Clinical‐scale production of cGMP compliant CD3/CD19 cell‐depleted NK cells in the evolution of NK cell immunotherapy at a single institution
BACKGROUND Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical‐scale production of NK cells using immunomagnetic selection complies with current good manufacturing practices (cGMPs) and allows for closed‐system, automated purification. We...
Saved in:
Published in | Transfusion (Philadelphia, Pa.) Vol. 58; no. 6; pp. 1458 - 1467 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | BACKGROUND
Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical‐scale production of NK cells using immunomagnetic selection complies with current good manufacturing practices (cGMPs) and allows for closed‐system, automated purification. We report our experience with CD3/CD19 cell‐depleted (CD3/CD19dep) NK cell production and compare to previous methods of CD3 cell depletion and CD3 cell depletion/CD56 cell enrichment.
STUDY DESIGN AND METHODS
Nonmobilized mononuclear cells collected by apheresis were incubated with anti‐CD3/anti‐CD19 microbeads and depleted in an automated cell selection system (CliniMACS, Miltenyi). The NK cell–enriched products were incubated overnight in interleukin (IL)‐2 or IL‐15, washed, and resuspended prior to lot release testing and infusion.
RESULTS
Since 2010, 94 freshly infusible CD3/CD19dep NK cell products were manufactured in support of eight clinical trials. Sixty‐six products were incubated in IL‐2 and 28 products in IL‐15. Processing resulted in a mean NK cell recovery of 74% and viability of 95.8%; NK cells, T cells, B cells, and monocytes accounted for 47%, 0.2%, 0.08%, and 49% of the final products, respectively. Seven products required dose adjustments to meet lot release. The specification for purity changed throughout the evolution of manufacturing. IL‐2 or IL‐15 activation enhanced in vitro cytotoxicity compared to preactivated cells. There was no difference in final product composition or cytotoxicity between cytokine cohorts.
CONCLUSION
Clinical‐scale/cGMP production of NK cells using CD3/CD19 cell‐depletion effectively minimized T‐cell and B‐cell contamination in a single manipulation without compromise to NK‐cell recovery. Cytokine activation increased in vitro cytotoxicity compared to column‐depleted, preactivated NK cells. |
---|---|
AbstractList | BACKGROUND
Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical‐scale production of NK cells using immunomagnetic selection complies with current good manufacturing practices (cGMPs) and allows for closed‐system, automated purification. We report our experience with CD3/CD19 cell‐depleted (CD3/CD19
dep
) NK cell production and compare to previous methods of CD3 cell depletion and CD3 cell depletion/CD56 cell enrichment.
STUDY DESIGN AND METHODS
Nonmobilized mononuclear cells collected by apheresis were incubated with anti‐CD3/anti‐CD19 microbeads and depleted in an automated cell selection system (CliniMACS, Miltenyi). The NK cell–enriched products were incubated overnight in interleukin (IL)‐2 or IL‐15, washed, and resuspended prior to lot release testing and infusion.
RESULTS
Since 2010, 94 freshly infusible CD3/CD19
dep
NK cell products were manufactured in support of eight clinical trials. Sixty‐six products were incubated in IL‐2 and 28 products in IL‐15. Processing resulted in a mean NK cell recovery of 74% and viability of 95.8%; NK cells, T cells, B cells, and monocytes accounted for 47%, 0.2%, 0.08%, and 49% of the final products, respectively. Seven products required dose adjustments to meet lot release. The specification for purity changed throughout the evolution of manufacturing. IL‐2 or IL‐15 activation enhanced in vitro cytotoxicity compared to preactivated cells. There was no difference in final product composition or cytotoxicity between cytokine cohorts.
CONCLUSION
Clinical‐scale/cGMP production of NK cells using CD3/CD19 cell‐depletion effectively minimized T‐cell and B‐cell contamination in a single manipulation without compromise to NK‐cell recovery. Cytokine activation increased in vitro cytotoxicity compared to column‐depleted, preactivated NK cells. BACKGROUND Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical‐scale production of NK cells using immunomagnetic selection complies with current good manufacturing practices (cGMPs) and allows for closed‐system, automated purification. We report our experience with CD3/CD19 cell‐depleted (CD3/CD19dep) NK cell production and compare to previous methods of CD3 cell depletion and CD3 cell depletion/CD56 cell enrichment. STUDY DESIGN AND METHODS Nonmobilized mononuclear cells collected by apheresis were incubated with anti‐CD3/anti‐CD19 microbeads and depleted in an automated cell selection system (CliniMACS, Miltenyi). The NK cell–enriched products were incubated overnight in interleukin (IL)‐2 or IL‐15, washed, and resuspended prior to lot release testing and infusion. RESULTS Since 2010, 94 freshly infusible CD3/CD19dep NK cell products were manufactured in support of eight clinical trials. Sixty‐six products were incubated in IL‐2 and 28 products in IL‐15. Processing resulted in a mean NK cell recovery of 74% and viability of 95.8%; NK cells, T cells, B cells, and monocytes accounted for 47%, 0.2%, 0.08%, and 49% of the final products, respectively. Seven products required dose adjustments to meet lot release. The specification for purity changed throughout the evolution of manufacturing. IL‐2 or IL‐15 activation enhanced in vitro cytotoxicity compared to preactivated cells. There was no difference in final product composition or cytotoxicity between cytokine cohorts. CONCLUSION Clinical‐scale/cGMP production of NK cells using CD3/CD19 cell‐depletion effectively minimized T‐cell and B‐cell contamination in a single manipulation without compromise to NK‐cell recovery. Cytokine activation increased in vitro cytotoxicity compared to column‐depleted, preactivated NK cells. BACKGROUNDAllogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical-scale production of NK cells using immunomagnetic selection complies with current good manufacturing practices (cGMPs) and allows for closed-system, automated purification. We report our experience with CD3/CD19 cell-depleted (CD3/CD19dep ) NK cell production and compare to previous methods of CD3 cell depletion and CD3 cell depletion/CD56 cell enrichment.STUDY DESIGN AND METHODSNonmobilized mononuclear cells collected by apheresis were incubated with anti-CD3/anti-CD19 microbeads and depleted in an automated cell selection system (CliniMACS, Miltenyi). The NK cell-enriched products were incubated overnight in interleukin (IL)-2 or IL-15, washed, and resuspended prior to lot release testing and infusion.RESULTSSince 2010, 94 freshly infusible CD3/CD19dep NK cell products were manufactured in support of eight clinical trials. Sixty-six products were incubated in IL-2 and 28 products in IL-15. Processing resulted in a mean NK cell recovery of 74% and viability of 95.8%; NK cells, T cells, B cells, and monocytes accounted for 47%, 0.2%, 0.08%, and 49% of the final products, respectively. Seven products required dose adjustments to meet lot release. The specification for purity changed throughout the evolution of manufacturing. IL-2 or IL-15 activation enhanced in vitro cytotoxicity compared to preactivated cells. There was no difference in final product composition or cytotoxicity between cytokine cohorts.CONCLUSIONClinical-scale/cGMP production of NK cells using CD3/CD19 cell-depletion effectively minimized T-cell and B-cell contamination in a single manipulation without compromise to NK-cell recovery. Cytokine activation increased in vitro cytotoxicity compared to column-depleted, preactivated NK cells. Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical-scale production of NK cells using immunomagnetic selection complies with current good manufacturing practices (cGMPs) and allows for closed-system, automated purification. We report our experience with CD3/CD19 cell-depleted (CD3/CD19 ) NK cell production and compare to previous methods of CD3 cell depletion and CD3 cell depletion/CD56 cell enrichment. Nonmobilized mononuclear cells collected by apheresis were incubated with anti-CD3/anti-CD19 microbeads and depleted in an automated cell selection system (CliniMACS, Miltenyi). The NK cell-enriched products were incubated overnight in interleukin (IL)-2 or IL-15, washed, and resuspended prior to lot release testing and infusion. Since 2010, 94 freshly infusible CD3/CD19 NK cell products were manufactured in support of eight clinical trials. Sixty-six products were incubated in IL-2 and 28 products in IL-15. Processing resulted in a mean NK cell recovery of 74% and viability of 95.8%; NK cells, T cells, B cells, and monocytes accounted for 47%, 0.2%, 0.08%, and 49% of the final products, respectively. Seven products required dose adjustments to meet lot release. The specification for purity changed throughout the evolution of manufacturing. IL-2 or IL-15 activation enhanced in vitro cytotoxicity compared to preactivated cells. There was no difference in final product composition or cytotoxicity between cytokine cohorts. Clinical-scale/cGMP production of NK cells using CD3/CD19 cell-depletion effectively minimized T-cell and B-cell contamination in a single manipulation without compromise to NK-cell recovery. Cytokine activation increased in vitro cytotoxicity compared to column-depleted, preactivated NK cells. |
Author | Miller, Jeffrey S. Luo, Xianghua Curtsinger, Julie Williams, Shelly M. Sumstad, Darin McKenna, David H. Kadidlo, Diane |
AuthorAffiliation | 2 University of Minnesota, Molecular & Cellular Therapeutics 4 University of Minnesota, Department of Medicine 1 University of Minnesota, Department of Laboratory Medicine and Pathology 3 University of Minnesota, Masonic Cancer Center |
AuthorAffiliation_xml | – name: 3 University of Minnesota, Masonic Cancer Center – name: 4 University of Minnesota, Department of Medicine – name: 2 University of Minnesota, Molecular & Cellular Therapeutics – name: 1 University of Minnesota, Department of Laboratory Medicine and Pathology |
Author_xml | – sequence: 1 givenname: Shelly M. surname: Williams fullname: Williams, Shelly M. organization: University of Minnesota – sequence: 2 givenname: Darin surname: Sumstad fullname: Sumstad, Darin organization: University of Minnesota – sequence: 3 givenname: Diane surname: Kadidlo fullname: Kadidlo, Diane organization: University of Minnesota – sequence: 4 givenname: Julie surname: Curtsinger fullname: Curtsinger, Julie organization: University of Minnesota – sequence: 5 givenname: Xianghua surname: Luo fullname: Luo, Xianghua organization: University of Minnesota – sequence: 6 givenname: Jeffrey S. surname: Miller fullname: Miller, Jeffrey S. organization: University of Minnesota – sequence: 7 givenname: David H. surname: McKenna fullname: McKenna, David H. email: mcken020@umn.edu organization: University of Minnesota |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29532488$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctu1TAQhi3Uip4WFrwAssSGLtLj60m8QUIpvajlIlTWluM4ravETm2n6Oz6CPCKPAk-l1aAhDcj-f_mnxn9-2DHeWcAeIXREc5vnkJ3hBlfsGdghjktCyIE3wEzhBguMKZkD-zHeIsQIgLh52CPCE4Jq6oZ-Fn31lmt-l8PP2IuBo7Bt5NO1jvoO6hPP36B2g9jb5VLsD6m8_oYC6hNv2ppzdibZFr46WL9FaF1MN0YaO59Pz2abEVoh2FyPstBjUuoElQwWnedh1oXk03rhhdgt1N9NC-39QB8O_lwVZ8Vl59Pz-v3l4VmjLKirATXqhFdyUvTKEErw3TTKlI2jVBkUWlEDG6RJg3vOGItwVoLRJkmjDRK0QPwbuM7Ts1gWm1cCqqXY7CDCkvplZV_K87eyGt_LxeIYIKqbPB2axD83WRikoONqzuVM36KkiBMOeaoJBl98w9666fg8nmZ4oIvEBZlpg43lA4-xmC6p2UwkqugZQ5aroPO7Os_t38iH5PNwHwDfLe9Wf7fSV59PdlY_gYZObfL |
CitedBy_id | crossref_primary_10_1016_j_regen_2020_100031 crossref_primary_10_3389_fimmu_2022_859177 crossref_primary_10_3390_cancers15061743 crossref_primary_10_3389_fimmu_2021_732135 crossref_primary_10_3389_fimmu_2022_1044946 crossref_primary_10_3389_fimmu_2023_1227064 crossref_primary_10_1038_s41573_019_0052_1 crossref_primary_10_1016_j_biopha_2023_115888 crossref_primary_10_1111_cts_13102 crossref_primary_10_3390_bioengineering11040328 crossref_primary_10_1097_CJI_0000000000000250 crossref_primary_10_3390_onco1020013 crossref_primary_10_1016_j_tibtech_2023_03_018 crossref_primary_10_1038_s41423_021_00808_3 crossref_primary_10_3389_fimmu_2023_1275904 crossref_primary_10_3389_fimmu_2019_02816 crossref_primary_10_1016_j_jcyt_2021_03_006 crossref_primary_10_3389_fimmu_2021_714822 crossref_primary_10_1016_j_intimp_2022_109387 |
Cites_doi | 10.4049/jimmunol.1301889 10.4049/jimmunol.172.1.644 10.3109/14653249.2010.515582 10.1182/blood-2006-05-024315 10.1038/sj.bmt.1703779 10.1189/jlb.5VMR0415-141R 10.1182/blood-2007-09-077438 10.1111/j.1537-2995.2012.03764.x 10.1126/science.1068440 10.1038/leu.2009.269 10.1182/blood-2008-07-171926 10.1038/ni1581 10.1182/blood-2001-12-0293 10.4049/jimmunol.179.1.89 10.1158/1078-0432.CCR-15-1604 10.1016/0167-5699(90)90097-S 10.1016/j.bbmt.2010.01.019 10.1182/blood-2013-10-532531 10.1182/blood-2004-12-4825 10.1111/j.1365-2249.2009.03983.x 10.1182/blood.V80.9.2221.2221 10.1007/s00262-016-1806-9 10.1182/blood-2004-07-2974 10.1038/sj.leu.2403524 10.3324/haematol.2015.135301 10.3389/fonc.2013.00118 10.1615/CritRevOncog.2014011091 10.1182/blood-2009-05-222190 10.1200/JCO.2009.24.4590 10.1111/j.1537-2995.2012.03695.x 10.1007/s00262-010-0896-z 10.1038/sj.bmt.1704086 10.1126/scitranslmed.aaf2341 10.4049/jimmunol.0803900 10.1182/blood.V94.1.333.413a31_333_339 10.1182/blood-2002-02-0350 10.1046/j.1365-2141.2002.03450.x 10.1182/blood.V97.10.3146 10.1016/j.bbmt.2015.12.028 10.1111/j.1537-2995.2012.03942.x 10.1016/0092-8674(95)90466-2 10.1111/j.1537-2995.2006.01145.x 10.1155/2011/379123 10.1111/j.1537-2995.2009.02121.x 10.1038/bmt.2012.43 10.1016/j.tmrv.2005.02.007 10.1038/sj.bmt.1701970 |
ContentType | Journal Article |
Copyright | 2018 AABB 2018 AABB. |
Copyright_xml | – notice: 2018 AABB – notice: 2018 AABB. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7U9 8FD FR3 H94 K9. P64 7X8 5PM |
DOI | 10.1111/trf.14564 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1537-2995 |
EndPage | 1467 |
ExternalDocumentID | 10_1111_trf_14564 29532488 TRF14564 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Children's Cancer Research Fund – fundername: National Heart, Lung, and Blood Institute funderid: R25HL128372 ; HHSN268201000008C ; P30 CA77598 – fundername: American Cancer Society funderid: P01 CA111412 ; P01 CA65493 – fundername: Leukemia Research Fund – fundername: NCI NIH HHS grantid: P01 CA065493 – fundername: NCI NIH HHS grantid: P30 CA077598 – fundername: NHLBI NIH HHS grantid: HHSN268201000008C – fundername: NHLBI NIH HHS grantid: R25 HL128372 – fundername: NCI NIH HHS grantid: P01 CA111412 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 1OB 1OC 29Q 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABLJU ABPVW ABQWH ABXGK ACAHQ ACBNA ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EGARE EJD EMOBN ESX EX3 F00 F5P FUBAC G-S G.N GODZA H.X HF~ HGLYW HZI HZ~ H~9 IHE IX1 J0M J5H K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TEORI TWZ UB1 UCJ V8K V9Y W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQJ WUP WVDHM WXI WXSBR X7M XG1 YFH YQI YQJ YUY ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7U9 8FD FR3 H94 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4434-7895cab9f757eba938e4cbda27bb9a268c02e1d0c2b5f504d21cc9034c242baa3 |
IEDL.DBID | DR2 |
ISSN | 0041-1132 |
IngestDate | Tue Sep 17 21:28:09 EDT 2024 Fri Aug 16 07:21:35 EDT 2024 Thu Oct 10 22:08:32 EDT 2024 Fri Aug 23 01:48:14 EDT 2024 Sat Sep 28 08:36:45 EDT 2024 Sat Aug 24 01:03:01 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2018 AABB. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4434-7895cab9f757eba938e4cbda27bb9a268c02e1d0c2b5f504d21cc9034c242baa3 |
Notes | Supported in part by the National Heart, Lung, and Blood Institute of the National Institutes of Health under Award Number R25HL128372; Production Assistance for Cellular Therapies (PACT) program from NIH/NHLBI at University of Minnesota Molecular and Cellular Therapeutics Facility (PACT Contract # HHSN268201000008C); NIH P30 CA77598 utilizing the Translational Therapy Laboratory Shared Resource of the Masonic Cancer Center, University of Minnesota; Children's Cancer Research Fund, Leukemia Research Fund, and American Cancer Society, NIH P01 CA111412 and P01 CA65493. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc6021208?pdf=render |
PMID | 29532488 |
PQID | 2059560197 |
PQPubID | 1096380 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6021208 proquest_miscellaneous_2013515072 proquest_journals_2059560197 crossref_primary_10_1111_trf_14564 pubmed_primary_29532488 wiley_primary_10_1111_trf_14564_TRF14564 |
PublicationCentury | 2000 |
PublicationDate | June 2018 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | Transfusion (Philadelphia, Pa.) |
PublicationTitleAlternate | Transfusion |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1992; 80 1990; 11 2010; 16 2013; 3 2010; 59 2002; 295 2009; 182 2008; 9 2002; 117 1999; 24 2016; 101 2009; 157 2009; 113 2011; 13 2014; 192 2007; 109 2003; 31 2009; 49 2003; 32 2016; 99 2011; 2011 2007; 179 1993; 12 1995; 82 2005; 19 2010; 24 2004; 18 2010; 28 2010; 115 2002; 100 2005; 105 2004; 172 2013; 53 2016; 65 2014; 19 1999; 94 2008; 112 2012; 47 2016; 8 2007; 47 2001; 97 2014; 123 2016; 22 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Curtis RE (e_1_2_7_39_1) 1999; 94 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 Trinchieri G (e_1_2_7_7_1) 1993; 12 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 2011 start-page: 379123 year: 2011 article-title: Clinical cancer therapy by NK cells via antibody‐dependent cell‐mediated cytotoxicity publication-title: J Biomed Biotechnol – volume: 105 start-page: 4878 year: 2005 end-page: 84 article-title: Improved outcome in HLA‐identical sibling hematopoietic stem‐cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes publication-title: Blood – volume: 94 start-page: 2208 year: 1999 end-page: 16 article-title: Risk of lymphoproliferative disorders after bone marrow transplantation: a multi‐institutional study publication-title: Blood – volume: 47 start-page: 1419 year: 2012 end-page: 27 article-title: Early evaluation of immune reconstitution following allogeneic CD3/CD19‐depleted grafts from alternative donors in childhood acute leukemia publication-title: Bone Marrow Transplant – volume: 24 start-page: 575 year: 1999 end-page: 81 article-title: Definition of a critical T cell threshold for prevention of GVHD after HLA non‐identical PBPC transplantation in children publication-title: Bone Marrow Transplant – volume: 192 start-page: 3805 year: 2014 end-page: 15 article-title: CD56(bright)perforin(low) noncytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph publication-title: J Immunol – volume: 100 start-page: 1935 year: 2002 end-page: 47 article-title: Natural killer cell receptors: new biology and insights into the graft‐versus‐leukemia effect publication-title: Blood – volume: 9 start-page: 495 year: 2008 end-page: 502 article-title: Up on the tightrope: natural killer cell activation and inhibition publication-title: Nat Immunol – volume: 32 start-page: 177 year: 2003 end-page: 86 article-title: IL‐2‐based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial publication-title: Bone Marrow Transplant – volume: 80 start-page: 2221 year: 1992 end-page: 9 article-title: Role of monocytes in the expansion of human activated natural killer cells publication-title: Blood – volume: 65 start-page: 427 year: 2016 end-page: 40 article-title: Killer‐cell immunoglobulin‐like receptor genes and ligands and their role in hematologic malignancies publication-title: Cancer Immunol Immunother – volume: 53 start-page: 419 year: 2013 end-page: 23 article-title: Hemolytic anemia due to passenger lymphocyte syndrome in solid malignancy patients treated with allogeneic natural killer cell products publication-title: Transfusion – volume: 97 start-page: 3146 year: 2001 end-page: 51 article-title: Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset publication-title: Blood – volume: 31 start-page: 39 year: 2003 end-page: 44 article-title: Donor lymphocyte infusions in adult haploidentical transplant: a dose finding study publication-title: Bone Marrow Transplant – volume: 94 start-page: 333 year: 1999 end-page: 9 article-title: Role of natural killer cell alloreactivity in HLA‐mismatched hematopoietic stem cell transplantation publication-title: Blood – volume: 182 start-page: 4572 year: 2009 end-page: 80 article-title: NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self‐MHC class I: the rheostat model publication-title: J Immunol – volume: 101 start-page: 626 year: 2016 end-page: 33 article-title: Effects of anti‐NKG2A antibody administration on leukemia and normal hematopoietic cells publication-title: Haematologica – volume: 13 start-page: 98 year: 2011 end-page: 107 article-title: A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer publication-title: Cytotherapy – volume: 3 start-page: 118 year: 2013 article-title: Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol publication-title: Front Oncol – volume: 53 start-page: 398 year: 2013 end-page: 403 article-title: Successful “in‐flight” activation of natural killer cells during long‐distance shipping publication-title: Transfusion – volume: 28 start-page: 955 year: 2010 end-page: 9 article-title: NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia publication-title: J Clin Oncol – volume: 59 start-page: 1739 year: 2010 end-page: 44 article-title: Allogeneic natural killer cells for refractory lymphoma publication-title: Cancer Immunol Immunother – volume: 11 start-page: 237 year: 1990 end-page: 44 article-title: In search of the “missing self”: MHC molecules and NK cell recognition publication-title: Immunol Today – volume: 19 start-page: 133 year: 2014 end-page: 41 article-title: NK cells in therapy of cancer publication-title: Crit Rev Oncog – volume: 47 start-page: 520 year: 2007 end-page: 8 article-title: Good manufacturing practices production of natural killer cells for immunotherapy: a six‐year single‐institution experience publication-title: Transfusion – volume: 157 start-page: 325 year: 2009 end-page: 31 article-title: Activating and inhibitory killer immunoglobulin‐like receptors (KIR) in haploidentical haemopoietic stem cell transplantation to cure high‐risk leukaemias publication-title: Clin Exp Immunol – volume: 16 start-page: 612 year: 2010 end-page: 21 article-title: Natural killer cell killing of acute myelogenous leukemia and acute lymphoblastic leukemia blasts by killer cell immunoglobulin‐like receptor‐negative natural killer cells after NKG2A and LIR‐1 blockade publication-title: Biol Blood Marrow Transplant – volume: 82 start-page: 697 year: 1995 end-page: 700 article-title: Natural killer cell receptors: the offs and ons of NK cell recognition publication-title: Cell – volume: 113 start-page: 726 year: 2009 end-page: 32 article-title: Donors with group B KIR haplotypes improve relapse‐free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia publication-title: Blood – volume: 49 start-page: 1018 year: 2009 end-page: 9 article-title: Transfusion‐associated graft‐versus‐host disease: a perspective from a cell therapy laboratory publication-title: Transfusion – volume: 22 start-page: 1914 year: 2016 end-page: 21 article-title: Larger size of donor alloreactive NK cell repertoire correlates with better response to NK cell immunotherapy in elderly acute myeloid leukemia patients publication-title: Clin Cancer Res – volume: 53 start-page: 412 year: 2013 end-page: 8 article-title: Autologous stem cell transplant recipients tolerate haploidentical related‐donor natural killer cell‐enriched infusions publication-title: Transfusion – volume: 109 start-page: 3603 year: 2007 end-page: 6 article-title: Reduction of GVHD and enhanced antitumor effects after adoptive infusion of alloreactive Ly49‐mismatched NK cells from MHC‐matched donors publication-title: Blood – volume: 179 start-page: 89 year: 2007 end-page: 94 article-title: CD56 human NK cells differentiate into CD56 cells: role of contact with peripheral fibroblasts publication-title: J Immunol – volume: 123 start-page: 3855 year: 2014 end-page: 63 article-title: Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL‐2 diphtheria toxin fusion protein publication-title: Blood – volume: 295 start-page: 2097 year: 2002 end-page: 100 article-title: Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants publication-title: Science – volume: 172 start-page: 644 year: 2004 end-page: 50 article-title: Determinants of antileukemia effects of allogeneic NK cells publication-title: J Immunol – volume: 8 start-page: 357ra123 year: 2016 article-title: Cytokine‐induced memory‐like natural killer cells exhibit enhanced responses against myeloid leukemia publication-title: Sci Transl Med – volume: 117 start-page: 275 year: 2002 end-page: 87 article-title: Transfusion‐associated graft‐versus‐host disease publication-title: Br J Haematol – volume: 112 start-page: 461 year: 2008 end-page: 9 article-title: Human natural killer cells publication-title: Blood – volume: 115 start-page: 4293 year: 2010 end-page: 301 article-title: NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects publication-title: Blood – volume: 12 start-page: 218 year: 1993 end-page: 34 article-title: Receptors for the Fc fragment of IgG on natural killer cells publication-title: Nat Immunol – volume: 18 start-page: 1835 year: 2004 end-page: 8 article-title: Purified donor NK‐lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation publication-title: Leukemia – volume: 105 start-page: 3051 year: 2005 end-page: 7 article-title: Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer publication-title: Blood – volume: 24 start-page: 583 year: 2010 end-page: 91 article-title: CD3+/CD19+‐depleted grafts in HLA‐matched allogeneic peripheral blood stem cell transplantation lead to early NK cell cytolytic responses and reduced inhibitory activity of NKG2A publication-title: Leukemia – volume: 100 start-page: 3633 year: 2002 end-page: 8 article-title: In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells publication-title: Blood – volume: 19 start-page: 217 year: 2005 end-page: 28 article-title: The Minnesota molecular and cellular therapeutics facility: a state‐of‐the‐art biotherapeutics engineering laboratory publication-title: Transfus Med Rev – volume: 99 start-page: 87 year: 2016 end-page: 96 article-title: Natural killer (NK) cells and anti‐tumor therapeutic mAb: unexplored interactions publication-title: J Leukoc Biol – volume: 22 start-page: 705 year: 2016 end-page: 9 article-title: Phase II study of haploidentical natural killer cell infusion for treatment of relapsed or persistent myeloid malignancies following allogeneic hematopoietic cell transplantation publication-title: Biol Blood Marrow Transplant – ident: e_1_2_7_4_1 doi: 10.4049/jimmunol.1301889 – ident: e_1_2_7_32_1 doi: 10.4049/jimmunol.172.1.644 – ident: e_1_2_7_35_1 doi: 10.3109/14653249.2010.515582 – ident: e_1_2_7_33_1 doi: 10.1182/blood-2006-05-024315 – ident: e_1_2_7_45_1 doi: 10.1038/sj.bmt.1703779 – ident: e_1_2_7_49_1 doi: 10.1189/jlb.5VMR0415-141R – ident: e_1_2_7_2_1 doi: 10.1182/blood-2007-09-077438 – ident: e_1_2_7_36_1 doi: 10.1111/j.1537-2995.2012.03764.x – ident: e_1_2_7_19_1 doi: 10.1126/science.1068440 – ident: e_1_2_7_41_1 doi: 10.1038/leu.2009.269 – ident: e_1_2_7_30_1 doi: 10.1182/blood-2008-07-171926 – ident: e_1_2_7_12_1 doi: 10.1038/ni1581 – ident: e_1_2_7_43_1 doi: 10.1182/blood-2001-12-0293 – ident: e_1_2_7_3_1 doi: 10.4049/jimmunol.179.1.89 – ident: e_1_2_7_23_1 doi: 10.1158/1078-0432.CCR-15-1604 – ident: e_1_2_7_10_1 doi: 10.1016/0167-5699(90)90097-S – ident: e_1_2_7_11_1 doi: 10.1016/j.bbmt.2010.01.019 – ident: e_1_2_7_20_1 doi: 10.1182/blood-2013-10-532531 – ident: e_1_2_7_31_1 doi: 10.1182/blood-2004-12-4825 – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-2249.2009.03983.x – ident: e_1_2_7_29_1 doi: 10.1182/blood.V80.9.2221.2221 – ident: e_1_2_7_13_1 doi: 10.1007/s00262-016-1806-9 – ident: e_1_2_7_21_1 doi: 10.1182/blood-2004-07-2974 – ident: e_1_2_7_25_1 doi: 10.1038/sj.leu.2403524 – ident: e_1_2_7_50_1 doi: 10.3324/haematol.2015.135301 – ident: e_1_2_7_40_1 doi: 10.3389/fonc.2013.00118 – ident: e_1_2_7_16_1 doi: 10.1615/CritRevOncog.2014011091 – ident: e_1_2_7_15_1 doi: 10.1182/blood-2009-05-222190 – ident: e_1_2_7_24_1 doi: 10.1200/JCO.2009.24.4590 – ident: e_1_2_7_37_1 doi: 10.1111/j.1537-2995.2012.03695.x – ident: e_1_2_7_34_1 doi: 10.1007/s00262-010-0896-z – ident: e_1_2_7_17_1 doi: 10.1038/sj.bmt.1704086 – ident: e_1_2_7_26_1 doi: 10.1126/scitranslmed.aaf2341 – ident: e_1_2_7_48_1 doi: 10.4049/jimmunol.0803900 – ident: e_1_2_7_18_1 doi: 10.1182/blood.V94.1.333.413a31_333_339 – ident: e_1_2_7_14_1 doi: 10.1182/blood-2002-02-0350 – ident: e_1_2_7_44_1 doi: 10.1046/j.1365-2141.2002.03450.x – ident: e_1_2_7_5_1 doi: 10.1182/blood.V97.10.3146 – ident: e_1_2_7_22_1 doi: 10.1016/j.bbmt.2015.12.028 – ident: e_1_2_7_38_1 doi: 10.1111/j.1537-2995.2012.03942.x – ident: e_1_2_7_8_1 doi: 10.1016/0092-8674(95)90466-2 – ident: e_1_2_7_27_1 doi: 10.1111/j.1537-2995.2006.01145.x – volume: 12 start-page: 218 year: 1993 ident: e_1_2_7_7_1 article-title: Receptors for the Fc fragment of IgG on natural killer cells publication-title: Nat Immunol contributor: fullname: Trinchieri G – ident: e_1_2_7_6_1 doi: 10.1155/2011/379123 – ident: e_1_2_7_47_1 doi: 10.1111/j.1537-2995.2009.02121.x – ident: e_1_2_7_42_1 doi: 10.1038/bmt.2012.43 – ident: e_1_2_7_28_1 doi: 10.1016/j.tmrv.2005.02.007 – volume: 94 start-page: 2208 year: 1999 ident: e_1_2_7_39_1 article-title: Risk of lymphoproliferative disorders after bone marrow transplantation: a multi‐institutional study publication-title: Blood contributor: fullname: Curtis RE – ident: e_1_2_7_46_1 doi: 10.1038/sj.bmt.1701970 |
SSID | ssj0002901 |
Score | 2.373715 |
Snippet | BACKGROUND
Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical‐scale production of NK cells using... Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical-scale production of NK cells using... BACKGROUNDAllogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical‐scale production of NK cells using... BACKGROUNDAllogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical-scale production of NK cells using... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1458 |
SubjectTerms | Adoptive immunotherapy Antigens, CD19 Apheresis Automation CD19 antigen CD3 antigen CD3 Complex CD56 antigen Cell activation Cell Culture Techniques - methods Clinical trials Contamination Cyclic GMP Cytokines Cytokines - pharmacology Cytotoxicity Cytotoxicity, Immunologic - drug effects Depletion Evolution Humans Immunomagnetic Separation Immunotherapy Immunotherapy - methods Interleukins Killer Cells, Natural - cytology Killer Cells, Natural - drug effects Leukapheresis Leukocytes (mononuclear) Lymphocyte Depletion - methods Lymphocytes Lymphocytes B Lymphocytes T Manufacturing Medical research Microspheres Monocytes Nanoparticles Natural killer cells Purification Recovery Toxicity Viability |
Title | Clinical‐scale production of cGMP compliant CD3/CD19 cell‐depleted NK cells in the evolution of NK cell immunotherapy at a single institution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftrf.14564 https://www.ncbi.nlm.nih.gov/pubmed/29532488 https://www.proquest.com/docview/2059560197 https://search.proquest.com/docview/2013515072 https://pubmed.ncbi.nlm.nih.gov/PMC6021208 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAX3o9AQQZx4JKShx3b4oR2WSrQVqhqpR6QIr-irkDZVTeLBCd-AvxFfgkzsRO6VEiIU6LYju3MTPzZM_5MyDPhdKN1zlNXGZ8y46tUy0ynGRMgZGFhBEKP7vywOjhhb0_56Q55OeyFCfwQ44IbWkb_v0YD12Z9wci78wbMnFfIBZqXAsO5pke_qaPQPxi8y3mKp6lHViGM4hlLbo9FlwDm5TjJi_i1H4Bm18mHoekh7uTj_qYz-_brH6yO_9m3G-RaBKb0VdCkm2THt7fIlXl0vd8mPyKD6Kef376v4eLpKpDFgmDpsqH2zfw9DQHqICw6mZYvJtNcUfQMQBHnV6Ah3tHDd_2jNV20FMAn9Z-j8uNLYiJd4K6VuDfsC9Ud1RTXNKDSRQxugAJ3yMns9fHkII3nOaSWsZKlQiputVGN4MIbrUrpmTVOF8IYpYtK2qzwuctsYXjDM-aK3FqVlcwCjjBal3fJbrts_X1CDZe2yTJXOK4Yh0RjJToQG6Ub6aoqIU8HydarQNtRD9Md-Lh1_3ETsjfIvI6Wu64LwJs4S1UiIU_GZLA57L5u_XKDefBcQ0DSRULuBRUZaykUB4wqZULElvKMGZDPezulXZz1vN4V0u1nUPJ5rxt_b3h9fDTrbx78e9aH5Co0W4Yotz2y251v_CPAU5153BvOL1ixIIk |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEX3o9AAYM4cEmbh53YEhe0y7LQ7gpVW6kXFPkVsWqVXXWzSHDiJ8Bf5JcwTpzQpUJCnBLFdmxnZuLPnvFngBe5kaWUMQtNpmxIlc1CySMZRjRHIecaRyDn0Z1Ms_ERfX_MjrfgVbcXpuWH6BfcnGU0_2tn4G5B-pyV12cl2jnL6CW4jOaeuoMbhoe_yaOch7D1L8ehO0_d8wq5OJ6-6OZodAFiXoyUPI9gmyFodAM-do1vI09Odte12tVf_-B1_N_e3YTrHpuS160y3YItW92GKxPvfb8DPzyJ6OnPb99XeLFk2fLFomzJoiT67eQDaWPUUV5kMEz3BsNYEOccwCLGLlFJrCHT_ebRiswrgviT2M9e_91LfCKZu40rfnvYFyJrIolb1sBK5z6-AQvchaPRm9lgHPojHUJNaUrDnAumpRJlznKrpEi5pVoZmeRKCZlkXEeJjU2kE8VKFlGTxFqLKKUaoYSSMr0H29Wisg-AKMZ1GUUmMUxQholKc-dDLIUsucmyAJ53oi2WLXNH0c148OMWzccNYKcTeuGNd1UkCDndRFXkATzrk9HsXPdlZRdrl8cdbYhgOgngfqsjfS2JYAhTOQ8g39CePoOj9N5MqeafGmrvzDHuR1jyZaMcf294MTscNTcP_z3rU7g6nk0OioN30_1HcA27wNugtx3Yrs_W9jHCq1o9aazoFyqzJKE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVceD8CBQziwCVtHnZii1O1y1Iou6qqVuoBKfIrYtUqu-pmkeDUn1D-Ir-k48QJXSokxClRbMd2Zib-7Bl_BniTG1lKGbPQZMqGVNkslDySYURzFHKucQRyHt3xJNs9op-O2fEavOv2wrT8EP2Cm7OM5n_tDHxuyitGXp-VaOYsozfgJs0Q-TpEdPCbO8o5CFv3chy649Q9rZAL4-mLrg5G1xDm9UDJqwC2GYFGd-BL1_Y28ORka1mrLf3jD1rH_-zcXbjtkSnZaVXpHqzZ6j5sjL3v_QH89BSip7_OLxZ4sWTessWiZMmsJPrDeJ-0EeooLTIYptuDYSyIcw1gEWPnqCLWkMle82hBphVB9EnsN6_97iU-kUzdthW_Oew7kTWRxC1qYKVTH92ABR7C0ej94WA39Ac6hJrSlIY5F0xLJcqc5VZJkXJLtTIyyZUSMsm4jhIbm0gnipUsoiaJtRZRSjUCCSVl-gjWq1llnwBRjOsyikximKAME5XmzoNYCllyk2UBvO4kW8xb3o6im-_gxy2ajxvAZifzwpvuokgQcLppqsgDeNUno9G57svKzpYujzvYEKF0EsDjVkX6WhLBEKRyHkC-ojx9BkfovZpSTb82xN6Z49uPsOTbRjf-3vDi8GDU3Dz996wvYWN_OCo-f5zsPYNb2APeRrxtwnp9trTPEVvV6kVjQ5eynCNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical-scale+production+of+cGMP+compliant+CD3%2FCD19+cell-depleted+NK+cells+in+the+evolution+of+NK+cell+immunotherapy+at+a+single+institution&rft.jtitle=Transfusion+%28Philadelphia%2C+Pa.%29&rft.au=Williams%2C+Shelly+M&rft.au=Sumstad%2C+Darin&rft.au=Kadidlo%2C+Diane&rft.au=Curtsinger%2C+Julie&rft.date=2018-06-01&rft.eissn=1537-2995&rft.volume=58&rft.issue=6&rft.spage=1458&rft_id=info:doi/10.1111%2Ftrf.14564&rft_id=info%3Apmid%2F29532488&rft.externalDocID=29532488 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-1132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-1132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-1132&client=summon |