The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers
Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single-cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail. In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed i...
Saved in:
Published in | The New phytologist Vol. 217; no. 2; pp. 625 - 640 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
New Phytologist Trust
01.01.2018
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single-cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail.
In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed in secondary cell wall (SCW) thickening fibers was functionally characterized. The GhFSN1 transgenic cotton plants were generated to study how FSN1 regulates fiber SCW formation.
Up-regulation of GhFSN1 expression in cotton resulted in an increase in SCW thickness of fibers but a decrease in fiber length. Transcriptomic analysis revealed that GhFSN1 activates or represses numerous downstream genes. GhFSN1 has the ability to form homodimers, binds to its promoter to activate itself, and might be degraded by the ubiquitin-mediated proteasome pathway. The direct targets of GhFSN1 include the fiber SCW-related GhDUF231L1, GhKNL1, GhMYBL1, GhGUT1 and GhIRX12 genes. GhFSN1 binds directly to a consensus sequence (GhNBS), (C/T)(C/G/T)TN(A/T)(G/T)(A/C/G)(A/G)(A/T/G)(A/T/G)AAG, which exists in the promoters of these SCW-related genes.
Our data demonstrate that GhFSN1 acts as a positive regulator in controlling SCW formation of cotton fibers by activating its downstream SCW-related genes. Thus, these findings give us novel insights into comprehensive understanding of GhFSN1 function in fiber development. |
---|---|
AbstractList | Summary
Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single‐cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail.
In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed in secondary cell wall (SCW) thickening fibers was functionally characterized. The GhFSN1 transgenic cotton plants were generated to study how FSN1 regulates fiber SCW formation.
Up‐regulation of GhFSN1 expression in cotton resulted in an increase in SCW thickness of fibers but a decrease in fiber length. Transcriptomic analysis revealed that GhFSN1 activates or represses numerous downstream genes. GhFSN1 has the ability to form homodimers, binds to its promoter to activate itself, and might be degraded by the ubiquitin‐mediated proteasome pathway. The direct targets of GhFSN1 include the fiber SCW‐related GhDUF231L1, GhKNL1, GhMYBL1, GhGUT1 and GhIRX12 genes. GhFSN1 binds directly to a consensus sequence (GhNBS), (C/T)(C/G/T)TN(A/T)(G/T)(A/C/G)(A/G)(A/T/G)(A/T/G)AAG, which exists in the promoters of these SCW‐related genes.
Our data demonstrate that GhFSN1 acts as a positive regulator in controlling SCW formation of cotton fibers by activating its downstream SCW‐related genes. Thus, these findings give us novel insights into comprehensive understanding of GhFSN1 function in fiber development. Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single-cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail. In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed in secondary cell wall (SCW) thickening fibers was functionally characterized. The GhFSN1 transgenic cotton plants were generated to study how FSN1 regulates fiber SCW formation. Up-regulation of GhFSN1 expression in cotton resulted in an increase in SCW thickness of fibers but a decrease in fiber length. Transcriptomic analysis revealed that GhFSN1 activates or represses numerous downstream genes. GhFSN1 has the ability to form homodimers, binds to its promoter to activate itself, and might be degraded by the ubiquitin-mediated proteasome pathway. The direct targets of GhFSN1 include the fiber SCW-related GhDUF231L1, GhKNL1, GhMYBL1, GhGUT1 and GhIRX12 genes. GhFSN1 binds directly to a consensus sequence (GhNBS), (C/T)(C/G/T)TN(A/T)(G/T)(A/C/G)(A/G)(A/T/G)(A/T/G)AAG, which exists in the promoters of these SCW-related genes. Our data demonstrate that GhFSN1 acts as a positive regulator in controlling SCW formation of cotton fibers by activating its downstream SCW-related genes. Thus, these findings give us novel insights into comprehensive understanding of GhFSN1 function in fiber development.Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single-cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail. In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed in secondary cell wall (SCW) thickening fibers was functionally characterized. The GhFSN1 transgenic cotton plants were generated to study how FSN1 regulates fiber SCW formation. Up-regulation of GhFSN1 expression in cotton resulted in an increase in SCW thickness of fibers but a decrease in fiber length. Transcriptomic analysis revealed that GhFSN1 activates or represses numerous downstream genes. GhFSN1 has the ability to form homodimers, binds to its promoter to activate itself, and might be degraded by the ubiquitin-mediated proteasome pathway. The direct targets of GhFSN1 include the fiber SCW-related GhDUF231L1, GhKNL1, GhMYBL1, GhGUT1 and GhIRX12 genes. GhFSN1 binds directly to a consensus sequence (GhNBS), (C/T)(C/G/T)TN(A/T)(G/T)(A/C/G)(A/G)(A/T/G)(A/T/G)AAG, which exists in the promoters of these SCW-related genes. Our data demonstrate that GhFSN1 acts as a positive regulator in controlling SCW formation of cotton fibers by activating its downstream SCW-related genes. Thus, these findings give us novel insights into comprehensive understanding of GhFSN1 function in fiber development. Cotton ( Gossypium hirsutum ) fibers are the highly elongated and thickened single‐cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail. In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed in secondary cell wall (SCW) thickening fibers was functionally characterized. The GhFSN1 transgenic cotton plants were generated to study how FSN1 regulates fiber SCW formation. Up‐regulation of GhFSN1 expression in cotton resulted in an increase in SCW thickness of fibers but a decrease in fiber length. Transcriptomic analysis revealed that GhFSN1 activates or represses numerous downstream genes. GhFSN1 has the ability to form homodimers, binds to its promoter to activate itself, and might be degraded by the ubiquitin‐mediated proteasome pathway. The direct targets of GhFSN1 include the fiber SCW‐related GhDUF231L1 , GhKNL1 , GhMYBL1 , GhGUT1 and GhIRX12 genes. GhFSN1 binds directly to a consensus sequence (GhNBS), (C/T)(C/G/T)TN(A/T)(G/T)(A/C/G)(A/G)(A/T/G)(A/T/G)AAG, which exists in the promoters of these SCW‐related genes. Our data demonstrate that GhFSN1 acts as a positive regulator in controlling SCW formation of cotton fibers by activating its downstream SCW‐related genes. Thus, these findings give us novel insights into comprehensive understanding of GhFSN1 function in fiber development. Summary Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single-cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail. In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed in secondary cell wall (SCW) thickening fibers was functionally characterized. The GhFSN1 transgenic cotton plants were generated to study how FSN1 regulates fiber SCW formation. Up-regulation of GhFSN1 expression in cotton resulted in an increase in SCW thickness of fibers but a decrease in fiber length. Transcriptomic analysis revealed that GhFSN1 activates or represses numerous downstream genes. GhFSN1 has the ability to form homodimers, binds to its promoter to activate itself, and might be degraded by the ubiquitin-mediated proteasome pathway. The direct targets of GhFSN1 include the fiber SCW-related GhDUF231L1,GhKNL1,GhMYBL1,GhGUT1 and GhIRX12 genes. GhFSN1 binds directly to a consensus sequence (GhNBS), (C/T)(C/G/T)TN(A/T)(G/T)(A/C/G)(A/G)(A/T/G)(A/T/G)AAG, which exists in the promoters of these SCW-related genes. Our data demonstrate that GhFSN1 acts as a positive regulator in controlling SCW formation of cotton fibers by activating its downstream SCW-related genes. Thus, these findings give us novel insights into comprehensive understanding of GhFSN1 function in fiber development. Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single‐cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail. In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed in secondary cell wall (SCW) thickening fibers was functionally characterized. The GhFSN1 transgenic cotton plants were generated to study how FSN1 regulates fiber SCW formation. Up‐regulation of GhFSN1 expression in cotton resulted in an increase in SCW thickness of fibers but a decrease in fiber length. Transcriptomic analysis revealed that GhFSN1 activates or represses numerous downstream genes. GhFSN1 has the ability to form homodimers, binds to its promoter to activate itself, and might be degraded by the ubiquitin‐mediated proteasome pathway. The direct targets of GhFSN1 include the fiber SCW‐related GhDUF231L1, GhKNL1, GhMYBL1, GhGUT1 and GhIRX12 genes. GhFSN1 binds directly to a consensus sequence (GhNBS), (C/T)(C/G/T)TN(A/T)(G/T)(A/C/G)(A/G)(A/T/G)(A/T/G)AAG, which exists in the promoters of these SCW‐related genes. Our data demonstrate that GhFSN1 acts as a positive regulator in controlling SCW formation of cotton fibers by activating its downstream SCW‐related genes. Thus, these findings give us novel insights into comprehensive understanding of GhFSN1 function in fiber development. Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single-cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail. In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed in secondary cell wall (SCW) thickening fibers was functionally characterized. The GhFSN1 transgenic cotton plants were generated to study how FSN1 regulates fiber SCW formation. Up-regulation of GhFSN1 expression in cotton resulted in an increase in SCW thickness of fibers but a decrease in fiber length. Transcriptomic analysis revealed that GhFSN1 activates or represses numerous downstream genes. GhFSN1 has the ability to form homodimers, binds to its promoter to activate itself, and might be degraded by the ubiquitin-mediated proteasome pathway. The direct targets of GhFSN1 include the fiber SCW-related GhDUF231L1, GhKNL1, GhMYBL1, GhGUT1 and GhIRX12 genes. GhFSN1 binds directly to a consensus sequence (GhNBS), (C/T)(C/G/T)TN(A/T)(G/T)(A/C/G)(A/G)(A/T/G)(A/T/G)AAG, which exists in the promoters of these SCW-related genes. Our data demonstrate that GhFSN1 acts as a positive regulator in controlling SCW formation of cotton fibers by activating its downstream SCW-related genes. Thus, these findings give us novel insights into comprehensive understanding of GhFSN1 function in fiber development. |
Author | Yang Li Jing-Qiu Yan Jie Zhang Geng-Qing Huang Dan Zou Xue-Bao Li Shan Hu |
Author_xml | – sequence: 1 givenname: Jie surname: Zhang fullname: Zhang, Jie organization: Central China Normal University – sequence: 2 givenname: Geng‐Qing surname: Huang fullname: Huang, Geng‐Qing organization: Central China Normal University – sequence: 3 givenname: Dan surname: Zou fullname: Zou, Dan organization: Central China Normal University – sequence: 4 givenname: Jing‐Qiu surname: Yan fullname: Yan, Jing‐Qiu organization: Central China Normal University – sequence: 5 givenname: Yang surname: Li fullname: Li, Yang organization: Central China Normal University – sequence: 6 givenname: Shan surname: Hu fullname: Hu, Shan organization: Central China Normal University – sequence: 7 givenname: Xue‐Bao surname: Li fullname: Li, Xue‐Bao email: xbli@mail.ccnu.edu.cn organization: Central China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29105766$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9uEzEQxi1URNPCgQcAWeolOaQd73r951hFtEWqAhJF4rZyvN7G0a692F6qPBWviJO0PVQCfLA18u-bseebE3TkvDMIvSdwTvK6cMP6nFDB6Cs0IZTJuSAlP0ITgELMGWU_jtFJjBsAkBUr3qDjQhKoOGMT9PtubbD2KXmHp9c-xu1gxx6vbYhjGvsZXl4ucArKRR3skGzGWqWTD3h69W1JZlhFrPDgo032l8HB3I-d2l0PKiSr7aCSidi6XMOl4LvOunscTY4aFbZYm67DDypvK-vj1qW1iTZndA3ufWNbq9W-pm9xa1cmxLfodau6aN49nqfo-9Wnu8XN_PbL9efF5e1cU1rSuRAl4cCFIpS3TdWA1A0QLXTLgGkDkhgpKt0I0CXnQnNSkEI0wDVjbVXy8hRND3mH4H-OJqa6t3H3WuWMH2NdQAFCAKflf1EiGYFSEF5l9OwFuvFjcPkjmRKSlRWlMlMfH6lx1ZumHoLtc7PqJ9cyMDsAOmTHgmmfEQL1biLqPBH1fiIye_GC1Tbtm5pdtd2_FA-2M9u_p66XX2-eFB8Oik3M1j8rJABhsiTlHz470ck |
CitedBy_id | crossref_primary_10_3389_fpls_2023_1146802 crossref_primary_10_1186_s12864_021_07378_8 crossref_primary_10_1007_s11032_020_01177_x crossref_primary_10_1007_s11738_019_2866_1 crossref_primary_10_1016_j_indcrop_2024_118581 crossref_primary_10_1111_tpj_16523 crossref_primary_10_1016_j_scienta_2021_110424 crossref_primary_10_1186_s40538_025_00752_8 crossref_primary_10_1007_s00299_024_03147_5 crossref_primary_10_1016_j_ijbiomac_2024_138866 crossref_primary_10_3390_genes11010020 crossref_primary_10_1007_s11427_022_2278_0 crossref_primary_10_1016_j_cj_2019_05_002 crossref_primary_10_1186_s12870_018_1367_5 crossref_primary_10_3390_ijms20081863 crossref_primary_10_3389_fpls_2022_811655 crossref_primary_10_3389_fpls_2021_756434 crossref_primary_10_3389_fpls_2022_892381 crossref_primary_10_1007_s00344_019_09984_z crossref_primary_10_1016_j_plaphy_2019_10_038 crossref_primary_10_1111_tpj_17223 crossref_primary_10_1111_tpj_16538 crossref_primary_10_3390_biom9100609 crossref_primary_10_1016_j_xplc_2024_101130 crossref_primary_10_1111_nph_17612 crossref_primary_10_1016_j_plantsci_2024_112132 crossref_primary_10_3390_ijms25105369 crossref_primary_10_1111_pbi_13167 crossref_primary_10_3390_genes12050753 crossref_primary_10_1186_s12864_019_5500_0 crossref_primary_10_3389_fpls_2022_910228 crossref_primary_10_3390_ijms231912029 crossref_primary_10_1016_j_molp_2023_01_012 crossref_primary_10_1016_j_indcrop_2025_120639 crossref_primary_10_1007_s11033_023_08565_4 crossref_primary_10_1111_nph_17965 crossref_primary_10_1038_s41598_021_01829_8 crossref_primary_10_3389_fgene_2022_855574 crossref_primary_10_1080_15592324_2022_2088665 crossref_primary_10_1016_j_envexpbot_2023_105549 crossref_primary_10_1111_tpj_17167 crossref_primary_10_1002_bies_201800018 crossref_primary_10_1016_j_plantsci_2020_110657 crossref_primary_10_1016_j_tplants_2019_12_011 crossref_primary_10_1093_plphys_kiad407 crossref_primary_10_7717_peerj_7995 crossref_primary_10_1186_s42397_024_00188_9 crossref_primary_10_1111_pce_15232 crossref_primary_10_1186_s13059_023_02886_0 crossref_primary_10_3390_ijms222212120 crossref_primary_10_1111_jipb_13388 crossref_primary_10_1016_j_molp_2020_05_006 crossref_primary_10_1093_jxb_eraa474 crossref_primary_10_1002_csc2_20987 crossref_primary_10_1016_j_indcrop_2021_113802 crossref_primary_10_1016_j_jare_2025_02_022 crossref_primary_10_1016_j_jia_2023_12_029 crossref_primary_10_1007_s00344_024_11410_y crossref_primary_10_3390_plants12213755 crossref_primary_10_1186_s12864_021_07485_6 crossref_primary_10_1016_j_plaphy_2021_04_004 crossref_primary_10_1111_pbi_13191 crossref_primary_10_1186_s12864_020_6773_z crossref_primary_10_1016_j_plaphy_2019_11_030 crossref_primary_10_1007_s10529_022_03236_z crossref_primary_10_1016_j_indcrop_2022_115030 crossref_primary_10_1016_j_postharvbio_2020_111205 crossref_primary_10_3390_ijms22052568 crossref_primary_10_1016_j_indcrop_2022_116001 crossref_primary_10_1186_s42397_024_00196_9 crossref_primary_10_3390_genes14061301 crossref_primary_10_1111_pbi_14205 crossref_primary_10_1016_j_postharvbio_2025_113451 crossref_primary_10_1093_plphys_kiaf001 crossref_primary_10_1186_s12870_019_2026_1 crossref_primary_10_7717_peerj_17682 crossref_primary_10_1093_jxb_ery219 crossref_primary_10_3390_ijms23179887 crossref_primary_10_1016_j_indcrop_2022_114751 crossref_primary_10_1016_j_jgg_2021_04_009 crossref_primary_10_1016_j_isci_2021_102930 crossref_primary_10_1186_s12864_020_6479_2 crossref_primary_10_1186_s12864_021_07504_6 crossref_primary_10_3390_plants11030403 crossref_primary_10_1016_j_cj_2024_07_006 crossref_primary_10_1016_j_plaphy_2022_11_022 crossref_primary_10_1146_annurev_arplant_080720_113241 crossref_primary_10_1186_s12870_023_04147_5 crossref_primary_10_1093_jxb_ery269 crossref_primary_10_1016_j_plantsci_2023_111937 crossref_primary_10_1111_tpj_15854 crossref_primary_10_1186_s12915_023_01665_4 crossref_primary_10_7717_peerj_11212 crossref_primary_10_1016_j_plantsci_2020_110442 crossref_primary_10_1093_hr_uhad145 crossref_primary_10_3390_ijms241210404 crossref_primary_10_1111_jipb_13192 crossref_primary_10_3390_ijms24010542 crossref_primary_10_1007_s00122_023_04412_z crossref_primary_10_3389_fpls_2021_806195 crossref_primary_10_1093_plcell_koab153 crossref_primary_10_1111_tpj_16274 crossref_primary_10_1016_j_molp_2023_02_004 crossref_primary_10_3389_fgeed_2024_1401088 crossref_primary_10_1093_plcell_koad214 crossref_primary_10_1111_pbi_14588 crossref_primary_10_3389_fpls_2023_1119678 crossref_primary_10_3389_fpls_2021_655127 crossref_primary_10_1007_s00122_022_04233_6 crossref_primary_10_3390_ijms19092476 crossref_primary_10_3389_fpls_2022_837994 crossref_primary_10_1016_j_isci_2021_102199 crossref_primary_10_3389_fpls_2018_01900 crossref_primary_10_1186_s42397_021_00096_2 crossref_primary_10_1016_j_indcrop_2022_116077 crossref_primary_10_1016_j_xplc_2022_100421 crossref_primary_10_1111_jipb_13740 crossref_primary_10_1111_tpj_17083 crossref_primary_10_1007_s11103_023_01333_9 crossref_primary_10_1016_j_cropd_2022_01_001 |
Cites_doi | 10.1105/tpc.107.054437 10.1111/j.1365-313X.2011.04764.x 10.1105/tpc.110.075036 10.1016/j.tplants.2004.12.010 10.1093/nar/gkl198 10.1007/s11427-015-4991-4 10.1016/j.cell.2009.03.038 10.1371/journal.pone.0105726 10.1093/jxb/erq155 10.1093/pcp/pcv101 10.1101/gad.1331305 10.1093/pcp/pcu134 10.1093/emboj/19.22.6150 10.1371/journal.pgen.1003704 10.1111/j.1365-313X.2010.04223.x 10.1111/j.1365-313X.2011.04614.x 10.1104/pp.005538 10.1105/tpc.113.116970 10.1074/mcp.M110.000349 10.1105/tpc.105.040303 10.1111/j.1467-7652.2008.00367.x 10.1111/nph.12824 10.1104/pp.111.178574 10.1111/j.1467-7652.2011.00662.x 10.1111/j.1365-313X.2011.04514.x 10.1093/pcp/pcu140 10.1105/tpc.104.029629 10.1111/pbi.12450 10.1105/tpc.106.047043 10.1111/j.1365-313X.2008.03633.x 10.1038/nbt.3208 10.3389/fpls.2012.00104 10.1104/pp.112.203760 10.1016/j.plantsci.2005.05.035 10.1111/tpj.13434 10.1111/j.1365-313X.2008.03533.x 10.1104/pp.109.148270 10.1038/nprot.2006.286 10.3389/fpls.2015.00288 10.1111/ppl.12317 10.1093/mp/ssq062 10.1093/jxb/eru182 10.1038/nbt.3207 10.1105/tpc.106.047399 10.1111/pbi.12706 |
ContentType | Journal Article |
Copyright | 2017 New Phytologist Trust 2017 The Authors. New Phytologist © 2017 New Phytologist Trust 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. Copyright © 2018 New Phytologist Trust |
Copyright_xml | – notice: 2017 New Phytologist Trust – notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust – notice: 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. – notice: Copyright © 2018 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.14864 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 640 |
ExternalDocumentID | 29105766 10_1111_nph_14864 NPH14864 90016931 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Agriculture of China for transgenic research funderid: 2016ZX08009‐003 – fundername: National Natural Sciences Foundation of China funderid: 31471542 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACQPF AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ADXHL CITATION CGR CUY CVF ECM EIF NPM PKN 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4434-88317078a147fd5d09cd01c8cf606ce091e985cd80c3778c712128d07c66f5373 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:29:51 EDT 2025 Thu Jul 10 19:12:23 EDT 2025 Sun Jul 13 05:36:20 EDT 2025 Wed Feb 19 02:34:37 EST 2025 Thu Apr 24 22:56:22 EDT 2025 Tue Jul 01 03:09:27 EDT 2025 Wed Jan 22 16:47:00 EST 2025 Thu Jul 03 22:16:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | interaction regulation of gene expression NAC transcription factor secondary cell wall (SCW) cotton (Gossypium hirsutum) fiber development |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 The Authors. New Phytologist © 2017 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4434-88317078a147fd5d09cd01c8cf606ce091e985cd80c3778c712128d07c66f5373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.14864 |
PMID | 29105766 |
PQID | 1989635449 |
PQPubID | 2026848 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2020880743 proquest_miscellaneous_1961038175 proquest_journals_1989635449 pubmed_primary_29105766 crossref_primary_10_1111_nph_14864 crossref_citationtrail_10_1111_nph_14864 wiley_primary_10_1111_nph_14864_NPH14864 jstor_primary_90016931 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180101 January 2018 2018-01-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 1 year: 2018 text: 20180101 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2018 |
Publisher | New Phytologist Trust Wiley Subscription Services, Inc |
Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
References | 2015; 56 2007; 19 2011; 157 2010a; 152 2015; 6 2013; 25 2005a; 10 2006; 34 2002; 130 2015; 33 2017; 89 2008; 56 2006; 18 2008; 55 2006; 1 2013; 161 2016; 59 2012; 10 2016; 14 2010; 63 2010b; 3 2009; 137 2014; 65 2013; 9 2010; 61 2010; 22 2005; 19 2012; 3 2000; 19 2017; 15 2005b; 169 2015; 154 2007; 8 2011; 66 2009; 7 2011; 68 2011; 67 2014; 9 2005; 17 2014; 203 2010; 9 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 Alon U (e_1_2_7_2_1) 2007; 8 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 9 start-page: 2019 year: 2010 end-page: 2033 article-title: Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation publication-title: Molecular & Cellular Proteomics – volume: 55 start-page: 652 year: 2008 end-page: 664 article-title: Vascular‐related NAC‐DOMAIN7 is involved in the differentiation of all types of xylem vessels in roots and shoots publication-title: Plant Journal – volume: 68 start-page: 1104 year: 2011 end-page: 1114 article-title: NAC domain function and transcriptional control of a secondary cell wall master switch publication-title: Plant Journal – volume: 9 start-page: e105726 year: 2014 article-title: NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels publication-title: PLoS ONE – volume: 3 start-page: 104 year: 2012 end-page: 110 article-title: Cotton fiber: a powerful single‐cell model for cell wall and cellulose research publication-title: Frontiers in Plant Science – volume: 19 start-page: 1855 year: 2005 end-page: 1860 article-title: Transcription switches for protoxylem and metaxylem vessel formation publication-title: Genes & Development – volume: 56 start-page: 768 year: 2008 end-page: 778 article-title: NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity publication-title: Plant Journal – volume: 18 start-page: 3158 year: 2006 end-page: 3170 article-title: SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of publication-title: Plant Cell – volume: 56 start-page: 1786 year: 2015 end-page: 1797 article-title: Heteromannan and heteroxylan cell wall polysaccharides display different dynamics during the elongation and secondary cell wall deposition phases of cotton fiber cell development publication-title: Plant and Cell Physiology – volume: 161 start-page: 1278 year: 2013 end-page: 1290 article-title: A fasciclin‐like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton ( ) publication-title: Plant Physiology – volume: 10 start-page: 79 year: 2005a end-page: 87 article-title: NAC transcription factors: structurally distinct, functionally diverse publication-title: Trends in Plant Science – volume: 10 start-page: 301 year: 2012 end-page: 312 article-title: Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality publication-title: Plant Biotechnology Journal – volume: 18 start-page: 651 year: 2006 end-page: 664 article-title: Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation publication-title: Plant Cell – volume: 63 start-page: 100 year: 2010 end-page: 114 article-title: An NAC transcription factor orchestrates multiple features of cell wall development in publication-title: Plant Journal – volume: 19 start-page: 3692 year: 2007 end-page: 3704 article-title: Saturated very‐long‐chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis publication-title: Plant Cell – volume: 130 start-page: 666 year: 2002 end-page: 674 article-title: Molecular characterization of the cotton gene that is preferentially expressed in fiber publication-title: Plant Physiology – volume: 154 start-page: 420 year: 2015 end-page: 432 article-title: A R2R3‐MYB transcription factor that is specifically expressed in cotton ( ) fibers affects secondary cell wall biosynthesis and deposition in transgenic publication-title: Physiologia Plantarum – volume: 7 start-page: 13 year: 2009 end-page: 23 article-title: Down‐regulation of GhADF1 gene expression affects cotton fiber properties publication-title: Plant Biotechnology Journal – volume: 203 start-page: 437 year: 2014 end-page: 448 article-title: PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation publication-title: New Phytologist – volume: 8 start-page: 450 year: 2007 end-page: 461 article-title: Network motifs: theory and experimental approaches publication-title: Nature – volume: 152 start-page: 1044 year: 2010a end-page: 1055 article-title: Functional characterization of poplar wood‐associated NAC domain transcription factors publication-title: Plant Physiology – volume: 157 start-page: 40 year: 2011 end-page: 54 article-title: A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber publication-title: Plant Physiology – volume: 33 start-page: 531 year: 2015 end-page: 537 article-title: Sequencing of allotetraploid cotton ( L. acc. TM‐1) provides a resource for fiber improvement publication-title: Nature Biotechnology – volume: 22 start-page: 3461 year: 2010 end-page: 3473 article-title: Arabidopsis VASCULAR‐RELATED NAC‐DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation publication-title: Plant Cell – volume: 66 start-page: 579 year: 2011 end-page: 590 article-title: VASCULAR‐RELATED NAC‐DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation publication-title: Plant Journal – volume: 59 start-page: 194 year: 2016 end-page: 205 article-title: Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis publication-title: Science China Life Sciences – volume: 61 start-page: 3331 year: 2010 end-page: 3344 article-title: Interactome analysis of the six cotton 14‐3‐3s that are preferentially expressed in fibers and involved in cell elongation publication-title: Journal of Experimental Botany – volume: 56 start-page: 242 year: 2015 end-page: 254 article-title: Multiple classes of transcription factors regulate the expression of , a master switch of xylem vessel differentiation publication-title: Plant and Cell Physiology – volume: 3 start-page: 1087 year: 2010b end-page: 1103 article-title: Global analysis of direct targets of secondary wall NAC master switches in publication-title: Molecular Plant – volume: 19 start-page: 6150 year: 2000 end-page: 6161 article-title: Transcriptional repression by AtMYB4 controls production of UV‐protecting sunscreens in publication-title: EMBO Journal – volume: 25 start-page: 4421 year: 2013 end-page: 4438 article-title: The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers publication-title: Plant Cell – volume: 1 start-page: 2019 year: 2006 end-page: 2025 article-title: Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants publication-title: Nature Protocols – volume: 19 start-page: 270 year: 2007 end-page: 280 article-title: NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of publication-title: Plant Cell – volume: 137 start-page: 860 year: 2009 end-page: 872 article-title: Proteasome‐mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity publication-title: Cell – volume: 34 start-page: 369 year: 2006 end-page: 373 article-title: MEME: discovering and analyzing DNA and protein sequence motifs publication-title: Nucleic Acids Research – volume: 9 start-page: e1003704 year: 2013 article-title: Brittle Culm1, a COBRA‐like protein, functions in cellulose assembly through binding cellulose microfibrils publication-title: PLoS Genetics – volume: 33 start-page: 524 year: 2015 end-page: 530 article-title: Genome sequence of cultivated Upland cotton ( TM‐1) provides insights into genome evolution publication-title: Nature Biotechnology – volume: 169 start-page: 785 year: 2005b end-page: 797 article-title: DNA‐binding specificity and molecular functions of NAC transcription factors publication-title: Plant Science – volume: 14 start-page: 951 year: 2016 end-page: 963 article-title: GbEXPATR, a species‐specific expansin, enhances cotton fibre elongation through cell wall restructuring publication-title: Plant Biotechnology Journal – volume: 89 start-page: 957 year: 2017 end-page: 971 article-title: The cotton β‐galactosyltransferase 1 (GalT1) that galactosylates arabinogalactan‐proteins participates in controlling fiber development publication-title: Plant Journal – volume: 6 start-page: 288 year: 2015 article-title: NAC‐MYB‐based transcriptional regulation of secondary cell wall biosynthesis in land plants publication-title: Frontiers in Plant Science – volume: 65 start-page: 4133 year: 2014 end-page: 4147 article-title: Cotton , encoding a class II KNOX transcription factor, is involved in regulation of fiber development publication-title: Journal of Experimental Botany – volume: 67 start-page: 499 year: 2011 end-page: 512 article-title: A NAC domain protein family contributing to the regulation of wood formation in poplar publication-title: Plant Journal – volume: 15 start-page: 1163 year: 2017 end-page: 1174 article-title: GhMYB1 regulates SCW stage‐specific expression of the GhGDSL promoter in the fibres of L publication-title: Plant Biotechnology Journal – volume: 56 start-page: 195 year: 2015 end-page: 214 article-title: Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation publication-title: Plant and Cell Physiology – volume: 17 start-page: 859 year: 2005 end-page: 875 article-title: The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation publication-title: Plant Cell – ident: e_1_2_7_29_1 doi: 10.1105/tpc.107.054437 – ident: e_1_2_7_35_1 doi: 10.1111/j.1365-313X.2011.04764.x – ident: e_1_2_7_23_1 doi: 10.1105/tpc.110.075036 – ident: e_1_2_7_25_1 doi: 10.1016/j.tplants.2004.12.010 – ident: e_1_2_7_3_1 doi: 10.1093/nar/gkl198 – ident: e_1_2_7_10_1 doi: 10.1007/s11427-015-4991-4 – ident: e_1_2_7_32_1 doi: 10.1016/j.cell.2009.03.038 – ident: e_1_2_7_47_1 doi: 10.1371/journal.pone.0105726 – ident: e_1_2_7_41_1 doi: 10.1093/jxb/erq155 – ident: e_1_2_7_9_1 doi: 10.1093/pcp/pcv101 – ident: e_1_2_7_14_1 doi: 10.1101/gad.1331305 – volume: 8 start-page: 450 year: 2007 ident: e_1_2_7_2_1 article-title: Network motifs: theory and experimental approaches publication-title: Nature – ident: e_1_2_7_5_1 doi: 10.1093/pcp/pcu134 – ident: e_1_2_7_13_1 doi: 10.1093/emboj/19.22.6150 – ident: e_1_2_7_16_1 doi: 10.1371/journal.pgen.1003704 – ident: e_1_2_7_42_1 doi: 10.1111/j.1365-313X.2010.04223.x – ident: e_1_2_7_24_1 doi: 10.1111/j.1365-313X.2011.04614.x – ident: e_1_2_7_18_1 doi: 10.1104/pp.005538 – ident: e_1_2_7_8_1 doi: 10.1105/tpc.113.116970 – ident: e_1_2_7_27_1 doi: 10.1074/mcp.M110.000349 – ident: e_1_2_7_30_1 doi: 10.1105/tpc.105.040303 – ident: e_1_2_7_34_1 doi: 10.1111/j.1467-7652.2008.00367.x – ident: e_1_2_7_39_1 doi: 10.1111/nph.12824 – ident: e_1_2_7_4_1 doi: 10.1104/pp.111.178574 – ident: e_1_2_7_12_1 doi: 10.1111/j.1467-7652.2011.00662.x – ident: e_1_2_7_38_1 doi: 10.1111/j.1365-313X.2011.04514.x – ident: e_1_2_7_46_1 doi: 10.1093/pcp/pcu140 – ident: e_1_2_7_17_1 doi: 10.1105/tpc.104.029629 – ident: e_1_2_7_19_1 doi: 10.1111/pbi.12450 – ident: e_1_2_7_20_1 doi: 10.1105/tpc.106.047043 – ident: e_1_2_7_21_1 doi: 10.1111/j.1365-313X.2008.03633.x – ident: e_1_2_7_15_1 doi: 10.1038/nbt.3208 – ident: e_1_2_7_7_1 doi: 10.3389/fpls.2012.00104 – ident: e_1_2_7_11_1 doi: 10.1104/pp.112.203760 – ident: e_1_2_7_26_1 doi: 10.1016/j.plantsci.2005.05.035 – ident: e_1_2_7_28_1 doi: 10.1111/tpj.13434 – ident: e_1_2_7_37_1 doi: 10.1111/j.1365-313X.2008.03533.x – ident: e_1_2_7_44_1 doi: 10.1104/pp.109.148270 – ident: e_1_2_7_31_1 doi: 10.1038/nprot.2006.286 – ident: e_1_2_7_22_1 doi: 10.3389/fpls.2015.00288 – ident: e_1_2_7_33_1 doi: 10.1111/ppl.12317 – ident: e_1_2_7_45_1 doi: 10.1093/mp/ssq062 – ident: e_1_2_7_6_1 doi: 10.1093/jxb/eru182 – ident: e_1_2_7_40_1 doi: 10.1038/nbt.3207 – ident: e_1_2_7_43_1 doi: 10.1105/tpc.106.047399 – ident: e_1_2_7_36_1 doi: 10.1111/pbi.12706 |
SSID | ssj0009562 |
Score | 2.575145 |
Snippet | Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single-cell trichomes on the seed epidermis. However, little is known about the... Summary Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single‐cell trichomes on the seed epidermis. However, little is known about... Cotton ( Gossypium hirsutum ) fibers are the highly elongated and thickened single‐cell trichomes on the seed epidermis. However, little is known about the... Summary Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single-cell trichomes on the seed epidermis. However, little is known about... Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single‐cell trichomes on the seed epidermis. However, little is known about the... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 625 |
SubjectTerms | Arabidopsis - genetics Biosynthesis Cell Wall - metabolism Cell walls consensus sequence Conserved sequence Cotton cotton (Gossypium hirsutum) Cotton Fiber Cotton fibers Elongation Epidermis fiber cells fiber development Fibers Gene Expression Regulation, Plant Genes Genes, Plant Gossypium - cytology Gossypium - genetics Gossypium - metabolism Gossypium hirsutum interaction lint cotton Monosaccharides - analysis NAC transcription factor Nucleotide sequence Phenotype Plant Proteins - genetics Plant Proteins - metabolism Plants (botany) Plants, Genetically Modified Promoter Regions, Genetic proteasome endopeptidase complex Proteasome Endopeptidase Complex - metabolism Proteasomes Protein Binding Protein Multimerization Protein Processing, Post-Translational Proteolysis regulation of gene expression secondary cell wall (SCW) Skin Thickening Trans-Activators - metabolism Transcription transcription (genetics) Transcription factors Transcription, Genetic Transcriptional Activation - genetics transcriptomics Transgenic plants Trichomes Ubiquitin |
Title | The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers |
URI | https://www.jstor.org/stable/90016931 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.14864 https://www.ncbi.nlm.nih.gov/pubmed/29105766 https://www.proquest.com/docview/1989635449 https://www.proquest.com/docview/1961038175 https://www.proquest.com/docview/2020880743 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqigMX3oXQggbEYXtIlYfjOOJUKpYVhxUCKu0BKUpsR41gk9UmKVr-FH-RGeehFrUS4hJFyiSynRnP5-TzN4y9EQVO-kWUu4U2hcu1CdxE5NxNZIjZRYWxNpZtsRSLc_5xFa322NtxL0yvDzF9cKPIsPM1BXiWN1eCvNpcYJhLQVqgxNUiQPQ5uCK4K4JRgVlwsRpUhYjFM915LRf1dMSbgOZ13GoTz_w--zY2ueebfD_p2vxE_fpLzfE_-_SA3RsAKZz2HvSQ7ZnqEbvzrkbQuHvMfqMbAck31BXMPmAndpuyW8NFuW26tlsfw_L0DFrKd-PsA30FH5jNvyz9Y8gayKBnhl0a2PaV7_HyJhv53KaBsoKBMk-b46GhRbrGXgD9VoCfGR7ysm52FaLVpsQnVhrWtSaWk3UsqAsoiPrSPGHn8_dfzxbuUOPBVZyH3JXoEyQ4lPk8LnSkvURpz1dSFbiyUgbRjEkkCRh46DexVLGPuVZqL1ZCFFEYhwdsv6or84xBoDXP8bY4ziSPMl8qifhD0W5bZXxfOWw2vu1UDQLoVIfjRzouhHD4Uzv8Dns9mW561Y-bjA6sy0wWiWelbXyHHY0-lA4zQpMSNw3BHeeJw15NlzGWaSSzytQd2QjfSiZGt9sEVFWVFIxChz3t_XNqQJBQ1WYhsKfWy25ve7r8tLAnz__d9JDdRbQo--9PR2y_3XbmBSKyNn9pQ-8P0RcylQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYIL79KFAgPisD2kysNxHIlLKSwLlBWCVtoLihLboauyyWqzAS1_ir_IjPNQi1oJcYlWyiSyvTOez87nbxh7IXKc9PMwc3Jtcodr4zuxyLgTywCziwoibSzbYiLGx_z9NJxusJfdWZhGH6LfcKPIsPM1BThtSJ-J8mJxgnEuBb_CrlJFb1LOf_3ZPyO5K_xOg1lwMW11hYjH0z96Lhs1hMSLoOZ55GpTz-gW-9o1umGcnO7Vq2xP_fpLz_F_e3Wb3WwxKew3TnSHbZjiLrv2qkTcuL7HfqMnASk4lAUM32Iv1otZPYeT2bKqV_V8Fyb7B7CilNdNQNAU8YHh6MvE24W0ghQactgPA0vzjSqG4e1F2lG6TQWzAlrWPJ2Ph4rW6Rq7AfRlAX6meMlmZbUuELBWM3xjoWFeaiI6Wd-CMoec2C_VfXY8enN0MHbaMg-O4jzgjkS3IM2h1ONRrkPtxkq7npIqx8WVMghoTCxJw8BF14mkijxMt1K7kRIiD4Mo2GKbRVmYbQa-1jzDx6IolTxMPakkQhBFB26V8Tw1YMPu705Uq4FOpTi-J91aCIc_scM_YM9700Uj_HGR0Zb1md4idq26jTdgO50TJe2kUCVET0N8x3k8YM_62xjONJJpYcqabIRnVRPDy218KqxKIkbBgD1oHLRvgB9T4WYhsKfWzS5vezL5NLY_Hv676VN2fXz08TA5fDf58IjdQPAom-2oHba5WtbmMQK0VfbExuEf2Nw2sQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKQYgL78JCgQFx2B5S5eE4jjiVlmV5aFUBlfZQKUpsp12VTVabDWj5U_xFZpyHWtRKiEsUKZPIdmY8n5PP3zD2WuQ46edh5uTa5A7XxndikXEnlgFmFxVE2li2xUSMj_jHaTjdYG-6vTCNPkT_wY0iw87XFOALnZ8L8mJximEuBb_GrnPhxlS34eCLf05xV_idBLPgYtrKChGNp7_1QjJq-IiXIc2LwNVmntEddty1uSGcnO3Wq2xX_fpLzvE_O3WX3W4RKew1LnSPbZjiPrvxtkTUuH7AfqMfAek3lAUM32Mn1otZPYfT2bKqV_V8ByZ7-7CihNdNP9CU8IHh6OvE24G0ghQaatgPA0tzQvXC8PIi7QjdpoJZAS1nnnbHQ0WrdI29APqvAD9TPGSzsloXCFerGT6x0DAvNdGcrGdBmUNO3JfqITsavfu2P3baIg-O4jzgjkSnIMWh1ONRrkPtxkq7npIqx6WVMghnTCxJwcBFx4mkijxMtlK7kRIiD4Mo2GKbRVmYxwx8rXmGt0VRKnmYelJJBCCKttsq43lqwIbd205Uq4BOhTi-J91KCIc_scM_YK9600Uj-3GZ0ZZ1md4idq22jTdg250PJe2UUCVETkN0x3k8YC_7yxjMNJJpYcqabIRnNRPDq218KqtKEkbBgD1q_LNvgB9T2WYhsKfWy65uezI5HNuTJ_9u-oLdPDwYJZ8_TD49ZbcQOcrmW9Q221wta_MM0dkqe26j8A8O3DVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+cotton+%28Gossypium+hirsutum%29+NAC+transcription+factor+%28FSN1%29+as+a+positive+regulator+participates+in+controlling+secondary+cell+wall+biosynthesis+and+modification+of+fibers&rft.jtitle=The+New+phytologist&rft.au=Zhang%2C+Jie&rft.au=Huang%2C+Geng-Qing&rft.au=Zou%2C+Dan&rft.au=Yan%2C+Jing-Qiu&rft.date=2018-01-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=217&rft.issue=2&rft.spage=625&rft_id=info:doi/10.1111%2Fnph.14864&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |