GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation
Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia t...
Saved in:
Published in | The New phytologist Vol. 228; no. 2; pp. 667 - 681 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.10.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified.
We use yeast complementation, real-time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy.
GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast.
We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen-fixing symbiosis. |
---|---|
AbstractList | Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real-time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen-fixing symbiosis. Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real-time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen-fixing symbiosis. Summary Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant‐derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real‐time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen‐fixing symbiosis. Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real-time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen-fixing symbiosis.Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real-time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen-fixing symbiosis. Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant‐derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real‐time PCR and proteomics to study putative soybean ( Glycine max ) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen‐fixing symbiosis. |
Author | Brear, Ella M. Torres-Jerez, Ivone Day, David A. Smith, Penelope M. C. Gavrin, Aleksandr Kryvoruchko, Igor S. Udvardi, Michael K. Bedon, Frank |
Author_xml | – sequence: 1 givenname: Ella M. surname: Brear fullname: Brear, Ella M. – sequence: 2 givenname: Frank surname: Bedon fullname: Bedon, Frank – sequence: 3 givenname: Aleksandr surname: Gavrin fullname: Gavrin, Aleksandr – sequence: 4 givenname: Igor S. surname: Kryvoruchko fullname: Kryvoruchko, Igor S. – sequence: 5 givenname: Ivone surname: Torres-Jerez fullname: Torres-Jerez, Ivone – sequence: 6 givenname: Michael K. surname: Udvardi fullname: Udvardi, Michael K. – sequence: 7 givenname: David A. surname: Day fullname: Day, David A. – sequence: 8 givenname: Penelope M. C. surname: Smith fullname: Smith, Penelope M. C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32533710$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAURi1URKeFBT8AZIlNWaS141eyrCraIo0Ki1J1ZznJDeNRYgfbozL_Hs-LRQWqN5alcz7fxwk6ct4BQu8pOaf5XLhpcU6lYvwVmlEu66KiTB2hGSFlVUguH4_RSYxLQkgtZPkGHbNSMKYomaHpZny4n1ODbcTGYRu8wykYFycfEgS8eS4Ax_XYWB_9CHiEsckAYN_j6NcNZO3JpsVWHzeacQkHPwC2Djubgv8JDvf2t0nWu7fodW-GCO_29yn6cf3l_uq2mH-7-Xp1OS9azhkvZMeaHpgiVc95UypOG2qUNNArCkSJpgXVMEFrU3WsBSNyQxRMZzohWW0EO0Vnu9wp-F8riEmPNrYwDLl0v4q6FJKK_BOrX0Y5LetK8XKT-ukZuvSr4HIjmeKiFEoRlqmPe2rVjNDpKdjRhLU-jD0DFzugDT7GAL1ubdqOJ8_eDpoSvVmszovV28Vm4_Mz4xD6L3af_mQHWP8f1Hffbw_Gh52xjMmHv0Ypa1lRKtkf05u7WQ |
CitedBy_id | crossref_primary_10_1038_s41598_025_88416_3 crossref_primary_10_1093_jxb_erac014 crossref_primary_10_1093_jxb_erab069 crossref_primary_10_3390_ijms22010432 crossref_primary_10_1016_j_scitotenv_2024_171963 crossref_primary_10_1093_pcp_pcae128 crossref_primary_10_3390_plants12051017 crossref_primary_10_1093_plcell_koac039 crossref_primary_10_1186_s12864_023_09627_4 crossref_primary_10_54370_ordubtd_1460598 crossref_primary_10_1093_jxb_eraa390 crossref_primary_10_1016_j_csbj_2020_10_044 crossref_primary_10_1016_j_ncrops_2024_100015 crossref_primary_10_1111_ppl_13318 crossref_primary_10_3390_plants12101958 crossref_primary_10_1038_s41467_024_44865_4 crossref_primary_10_1111_nph_16735 crossref_primary_10_1093_plphys_kiab280 crossref_primary_10_3390_ijms24054647 crossref_primary_10_1016_j_envexpbot_2022_104810 crossref_primary_10_1016_j_xplc_2024_100829 crossref_primary_10_3389_fpls_2023_1306491 crossref_primary_10_1016_j_plaphy_2024_108362 crossref_primary_10_1093_plphys_kiab044 crossref_primary_10_1007_s11103_021_01135_x crossref_primary_10_1038_s41467_024_53325_y crossref_primary_10_1111_nph_19098 crossref_primary_10_1007_s13199_021_00827_8 crossref_primary_10_1016_j_jgg_2022_04_004 crossref_primary_10_1016_j_ncrops_2024_100047 crossref_primary_10_1093_hr_uhae321 crossref_primary_10_3389_fpls_2024_1427367 crossref_primary_10_1111_pbi_13682 crossref_primary_10_3389_fpls_2023_1196561 crossref_primary_10_1111_nph_17219 crossref_primary_10_1111_ppl_13363 crossref_primary_10_1016_j_ecoenv_2024_117298 crossref_primary_10_1080_1343943X_2024_2326643 crossref_primary_10_3390_agronomy13020384 crossref_primary_10_1093_plphys_kiab544 crossref_primary_10_1002_csc2_20661 crossref_primary_10_1111_jipb_13364 crossref_primary_10_3389_fpls_2025_1517144 |
Cites_doi | 10.1007/BF00011579 10.1074/mcp.M114.043166 10.1007/1-4020-3735-X_26 10.1046/j.1365-313X.2003.01802.x 10.1071/PP9890069 10.1111/nph.16506 10.1104/pp.17.00672 10.1007/s004250050458 10.1083/jcb.128.5.779 10.1111/j.1365-313X.2012.05088.x 10.1002/yea.320110408 10.1016/j.bbamem.2006.03.024 10.1093/molbev/mst197 10.1104/pp.102.015362 10.1039/c3mt00060e 10.1111/j.1399-3054.1997.tb03452.x 10.1146/annurev.arplant.48.1.493 10.1074/jbc.M103944200 10.1371/journal.pone.0110468 10.2136/sssaj1982.03615995004600060008x 10.1111/nph.13837 10.1080/00380768.2004.10408587 10.3390/genes10020144 10.3389/fpls.2014.00045 10.1007/BF00011874 10.1104/pp.17.01538 10.1002/yea.320070704 10.1002/9781119053095.ch68 10.1016/j.plaphy.2011.02.011 10.1073/pnas.1200407109 10.1105/tpc.104.030106 10.1111/j.1365-313X.2010.04222.x 10.1016/0038-0717(95)98609-R 10.1104/pp.114.254672 10.1007/s00438-003-0840-4 10.1016/j.phytochem.2013.04.017 10.1093/pcp/pcr167 10.1094/MPMI.2002.15.7.630 10.1105/tpc.109.073023 10.1007/BF00028782 10.1093/nar/gks596 10.1111/j.1365-313X.2009.03879.x 10.1038/sj.emboj.7600864 10.1071/EA00087 10.1111/j.1469-8137.1979.tb00727.x 10.1105/tpc.108.064410 10.3389/fpls.2013.00350 10.1016/S0304-3940(02)01423-4 10.1038/nprot.2007.141 10.1038/srep39447 10.1007/s11627-013-9575-z 10.1126/science.1132563 10.1104/pp.111.3.893 10.1007/s13199-013-0221-7 10.1105/tpc.114.128736 10.3389/fpls.2013.00359 10.1139/B09-074 10.1016/0014-5793(95)00155-3 10.1104/pp.122.4.999 10.1038/nmeth.2019 10.1093/aob/mci226 10.1074/jbc.M106754200 10.1038/nmeth.2089 10.1038/s41477-019-0367-2 10.1111/tpj.12026 10.1080/01904169809365453 10.1042/bj1251075 10.1094/MPMI.2000.13.3.325 10.1002/yea.320100411 10.1038/srep42850 10.1111/j.1365-2958.1996.tb02561.x 10.1186/1471-2229-10-160 |
ContentType | Journal Article |
Copyright | 2020 The Authors © 2020 New Phytologist Trust 2020 The Authors. New Phytologist © 2020 New Phytologist Trust 2020 The Authors. New Phytologist © 2020 New Phytologist Trust. Copyright © 2020 New Phytologist Trust |
Copyright_xml | – notice: 2020 The Authors © 2020 New Phytologist Trust – notice: 2020 The Authors. New Phytologist © 2020 New Phytologist Trust – notice: 2020 The Authors. New Phytologist © 2020 New Phytologist Trust. – notice: Copyright © 2020 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.16734 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 681 |
ExternalDocumentID | 32533710 10_1111_nph_16734 NPH16734 26968116 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP120102780, DP150102264 and IH140100013 – fundername: Grains Research and Development Corporation funderid: GRS10258 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ADXHL AGUYK CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4434-6d3bfe3708f44b2741b1a76aef71e075bce7b3519a8d3cea55331eadad5639a53 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:26:03 EDT 2025 Fri Jul 11 09:28:33 EDT 2025 Fri Jul 25 12:15:18 EDT 2025 Thu Apr 03 07:05:43 EDT 2025 Tue Jul 01 02:28:35 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Wed Jan 22 16:33:56 EST 2025 Thu Jul 03 21:56:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | soybean SEN1 legume rhizobia symbiosome membrane iron transporter nodule VTL |
Language | English |
License | 2020 The Authors. New Phytologist © 2020 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4434-6d3bfe3708f44b2741b1a76aef71e075bce7b3519a8d3cea55331eadad5639a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9841-1112 0000-0003-3636-1732 0000-0003-0179-8491 0000-0002-9940-5926 0000-0001-9850-0828 0000-0001-7967-2173 0000-0002-4444-598X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.16734 |
PMID | 32533710 |
PQID | 2445257703 |
PQPubID | 2026848 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2561543439 proquest_miscellaneous_2412987425 proquest_journals_2445257703 pubmed_primary_32533710 crossref_citationtrail_10_1111_nph_16734 crossref_primary_10_1111_nph_16734 wiley_primary_10_1111_nph_16734_NPH16734 jstor_primary_26968116 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201001 October 2020 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201001 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2020 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 7 2010; 10 2002; 15 2013; 4 2009; 87 1990; 14 2019; 10 1997; 48 2002; 277 2014; 26 1971; 125 2012; 58 2013; 5 2010; 63 2012; 53 2001; 41 2005; 24 2012; 72 2010; 22 2018; 176 2014; 5 1995; 27 2000; 13 2013; 94 1997; 100 2006; 1758 1998; 207 1995; 128 1982 2000; 122 2007; 2 2014; 9 2014; 50 1995; 361 1996; 178 1996; 21 2009; 59 1991; 130 2015; 14 2003; 339 2009; 21 2019; 5 2015; 168 1995; 11 2003; 35 2020; 226 2005 2017; 174 2006; 314 1998; 21 1991; 7 2012; 109 2003; 131 2001; 276 1982; 46 2016; 6 2004; 50 2013; 73 2013; 30 2005; 96 2016; 210 1996; 111 2015 2016; 29 2003; 269 1989; 16 2011; 49 2005; 17 1994; 10 1979; 83 2012; 9 2012; 40 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 Bergersen FJ (e_1_2_7_4_1) 1982 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 González‐Guerrero M (e_1_2_7_25_1) 2016; 29 |
References_xml | – volume: 46 start-page: 1158 year: 1982 end-page: 1164 article-title: Comparison of the abilities of hydroxamic, synthetic, and other natural organic acids to chelate iron and other ions in nutrient solution publication-title: Soil Science Society of America Journal – volume: 178 start-page: 161 year: 1996 end-page: 169 article-title: Siderophore‐bound iron in the peribacteriod space of soybean root nodules publication-title: Plant and Soil – volume: 168 start-page: 256 year: 2015 end-page: 272 article-title: natural resistance‐associated macrophage Protein1 is required for iron uptake by rhizobia‐infected nodule cells publication-title: Plant Physiology – start-page: 683 year: 2015 end-page: 694 – volume: 40 year: 2012 article-title: Primer3‐new capabilities and interfaces publication-title: Nucleic Acids Research – volume: 29 start-page: 1088 year: 2016 article-title: Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia publication-title: Frontiers in Plant Science – volume: 87 start-page: 1117 year: 2009 end-page: 1138 article-title: Getting around the legume nodule: I. The structure of the peripheral zone in four nodule types publication-title: Botany‐Botanique – volume: 10 start-page: 144 year: 2019 article-title: Molecular evolution of the vacuolar iron transporter (VIT) family genes in 14 plant species publication-title: Genes – volume: 4 start-page: 350 year: 2013 article-title: New insights into Fe localisation in plant tissues publication-title: Frontiers in Plant Science – volume: 21 start-page: 519 year: 1996 end-page: 528 article-title: The role of the gene in the homeostasis of manganese ions publication-title: Molecular Microbiology – volume: 21 start-page: 2811 year: 2009 end-page: 2828 article-title: Medicago N ‐fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity publication-title: The Plant Cell – volume: 50 start-page: 282 year: 2014 end-page: 291 article-title: A novel method based on combination of semi‐ and conditions in ‐mediated hairy root transformation of species publication-title: Vitro Cellular & Developmental Biology‐Plant – volume: 21 start-page: 913 year: 1998 end-page: 927 article-title: Evidence for reutilization of nodule iron in soybean seed development publication-title: Journal of Plant Nutrition – volume: 14 start-page: 449 year: 1990 end-page: 451 article-title: A nodule‐specific sequence encoding a methionine‐rich polypeptide, nodulin‐21 publication-title: Plant Molecular Biology – volume: 24 start-page: 4041 year: 2005 end-page: 4051 article-title: Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron publication-title: EMBO Journal – year: 1982 – volume: 174 start-page: 2434 year: 2017 end-page: 2444 article-title: Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification publication-title: Plant Physiology – volume: 131 start-page: 1080 year: 2003 end-page: 1090 article-title: Proteome analysis. Novel proteins identified at the peribacteroid membrane from root nodules publication-title: Plant Physiology – volume: 210 start-page: 1011 year: 2016 end-page: 1021 article-title: VAMP721a and VAMP721d are important for pectin dynamics and release of bacteria in soybean nodules publication-title: New Phytologist – volume: 125 start-page: 1075 year: 1971 end-page: 1080 article-title: Control of leghemoglobin synthesis in snake beans publication-title: Biochemical Journal – volume: 9 start-page: 676 year: 2012 end-page: 682 article-title: Fiji: an open‐source platform for biological‐image analysis publication-title: Nature Methods – volume: 109 start-page: 8316 year: 2012 end-page: 8321 article-title: Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation publication-title: Proceedings of the National Academy of Sciences, USA – volume: 22 start-page: 904 year: 2010 end-page: 917 article-title: High‐affinity manganese uptake by the metal transporter NRAMP1 is essential for growth in low manganese conditions publication-title: The Plant Cell – volume: 73 start-page: 143 year: 2013 end-page: 153 article-title: The fate of duplicated genes in a polyploid plant genome publication-title: The Plant Journal – volume: 14 start-page: 1301 year: 2015 end-page: 1322 article-title: Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins publication-title: Molecular & Cellular Proteomics – volume: 128 start-page: 779 year: 1995 end-page: 792 article-title: A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast publication-title: Journal of Cell Biology – volume: 58 start-page: 183 year: 2012 end-page: 190 article-title: Movement of fluorescent dyes Lucifer Yellow (LYCH) and carboxyfluorescein (CF) in Gaertn. roots and root nodules publication-title: Symbiosis – volume: 50 start-page: 1141 year: 2004 end-page: 1150 article-title: Regulation and function of AtNRAMP4 metal transporter protein publication-title: Soil Science and Plant Nutrition – volume: 48 start-page: 493 year: 1997 end-page: 523 article-title: Metabolite transport across symbiotic membranes of legume nodules publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 7 start-page: 691 year: 1991 end-page: 692 article-title: An efficient transformation procedure enabling long‐term storage of competent cells of various yeast genera publication-title: Yeast – volume: 9 start-page: 671 year: 2012 end-page: 675 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nature Methods – volume: 94 start-page: 60 year: 2013 end-page: 67 article-title: The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals publication-title: Phytochemistry – volume: 122 start-page: 999 year: 2000 end-page: 1001 article-title: Plant cells are not just green yeast publication-title: Plant Physiology – volume: 9 year: 2014 article-title: Vacuolar‐iron‐transporter1‐like proteins mediate iron homeostasis in publication-title: PLoS ONE – volume: 72 start-page: 400 year: 2012 end-page: 410 article-title: Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice publication-title: The Plant Journal – volume: 226 start-page: 1413 year: 2020 end-page: 1428 article-title: A VIT‐like transporter facilitates iron transport into nodule symbiosomes for nitrogen fixation in soybean publication-title: New Phytologist – volume: 26 start-page: 3809 year: 2014 end-page: 3822 article-title: Adjustment of host cells for accommodation of symbiotic bacteria: vacuole defunctionalization, hops suppression, and TIP1g retargeting in publication-title: The Plant Cell – volume: 13 start-page: 325 year: 2000 end-page: 333 article-title: Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules publication-title: Molecular Plant–Microbe Interactions – volume: 15 start-page: 630 year: 2002 end-page: 636 article-title: The soybean gene encodes a late nodulin expressed in the infected zone of nitrogen‐fixing nodules publication-title: Molecular Plant–Microbe Interactions – volume: 83 start-page: 63 year: 1979 end-page: 79 article-title: Cobalt and nitrogen fixation in L. II. Nodule formation and function publication-title: New Phytologist – volume: 35 start-page: 295 year: 2003 end-page: 304 article-title: The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport publication-title: The Plant Journal – volume: 5 start-page: 45 year: 2014 article-title: Fixating on metals: new insights into the role of metals in nodulation and symbiotic nitrogen fixation publication-title: Frontiers in Plant Science – volume: 130 start-page: 199 year: 1991 end-page: 209 article-title: Iron uptake and metabolism in the rhizobia legume symbiosis publication-title: Plant and Soil – volume: 11 start-page: 355 year: 1995 end-page: 360 article-title: Studies on the transformation of intact yeast‐cells by the LiAC/S‐DNA/PEG procedure publication-title: Yeast – volume: 5 start-page: 1247 year: 2013 end-page: 1253 article-title: Iron distribution through the developmental stages of nodules publication-title: Metallomics – volume: 53 start-page: 225 year: 2012 end-page: 236 article-title: The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in nodules publication-title: Plant and Cell Physiology – volume: 2 start-page: 948 year: 2007 end-page: 952 article-title: ‐mediated transformation of soybean to study root biology publication-title: Nature Protocols – volume: 314 start-page: 1295 year: 2006 end-page: 1298 article-title: Localisation of iron in seed requires the vacuolar membrane transporter VIT1 publication-title: Science – volume: 269 start-page: 312 year: 2003 end-page: 320 article-title: The gene controls rhizobial differentiation into nitrogen‐fixing bacteroids in nodules publication-title: Molecular Genetics and Genomics – volume: 63 start-page: 86 year: 2010 end-page: 99 article-title: An integrated transcriptome atlas of the crop model , and its use in comparative analyses in plants publication-title: The Plant Journal – volume: 10 start-page: 160 year: 2010 article-title: RNA‐Seq Atlas of : a guide to the soybean transcriptome publication-title: BMC Plant Biology – volume: 30 start-page: 2725 year: 2013 end-page: 2729 article-title: MEGA6: molecular evolutionary genetics analysis version 6.0 publication-title: Molecular Biology and Evolution – volume: 277 start-page: 4738 year: 2002 end-page: 4746 article-title: GmZIP1 encodes a symbiosis‐specific zinc transporter in soybean publication-title: Journal of Biological Chemistry – volume: 1758 start-page: 1165 year: 2006 end-page: 1175 article-title: The structure, function and regulation of the nodulin 26‐like intrinsic protein family of plant aquaglyceroporins publication-title: Biochimica et Biophysica Acta – volume: 16 start-page: 69 year: 1989 end-page: 84 article-title: Membrane Interface of the symbiosis: peribacteroid units from soyabean nodules publication-title: Functional Plant Biology – volume: 4 start-page: 359 year: 2013 article-title: Iron: an essential micronutrient for the legume‐rhizobium symbiosis publication-title: Frontiers in Plant Science – volume: 207 start-page: 83 year: 1998 end-page: 87 article-title: Ferrous iron is transported across the peribacteroid membrane of soybean nodules publication-title: Planta – volume: 59 start-page: 437 year: 2009 end-page: 447 article-title: A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation publication-title: The Plant Journal – volume: 49 start-page: 557 year: 2011 end-page: 564 article-title: Members of a small family of nodulin‐like genes are regulated under iron deficiency in roots of publication-title: Plant Physiology and Biochemistry – volume: 176 start-page: 2315 year: 2018 end-page: 2329 article-title: An iron‐activated citrate transporter, MtMATE67, is required for symbiotic nitrogen fixation publication-title: Plant Physiology – volume: 361 start-page: 225 year: 1995 end-page: 228 article-title: Uptake of iron by symbiosomes and bacteroids from soybean nodules publication-title: FEBS Letters – volume: 27 start-page: 387 year: 1995 end-page: 399 article-title: Symplastic transport in soybean root‐nodules publication-title: Soil Biology & Biochemistry – volume: 96 start-page: 745 year: 2005 end-page: 754 article-title: The role of molybdenum in agricultural plant production publication-title: Annals of Botany – volume: 7 start-page: 42850 year: 2017 article-title: Recombinant vacuolar iron transporter family homologue PfVIT from human malaria‐causing is a Fe /H exchanger publication-title: Scientific Reports – volume: 6 start-page: 39447 year: 2016 article-title: Lotus base: an integrated information portal for the model legume publication-title: Scientific Reports – volume: 41 start-page: 417 year: 2001 end-page: 433 article-title: Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review publication-title: Australian Journal of Experimental Agriculture – volume: 10 start-page: 515 year: 1994 end-page: 521 article-title: Sequence, mapping and distribution of , a gene that cross‐complements the Ca ‐sensitive phenotype of mutants publication-title: Yeast – start-page: 261 year: 2005 end-page: 277 – volume: 5 start-page: 308 year: 2019 end-page: 315 article-title: Crystal structure of plant vacuolar iron transporter VIT1 publication-title: Nature Plants – volume: 339 start-page: 62 year: 2003 end-page: 66 article-title: Assumption‐free analysis of quantitative real‐time polymerase chain reaction (PCR) data publication-title: Neuroscience Letters – volume: 17 start-page: 1625 year: 2005 end-page: 1636 article-title: The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in root nodules publication-title: The Plant Cell – volume: 111 start-page: 893 year: 1996 end-page: 900 article-title: Iron uptake by symbiosomes from soybean root nodules publication-title: Plant Physiology – volume: 276 start-page: 29515 year: 2001 end-page: 29519 article-title: CCC1 is a transporter that mediates vacuolar iron storage in yeast publication-title: Journal of Biological Chemistry – volume: 100 start-page: 30 year: 1997 end-page: 44 article-title: The peribacteroid membrane publication-title: Physiologia Plantarum – ident: e_1_2_7_73_1 doi: 10.1007/BF00011579 – ident: e_1_2_7_11_1 doi: 10.1074/mcp.M114.043166 – ident: e_1_2_7_16_1 doi: 10.1007/1-4020-3735-X_26 – ident: e_1_2_7_32_1 doi: 10.1046/j.1365-313X.2003.01802.x – ident: e_1_2_7_14_1 doi: 10.1071/PP9890069 – ident: e_1_2_7_46_1 doi: 10.1111/nph.16506 – ident: e_1_2_7_13_1 doi: 10.1104/pp.17.00672 – ident: e_1_2_7_50_1 doi: 10.1007/s004250050458 – ident: e_1_2_7_69_1 doi: 10.1083/jcb.128.5.779 – ident: e_1_2_7_75_1 doi: 10.1111/j.1365-313X.2012.05088.x – ident: e_1_2_7_22_1 doi: 10.1002/yea.320110408 – ident: e_1_2_7_70_1 doi: 10.1016/j.bbamem.2006.03.024 – ident: e_1_2_7_64_1 doi: 10.1093/molbev/mst197 – ident: e_1_2_7_72_1 doi: 10.1104/pp.102.015362 – ident: e_1_2_7_57_1 doi: 10.1039/c3mt00060e – ident: e_1_2_7_71_1 doi: 10.1111/j.1399-3054.1997.tb03452.x – ident: e_1_2_7_67_1 doi: 10.1146/annurev.arplant.48.1.493 – volume: 29 start-page: 1088 year: 2016 ident: e_1_2_7_25_1 article-title: Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia publication-title: Frontiers in Plant Science – ident: e_1_2_7_43_1 doi: 10.1074/jbc.M103944200 – ident: e_1_2_7_24_1 doi: 10.1371/journal.pone.0110468 – volume-title: Root nodules of legumes; structure and functions year: 1982 ident: e_1_2_7_4_1 – ident: e_1_2_7_12_1 doi: 10.2136/sssaj1982.03615995004600060008x – ident: e_1_2_7_20_1 doi: 10.1111/nph.13837 – ident: e_1_2_7_39_1 doi: 10.1080/00380768.2004.10408587 – ident: e_1_2_7_10_1 doi: 10.3390/genes10020144 – ident: e_1_2_7_26_1 doi: 10.3389/fpls.2014.00045 – ident: e_1_2_7_27_1 doi: 10.1007/BF00011874 – ident: e_1_2_7_37_1 doi: 10.1104/pp.17.01538 – ident: e_1_2_7_18_1 doi: 10.1002/yea.320070704 – ident: e_1_2_7_48_1 doi: 10.1002/9781119053095.ch68 – ident: e_1_2_7_23_1 doi: 10.1016/j.plaphy.2011.02.011 – ident: e_1_2_7_30_1 doi: 10.1073/pnas.1200407109 – ident: e_1_2_7_36_1 doi: 10.1105/tpc.104.030106 – ident: e_1_2_7_44_1 doi: 10.1111/j.1365-313X.2010.04222.x – ident: e_1_2_7_7_1 doi: 10.1016/0038-0717(95)98609-R – ident: e_1_2_7_65_1 doi: 10.1104/pp.114.254672 – ident: e_1_2_7_63_1 doi: 10.1007/s00438-003-0840-4 – ident: e_1_2_7_74_1 doi: 10.1016/j.phytochem.2013.04.017 – ident: e_1_2_7_29_1 doi: 10.1093/pcp/pcr167 – ident: e_1_2_7_66_1 doi: 10.1094/MPMI.2002.15.7.630 – ident: e_1_2_7_9_1 doi: 10.1105/tpc.109.073023 – ident: e_1_2_7_15_1 doi: 10.1007/BF00028782 – ident: e_1_2_7_68_1 doi: 10.1093/nar/gks596 – ident: e_1_2_7_49_1 doi: 10.1111/j.1365-313X.2009.03879.x – ident: e_1_2_7_40_1 doi: 10.1038/sj.emboj.7600864 – ident: e_1_2_7_54_1 doi: 10.1071/EA00087 – ident: e_1_2_7_17_1 doi: 10.1111/j.1469-8137.1979.tb00727.x – ident: e_1_2_7_45_1 doi: 10.1105/tpc.108.064410 – ident: e_1_2_7_58_1 doi: 10.3389/fpls.2013.00350 – ident: e_1_2_7_56_1 doi: 10.1016/S0304-3940(02)01423-4 – ident: e_1_2_7_34_1 doi: 10.1038/nprot.2007.141 – ident: e_1_2_7_53_1 doi: 10.1038/srep39447 – ident: e_1_2_7_47_1 doi: 10.1007/s11627-013-9575-z – ident: e_1_2_7_35_1 doi: 10.1126/science.1132563 – ident: e_1_2_7_42_1 doi: 10.1104/pp.111.3.893 – ident: e_1_2_7_3_1 doi: 10.1007/s13199-013-0221-7 – ident: e_1_2_7_21_1 doi: 10.1105/tpc.114.128736 – ident: e_1_2_7_5_1 doi: 10.3389/fpls.2013.00359 – ident: e_1_2_7_28_1 doi: 10.1139/B09-074 – ident: e_1_2_7_51_1 doi: 10.1016/0014-5793(95)00155-3 – ident: e_1_2_7_2_1 doi: 10.1104/pp.122.4.999 – ident: e_1_2_7_60_1 doi: 10.1038/nmeth.2019 – ident: e_1_2_7_31_1 doi: 10.1093/aob/mci226 – ident: e_1_2_7_52_1 doi: 10.1074/jbc.M106754200 – ident: e_1_2_7_61_1 doi: 10.1038/nmeth.2089 – ident: e_1_2_7_33_1 doi: 10.1038/s41477-019-0367-2 – ident: e_1_2_7_59_1 doi: 10.1111/tpj.12026 – ident: e_1_2_7_8_1 doi: 10.1080/01904169809365453 – ident: e_1_2_7_6_1 doi: 10.1042/bj1251075 – ident: e_1_2_7_55_1 doi: 10.1094/MPMI.2000.13.3.325 – ident: e_1_2_7_19_1 doi: 10.1002/yea.320100411 – ident: e_1_2_7_38_1 doi: 10.1038/srep42850 – ident: e_1_2_7_41_1 doi: 10.1111/j.1365-2958.1996.tb02561.x – ident: e_1_2_7_62_1 doi: 10.1186/1471-2229-10-160 |
SSID | ssj0009562 |
Score | 2.5190907 |
Snippet | Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients... Summary Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 667 |
SubjectTerms | Amino acids Bacteria Bacteroids carbon Carbon sources DNA Exchanging Glycine (amino acid) Glycine max Glycine max - genetics Glycine max - metabolism Hairy root Homology Iron iron transporter legume Legumes Lotus corniculatus var. japonicus Membranes Microscopy Mutants Nitrogen Nitrogen Fixation Nitrogenase Nitrogenation nodule Nodules Nucleotide sequence Nutrients PCR Plant Proteins - genetics Plant Proteins - metabolism Proteomics quantitative polymerase chain reaction rhizobia Root Nodules, Plant - metabolism SEN1 Soil Soil bacteria Soil microorganisms soybean Soybeans Substrates Symbionts Symbiosis symbiosome membrane Transport vacuoles VTL Yeast Yeasts |
Title | GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation |
URI | https://www.jstor.org/stable/26968116 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16734 https://www.ncbi.nlm.nih.gov/pubmed/32533710 https://www.proquest.com/docview/2445257703 https://www.proquest.com/docview/2412987425 https://www.proquest.com/docview/2561543439 |
Volume | 228 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5C6KGXPtKmdZMGpfTQixfL0sq79NSGpEtIQilJ2UPBSLJMltb2svZCtr--M_KDpKSl9GbjEUijmdFnaeYTwFuTo1FEhodc8CyUhrvQSDMNp7mKjJOxtTkVCp9fqNmVPJ2P51vwvq-Fafkhhg038gwfr8nBtalvOXm5vB5xlQjiAqVcLQJEX-JbhLsq7hmYlVTzjlWIsniGlnfWojYd8T6geRe3-oXn5DF867vc5pt8H60bM7I_f2Nz_M8xPYFHHSBlH1oLegpbrtyBBx8rBI2bZ7D8VHy9POOaLWqmS0Y1cawZ-NBXjF6vHas3hVlUdVU4VrgCe1A6VuWsrjbGYTPa7PXNC4_2y4ZRUiNblAwDyqpCG2b54sbbyHO4Ojm-PJqF3SUNoZVSyFBlwuROJNEkl9IQGY7hOlHa5Ql3iEeMdYmhWwD1JBPW6THiS47mq7MxgiM9FruwXValewnM2omVWkU6o-NYp7SlMmAjrEw0oq4ogHf9dKW2YzCnizR-pP2fDOov9foL4M0gumxpO-4T2vVzPkjExBTEuQpgvzeCtHPpOkUcRMyxGCEDOBw-ozPSCQuqtVqTDMKnSYJx8C8yiFh9Pe80gBetgQ0dEDFqBzEfjtSbyZ_7nl58nvmHV_8uugcPY9ot8KmI-7DdrNbuNUKqxhx43_kFjk8ceQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VBQku_BdcCiwIJC6OsvZmnRw4AKWkNI0QSlFu7u5mrUbUdhQ7gvBMvArvxMz6Ry0qiEsP3GJlLO3Ozsx-u575BuC5TtAoupr7POQzX2hufS30wB8ksqutCIxJqFD4cCyHR-LDtDfdgB9NLUzFD9FeuJFnuHhNDk4X0me8PFucdLiMQlGnVB7Y9Vc8sBWv9ndxdV8Ewd67yduhX_cU8I0QofDlLNSJDaNuPxFCE3eL5iqSyiYRt7h9amMjTU3rVH8WGqt6CIc4alvNeriXK-oRgQH_CnUQJ6b-3U_BGYpfGTScz1LIac1jRHlD7VDP7X5VAuRF0PY8UnZb3d5N-Nkoqcpw-dJZlbpjvv_GH_m_aPEW3KgxN3tdOclt2LDZHbj6JkdcvL4Li_fp58mIKzYvmMoYlf2xsqV8XzJ6PLGsWKd6nhd5allqU5xyZlmesCJfa4uv0X22ez11B5qsZJS3yeYZw5i5zNFNWTL_5tzgHhxdymy3YDPLM_sAmDF9I5Tsqhl9cbZSGap01qERkUJg2fXgZWMfsalJ2qlXyGncHNZwvWK3Xh48a0UXFTPJRUJbzshaiYDIkDiXHuw0VhfXUauIEeoROS5uAh48bf_GeEMfkVCt-YpkECH2Iwz1f5FBUO5Klgce3K8suh1AGKB2ENbiTJ1d_nns8fjj0P3Y_nfRJ3BtODkcxaP98cFDuB7Q5YjLvNyBzXK5so8QQZb6sXNcBseXbeO_AI7Fe0U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VBSEu_BdSCiwIJC6OvPZmnRw4ACGktEQValFu7u56rUbUdhQngvBKvAoPxcz6Ry0qiEsP3GJlLO3Ozsx-u575BuC5TtEofM09HvLEE5pbTws98Aap9LUVgTEpFQp_nMjxkfgw7U034EdTC1PxQ7QXbuQZLl6Tg8-T9IyT5_OTLpdRKOqMyj27_orntfLV7hAX90UQjN4dvh17dUsBzwgRCk8moU5tGPn9VAhN1C2aq0gqm0bc4u6pjY009axT_SQ0VvUQDXFUtkp6uJUrahGB8f6KkP6A-kQMPwVnGH5l0FA-SyGnNY0RpQ21Qz23-VX5jxch2_NA2e10o5vws9FRleDypbta6q75_ht95H-ixFtwo0bc7HXlIrdhw-Z34OqbAlHx-i7M32efD_e5YrOSqZxR0R9btoTvC0aPJ5aV60zPirLILMtshjPOLStSVhZrbfE1us12r2fuOJMvGWVtslnOMGIuCnRSls6-OSe4B0eXMtst2MyL3D4AZkzfCCV9ldD3ZiuVoTpnHRoRKYSVfgdeNuYRm5qinTqFnMbNUQ3XK3br1YFnrei84iW5SGjL2VgrERAVEueyAzuN0cV1zCpjBHpEjYtbQAeetn9jtKFPSKjWYkUyiA_7EQb6v8ggJHcFy4MO3K8Muh1AGKB2ENTiTJ1Z_nns8eRg7H5s_7voE7h2MBzF-7uTvYdwPaCbEZd2uQOby8XKPkL4uNSPndsyOL5sE_8FkeB59A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GmVTL1a+is+an+iron+transporter+on+the+symbiosome+membrane+of+soybean+with+an+important+role+in+nitrogen+fixation&rft.jtitle=The+New+phytologist&rft.au=Brear%2C+Ella+M.&rft.au=Bedon%2C+Frank&rft.au=Gavrin%2C+Aleksandr&rft.au=Kryvoruchko%2C+Igor+S.&rft.date=2020-10-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=228&rft.issue=2&rft.spage=667&rft.epage=681&rft_id=info:doi/10.1111%2Fnph.16734&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_16734 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |