2011; 15
2014; 171
2012; 13
2017; 113
1959; 1
1978; 9
1981; 89
2018; 46
2012; 51
2018; 175
2013; 19
2015; 46
2015; 89
2015; 172
2015; 290
2013; 58
2004; 38
2015; 44
2013; 60
2013; 113
1999; 53
1972; 11
2014; 53
2011; 413
2004; 44
1963; 27
2007; 129
2015; 4
2003b; 231
2004; 146
1986; 233
2017; 27
1986; 13
1822; 20
2013; 42
2015; 11
2017; 292
2017; 174
2010; 160
2014; 111
2014; 1840
2016; 55
2016; 480
2010b; 4
2009; 33
2016; 6
2016; 7
2016; 2
1987; 330
2010a; 23
1986; 63
2017; 14
2015; 554
2015; 112
1986; 25
2011; 50
2017; 12
2017
1961
2016; 138
2007; 41
2009; 2
2003a; 231
2018; 16
2014; 77
2018; 14
2019; 176
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
Berzelius J (e_1_2_9_7_1) 1822; 20
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
Doka E (e_1_2_9_21_1) 2017
e_1_2_9_2_1
Vasas A (e_1_2_9_75_1) 2015; 46
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 14
  start-page: 485
  year: 2018
  end-page: 491
  article-title: Chemical trapping and characterization of small oxoacids of sulfur (SOS) generated in aqueous oxidations of H S
  publication-title: Redox Biol
– volume: 554
  start-page: 3
  year: 2015
  end-page: 29
  article-title: Mechanistic chemical perspective of hydrogen sulfide signaling
  publication-title: Methods Enzymol
– volume: 60
  start-page: 325
  year: 2013
  end-page: 335
  article-title: Exposing cells to H O : a quantitative comparison between continuous low‐dose and one‐time high‐dose treatments
  publication-title: Free Radic Biol Med
– volume: 51
  start-page: 6804
  year: 2012
  end-page: 6815
  article-title: Human sulfide: quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite
  publication-title: Biochemistry
– volume: 27
  start-page: 684
  year: 2017
  end-page: 712
  article-title: The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine
  publication-title: Antioxid Redox Signal
– volume: 292
  start-page: 5584
  year: 2017
  end-page: 5592
  article-title: Structural and mechanistic insights into hemoglobin‐catalyzed hydrogen sulfide oxidation and the fate of polysulfide products
  publication-title: J Biol Chem
– volume: 160
  start-page: 941
  year: 2010
  end-page: 957
  article-title: A monobromobimane‐based assay to measure the pharmacokinetic profile of reactive sulphide species in blood
  publication-title: Br J Pharmacol
– volume: 7
  year: 2017
  article-title: Polysulfides (H Sn) produced from the interaction of hydrogen sulfide (H S) and nitric oxide (NO) activate TRPA1 channels
  publication-title: Sci Rep
– volume: 19
  start-page: 1749
  year: 2013
  end-page: 1765
  article-title: Polysulfides link H S to protein thiol oxidation
  publication-title: Antioxid Redox Signal
– volume: 12
  start-page: 325
  year: 2017
  end-page: 339
  article-title: Catalase as a sulfide‐sulfur oxido‐reductase: an ancient (and modern?) regulator of reactive sulfur species (RSS)
  publication-title: Redox Biol
– volume: 44
  start-page: 19782
  year: 2015
  end-page: 19785
  article-title: NBu SH provides a convenient source of HS soluble in organic solution for H S and anion‐binding research
  publication-title: Dalton Trans
– volume: 6
  year: 2016
  article-title: Quantitative persulfide site identification (qPerS‐SID) reveals protein targets of H S releasing donors in mammalian cells
  publication-title: Sci Rep
– volume: 63
  start-page: 42
  year: 1986
  article-title: The Curtin–Hammett principle and the Winstein–Holness equation: new definition and recent extensions to classical concepts
  publication-title: J Chem Educ
– volume: 112
  start-page: E4651
  year: 2015
  end-page: E4660
  article-title: Key bioactive reaction products of the NO/H S interaction are S/N‐hybrid species, polysulfides, and nitroxyl
  publication-title: P Natl Acad Sci USA
– volume: 14
  start-page: 379
  year: 2017
  end-page: 385
  article-title: Cysteine perthiosulfenic acid (Cys‐SSOH): a novel intermediate in thiol‐based redox signaling?
  publication-title: Redox Biol
– volume: 516
  start-page: 146
  year: 2011
  end-page: 153
  article-title: The reaction of H S with oxidized thiols: generation of persulfides and implications to H S biology
  publication-title: Arch Biochem Biophys
– volume: 171
  start-page: 2099
  year: 2014
  end-page: 2122
  article-title: Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms
  publication-title: Br J Pharmacol
– volume: 111
  start-page: 7606
  year: 2014
  end-page: 7611
  article-title: Reactive cysteine persulfides and ‐polythiolation regulate oxidative stress and redox signaling
  publication-title: P Natl Acad Sci USA
– volume: 330
  start-page: 148
  year: 1987
  end-page: 151
  article-title: A description of energy conversion in photoelectrochemical solar cells
  publication-title: Nature
– volume: 42
  start-page: 5996
  year: 2013
  end-page: 6005
  article-title: Ubiquitous trisulfur radical anion: fundamentals and applications in materials science, electrochemistry, analytical chemistry and geochemistry
  publication-title: Chem Soc Rev
– volume: 4
  year: 2015
  article-title: Quantitative H S‐mediated protein sulfhydration reveals metabolic reprogramming during the integrated stress response
  publication-title: Elife
– start-page: 57
  year: 2017
  end-page: 83
– volume: 2
  start-page: ra72
  year: 2009
  article-title: H S signals through protein ‐sulfhydration
  publication-title: Sci Signal
– volume: 231
  start-page: 99
  year: 2003b
  end-page: 125
  article-title: Inorganic polysulfanes H2Sn with n > 1
  publication-title: Top Curr Chem
– volume: 176
  start-page: 671
  year: 2019
  end-page: 683
  article-title: The reaction of hydrogen sulfide with disulfides: formation of a stable trisulfide and implications to biological systems
  publication-title: Br J Pharmacol
– volume: 11
  start-page: 457
  year: 2015
  end-page: 464
  article-title: Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways
  publication-title: Nat Chem Biol
– volume: 2
  year: 2016
  article-title: A novel persulfide detection method reveals protein persulfide‐ and polysulfide‐reducing functions of thioredoxin and glutathione systems
  publication-title: Sci Adv
– volume: 172
  start-page: 1516
  year: 2015
  end-page: 1532
  article-title: Interactions of hydrogen sulfide with myeloperoxidase
  publication-title: Br J Pharmacol
– volume: 231
  start-page: 127
  year: 2003a
  end-page: 152
  article-title: Inorganic polysulfides S‐n(2‐) and radical anions S‐n (center dot‐)
  publication-title: Top Curr Chem
– volume: 78
  start-page: 2631
  year: 2006
  end-page: 2639
  article-title: Method for the determination of inorganic polysulfide distribution in aquatic systems
  publication-title: Anal Chem
– volume: 20
  start-page: 113
  year: 1822
  end-page: 141
  article-title: De la Composition des Sulfures Alcalins
  publication-title: Ann Chim Phys
– volume: 175
  start-page: 987
  year: 2018
  end-page: 993
  article-title: Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers
  publication-title: Br J Pharmacol
– volume: 46
  start-page: D1091
  year: 2018
  end-page: D1106
  article-title: The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY
  publication-title: Nucleic Acids Res
– volume: 53
  start-page: 513
  year: 1999
  end-page: 520
  article-title: Nucleophilic substitution of alkyl halides by electrogenerated polysulfide ions in , ‐dimethylacetamide
  publication-title: Acta Chem Scand
– volume: 23
  start-page: 1541
  year: 2010a
  end-page: 1543
  article-title: Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides
  publication-title: Chem Res Toxicol
– volume: 171
  start-page: 2123
  year: 2014
  end-page: 2146
  article-title: Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects
  publication-title: Br J Pharmacol
– volume: 174
  start-page: S272
  year: 2017
  end-page: S359
  article-title: The Concise Guide To PHARMACOLOGY 2017/18: Enzymes
  publication-title: Br J Pharmacol
– volume: 89
  start-page: 1913
  year: 1981
  end-page: 1921
  article-title: The mechanism of the ‐cystine cleavage reaction catalyzed by rat liver γ‐cystathionase
  publication-title: J Biochem
– volume: 15
  start-page: 379
  year: 2011
  end-page: 391
  article-title: Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling?
  publication-title: Antioxid Redox Signal
– volume: 50
  start-page: 1021
  year: 2011
  end-page: 1031
  article-title: Measurement of plasma hydrogen sulfide in vivo and in vitro
  publication-title: Free Radic Biol Med
– volume: 55
  start-page: 12618
  year: 2016
  end-page: 12625
  article-title: The intersection of NO and H S: persulfides generate NO from nitrite through polysulfide formation
  publication-title: Inorg Chem
– volume: 16
  start-page: 359
  year: 2018
  end-page: 380
  article-title: A robust and versatile mass spectrometry platform for comprehensive assessment of the thiol redox metabolome
  publication-title: Redox Biol
– volume: 480
  start-page: 180
  year: 2016
  end-page: 186
  article-title: Protein polysulfidation‐dependent persulfide dioxygenase activity of ethylmalonic encephalopathy protein 1
  publication-title: Biochem Biophys Res Commun
– volume: 138
  start-page: 8476
  year: 2016
  end-page: 8488
  article-title: Hydrogen sulfide oxidation by myoglobin
  publication-title: J Am Chem Soc
– volume: 58
  start-page: 109
  year: 2013
  end-page: 117
  article-title: Redox proteomics of thiol proteins in mouse heart during ischemia/reperfusion using ICAT reagents and mass spectrometry
  publication-title: Free Radic Biol Med
– volume: 2
  start-page: re7
  year: 2009
  article-title: Transduction of redox signaling by electrophile–protein reactions
  publication-title: Sci Signal
– volume: 33
  start-page: 415
  year: 2009
  end-page: 435
  article-title: Protocol for quantitative detection of elemental sulfur and polysulfide zero‐valent sulfur distribution in natural aquatic samples
  publication-title: Geostand Geoanal Res
– volume: 46
  start-page: 93
  year: 2015
  end-page: 101
  article-title: Kinetic and thermodynamic studies on the disulfide‐bond reducing potential of hydrogen sulfide. Nitric oxide: biology and chemistry/official journal of the Nitric Oxide
  publication-title: Society
– volume: 1840
  start-page: 876
  year: 2014
  end-page: 891
  article-title: Chemical aspects of hydrogen sulfide measurements in physiological samples
  publication-title: Biochim Biophys Acta
– volume: 53
  start-page: 575
  year: 2014
  end-page: 581
  article-title: Detection of protein ‐sulfhydration by a tag‐switch technique
  publication-title: Angew Chem Int Ed Engl
– volume: 27
  start-page: 1265
  year: 1963
  end-page: 1298
  article-title: The geologic role of polysulfides – part I. The distribution of ionic species in aqueous sodium polysulfide solutions
  publication-title: Geochim Cosmochim Acta
– volume: 77
  start-page: 82
  year: 2014
  end-page: 94
  article-title: Redox chemistry and chemical biology of H S, hydropersulfides, and derived species: implications of their possible biological activity and utility
  publication-title: Free Radic Biol Med
– volume: 44
  start-page: 325
  year: 2004
  end-page: 347
  article-title: Protein sulfenic acids in redox signaling
  publication-title: Annu Rev Pharmacol Toxicol
– volume: 50
  start-page: 196
  year: 2011
  end-page: 205
  article-title: Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest
  publication-title: Free Radic Biol Med
– volume: 7
  year: 2016
  article-title: Sulfheme formation during homocysteine S‐oxygenation by catalase in cancers and neurodegenerative diseases
  publication-title: Nat Commun
– volume: 27
  start-page: 619
  year: 2017
  end-page: 621
  article-title: Hydrogen sulfide and polysulfide signaling
  publication-title: Antioxid Redox Signal
– volume: 11
  start-page: 2525
  year: 1972
  end-page: 2527
  article-title: Characterization of the trisulfur radical anion S3− in blue solutions of alkali polysulfides in hexamethylphosphoramide
  publication-title: Inorg Chem
– volume: 233
  start-page: 563
  year: 1986
  end-page: 566
  article-title: Hydrogen sulfide oxidation is coupled to oxidative phosphorylation in mitochondria of
  publication-title: Science
– volume: 113
  start-page: 4633
  year: 2013
  end-page: 4679
  article-title: Cysteine‐mediated redox signaling: chemistry, biology, and tools for discovery
  publication-title: Chem Rev
– volume: 129
  start-page: 14082
  year: 2007
  end-page: 14091
  article-title: Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid
  publication-title: J Am Chem Soc
– volume: 4
  start-page: 183
  year: 2010b
  end-page: 222
  article-title: Redox chemistry of biological thiols
  publication-title: Advances in Molecular Toxicology
– start-page: 1
  year: 1961
  end-page: 6
– volume: 25
  start-page: 2486
  year: 1986
  end-page: 2489
  article-title: Numerical analysis of aqueous polysulfide solutions and its application to cadmium chalcogenide polysulfide photoelectrochemical solar cells
  publication-title: Inorg Chem
– volume: 146
  start-page: 229
  year: 2004
  end-page: 237
  article-title: Electrospray ionization mass spectrometric analysis of aqueous polysulfide solutions
  publication-title: Microchim Acta
– volume: 113
  start-page: 551
  year: 2017
  end-page: 563
  article-title: Mechanisms of myeloperoxidase catalyzed oxidation of H S by H O or O to produce potent protein Cys‐polysulfide‐inducing species
  publication-title: Free Radic Biol Med
– volume: 1
  start-page: 58
  year: 1959
  end-page: 69
  article-title: Constantes de dissociation de l'hydrogène sulfuré
  publication-title: Electrochim Acta
– volume: 89
  start-page: 662
  year: 2015
  end-page: 667
  article-title: Reactions of isolated persulfides provide insights into the interplay between H S and persulfide reactivity
  publication-title: Free Radic Biol Med
– volume: 9
  start-page: 24
  year: 1978
  end-page: 33
  article-title: Constantes de formation des ions polysulfures S‐26, S‐25 et S‐24 en phase aqueuse
  publication-title: J Fr Hydrol
– year: 2017
– volume: 41
  start-page: 2395
  year: 2007
  end-page: 2400
  article-title: Equilibrium distribution of polysulfide ions in aqueous solutions at different temperatures by rapid single phase derivatization
  publication-title: Environ Sci Technol
– volume: 413
  start-page: 1
  year: 2011
  end-page: 7
  article-title: Sulfur signaling: is the agent sulfide or sulfane?
  publication-title: Anal Biochem
– volume: 13
  start-page: 499
  year: 2012
  end-page: 507
  article-title: H S signalling through protein sulfhydration and beyond
  publication-title: Nat Rev Mol Cell Biol
– volume: 11
  start-page: 1201
  year: 1972
  end-page: 1207
  article-title: Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20.deg
  publication-title: Inorg Chem
– year: 1777
– volume: 13
  start-page: 231
  year: 1986
  end-page: 249
  article-title: Methodologies for the application of monobromobimane to the simultaneous analysis of soluble and protein thiol components of biological systems
  publication-title: J Biochem Biophys Methods
– volume: 290
  start-page: 26866
  year: 2015
  end-page: 26880
  article-title: Reaction of hydrogen sulfide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide
  publication-title: J Biol Chem
– volume: 8
  start-page: 1177
  year: 2017
  article-title: Cysteinyl‐tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics
  publication-title: Nat Commun
– volume: 38
  start-page: 6633
  year: 2004
  end-page: 6644
  article-title: Equilibrium distribution of polysulfide ions in aqueous solutions at 25 degrees C: a new approach for the study of polysulfides' equilibria
  publication-title: Environ Sci Technol
– ident: e_1_2_9_53_1
  doi: 10.1021/ja0737218
– volume-title: Methods in Molecular Biology
  year: 2017
  ident: e_1_2_9_21_1
  contributor:
    fullname: Doka E
– ident: e_1_2_9_22_1
  doi: 10.1126/sciadv.1500968
– ident: e_1_2_9_64_1
  doi: 10.1126/science.233.4763.563
– ident: e_1_2_9_35_1
  doi: 10.1016/j.bbrc.2016.10.022
– ident: e_1_2_9_47_1
  doi: 10.1016/0013-4686(59)80009-8
– ident: e_1_2_9_39_1
  doi: 10.1021/es062637
– ident: e_1_2_9_48_1
  doi: 10.1038/nchembio.1834
– ident: e_1_2_9_15_1
  doi: 10.1016/0016-7037(63)90050-4
– ident: e_1_2_9_60_1
  doi: 10.1111/bph.12769
– ident: e_1_2_9_54_1
  doi: 10.1021/tx100266a
– ident: e_1_2_9_74_1
  doi: 10.1016/j.ab.2011.01.044
– ident: e_1_2_9_8_1
  doi: 10.1111/bph.14372
– ident: e_1_2_9_29_1
  doi: 10.1007/s00604-004-0179-5
– ident: e_1_2_9_73_1
  doi: 10.1111/bph.12369
– ident: e_1_2_9_11_1
  doi: 10.1051/water/19780901027
– ident: e_1_2_9_66_1
– ident: e_1_2_9_72_1
  doi: 10.1016/j.redox.2018.02.012
– ident: e_1_2_9_52_1
  doi: 10.1016/bs.mie.2014.11.036
– ident: e_1_2_9_65_1
  doi: 10.1126/scisignal.290re7
– ident: e_1_2_9_10_1
  doi: 10.1089/ars.2010.3678
– ident: e_1_2_9_78_1
  doi: 10.1093/oxfordjournals.jbchem.a133393
– ident: e_1_2_9_3_1
  doi: 10.1038/s41467-017-01311-y
– ident: e_1_2_9_67_1
  doi: 10.1021/ed063p42
– ident: e_1_2_9_56_1
  doi: 10.1016/j.bbagen.2013.05.037
– ident: e_1_2_9_9_1
  doi: 10.1021/jacs.6b03456
– ident: e_1_2_9_20_1
  doi: 10.1111/bph.14153
– ident: e_1_2_9_34_1
  doi: 10.1021/bi300778t
– ident: e_1_2_9_79_1
  doi: 10.1002/anie.201305876
– ident: e_1_2_9_17_1
  doi: 10.1073/pnas.1509277112
– ident: e_1_2_9_37_1
  doi: 10.1021/ac051854a
– ident: e_1_2_9_19_1
  doi: 10.1074/jbc.M115.672816
– ident: e_1_2_9_70_1
  doi: 10.1007/b13183
– ident: e_1_2_9_13_1
  doi: 10.1021/ic50116a047
– ident: e_1_2_9_18_1
  doi: 10.1016/0165-022X(86)90102-8
– ident: e_1_2_9_45_1
  doi: 10.1021/ic00235a003
– ident: e_1_2_9_51_1
  doi: 10.1126/scisignal.2000464
– ident: e_1_2_9_33_1
  doi: 10.1073/pnas.1321232111
– ident: e_1_2_9_41_1
  doi: 10.1089/ars.2017.7076
– ident: e_1_2_9_26_1
  doi: 10.1016/j.freeradbiomed.2017.10.384
– ident: e_1_2_9_32_1
  doi: 10.1016/j.redox.2017.10.006
– ident: e_1_2_9_43_1
  doi: 10.1016/j.freeradbiomed.2013.01.021
– ident: e_1_2_9_58_1
  doi: 10.1016/j.freeradbiomed.2014.09.007
– ident: e_1_2_9_62_1
  doi: 10.1021/cr300163e
– ident: e_1_2_9_24_1
  doi: 10.1016/j.abb.2011.09.015
– ident: e_1_2_9_76_1
  doi: 10.1074/jbc.M117.774943
– ident: e_1_2_9_71_1
  doi: 10.1007/b13182
– ident: e_1_2_9_6_1
  doi: 10.1021/acs.inorgchem.6b01660
– ident: e_1_2_9_2_1
  doi: 10.3891/acta.chem.scand.53-0513
– ident: e_1_2_9_55_1
  doi: 10.1016/S1872-0854(10)04006-3
– ident: e_1_2_9_38_1
  doi: 10.1021/es049514e
– volume: 20
  start-page: 113
  year: 1822
  ident: e_1_2_9_7_1
  article-title: De la Composition des Sulfures Alcalins
  publication-title: Ann Chim Phys
  contributor:
    fullname: Berzelius J
– ident: e_1_2_9_30_1
  doi: 10.1093/nar/gkx1121
– ident: e_1_2_9_31_1
  doi: 10.1039/C5DT03355A
– ident: e_1_2_9_36_1
  doi: 10.1111/j.1751-908X.2009.00907.x
– ident: e_1_2_9_14_1
  doi: 10.1039/c3cs60119f
– ident: e_1_2_9_42_1
  doi: 10.1016/j.redox.2017.10.012
– ident: e_1_2_9_23_1
  doi: 10.1016/B978-1-4831-9982-5.50004-X
– ident: e_1_2_9_27_1
  doi: 10.1021/ic50112a009
– ident: e_1_2_9_40_1
  doi: 10.1016/B978-0-12-804273-1.00005-3
– ident: e_1_2_9_44_1
  doi: 10.1038/330148a0
– ident: e_1_2_9_12_1
  doi: 10.1016/j.freeradbiomed.2010.10.705
– ident: e_1_2_9_46_1
  doi: 10.1038/srep29808
– ident: e_1_2_9_49_1
  doi: 10.1038/srep45995
– ident: e_1_2_9_61_1
  doi: 10.1038/nrm3391
– ident: e_1_2_9_63_1
  doi: 10.1146/annurev.pharmtox.44.101802.121735
– ident: e_1_2_9_69_1
  doi: 10.1016/j.freeradbiomed.2013.02.017
– ident: e_1_2_9_25_1
  doi: 10.7554/eLife.10067
– ident: e_1_2_9_68_1
  doi: 10.1016/j.freeradbiomed.2011.01.025
– ident: e_1_2_9_50_1
  doi: 10.1111/bph.12368
– ident: e_1_2_9_4_1
  doi: 10.1111/bph.13877
– ident: e_1_2_9_28_1
  doi: 10.1089/ars.2012.5041
– ident: e_1_2_9_16_1
  doi: 10.1089/ars.2017.7083
– ident: e_1_2_9_57_1
  doi: 10.1016/j.redox.2017.02.021
– ident: e_1_2_9_5_1
  doi: 10.1016/j.freeradbiomed.2015.08.017
– volume: 46
  start-page: 93
  year: 2015
  ident: e_1_2_9_75_1
  article-title: Kinetic and thermodynamic studies on the disulfide‐bond reducing potential of hydrogen sulfide. Nitric oxide: biology and chemistry/official journal of the Nitric Oxide
  publication-title: Society
  contributor:
    fullname: Vasas A
– ident: e_1_2_9_59_1
  doi: 10.1038/ncomms13386
– ident: e_1_2_9_77_1
  doi: 10.1111/j.1476-5381.2010.00704.x
SSID ssj0014775
Score 2.5969377
Snippet   Background and Purpose Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in...
BACKGROUND AND PURPOSE: Posttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in...
Background and PurposePosttranslational modifications of cysteine residues represent a major aspect of redox biology, and their reliable detection is key in...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 646
SubjectTerms Adult
Alkylating agents
Alkylating Agents - chemistry
Alkylation
Blood plasma
Cysteine
Glyceraldehyde-3-phosphate dehydrogenase
Humans
Iodoacetamide - chemistry
Labeling
Lysis
Maleimides - chemistry
Methyl Methanesulfonate - analogs & derivatives
Methyl Methanesulfonate - chemistry
Oxidation
Research Paper
Speciation
Species
Sulfenic acid
Sulfides
Sulfur
Sulfur Compounds - analysis
Sulfur Compounds - blood
Sulfur Compounds - chemistry
Themed Section: Research Papers
Title Speciation of reactive sulfur species and their reactions with alkylating agents: do we have any clue about what is present inside the cell?
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbph.14394
https://www.ncbi.nlm.nih.gov/pubmed/29909607
https://www.proquest.com/docview/2296308818
https://pubmed.ncbi.nlm.nih.gov/PMC6346080
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7inHopTfpSm4ShlNBDlHi1K62VS2lDU1NI8SEB38S-VJs4solsgv9DfnRmV1JSE3rpRSxomV34RvPQvAA-W54x66O6pcmzWDDCwk-Aj41Mbd9klrSOrx2--J0Nr8SvcTregrSrhQlJ-0ZPj6vZzXE1nYTcysWNOenyxE5GF2cZF5lvh9iDHjFo56K3oQMhZTO2wHc_pLPbdkI-fUcvJiQZeO6H8XgxTNa73NRHz4zM57mSf9uwQQmdv4KXrfWI35pb7sCWq3bhcNS0n14f4eVTNVV9hIc4empMvX4N982weQ8FzkskczEIO6xXs3J1i77okvxmVJXFED9odxBfov9di2p2vfapc9UfVL4iqz5FO8c7hxNFVEiqoJmtaOFznfFuopY4rXHR1DfhNAwG9YTRBwu-voGr8x-XZ8O4ncYQGyG4iI3mA8uy3CpR5kYam5YmMQPNmRbSycw6lmqWa2MHri8VOWI8sYksc5U6epb8LWxX88q9BzTC5Z4tOKlNodNMC25KxhzXiij2dQSfOkyKRdN0o-icFcKwCBhGsNehVbTfXV0kCQkUEpxsEMG7BrhHCh3iEcgNSB83-E7bm2-IAUPH7ZbhIvgSwP_3pYrvo2FYfPjvQz7CCzLK8iYzfA-2l7crt0-Gz1IfQO_nmB0Edn8AEFsFsw
link.rule.ids 230,315,730,783,787,888,27937,27938,53805,53807
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2VcoALLd8uLYwQqjjUaexde-NeKqioAjRVDinqzfJ-mERNnaiOVYXfwI9mdm23hIoDXKyVbO3amrezs943bwDeaRYH2p7q5iqJfR6QLWwFeF-JSHdVrGnVsbnDg9O4f8a_nEfnaxC1uTCOtK_kpFNMLzvFZOy4lfNLtd_yxPaHg6OY8djKId6D-zRfu1G7SW8OD7gQdeECq39IozeCQpbAI-dj8g0sseV4rCOm-F2srkh3wsy7bMnfo1i3DB1vwLf2A2r2yUWnWsiO-vGHtuM_f-EmPGoCU_xQ334Ma6Z4ArvDWtl6uYej20Stcg93cXireb18Cj_rOvbWyjjLkSJR50exrKZ5dYU2n5O25JgVGt3RRPMEQR7tn2DMphdLy8orvmNmk73KA9QzvDY4zqgXcliophU1LI0ar8fZAiclzuvUKZy4mqO2Y7TnEIfP4Oz40-io7zeFHnzFOeO-kqyngzjRGc8TJZSOchWqnmSB5MKIWJsgkkEile6Zrshoj8dCHYo8ySJD15w9h_ViVpiXgIqbxCKO0YrMZRRLzlQeBIbJjHrsSg_etsZO57WeR9rugwgcqQOHB9stDNJmSpdpGJKvIp8c9Dx4USPipocWSh6IFazcPGBFvFfvkOWdmHdjaQ_eO1T9_aXSj8O-a2z99yBv4EF_NDhJTz6ffn0FDyn2S2oC-jasL64qs0Px1UK-drPpFzkEJrQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BkRAXyhuXAiOEKg51EmfX3pgLgkIUHq18aKWKi-V9mERNHauOVYXfwI9mZm23DRWXXixLXq3Xmm9nZ73ffMPYW8OjwNCpbq7jyBcB2oIqwPtahmagI4OrDuUO7x9EkyPx7Tg8vlLqy5H2tZr1ivlpr5hNHbeyPNX9jifWT_b3Ii4ikkMsTd6_ze6EJJrebdTbAwQhZVO8gDQQcQStqBCReFQ5Rf_AYyrJQ84YY3i5vipdCzWvMyavRrJuKRpvsp_dRzQMlJNevVQ9_fsffccbfeUDdr8NUOFj0-Qhu2WLR2wnaRSuV7tweJmwVe3CDiSX2terx-xPU8-erA2LHDAidf4Uqnqe12dAeZ24NYesMOCOKNoWCH2gP8KQzU9WxM4rfkFGSV_VezALOLcwzbAXdFyg5zXeEJ0azqfZEmYVlE0KFcxc7VHqGOg84sMTdjT-crg38duCD74WggtfKz4yQRSbTOSxltqEuR7qkeKBEtLKyNggVEGstBnZgcxwr8eHZijzOAstXnP-lG0Ui8I-Z6CFjQl5HFdmocJICa7zILBcZdjjQHnsTWfwtGx0PdJuP4QASR1APLbdQSFtp3aVDofos9A3ByOPPWtQcdFDByePyTW8XDQgMe_1J2h9J-rdWttj7xyy_j-o9FMycTdbN37Ja3Y3-TxOf3w9-P6C3cMQMG546NtsY3lW25cYZi3VKzeh_gJYkyk0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speciation+of+reactive+sulfur+species+and+their+reactions+with+alkylating+agents%3A+do+we+have+any+clue+about+what+is+present+inside+the+cell%3F&rft.jtitle=British+journal+of+pharmacology&rft.au=Bogd%C3%A1ndi%2C+Vir%C3%A1g&rft.au=Ida%2C+Tomoaki&rft.au=Sutton%2C+Thomas+R&rft.au=Bianco%2C+Christopher&rft.date=2019-02-01&rft.issn=0007-1188&rft.eissn=1476-5381&rft.volume=176&rft.issue=4&rft.spage=646&rft.epage=670&rft_id=info:doi/10.1111%2Fbph.14394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_bph_14394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1188&client=summon