Clinical‐scale production of cGMP compliant CD3/CD19 cell‐depleted NK cells in the evolution of NK cell immunotherapy at a single institution

BACKGROUND Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical‐scale production of NK cells using immunomagnetic selection complies with current good manufacturing practices (cGMPs) and allows for closed‐system, automated purification. We...

Full description

Saved in:
Bibliographic Details
Published inTransfusion (Philadelphia, Pa.) Vol. 58; no. 6; pp. 1458 - 1467
Main Authors Williams, Shelly M., Sumstad, Darin, Kadidlo, Diane, Curtsinger, Julie, Luo, Xianghua, Miller, Jeffrey S., McKenna, David H.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical‐scale production of NK cells using immunomagnetic selection complies with current good manufacturing practices (cGMPs) and allows for closed‐system, automated purification. We report our experience with CD3/CD19 cell‐depleted (CD3/CD19dep) NK cell production and compare to previous methods of CD3 cell depletion and CD3 cell depletion/CD56 cell enrichment. STUDY DESIGN AND METHODS Nonmobilized mononuclear cells collected by apheresis were incubated with anti‐CD3/anti‐CD19 microbeads and depleted in an automated cell selection system (CliniMACS, Miltenyi). The NK cell–enriched products were incubated overnight in interleukin (IL)‐2 or IL‐15, washed, and resuspended prior to lot release testing and infusion. RESULTS Since 2010, 94 freshly infusible CD3/CD19dep NK cell products were manufactured in support of eight clinical trials. Sixty‐six products were incubated in IL‐2 and 28 products in IL‐15. Processing resulted in a mean NK cell recovery of 74% and viability of 95.8%; NK cells, T cells, B cells, and monocytes accounted for 47%, 0.2%, 0.08%, and 49% of the final products, respectively. Seven products required dose adjustments to meet lot release. The specification for purity changed throughout the evolution of manufacturing. IL‐2 or IL‐15 activation enhanced in vitro cytotoxicity compared to preactivated cells. There was no difference in final product composition or cytotoxicity between cytokine cohorts. CONCLUSION Clinical‐scale/cGMP production of NK cells using CD3/CD19 cell‐depletion effectively minimized T‐cell and B‐cell contamination in a single manipulation without compromise to NK‐cell recovery. Cytokine activation increased in vitro cytotoxicity compared to column‐depleted, preactivated NK cells.
AbstractList BACKGROUND Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical‐scale production of NK cells using immunomagnetic selection complies with current good manufacturing practices (cGMPs) and allows for closed‐system, automated purification. We report our experience with CD3/CD19 cell‐depleted (CD3/CD19 dep ) NK cell production and compare to previous methods of CD3 cell depletion and CD3 cell depletion/CD56 cell enrichment. STUDY DESIGN AND METHODS Nonmobilized mononuclear cells collected by apheresis were incubated with anti‐CD3/anti‐CD19 microbeads and depleted in an automated cell selection system (CliniMACS, Miltenyi). The NK cell–enriched products were incubated overnight in interleukin (IL)‐2 or IL‐15, washed, and resuspended prior to lot release testing and infusion. RESULTS Since 2010, 94 freshly infusible CD3/CD19 dep NK cell products were manufactured in support of eight clinical trials. Sixty‐six products were incubated in IL‐2 and 28 products in IL‐15. Processing resulted in a mean NK cell recovery of 74% and viability of 95.8%; NK cells, T cells, B cells, and monocytes accounted for 47%, 0.2%, 0.08%, and 49% of the final products, respectively. Seven products required dose adjustments to meet lot release. The specification for purity changed throughout the evolution of manufacturing. IL‐2 or IL‐15 activation enhanced in vitro cytotoxicity compared to preactivated cells. There was no difference in final product composition or cytotoxicity between cytokine cohorts. CONCLUSION Clinical‐scale/cGMP production of NK cells using CD3/CD19 cell‐depletion effectively minimized T‐cell and B‐cell contamination in a single manipulation without compromise to NK‐cell recovery. Cytokine activation increased in vitro cytotoxicity compared to column‐depleted, preactivated NK cells.
BACKGROUND Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical‐scale production of NK cells using immunomagnetic selection complies with current good manufacturing practices (cGMPs) and allows for closed‐system, automated purification. We report our experience with CD3/CD19 cell‐depleted (CD3/CD19dep) NK cell production and compare to previous methods of CD3 cell depletion and CD3 cell depletion/CD56 cell enrichment. STUDY DESIGN AND METHODS Nonmobilized mononuclear cells collected by apheresis were incubated with anti‐CD3/anti‐CD19 microbeads and depleted in an automated cell selection system (CliniMACS, Miltenyi). The NK cell–enriched products were incubated overnight in interleukin (IL)‐2 or IL‐15, washed, and resuspended prior to lot release testing and infusion. RESULTS Since 2010, 94 freshly infusible CD3/CD19dep NK cell products were manufactured in support of eight clinical trials. Sixty‐six products were incubated in IL‐2 and 28 products in IL‐15. Processing resulted in a mean NK cell recovery of 74% and viability of 95.8%; NK cells, T cells, B cells, and monocytes accounted for 47%, 0.2%, 0.08%, and 49% of the final products, respectively. Seven products required dose adjustments to meet lot release. The specification for purity changed throughout the evolution of manufacturing. IL‐2 or IL‐15 activation enhanced in vitro cytotoxicity compared to preactivated cells. There was no difference in final product composition or cytotoxicity between cytokine cohorts. CONCLUSION Clinical‐scale/cGMP production of NK cells using CD3/CD19 cell‐depletion effectively minimized T‐cell and B‐cell contamination in a single manipulation without compromise to NK‐cell recovery. Cytokine activation increased in vitro cytotoxicity compared to column‐depleted, preactivated NK cells.
BACKGROUNDAllogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical-scale production of NK cells using immunomagnetic selection complies with current good manufacturing practices (cGMPs) and allows for closed-system, automated purification. We report our experience with CD3/CD19 cell-depleted (CD3/CD19dep ) NK cell production and compare to previous methods of CD3 cell depletion and CD3 cell depletion/CD56 cell enrichment.STUDY DESIGN AND METHODSNonmobilized mononuclear cells collected by apheresis were incubated with anti-CD3/anti-CD19 microbeads and depleted in an automated cell selection system (CliniMACS, Miltenyi). The NK cell-enriched products were incubated overnight in interleukin (IL)-2 or IL-15, washed, and resuspended prior to lot release testing and infusion.RESULTSSince 2010, 94 freshly infusible CD3/CD19dep NK cell products were manufactured in support of eight clinical trials. Sixty-six products were incubated in IL-2 and 28 products in IL-15. Processing resulted in a mean NK cell recovery of 74% and viability of 95.8%; NK cells, T cells, B cells, and monocytes accounted for 47%, 0.2%, 0.08%, and 49% of the final products, respectively. Seven products required dose adjustments to meet lot release. The specification for purity changed throughout the evolution of manufacturing. IL-2 or IL-15 activation enhanced in vitro cytotoxicity compared to preactivated cells. There was no difference in final product composition or cytotoxicity between cytokine cohorts.CONCLUSIONClinical-scale/cGMP production of NK cells using CD3/CD19 cell-depletion effectively minimized T-cell and B-cell contamination in a single manipulation without compromise to NK-cell recovery. Cytokine activation increased in vitro cytotoxicity compared to column-depleted, preactivated NK cells.
Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical-scale production of NK cells using immunomagnetic selection complies with current good manufacturing practices (cGMPs) and allows for closed-system, automated purification. We report our experience with CD3/CD19 cell-depleted (CD3/CD19 ) NK cell production and compare to previous methods of CD3 cell depletion and CD3 cell depletion/CD56 cell enrichment. Nonmobilized mononuclear cells collected by apheresis were incubated with anti-CD3/anti-CD19 microbeads and depleted in an automated cell selection system (CliniMACS, Miltenyi). The NK cell-enriched products were incubated overnight in interleukin (IL)-2 or IL-15, washed, and resuspended prior to lot release testing and infusion. Since 2010, 94 freshly infusible CD3/CD19 NK cell products were manufactured in support of eight clinical trials. Sixty-six products were incubated in IL-2 and 28 products in IL-15. Processing resulted in a mean NK cell recovery of 74% and viability of 95.8%; NK cells, T cells, B cells, and monocytes accounted for 47%, 0.2%, 0.08%, and 49% of the final products, respectively. Seven products required dose adjustments to meet lot release. The specification for purity changed throughout the evolution of manufacturing. IL-2 or IL-15 activation enhanced in vitro cytotoxicity compared to preactivated cells. There was no difference in final product composition or cytotoxicity between cytokine cohorts. Clinical-scale/cGMP production of NK cells using CD3/CD19 cell-depletion effectively minimized T-cell and B-cell contamination in a single manipulation without compromise to NK-cell recovery. Cytokine activation increased in vitro cytotoxicity compared to column-depleted, preactivated NK cells.
Author Miller, Jeffrey S.
Luo, Xianghua
Curtsinger, Julie
Williams, Shelly M.
Sumstad, Darin
McKenna, David H.
Kadidlo, Diane
AuthorAffiliation 2 University of Minnesota, Molecular & Cellular Therapeutics
4 University of Minnesota, Department of Medicine
1 University of Minnesota, Department of Laboratory Medicine and Pathology
3 University of Minnesota, Masonic Cancer Center
AuthorAffiliation_xml – name: 3 University of Minnesota, Masonic Cancer Center
– name: 4 University of Minnesota, Department of Medicine
– name: 2 University of Minnesota, Molecular & Cellular Therapeutics
– name: 1 University of Minnesota, Department of Laboratory Medicine and Pathology
Author_xml – sequence: 1
  givenname: Shelly M.
  surname: Williams
  fullname: Williams, Shelly M.
  organization: University of Minnesota
– sequence: 2
  givenname: Darin
  surname: Sumstad
  fullname: Sumstad, Darin
  organization: University of Minnesota
– sequence: 3
  givenname: Diane
  surname: Kadidlo
  fullname: Kadidlo, Diane
  organization: University of Minnesota
– sequence: 4
  givenname: Julie
  surname: Curtsinger
  fullname: Curtsinger, Julie
  organization: University of Minnesota
– sequence: 5
  givenname: Xianghua
  surname: Luo
  fullname: Luo, Xianghua
  organization: University of Minnesota
– sequence: 6
  givenname: Jeffrey S.
  surname: Miller
  fullname: Miller, Jeffrey S.
  organization: University of Minnesota
– sequence: 7
  givenname: David H.
  surname: McKenna
  fullname: McKenna, David H.
  email: mcken020@umn.edu
  organization: University of Minnesota
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29532488$$D View this record in MEDLINE/PubMed
BookMark eNp1kctu1TAQhi3Uip4WFrwAssSGLtLj60m8QUIpvajlIlTWluM4ravETm2n6Oz6CPCKPAk-l1aAhDcj-f_mnxn9-2DHeWcAeIXREc5vnkJ3hBlfsGdghjktCyIE3wEzhBguMKZkD-zHeIsQIgLh52CPCE4Jq6oZ-Fn31lmt-l8PP2IuBo7Bt5NO1jvoO6hPP36B2g9jb5VLsD6m8_oYC6hNv2ppzdibZFr46WL9FaF1MN0YaO59Pz2abEVoh2FyPstBjUuoElQwWnedh1oXk03rhhdgt1N9NC-39QB8O_lwVZ8Vl59Pz-v3l4VmjLKirATXqhFdyUvTKEErw3TTKlI2jVBkUWlEDG6RJg3vOGItwVoLRJkmjDRK0QPwbuM7Ts1gWm1cCqqXY7CDCkvplZV_K87eyGt_LxeIYIKqbPB2axD83WRikoONqzuVM36KkiBMOeaoJBl98w9666fg8nmZ4oIvEBZlpg43lA4-xmC6p2UwkqugZQ5aroPO7Os_t38iH5PNwHwDfLe9Wf7fSV59PdlY_gYZObfL
CitedBy_id crossref_primary_10_1016_j_regen_2020_100031
crossref_primary_10_3389_fimmu_2022_859177
crossref_primary_10_3390_cancers15061743
crossref_primary_10_3389_fimmu_2021_732135
crossref_primary_10_3389_fimmu_2022_1044946
crossref_primary_10_3389_fimmu_2023_1227064
crossref_primary_10_1038_s41573_019_0052_1
crossref_primary_10_1016_j_biopha_2023_115888
crossref_primary_10_1111_cts_13102
crossref_primary_10_3390_bioengineering11040328
crossref_primary_10_1097_CJI_0000000000000250
crossref_primary_10_3390_onco1020013
crossref_primary_10_1016_j_tibtech_2023_03_018
crossref_primary_10_1038_s41423_021_00808_3
crossref_primary_10_3389_fimmu_2023_1275904
crossref_primary_10_3389_fimmu_2019_02816
crossref_primary_10_1016_j_jcyt_2021_03_006
crossref_primary_10_3389_fimmu_2021_714822
crossref_primary_10_1016_j_intimp_2022_109387
Cites_doi 10.4049/jimmunol.1301889
10.4049/jimmunol.172.1.644
10.3109/14653249.2010.515582
10.1182/blood-2006-05-024315
10.1038/sj.bmt.1703779
10.1189/jlb.5VMR0415-141R
10.1182/blood-2007-09-077438
10.1111/j.1537-2995.2012.03764.x
10.1126/science.1068440
10.1038/leu.2009.269
10.1182/blood-2008-07-171926
10.1038/ni1581
10.1182/blood-2001-12-0293
10.4049/jimmunol.179.1.89
10.1158/1078-0432.CCR-15-1604
10.1016/0167-5699(90)90097-S
10.1016/j.bbmt.2010.01.019
10.1182/blood-2013-10-532531
10.1182/blood-2004-12-4825
10.1111/j.1365-2249.2009.03983.x
10.1182/blood.V80.9.2221.2221
10.1007/s00262-016-1806-9
10.1182/blood-2004-07-2974
10.1038/sj.leu.2403524
10.3324/haematol.2015.135301
10.3389/fonc.2013.00118
10.1615/CritRevOncog.2014011091
10.1182/blood-2009-05-222190
10.1200/JCO.2009.24.4590
10.1111/j.1537-2995.2012.03695.x
10.1007/s00262-010-0896-z
10.1038/sj.bmt.1704086
10.1126/scitranslmed.aaf2341
10.4049/jimmunol.0803900
10.1182/blood.V94.1.333.413a31_333_339
10.1182/blood-2002-02-0350
10.1046/j.1365-2141.2002.03450.x
10.1182/blood.V97.10.3146
10.1016/j.bbmt.2015.12.028
10.1111/j.1537-2995.2012.03942.x
10.1016/0092-8674(95)90466-2
10.1111/j.1537-2995.2006.01145.x
10.1155/2011/379123
10.1111/j.1537-2995.2009.02121.x
10.1038/bmt.2012.43
10.1016/j.tmrv.2005.02.007
10.1038/sj.bmt.1701970
ContentType Journal Article
Copyright 2018 AABB
2018 AABB.
Copyright_xml – notice: 2018 AABB
– notice: 2018 AABB.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7U9
8FD
FR3
H94
K9.
P64
7X8
5PM
DOI 10.1111/trf.14564
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1537-2995
EndPage 1467
ExternalDocumentID 10_1111_trf_14564
29532488
TRF14564
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Children's Cancer Research Fund
– fundername: National Heart, Lung, and Blood Institute
  funderid: R25HL128372 ; HHSN268201000008C ; P30 CA77598
– fundername: American Cancer Society
  funderid: P01 CA111412 ; P01 CA65493
– fundername: Leukemia Research Fund
– fundername: NCI NIH HHS
  grantid: P01 CA065493
– fundername: NCI NIH HHS
  grantid: P30 CA077598
– fundername: NHLBI NIH HHS
  grantid: HHSN268201000008C
– fundername: NHLBI NIH HHS
  grantid: R25 HL128372
– fundername: NCI NIH HHS
  grantid: P01 CA111412
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1OB
1OC
29Q
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBNA
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EGARE
EJD
EMOBN
ESX
EX3
F00
F5P
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HZI
HZ~
H~9
IHE
IX1
J0M
J5H
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TEORI
TWZ
UB1
UCJ
V8K
V9Y
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YQI
YQJ
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7U9
8FD
FR3
H94
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4434-7895cab9f757eba938e4cbda27bb9a268c02e1d0c2b5f504d21cc9034c242baa3
IEDL.DBID DR2
ISSN 0041-1132
IngestDate Tue Sep 17 21:28:09 EDT 2024
Fri Aug 16 07:21:35 EDT 2024
Thu Oct 10 22:08:32 EDT 2024
Fri Aug 23 01:48:14 EDT 2024
Sat Sep 28 08:36:45 EDT 2024
Sat Aug 24 01:03:01 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2018 AABB.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4434-7895cab9f757eba938e4cbda27bb9a268c02e1d0c2b5f504d21cc9034c242baa3
Notes Supported in part by the National Heart, Lung, and Blood Institute of the National Institutes of Health under Award Number R25HL128372; Production Assistance for Cellular Therapies (PACT) program from NIH/NHLBI at University of Minnesota Molecular and Cellular Therapeutics Facility (PACT Contract # HHSN268201000008C); NIH P30 CA77598 utilizing the Translational Therapy Laboratory Shared Resource of the Masonic Cancer Center, University of Minnesota; Children's Cancer Research Fund, Leukemia Research Fund, and American Cancer Society, NIH P01 CA111412 and P01 CA65493. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc6021208?pdf=render
PMID 29532488
PQID 2059560197
PQPubID 1096380
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6021208
proquest_miscellaneous_2013515072
proquest_journals_2059560197
crossref_primary_10_1111_trf_14564
pubmed_primary_29532488
wiley_primary_10_1111_trf_14564_TRF14564
PublicationCentury 2000
PublicationDate June 2018
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: June 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle Transfusion (Philadelphia, Pa.)
PublicationTitleAlternate Transfusion
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1992; 80
1990; 11
2010; 16
2013; 3
2010; 59
2002; 295
2009; 182
2008; 9
2002; 117
1999; 24
2016; 101
2009; 157
2009; 113
2011; 13
2014; 192
2007; 109
2003; 31
2009; 49
2003; 32
2016; 99
2011; 2011
2007; 179
1993; 12
1995; 82
2005; 19
2010; 24
2004; 18
2010; 28
2010; 115
2002; 100
2005; 105
2004; 172
2013; 53
2016; 65
2014; 19
1999; 94
2008; 112
2012; 47
2016; 8
2007; 47
2001; 97
2014; 123
2016; 22
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Curtis RE (e_1_2_7_39_1) 1999; 94
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
Trinchieri G (e_1_2_7_7_1) 1993; 12
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 2011
  start-page: 379123
  year: 2011
  article-title: Clinical cancer therapy by NK cells via antibody‐dependent cell‐mediated cytotoxicity
  publication-title: J Biomed Biotechnol
– volume: 105
  start-page: 4878
  year: 2005
  end-page: 84
  article-title: Improved outcome in HLA‐identical sibling hematopoietic stem‐cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes
  publication-title: Blood
– volume: 94
  start-page: 2208
  year: 1999
  end-page: 16
  article-title: Risk of lymphoproliferative disorders after bone marrow transplantation: a multi‐institutional study
  publication-title: Blood
– volume: 47
  start-page: 1419
  year: 2012
  end-page: 27
  article-title: Early evaluation of immune reconstitution following allogeneic CD3/CD19‐depleted grafts from alternative donors in childhood acute leukemia
  publication-title: Bone Marrow Transplant
– volume: 24
  start-page: 575
  year: 1999
  end-page: 81
  article-title: Definition of a critical T cell threshold for prevention of GVHD after HLA non‐identical PBPC transplantation in children
  publication-title: Bone Marrow Transplant
– volume: 192
  start-page: 3805
  year: 2014
  end-page: 15
  article-title: CD56(bright)perforin(low) noncytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph
  publication-title: J Immunol
– volume: 100
  start-page: 1935
  year: 2002
  end-page: 47
  article-title: Natural killer cell receptors: new biology and insights into the graft‐versus‐leukemia effect
  publication-title: Blood
– volume: 9
  start-page: 495
  year: 2008
  end-page: 502
  article-title: Up on the tightrope: natural killer cell activation and inhibition
  publication-title: Nat Immunol
– volume: 32
  start-page: 177
  year: 2003
  end-page: 86
  article-title: IL‐2‐based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: a phase I/II trial
  publication-title: Bone Marrow Transplant
– volume: 80
  start-page: 2221
  year: 1992
  end-page: 9
  article-title: Role of monocytes in the expansion of human activated natural killer cells
  publication-title: Blood
– volume: 65
  start-page: 427
  year: 2016
  end-page: 40
  article-title: Killer‐cell immunoglobulin‐like receptor genes and ligands and their role in hematologic malignancies
  publication-title: Cancer Immunol Immunother
– volume: 53
  start-page: 419
  year: 2013
  end-page: 23
  article-title: Hemolytic anemia due to passenger lymphocyte syndrome in solid malignancy patients treated with allogeneic natural killer cell products
  publication-title: Transfusion
– volume: 97
  start-page: 3146
  year: 2001
  end-page: 51
  article-title: Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset
  publication-title: Blood
– volume: 31
  start-page: 39
  year: 2003
  end-page: 44
  article-title: Donor lymphocyte infusions in adult haploidentical transplant: a dose finding study
  publication-title: Bone Marrow Transplant
– volume: 94
  start-page: 333
  year: 1999
  end-page: 9
  article-title: Role of natural killer cell alloreactivity in HLA‐mismatched hematopoietic stem cell transplantation
  publication-title: Blood
– volume: 182
  start-page: 4572
  year: 2009
  end-page: 80
  article-title: NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self‐MHC class I: the rheostat model
  publication-title: J Immunol
– volume: 101
  start-page: 626
  year: 2016
  end-page: 33
  article-title: Effects of anti‐NKG2A antibody administration on leukemia and normal hematopoietic cells
  publication-title: Haematologica
– volume: 13
  start-page: 98
  year: 2011
  end-page: 107
  article-title: A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer
  publication-title: Cytotherapy
– volume: 3
  start-page: 118
  year: 2013
  article-title: Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol
  publication-title: Front Oncol
– volume: 53
  start-page: 398
  year: 2013
  end-page: 403
  article-title: Successful “in‐flight” activation of natural killer cells during long‐distance shipping
  publication-title: Transfusion
– volume: 28
  start-page: 955
  year: 2010
  end-page: 9
  article-title: NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia
  publication-title: J Clin Oncol
– volume: 59
  start-page: 1739
  year: 2010
  end-page: 44
  article-title: Allogeneic natural killer cells for refractory lymphoma
  publication-title: Cancer Immunol Immunother
– volume: 11
  start-page: 237
  year: 1990
  end-page: 44
  article-title: In search of the “missing self”: MHC molecules and NK cell recognition
  publication-title: Immunol Today
– volume: 19
  start-page: 133
  year: 2014
  end-page: 41
  article-title: NK cells in therapy of cancer
  publication-title: Crit Rev Oncog
– volume: 47
  start-page: 520
  year: 2007
  end-page: 8
  article-title: Good manufacturing practices production of natural killer cells for immunotherapy: a six‐year single‐institution experience
  publication-title: Transfusion
– volume: 157
  start-page: 325
  year: 2009
  end-page: 31
  article-title: Activating and inhibitory killer immunoglobulin‐like receptors (KIR) in haploidentical haemopoietic stem cell transplantation to cure high‐risk leukaemias
  publication-title: Clin Exp Immunol
– volume: 16
  start-page: 612
  year: 2010
  end-page: 21
  article-title: Natural killer cell killing of acute myelogenous leukemia and acute lymphoblastic leukemia blasts by killer cell immunoglobulin‐like receptor‐negative natural killer cells after NKG2A and LIR‐1 blockade
  publication-title: Biol Blood Marrow Transplant
– volume: 82
  start-page: 697
  year: 1995
  end-page: 700
  article-title: Natural killer cell receptors: the offs and ons of NK cell recognition
  publication-title: Cell
– volume: 113
  start-page: 726
  year: 2009
  end-page: 32
  article-title: Donors with group B KIR haplotypes improve relapse‐free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia
  publication-title: Blood
– volume: 49
  start-page: 1018
  year: 2009
  end-page: 9
  article-title: Transfusion‐associated graft‐versus‐host disease: a perspective from a cell therapy laboratory
  publication-title: Transfusion
– volume: 22
  start-page: 1914
  year: 2016
  end-page: 21
  article-title: Larger size of donor alloreactive NK cell repertoire correlates with better response to NK cell immunotherapy in elderly acute myeloid leukemia patients
  publication-title: Clin Cancer Res
– volume: 53
  start-page: 412
  year: 2013
  end-page: 8
  article-title: Autologous stem cell transplant recipients tolerate haploidentical related‐donor natural killer cell‐enriched infusions
  publication-title: Transfusion
– volume: 109
  start-page: 3603
  year: 2007
  end-page: 6
  article-title: Reduction of GVHD and enhanced antitumor effects after adoptive infusion of alloreactive Ly49‐mismatched NK cells from MHC‐matched donors
  publication-title: Blood
– volume: 179
  start-page: 89
  year: 2007
  end-page: 94
  article-title: CD56 human NK cells differentiate into CD56 cells: role of contact with peripheral fibroblasts
  publication-title: J Immunol
– volume: 123
  start-page: 3855
  year: 2014
  end-page: 63
  article-title: Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL‐2 diphtheria toxin fusion protein
  publication-title: Blood
– volume: 295
  start-page: 2097
  year: 2002
  end-page: 100
  article-title: Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants
  publication-title: Science
– volume: 172
  start-page: 644
  year: 2004
  end-page: 50
  article-title: Determinants of antileukemia effects of allogeneic NK cells
  publication-title: J Immunol
– volume: 8
  start-page: 357ra123
  year: 2016
  article-title: Cytokine‐induced memory‐like natural killer cells exhibit enhanced responses against myeloid leukemia
  publication-title: Sci Transl Med
– volume: 117
  start-page: 275
  year: 2002
  end-page: 87
  article-title: Transfusion‐associated graft‐versus‐host disease
  publication-title: Br J Haematol
– volume: 112
  start-page: 461
  year: 2008
  end-page: 9
  article-title: Human natural killer cells
  publication-title: Blood
– volume: 115
  start-page: 4293
  year: 2010
  end-page: 301
  article-title: NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects
  publication-title: Blood
– volume: 12
  start-page: 218
  year: 1993
  end-page: 34
  article-title: Receptors for the Fc fragment of IgG on natural killer cells
  publication-title: Nat Immunol
– volume: 18
  start-page: 1835
  year: 2004
  end-page: 8
  article-title: Purified donor NK‐lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation
  publication-title: Leukemia
– volume: 105
  start-page: 3051
  year: 2005
  end-page: 7
  article-title: Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer
  publication-title: Blood
– volume: 24
  start-page: 583
  year: 2010
  end-page: 91
  article-title: CD3+/CD19+‐depleted grafts in HLA‐matched allogeneic peripheral blood stem cell transplantation lead to early NK cell cytolytic responses and reduced inhibitory activity of NKG2A
  publication-title: Leukemia
– volume: 100
  start-page: 3633
  year: 2002
  end-page: 8
  article-title: In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells
  publication-title: Blood
– volume: 19
  start-page: 217
  year: 2005
  end-page: 28
  article-title: The Minnesota molecular and cellular therapeutics facility: a state‐of‐the‐art biotherapeutics engineering laboratory
  publication-title: Transfus Med Rev
– volume: 99
  start-page: 87
  year: 2016
  end-page: 96
  article-title: Natural killer (NK) cells and anti‐tumor therapeutic mAb: unexplored interactions
  publication-title: J Leukoc Biol
– volume: 22
  start-page: 705
  year: 2016
  end-page: 9
  article-title: Phase II study of haploidentical natural killer cell infusion for treatment of relapsed or persistent myeloid malignancies following allogeneic hematopoietic cell transplantation
  publication-title: Biol Blood Marrow Transplant
– ident: e_1_2_7_4_1
  doi: 10.4049/jimmunol.1301889
– ident: e_1_2_7_32_1
  doi: 10.4049/jimmunol.172.1.644
– ident: e_1_2_7_35_1
  doi: 10.3109/14653249.2010.515582
– ident: e_1_2_7_33_1
  doi: 10.1182/blood-2006-05-024315
– ident: e_1_2_7_45_1
  doi: 10.1038/sj.bmt.1703779
– ident: e_1_2_7_49_1
  doi: 10.1189/jlb.5VMR0415-141R
– ident: e_1_2_7_2_1
  doi: 10.1182/blood-2007-09-077438
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1537-2995.2012.03764.x
– ident: e_1_2_7_19_1
  doi: 10.1126/science.1068440
– ident: e_1_2_7_41_1
  doi: 10.1038/leu.2009.269
– ident: e_1_2_7_30_1
  doi: 10.1182/blood-2008-07-171926
– ident: e_1_2_7_12_1
  doi: 10.1038/ni1581
– ident: e_1_2_7_43_1
  doi: 10.1182/blood-2001-12-0293
– ident: e_1_2_7_3_1
  doi: 10.4049/jimmunol.179.1.89
– ident: e_1_2_7_23_1
  doi: 10.1158/1078-0432.CCR-15-1604
– ident: e_1_2_7_10_1
  doi: 10.1016/0167-5699(90)90097-S
– ident: e_1_2_7_11_1
  doi: 10.1016/j.bbmt.2010.01.019
– ident: e_1_2_7_20_1
  doi: 10.1182/blood-2013-10-532531
– ident: e_1_2_7_31_1
  doi: 10.1182/blood-2004-12-4825
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-2249.2009.03983.x
– ident: e_1_2_7_29_1
  doi: 10.1182/blood.V80.9.2221.2221
– ident: e_1_2_7_13_1
  doi: 10.1007/s00262-016-1806-9
– ident: e_1_2_7_21_1
  doi: 10.1182/blood-2004-07-2974
– ident: e_1_2_7_25_1
  doi: 10.1038/sj.leu.2403524
– ident: e_1_2_7_50_1
  doi: 10.3324/haematol.2015.135301
– ident: e_1_2_7_40_1
  doi: 10.3389/fonc.2013.00118
– ident: e_1_2_7_16_1
  doi: 10.1615/CritRevOncog.2014011091
– ident: e_1_2_7_15_1
  doi: 10.1182/blood-2009-05-222190
– ident: e_1_2_7_24_1
  doi: 10.1200/JCO.2009.24.4590
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1537-2995.2012.03695.x
– ident: e_1_2_7_34_1
  doi: 10.1007/s00262-010-0896-z
– ident: e_1_2_7_17_1
  doi: 10.1038/sj.bmt.1704086
– ident: e_1_2_7_26_1
  doi: 10.1126/scitranslmed.aaf2341
– ident: e_1_2_7_48_1
  doi: 10.4049/jimmunol.0803900
– ident: e_1_2_7_18_1
  doi: 10.1182/blood.V94.1.333.413a31_333_339
– ident: e_1_2_7_14_1
  doi: 10.1182/blood-2002-02-0350
– ident: e_1_2_7_44_1
  doi: 10.1046/j.1365-2141.2002.03450.x
– ident: e_1_2_7_5_1
  doi: 10.1182/blood.V97.10.3146
– ident: e_1_2_7_22_1
  doi: 10.1016/j.bbmt.2015.12.028
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1537-2995.2012.03942.x
– ident: e_1_2_7_8_1
  doi: 10.1016/0092-8674(95)90466-2
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1537-2995.2006.01145.x
– volume: 12
  start-page: 218
  year: 1993
  ident: e_1_2_7_7_1
  article-title: Receptors for the Fc fragment of IgG on natural killer cells
  publication-title: Nat Immunol
  contributor:
    fullname: Trinchieri G
– ident: e_1_2_7_6_1
  doi: 10.1155/2011/379123
– ident: e_1_2_7_47_1
  doi: 10.1111/j.1537-2995.2009.02121.x
– ident: e_1_2_7_42_1
  doi: 10.1038/bmt.2012.43
– ident: e_1_2_7_28_1
  doi: 10.1016/j.tmrv.2005.02.007
– volume: 94
  start-page: 2208
  year: 1999
  ident: e_1_2_7_39_1
  article-title: Risk of lymphoproliferative disorders after bone marrow transplantation: a multi‐institutional study
  publication-title: Blood
  contributor:
    fullname: Curtis RE
– ident: e_1_2_7_46_1
  doi: 10.1038/sj.bmt.1701970
SSID ssj0002901
Score 2.373715
Snippet BACKGROUND Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical‐scale production of NK cells using...
Allogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical-scale production of NK cells using...
BACKGROUNDAllogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical‐scale production of NK cells using...
BACKGROUNDAllogeneic natural killer (NK) cell adoptive immunotherapy is a growing therapeutic option for patients. Clinical-scale production of NK cells using...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1458
SubjectTerms Adoptive immunotherapy
Antigens, CD19
Apheresis
Automation
CD19 antigen
CD3 antigen
CD3 Complex
CD56 antigen
Cell activation
Cell Culture Techniques - methods
Clinical trials
Contamination
Cyclic GMP
Cytokines
Cytokines - pharmacology
Cytotoxicity
Cytotoxicity, Immunologic - drug effects
Depletion
Evolution
Humans
Immunomagnetic Separation
Immunotherapy
Immunotherapy - methods
Interleukins
Killer Cells, Natural - cytology
Killer Cells, Natural - drug effects
Leukapheresis
Leukocytes (mononuclear)
Lymphocyte Depletion - methods
Lymphocytes
Lymphocytes B
Lymphocytes T
Manufacturing
Medical research
Microspheres
Monocytes
Nanoparticles
Natural killer cells
Purification
Recovery
Toxicity
Viability
Title Clinical‐scale production of cGMP compliant CD3/CD19 cell‐depleted NK cells in the evolution of NK cell immunotherapy at a single institution
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftrf.14564
https://www.ncbi.nlm.nih.gov/pubmed/29532488
https://www.proquest.com/docview/2059560197
https://search.proquest.com/docview/2013515072
https://pubmed.ncbi.nlm.nih.gov/PMC6021208
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAX3o9AQQZx4JKShx3b4oR2WSrQVqhqpR6QIr-irkDZVTeLBCd-AvxFfgkzsRO6VEiIU6LYju3MTPzZM_5MyDPhdKN1zlNXGZ8y46tUy0ynGRMgZGFhBEKP7vywOjhhb0_56Q55OeyFCfwQ44IbWkb_v0YD12Z9wci78wbMnFfIBZqXAsO5pke_qaPQPxi8y3mKp6lHViGM4hlLbo9FlwDm5TjJi_i1H4Bm18mHoekh7uTj_qYz-_brH6yO_9m3G-RaBKb0VdCkm2THt7fIlXl0vd8mPyKD6Kef376v4eLpKpDFgmDpsqH2zfw9DQHqICw6mZYvJtNcUfQMQBHnV6Ah3tHDd_2jNV20FMAn9Z-j8uNLYiJd4K6VuDfsC9Ud1RTXNKDSRQxugAJ3yMns9fHkII3nOaSWsZKlQiputVGN4MIbrUrpmTVOF8IYpYtK2qzwuctsYXjDM-aK3FqVlcwCjjBal3fJbrts_X1CDZe2yTJXOK4Yh0RjJToQG6Ub6aoqIU8HydarQNtRD9Md-Lh1_3ETsjfIvI6Wu64LwJs4S1UiIU_GZLA57L5u_XKDefBcQ0DSRULuBRUZaykUB4wqZULElvKMGZDPezulXZz1vN4V0u1nUPJ5rxt_b3h9fDTrbx78e9aH5Co0W4Yotz2y251v_CPAU5153BvOL1ixIIk
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEX3o9AAYM4cEmbh53YEhe0y7LQ7gpVW6kXFPkVsWqVXXWzSHDiJ8Bf5JcwTpzQpUJCnBLFdmxnZuLPnvFngBe5kaWUMQtNpmxIlc1CySMZRjRHIecaRyDn0Z1Ms_ERfX_MjrfgVbcXpuWH6BfcnGU0_2tn4G5B-pyV12cl2jnL6CW4jOaeuoMbhoe_yaOch7D1L8ehO0_d8wq5OJ6-6OZodAFiXoyUPI9gmyFodAM-do1vI09Odte12tVf_-B1_N_e3YTrHpuS160y3YItW92GKxPvfb8DPzyJ6OnPb99XeLFk2fLFomzJoiT67eQDaWPUUV5kMEz3BsNYEOccwCLGLlFJrCHT_ebRiswrgviT2M9e_91LfCKZu40rfnvYFyJrIolb1sBK5z6-AQvchaPRm9lgHPojHUJNaUrDnAumpRJlznKrpEi5pVoZmeRKCZlkXEeJjU2kE8VKFlGTxFqLKKUaoYSSMr0H29Wisg-AKMZ1GUUmMUxQholKc-dDLIUsucmyAJ53oi2WLXNH0c148OMWzccNYKcTeuGNd1UkCDndRFXkATzrk9HsXPdlZRdrl8cdbYhgOgngfqsjfS2JYAhTOQ8g39CePoOj9N5MqeafGmrvzDHuR1jyZaMcf294MTscNTcP_z3rU7g6nk0OioN30_1HcA27wNugtx3Yrs_W9jHCq1o9aazoFyqzJKE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVceD8CBQziwCVtHnZii1O1y1Iou6qqVuoBKfIrYtUqu-pmkeDUn1D-Ir-k48QJXSokxClRbMd2Zib-7Bl_BniTG1lKGbPQZMqGVNkslDySYURzFHKucQRyHt3xJNs9op-O2fEavOv2wrT8EP2Cm7OM5n_tDHxuyitGXp-VaOYsozfgJs0Q-TpEdPCbO8o5CFv3chy649Q9rZAL4-mLrg5G1xDm9UDJqwC2GYFGd-BL1_Y28ORka1mrLf3jD1rH_-zcXbjtkSnZaVXpHqzZ6j5sjL3v_QH89BSip7_OLxZ4sWTessWiZMmsJPrDeJ-0EeooLTIYptuDYSyIcw1gEWPnqCLWkMle82hBphVB9EnsN6_97iU-kUzdthW_Oew7kTWRxC1qYKVTH92ABR7C0ej94WA39Ac6hJrSlIY5F0xLJcqc5VZJkXJLtTIyyZUSMsm4jhIbm0gnipUsoiaJtRZRSjUCCSVl-gjWq1llnwBRjOsyikximKAME5XmzoNYCllyk2UBvO4kW8xb3o6im-_gxy2ajxvAZifzwpvuokgQcLppqsgDeNUno9G57svKzpYujzvYEKF0EsDjVkX6WhLBEKRyHkC-ojx9BkfovZpSTb82xN6Z49uPsOTbRjf-3vDi8GDU3Dz996wvYWN_OCo-f5zsPYNb2APeRrxtwnp9trTPEVvV6kVjQ5eynCNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical-scale+production+of+cGMP+compliant+CD3%2FCD19+cell-depleted+NK+cells+in+the+evolution+of+NK+cell+immunotherapy+at+a+single+institution&rft.jtitle=Transfusion+%28Philadelphia%2C+Pa.%29&rft.au=Williams%2C+Shelly+M&rft.au=Sumstad%2C+Darin&rft.au=Kadidlo%2C+Diane&rft.au=Curtsinger%2C+Julie&rft.date=2018-06-01&rft.eissn=1537-2995&rft.volume=58&rft.issue=6&rft.spage=1458&rft_id=info:doi/10.1111%2Ftrf.14564&rft_id=info%3Apmid%2F29532488&rft.externalDocID=29532488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-1132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-1132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-1132&client=summon