Stochastic parcel tracking in an Euler–Lagrange compartment model for fast simulation of fermentation processes

The compartment model (CM) is a well‐known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent implementations use flow profiles based on Computational Fluid Dynamics (CFD) simulations, and several authors included microbial kinetics to simula...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 119; no. 7; pp. 1849 - 1860
Main Authors Haringa, Cees, Tang, Wenjun, Noorman, Henk J.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The compartment model (CM) is a well‐known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent implementations use flow profiles based on Computational Fluid Dynamics (CFD) simulations, and several authors included microbial kinetics to simulate gradients in bioreactors. However, these studies relied on black‐box kinetics that do not account for intracellular changes and cell population dynamics in response to heterogeneous environments. In this paper, we report the implementation of a Lagrangian reaction model, where the microbial phase is tracked as a set of biomass‐parcels, each linked with an intracellular composition vector and a structured reaction model describing their intracellular response to extracellular variations. A stochastic parcel tracking approach is adopted, in contrast to the resolved trajectories used in CFD implementations. A penicillin production process is used as a case study. We show good performance of the model compared with full CFD simulations, both regarding the extracellular gradients and intracellular pool response, using the mixing time as a matching criterion and taking into account that the mixing time is sensitive to the number of compartments. The sensitivity of the model output towards some of the inputs is explored. The coarsest representative CM requires a few minutes to solve 80 h of flow time, compared with approximately 2 weeks for a full Euler–Lagrange CFD simulation of the same case. This alleviates one of the major bottlenecks for the application of such CFD simulations towards the analysis and optimization of industrial fermentation processes. Compartment models (CMs) provide a rapid method to simulate the impact of substrate heterogeneity on industrial bioprocesses. By incorporating structured metabolic models in a CM wherein the biomass population is represented by discrete parcels, predictions on the microbial response to substrate heterogeneity can be made which are close to full Computational Fluid Dynamics simulations, but with vastly reduced computational expenses. The workflow and performance are shown for a penicillin production process.
AbstractList The compartment model (CM) is a well‐known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent implementations use flow profiles based on Computational Fluid Dynamics (CFD) simulations, and several authors included microbial kinetics to simulate gradients in bioreactors. However, these studies relied on black‐box kinetics that do not account for intracellular changes and cell population dynamics in response to heterogeneous environments. In this paper, we report the implementation of a Lagrangian reaction model, where the microbial phase is tracked as a set of biomass‐parcels, each linked with an intracellular composition vector and a structured reaction model describing their intracellular response to extracellular variations. A stochastic parcel tracking approach is adopted, in contrast to the resolved trajectories used in CFD implementations. A penicillin production process is used as a case study. We show good performance of the model compared with full CFD simulations, both regarding the extracellular gradients and intracellular pool response, using the mixing time as a matching criterion and taking into account that the mixing time is sensitive to the number of compartments. The sensitivity of the model output towards some of the inputs is explored. The coarsest representative CM requires a few minutes to solve 80 h of flow time, compared with approximately 2 weeks for a full Euler–Lagrange CFD simulation of the same case. This alleviates one of the major bottlenecks for the application of such CFD simulations towards the analysis and optimization of industrial fermentation processes. Compartment models (CMs) provide a rapid method to simulate the impact of substrate heterogeneity on industrial bioprocesses. By incorporating structured metabolic models in a CM wherein the biomass population is represented by discrete parcels, predictions on the microbial response to substrate heterogeneity can be made which are close to full Computational Fluid Dynamics simulations, but with vastly reduced computational expenses. The workflow and performance are shown for a penicillin production process.
The compartment model (CM) is a well‐known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent implementations use flow profiles based on Computational Fluid Dynamics (CFD) simulations, and several authors included microbial kinetics to simulate gradients in bioreactors. However, these studies relied on black‐box kinetics that do not account for intracellular changes and cell population dynamics in response to heterogeneous environments. In this paper, we report the implementation of a Lagrangian reaction model, where the microbial phase is tracked as a set of biomass‐parcels, each linked with an intracellular composition vector and a structured reaction model describing their intracellular response to extracellular variations. A stochastic parcel tracking approach is adopted, in contrast to the resolved trajectories used in CFD implementations. A penicillin production process is used as a case study. We show good performance of the model compared with full CFD simulations, both regarding the extracellular gradients and intracellular pool response, using the mixing time as a matching criterion and taking into account that the mixing time is sensitive to the number of compartments. The sensitivity of the model output towards some of the inputs is explored. The coarsest representative CM requires a few minutes to solve 80 h of flow time, compared with approximately 2 weeks for a full Euler–Lagrange CFD simulation of the same case. This alleviates one of the major bottlenecks for the application of such CFD simulations towards the analysis and optimization of industrial fermentation processes.
The compartment model (CM) is a well-known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent implementations use flow profiles based on Computational Fluid Dynamics (CFD) simulations, and several authors included microbial kinetics to simulate gradients in bioreactors. However, these studies relied on black-box kinetics that do not account for intracellular changes and cell population dynamics in response to heterogeneous environments. In this paper, we report the implementation of a Lagrangian reaction model, where the microbial phase is tracked as a set of biomass-parcels, each linked with an intracellular composition vector and a structured reaction model describing their intracellular response to extracellular variations. A stochastic parcel tracking approach is adopted, in contrast to the resolved trajectories used in CFD implementations. A penicillin production process is used as a case study. We show good performance of the model compared with full CFD simulations, both regarding the extracellular gradients and intracellular pool response, using the mixing time as a matching criterion and taking into account that the mixing time is sensitive to the number of compartments. The sensitivity of the model output towards some of the inputs is explored. The coarsest representative CM requires a few minutes to solve 80 h of flow time, compared with approximately 2 weeks for a full Euler-Lagrange CFD simulation of the same case. This alleviates one of the major bottlenecks for the application of such CFD simulations towards the analysis and optimization of industrial fermentation processes.
Abstract The compartment model (CM) is a well‐known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent implementations use flow profiles based on Computational Fluid Dynamics (CFD) simulations, and several authors included microbial kinetics to simulate gradients in bioreactors. However, these studies relied on black‐box kinetics that do not account for intracellular changes and cell population dynamics in response to heterogeneous environments. In this paper, we report the implementation of a Lagrangian reaction model, where the microbial phase is tracked as a set of biomass‐parcels, each linked with an intracellular composition vector and a structured reaction model describing their intracellular response to extracellular variations. A stochastic parcel tracking approach is adopted, in contrast to the resolved trajectories used in CFD implementations. A penicillin production process is used as a case study. We show good performance of the model compared with full CFD simulations, both regarding the extracellular gradients and intracellular pool response, using the mixing time as a matching criterion and taking into account that the mixing time is sensitive to the number of compartments. The sensitivity of the model output towards some of the inputs is explored. The coarsest representative CM requires a few minutes to solve 80 h of flow time, compared with approximately 2 weeks for a full Euler–Lagrange CFD simulation of the same case. This alleviates one of the major bottlenecks for the application of such CFD simulations towards the analysis and optimization of industrial fermentation processes.
Author Tang, Wenjun
Haringa, Cees
Noorman, Henk J.
AuthorAffiliation 2 Department of Biotechnology, Bioprocess Engineering group, Faculty of Applied Sciences, Delft University of Technology Royal DSM Delft The Netherlands
1 Biotechnology Department, Bioprocess Engineering Delft University of Technology Delft The Netherlands
AuthorAffiliation_xml – name: 1 Biotechnology Department, Bioprocess Engineering Delft University of Technology Delft The Netherlands
– name: 2 Department of Biotechnology, Bioprocess Engineering group, Faculty of Applied Sciences, Delft University of Technology Royal DSM Delft The Netherlands
Author_xml – sequence: 1
  givenname: Cees
  orcidid: 0000-0003-0310-1045
  surname: Haringa
  fullname: Haringa, Cees
  email: C.Haringa@tudelft.nl
  organization: Delft University of Technology
– sequence: 2
  givenname: Wenjun
  surname: Tang
  fullname: Tang, Wenjun
  organization: Royal DSM
– sequence: 3
  givenname: Henk J.
  surname: Noorman
  fullname: Noorman, Henk J.
  organization: Royal DSM
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35352339$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1qFTEUx4NU7G114QtIwI0ups3X5GMjaGlr4YIL6zpkcs_cps4kt8mM0p3v4Bv6JKZOLSpIFuFwfvlxTv4HaC-mCAg9p-SIEsKOuzAdMU2MeIRWlBjVEGbIHloRQmTDW8P20UEp17VUWsonaJ-3vGWcmxW6-Tglf-XKFDzeuexhwFN2_nOIWxwidhGfzgPkH9--r902u7gF7NNYyWmEOOExbeqLPmXcVwcuYZwHN4UUcepxD_kOWupdTh5KgfIUPe7dUODZ_X2IPp2dXp68b9Yfzi9O3q4bLwQXjQSjedeTeigY8BQ6LVhdgRitpBKy9VqLTlDuQQtqDDE92UjlOFGqY4wfojeLdzd3I2x8nSS7we5yGF2-tckF-3cnhiu7TV-s4Yy2WlfBq3tBTjczlMmOodQPGlyENBfLpGiFNEKJir78B71Oc451vUqp1nDDqanU64XyOZWSoX8YhhJ7F6StQdpfQVb2xZ_TP5C_k6vA8QJ8DQPc_t9k311cLsqfN2erug
CitedBy_id crossref_primary_10_1016_j_compchemeng_2024_108650
crossref_primary_10_3390_bioengineering10060744
crossref_primary_10_1016_j_cherd_2024_04_014
crossref_primary_10_1016_j_bej_2024_109330
crossref_primary_10_1016_j_biotechadv_2022_108015
crossref_primary_10_1002_cite_202255018
crossref_primary_10_1016_j_dche_2022_100040
crossref_primary_10_3390_bioengineering11060546
crossref_primary_10_1016_j_biotechadv_2022_108071
crossref_primary_10_1002_aic_18358
Cites_doi 10.1016/0893-9659(89)90079-7
10.1002/bit.260260522
10.1016/j.ces.2016.07.031
10.1205/026387699526223
10.1385/MB:34:3:355
10.1002/btpr.1503
10.1002/elsc.201600061
10.1016/j.bej.2019.107293
10.1016/j.ces.2013.11.033
10.1002/elsc.201400172
10.1205/cherd06183
10.5334/jors.151
10.1002/biot.201000409
10.1002/bit.22689
10.1016/j.compchemeng.2018.12.015
10.1016/S0168-1656(00)00365-5
10.1002/aic.13820
10.1016/S1385-8947(00)00271-0
10.1016/j.ces.2015.05.045
10.1016/j.compchemeng.2003.08.004
10.1016/j.cej.2021.130402
10.1016/j.biotechadv.2020.107660
10.1007/BF00369471
10.1002/bit.26868
10.1002/aic.10997
10.1016/j.ces.2017.05.026
10.1016/j.ces.2017.09.020
10.1021/ie030786k
10.1002/bit.26294
10.1016/j.ces.2014.11.035
10.1016/j.copbio.2010.02.001
10.1002/aic.690490821
10.1016/j.ces.2006.03.003
10.1016/j.bej.2016.09.005
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
2022 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
– notice: 2022 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
NPM
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1002/bit.28094
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library
PubMed
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList

Materials Research Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
DocumentTitleAlternate HARINGA et al
EISSN 1097-0290
EndPage 1860
ExternalDocumentID 10_1002_bit_28094
35352339
BIT28094
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
24P
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
ACSMX
ACXME
NPM
XFK
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c4434-6e983bf0f0f1e9ec1eb842000098767465c884b413ce8419909f0d67a3077b223
IEDL.DBID DR2
ISSN 0006-3592
IngestDate Tue Sep 17 21:19:01 EDT 2024
Fri Aug 16 07:15:34 EDT 2024
Fri Sep 13 06:42:32 EDT 2024
Fri Aug 23 02:01:45 EDT 2024
Thu May 23 23:35:20 EDT 2024
Sat Aug 24 00:59:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords CFD
Euler-Lagrange
fermentation
compartment model
metabolic modeling
Language English
License Attribution
2022 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4434-6e983bf0f0f1e9ec1eb842000098767465c884b413ce8419909f0d67a3077b223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0310-1045
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.28094
PMID 35352339
PQID 2675939319
PQPubID 48814
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9321588
proquest_miscellaneous_2645469474
proquest_journals_2675939319
crossref_primary_10_1002_bit_28094
pubmed_primary_35352339
wiley_primary_10_1002_bit_28094_BIT28094
PublicationCentury 2000
PublicationDate July 2022
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
– name: Hoboken
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol Bioeng
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2004; 43
2017; 5
1989; 2
2015; 15
2006; 52
2006; 34
2021; 420
1984; 26
2004; 28
2010; 106
2017; 171
2016; 126
1996; 14
2011; 6
2017; 157
2016; 16
2017; 114
2001; 84
2001; 85
2019; 123
2018; 175
2010; 21
2014; 106
2013; 59
2006; 61
2015; 134
2019; 116
1999; 77
2003; 49
2020; 46
2007; 85
2011; 28
2019; 151
2014; 126
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 28
  start-page: 337
  issue: 2
  year: 2011
  end-page: 348
  article-title: Novel insights in transport mechanisms and kinetics of phenylacetic acid and penicillin‐G in
  publication-title: Biotechnology Progress
– volume: 5
  issue: 1
  year: 2017
  article-title: Differentialequations.jl‐a performant and feature‐rich ecosystem for solving differential equations in Julia
  publication-title: Journal of Open Research Software
– volume: 175
  start-page: 12
  year: 2018
  end-page: 24
  article-title: Computational fluid dynamics simulation of an industrial fermentation with a coupled 9‐pool metabolic model: Towards rational scale‐down and design optimization
  publication-title: Chemical Engineering Science
– volume: 134
  start-page: 457
  year: 2015
  end-page: 466
  article-title: Euler–Lagrange approach to model heterogeneities in stirred tank bioreactors—Comparison to experimental flow characterization and particle tracking
  publication-title: Chemical Engineering Science
– volume: 157
  start-page: 159
  year: 2017
  end-page: 168
  article-title: Lagrangian modeling of hydrodynamic‐kinetic interactions in (bio)chemical reactors: Practical implementation and setup guidelines
  publication-title: Chemical Engineering Science
– volume: 420
  issue: Part 3
  year: 2021
  article-title: Development of dynamic compartment models for industrial aerobic fed‐batch fermentation processes
  publication-title: Chemical Engineering Journal
– volume: 21
  start-page: 114
  issue: 1
  year: 2010
  end-page: 121
  article-title: Scale‐down simulators for metabolic analysis of large‐scale bioprocesses
  publication-title: Current Opinion in Biotechnology
– volume: 2
  start-page: 321
  issue: 4
  year: 1989
  end-page: 325
  article-title: A 3 (2) pair of Runge–Kutta formulas
  publication-title: Applied Mathematics Letters
– volume: 34
  start-page: 355
  issue: 3
  year: 2006
  end-page: 382
  article-title: Living with heterogeneities in bioreactors: Understanding the effects of environmental gradients on cells
  publication-title: Molecular Biotechnology
– volume: 59
  start-page: 369
  issue: 2
  year: 2013
  end-page: 379
  article-title: Coupling of biokinetic and population balance models to account for biological heterogeneity in bioreactors
  publication-title: AIChE Journal
– volume: 123
  start-page: 236
  year: 2019
  end-page: 245
  article-title: A CFD based automatic method for compartment model development
  publication-title: Computers and Chemical Engineering
– volume: 116
  start-page: 769
  issue: 4
  year: 2019
  end-page: 780
  article-title: CFD predicted pH gradients in lactic acid bacteria cultivations
  publication-title: Biotechnology and Bioengineering
– volume: 114
  start-page: 1733
  issue: 8
  year: 2017
  end-page: 1743
  article-title: A 9‐pool metabolic structured kinetic model describing days to seconds dynamics of growth and product formation by
  publication-title: Biotechnology and Bioengineering
– volume: 126
  start-page: 135
  year: 2016
  end-page: 145
  article-title: A population balance model for bioreactors combining interdivision time distributions and micromixing concepts
  publication-title: Biochemical Engineering Journal
– volume: 126
  start-page: 267
  year: 2014
  end-page: 282
  article-title: Investigating the interactions between physical and biological heterogeneities in bioreactors using compartment, population balance and metabolic models
  publication-title: Chemical Engineering Science
– volume: 14
  start-page: 281
  issue: 6
  year: 1996
  end-page: 289
  article-title: Substrate gradients in bioreactors: Origin and consequences
  publication-title: Bioprocess Engineering
– volume: 15
  start-page: 20
  issue: 1
  year: 2015
  end-page: 29
  article-title: Integration of microbial kinetics and fluid dynamics toward model‐driven scale‐up of industrial bioprocesses
  publication-title: Engineering in Life Sciences
– volume: 61
  start-page: 4783
  issue: 14
  year: 2006
  end-page: 4797
  article-title: Modeling the dynamics of populations in the three‐dimensional turbulent field of a stirred‐tank bioreactor—A structured‐segregated approach
  publication-title: Chemical Engineering Science
– volume: 6
  start-page: 944
  issue: 8
  year: 2011
  end-page: 958
  article-title: Scale‐down of penicillin production in
  publication-title: Biotechnology Journal
– volume: 77
  start-page: 291
  issue: 4
  year: 1999
  end-page: 302
  article-title: Compartment model approach
  publication-title: Chemical Engineering Research and Design
– volume: 106
  start-page: 608
  issue: 4
  year: 2010
  end-page: 618
  article-title: Dynamic gene expression regulation model for growth and penicillin production in
  publication-title: Biotechnology and Bioengineering
– volume: 16
  start-page: 652
  issue: 7
  year: 2016
  end-page: 663
  article-title: Euler–Lagrange computational fluid dynamics for (bio)reactor scale down: An analysis of organism lifelines
  publication-title: Engineering in Life Sciences
– volume: 106
  start-page: 76
  year: 2014
  end-page: 85
  article-title: CFD‐based compartment model for description of mixing in bioreactors
  publication-title: Chemical Engineering Science
– volume: 84
  start-page: 463
  issue: 3
  year: 2001
  end-page: 474
  article-title: CMA: Integration of fluid dynamics and microbial kinetics in modelling of large‐scale fermentations
  publication-title: Chemical Engineering Journal
– volume: 43
  start-page: 4647
  issue: 16
  year: 2004
  end-page: 4656
  article-title: Dynamic behavior of microbial populations in stirred bioreactors simulated with Euler–Lagrange methods: Traveling along the lifelines of single cells
  publication-title: Industrial & Engineering Chemistry Research
– volume: 151
  year: 2019
  article-title: A compartment model for risk‐based monitoring of lactic acid bacteria cultivations
  publication-title: Biochemical Engineering Journal
– volume: 28
  start-page: 501
  issue: 4
  year: 2004
  end-page: 511
  article-title: A general methodology for hybrid multizonal/CFD models: Part I. Theoretical framework
  publication-title: Computers and Chemical Engineering
– volume: 85
  start-page: 175
  issue: 2
  year: 2001
  end-page: 185
  article-title: Physiological responses to mixing in large scale bioreactors
  publication-title: Journal of Biotechnology
– volume: 49
  start-page: 2133
  issue: 8
  year: 2003
  end-page: 2148
  article-title: General hybrid multizonal/CFD approach for bioreactor modeling
  publication-title: AIChE Journal
– volume: 26
  start-page: 546
  issue: 5
  year: 1984
  end-page: 550
  article-title: Dissolved oxygen concentration profiles in a production‐scale bioreactor
  publication-title: Biotechnology and Bioengineering
– volume: 52
  start-page: 3696
  issue: 11
  year: 2006
  end-page: 3706
  article-title: Mixing times in a turbulent stirred tank by means of LES
  publication-title: AIChE Journal
– volume: 46
  year: 2020
  article-title: Understanding gradients in industrial bioreactors
  publication-title: Biotechnology Advances
– volume: 85
  start-page: 616
  issue: 5
  year: 2007
  end-page: 625
  article-title: CFD modelling of liquid homogenization in stirred tanks with one and two impellers using large eddy simulation
  publication-title: Chemical Engineering Research and Design
– volume: 171
  start-page: 218
  year: 2017
  end-page: 232
  article-title: An assessment of methods of moments for the simulation of population dynamics in large‐scale bioreactors
  publication-title: Chemical Engineering Science
– ident: e_1_2_6_4_1
  doi: 10.1016/0893-9659(89)90079-7
– ident: e_1_2_6_25_1
  doi: 10.1002/bit.260260522
– ident: e_1_2_6_11_1
  doi: 10.1016/j.ces.2016.07.031
– ident: e_1_2_6_33_1
  doi: 10.1205/026387699526223
– ident: e_1_2_6_18_1
  doi: 10.1385/MB:34:3:355
– ident: e_1_2_6_8_1
  doi: 10.1002/btpr.1503
– ident: e_1_2_6_12_1
  doi: 10.1002/elsc.201600061
– ident: e_1_2_6_29_1
  doi: 10.1016/j.bej.2019.107293
– ident: e_1_2_6_7_1
  doi: 10.1016/j.ces.2013.11.033
– ident: e_1_2_6_35_1
  doi: 10.1002/elsc.201400172
– ident: e_1_2_6_15_1
  doi: 10.1205/cherd06183
– ident: e_1_2_6_28_1
  doi: 10.5334/jors.151
– ident: e_1_2_6_5_1
  doi: 10.1002/biot.201000409
– ident: e_1_2_6_9_1
  doi: 10.1002/bit.22689
– ident: e_1_2_6_31_1
  doi: 10.1016/j.compchemeng.2018.12.015
– ident: e_1_2_6_10_1
  doi: 10.1016/S0168-1656(00)00365-5
– ident: e_1_2_6_20_1
  doi: 10.1002/aic.13820
– ident: e_1_2_6_34_1
  doi: 10.1016/S1385-8947(00)00271-0
– ident: e_1_2_6_6_1
  doi: 10.1016/j.ces.2015.05.045
– ident: e_1_2_6_3_1
  doi: 10.1016/j.compchemeng.2003.08.004
– ident: e_1_2_6_22_1
  doi: 10.1016/j.cej.2021.130402
– ident: e_1_2_6_23_1
  doi: 10.1016/j.biotechadv.2020.107660
– ident: e_1_2_6_19_1
  doi: 10.1007/BF00369471
– ident: e_1_2_6_30_1
  doi: 10.1002/bit.26868
– ident: e_1_2_6_14_1
  doi: 10.1002/aic.10997
– ident: e_1_2_6_27_1
  doi: 10.1016/j.ces.2017.05.026
– ident: e_1_2_6_13_1
  doi: 10.1016/j.ces.2017.09.020
– ident: e_1_2_6_16_1
  doi: 10.1021/ie030786k
– ident: e_1_2_6_32_1
  doi: 10.1002/bit.26294
– ident: e_1_2_6_26_1
  doi: 10.1016/j.ces.2014.11.035
– ident: e_1_2_6_24_1
  doi: 10.1016/j.copbio.2010.02.001
– ident: e_1_2_6_2_1
  doi: 10.1002/aic.690490821
– ident: e_1_2_6_17_1
  doi: 10.1016/j.ces.2006.03.003
– ident: e_1_2_6_21_1
  doi: 10.1016/j.bej.2016.09.005
SSID ssj0007866
Score 2.4729183
Snippet The compartment model (CM) is a well‐known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent...
The compartment model (CM) is a well-known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent...
Abstract The compartment model (CM) is a well‐known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations....
The compartment model (CM) is a well‐known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1849
SubjectTerms Bioreactors
CFD
compartment model
Computational fluid dynamics
Computer applications
Euler–Lagrange
Fermentation
Flow profiles
Fluid dynamics
Hydrodynamics
Intracellular
Kinetics
Mathematical models
metabolic modeling
Microorganisms
Optimization
Penicillin
Simulation
Stochasticity
Tracking
Title Stochastic parcel tracking in an Euler–Lagrange compartment model for fast simulation of fermentation processes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.28094
https://www.ncbi.nlm.nih.gov/pubmed/35352339
https://www.proquest.com/docview/2675939319/abstract/
https://search.proquest.com/docview/2645469474
https://pubmed.ncbi.nlm.nih.gov/PMC9321588
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VSgg48NhSWFoqgxDikjaxHccWp7ZqVRBCCFqpB6TIzjp0Retd9nGAE_-Bf9hfwthO0m6rSgjlEsl2Hs48vnFmPgO84iKVPNcs0cavVtkcdS5XLMl4LYSiRlSDkCD7URwc8ffH-fESvG1rYSI_RLfg5jUj2Guv4NpMty5IQ83QE69idIL21xPpeUD0-YI6qpDxP6WPmFmuaMsqlNKtbuSiL7oGMK_nSV7Gr8EB7T-Ar-2jx7yT75vzmdmsfl1hdfzPd3sI9xtgSrajJD2CJet6sLLtMCg_-0lek5AqGtbge3B7pz27s9tuGNeDe5e4DVfgx5fZqDrRngaajH1B5SnBt6v8yjwZOqId2Zuf2sn57z8f9LeJL3EgMR8-pL2TsEMPQURNarwGmQ7Pmn3GyKgmNbqTpmbKkXEsdbDTx3C0v3e4e5A0-zskFeeMJ8IqyUyd4pFZZavMGslpQK3ScwyJvJKSG3SzlZU8Q7-p6nQgCo12qTCIa1Zh2Y2cfQoktbyqM4NRNUeTRAeaoRPmOBgbrBG0Dy_bL12OI41HGQmbaYmTXYbJ7sN6KwNlo8nTkmJEpZhCS9WHF10zzqz_saKdHc19H55zoXiBl3gSRaa7C_P8OYzh6GJBmLoOnt97scUNTwLPN0LrLJeyD2-CrNz84OXOu8Nw8uzfu67BXeorOULm8ToszyZz-xzx1cxswC3KP20EdfoLOfojRw
link.rule.ids 230,315,786,790,891,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlQ48NjyWChgEEJc0iZ-xZG4tFWrLSw9wFbqpYpir0NXtN5lHwc48R_4h_wSxs6jXSokhHKxZDuxnRnPwzOfAV5xGSsuChYV2nurrECeExmLEl5KmVEtzTAEyB7K3hF_dyyOV-BtkwtT4UO0DjfPGWG_9gzuHdJbF6iheuSRV9E8uQbXkd1FMKg-XoBHpao6qfQ2MxMZbXCFYrrVdl2WRldUzKuRkpc12CCC9u_ASTP4KvLky-ZirjfN9z9wHf93dnfhdq2bku2KmO7BinUdWN92aJeffyOvSYgWDW74DtzYaUpru82dcR24dQnecB2-fpqPzWnhkaDJxOdUnhGcnvHOeTJypHBkb3Fmp79-_OwXn6c-y4FUIfEh8p2ES3oIKtWkxHeQ2ei8vmqMjEtSokSp06YcmVTZDnZ2H4729wa7vai-4iEynDMeSZsppssYn8Rm1iRWK06D4qo8zJAURimuUdIaq3iCojMr46FMC9yaUo2qzQNYdWNnHwGJLTdlotGw5rgr0WHBUA5z7IwVVkvahZfNr84nFZJHXmE20xwXOw-L3YWNhgjymplnOUXiyliGm1UXXrTVuLL-bKVwdrzwbbjgMuMpvuJhRTPtV5iH0GEMe6dL1NQ28BDfyzVudBqgvlG7ToRSXXgTiOXvA893Dgah8Pjfmz6Htd7gQz_vHxy-fwI3qU_sCIHIG7A6ny7sU1S35vpZ4KrfhDomkg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIl4HHlsKCwUMQhWXtIntOLY49bVqoaoQtFIPSFGcddoVrXfZxwFO_Af-Ib-EsZ2kXSokhHKxZDuxnRnPwzOfAV5zEUueFiwqtPNWmRR5LlUsSnglhKJalH0fIHsgdo_4u-P0eAHeNrkwAR-idbg5zvD7tWPwUb9avwAN1QMHvIrWyTW4zgWjjqS3P15gR2UyHFQ6k5mlijawQjFdb7vOC6MrGubVQMnLCqyXQL178LkZewg8-bI2m-q18vsfsI7_Obn7cLfWTMlGIKUHsGBsB5Y2LFrl59_IKvGxot4J34Ebm03p1lZzY1wH7lwCN1yCr5-mw_K0cDjQZOQyKs8Izq50rnkysKSwZGd2Zsa_fvzcL07GLseBhIB4H_dO_BU9BFVqUuE7yGRwXl80RoYVqVCe1ElTloxCroOZPISj3s7h1m5UX_AQlZwzHgmjJNNVjE9ilCkToyWnXm2VDmRIpKWUXKOcLY3kCQpOVcV9kRW4MWUaFZtlWLRDax4DiQ0vq0SjWc1xT6L9gqEU5tgZK4wWtAuvmj-djwKORx4Qm2mOi537xe7CSkMDec3Kk5yiSaWYwq2qCy_balxZd7JSWDOcuTY85ULxDF_xKJBM-xXmAHQYw97ZHDG1DRzA93yNHZx6oG_UrZNUyi688bTy94Hnm3uHvvDk35u-gJsftnv5_t7B-6dwm7qsDh-FvAKL0_HMPENda6qfe576DfzHJUE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+parcel+tracking+in+an+Euler%E2%80%93Lagrange+compartment+model+for+fast+simulation+of+fermentation+processes&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Haringa%2C+Cees&rft.au=Tang%2C+Wenjun&rft.au=Noorman%2C+Henk+J&rft.date=2022-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=119&rft.issue=7&rft.spage=1849&rft.epage=1860&rft_id=info:doi/10.1002%2Fbit.28094&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon