GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation

Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia t...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 228; no. 2; pp. 667 - 681
Main Authors Brear, Ella M., Bedon, Frank, Gavrin, Aleksandr, Kryvoruchko, Igor S., Torres-Jerez, Ivone, Udvardi, Michael K., Day, David A., Smith, Penelope M. C.
Format Journal Article
LanguageEnglish
Published England Wiley 01.10.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real-time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen-fixing symbiosis.
AbstractList Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real-time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen-fixing symbiosis.
Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real-time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen-fixing symbiosis.
Summary Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant‐derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real‐time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen‐fixing symbiosis.
Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real-time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen-fixing symbiosis.Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real-time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen-fixing symbiosis.
Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant‐derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real‐time PCR and proteomics to study putative soybean ( Glycine max ) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen‐fixing symbiosis.
Author Brear, Ella M.
Torres-Jerez, Ivone
Day, David A.
Smith, Penelope M. C.
Gavrin, Aleksandr
Kryvoruchko, Igor S.
Udvardi, Michael K.
Bedon, Frank
Author_xml – sequence: 1
  givenname: Ella M.
  surname: Brear
  fullname: Brear, Ella M.
– sequence: 2
  givenname: Frank
  surname: Bedon
  fullname: Bedon, Frank
– sequence: 3
  givenname: Aleksandr
  surname: Gavrin
  fullname: Gavrin, Aleksandr
– sequence: 4
  givenname: Igor S.
  surname: Kryvoruchko
  fullname: Kryvoruchko, Igor S.
– sequence: 5
  givenname: Ivone
  surname: Torres-Jerez
  fullname: Torres-Jerez, Ivone
– sequence: 6
  givenname: Michael K.
  surname: Udvardi
  fullname: Udvardi, Michael K.
– sequence: 7
  givenname: David A.
  surname: Day
  fullname: Day, David A.
– sequence: 8
  givenname: Penelope M. C.
  surname: Smith
  fullname: Smith, Penelope M. C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32533710$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAURi1URKeFBT8AZIlNWaS141eyrCraIo0Ki1J1ZznJDeNRYgfbozL_Hs-LRQWqN5alcz7fxwk6ct4BQu8pOaf5XLhpcU6lYvwVmlEu66KiTB2hGSFlVUguH4_RSYxLQkgtZPkGHbNSMKYomaHpZny4n1ODbcTGYRu8wykYFycfEgS8eS4Ax_XYWB_9CHiEsckAYN_j6NcNZO3JpsVWHzeacQkHPwC2Djubgv8JDvf2t0nWu7fodW-GCO_29yn6cf3l_uq2mH-7-Xp1OS9azhkvZMeaHpgiVc95UypOG2qUNNArCkSJpgXVMEFrU3WsBSNyQxRMZzohWW0EO0Vnu9wp-F8riEmPNrYwDLl0v4q6FJKK_BOrX0Y5LetK8XKT-ukZuvSr4HIjmeKiFEoRlqmPe2rVjNDpKdjRhLU-jD0DFzugDT7GAL1ubdqOJ8_eDpoSvVmszovV28Vm4_Mz4xD6L3af_mQHWP8f1Hffbw_Gh52xjMmHv0Ypa1lRKtkf05u7WQ
CitedBy_id crossref_primary_10_1038_s41598_025_88416_3
crossref_primary_10_1093_jxb_erac014
crossref_primary_10_1093_jxb_erab069
crossref_primary_10_3390_ijms22010432
crossref_primary_10_1016_j_scitotenv_2024_171963
crossref_primary_10_1093_pcp_pcae128
crossref_primary_10_3390_plants12051017
crossref_primary_10_1093_plcell_koac039
crossref_primary_10_1186_s12864_023_09627_4
crossref_primary_10_54370_ordubtd_1460598
crossref_primary_10_1093_jxb_eraa390
crossref_primary_10_1016_j_csbj_2020_10_044
crossref_primary_10_1016_j_ncrops_2024_100015
crossref_primary_10_1111_ppl_13318
crossref_primary_10_3390_plants12101958
crossref_primary_10_1038_s41467_024_44865_4
crossref_primary_10_1111_nph_16735
crossref_primary_10_1093_plphys_kiab280
crossref_primary_10_3390_ijms24054647
crossref_primary_10_1016_j_envexpbot_2022_104810
crossref_primary_10_1016_j_xplc_2024_100829
crossref_primary_10_3389_fpls_2023_1306491
crossref_primary_10_1016_j_plaphy_2024_108362
crossref_primary_10_1093_plphys_kiab044
crossref_primary_10_1007_s11103_021_01135_x
crossref_primary_10_1038_s41467_024_53325_y
crossref_primary_10_1111_nph_19098
crossref_primary_10_1007_s13199_021_00827_8
crossref_primary_10_1016_j_jgg_2022_04_004
crossref_primary_10_1016_j_ncrops_2024_100047
crossref_primary_10_1093_hr_uhae321
crossref_primary_10_3389_fpls_2024_1427367
crossref_primary_10_1111_pbi_13682
crossref_primary_10_3389_fpls_2023_1196561
crossref_primary_10_1111_nph_17219
crossref_primary_10_1111_ppl_13363
crossref_primary_10_1016_j_ecoenv_2024_117298
crossref_primary_10_1080_1343943X_2024_2326643
crossref_primary_10_3390_agronomy13020384
crossref_primary_10_1093_plphys_kiab544
crossref_primary_10_1002_csc2_20661
crossref_primary_10_1111_jipb_13364
crossref_primary_10_3389_fpls_2025_1517144
Cites_doi 10.1007/BF00011579
10.1074/mcp.M114.043166
10.1007/1-4020-3735-X_26
10.1046/j.1365-313X.2003.01802.x
10.1071/PP9890069
10.1111/nph.16506
10.1104/pp.17.00672
10.1007/s004250050458
10.1083/jcb.128.5.779
10.1111/j.1365-313X.2012.05088.x
10.1002/yea.320110408
10.1016/j.bbamem.2006.03.024
10.1093/molbev/mst197
10.1104/pp.102.015362
10.1039/c3mt00060e
10.1111/j.1399-3054.1997.tb03452.x
10.1146/annurev.arplant.48.1.493
10.1074/jbc.M103944200
10.1371/journal.pone.0110468
10.2136/sssaj1982.03615995004600060008x
10.1111/nph.13837
10.1080/00380768.2004.10408587
10.3390/genes10020144
10.3389/fpls.2014.00045
10.1007/BF00011874
10.1104/pp.17.01538
10.1002/yea.320070704
10.1002/9781119053095.ch68
10.1016/j.plaphy.2011.02.011
10.1073/pnas.1200407109
10.1105/tpc.104.030106
10.1111/j.1365-313X.2010.04222.x
10.1016/0038-0717(95)98609-R
10.1104/pp.114.254672
10.1007/s00438-003-0840-4
10.1016/j.phytochem.2013.04.017
10.1093/pcp/pcr167
10.1094/MPMI.2002.15.7.630
10.1105/tpc.109.073023
10.1007/BF00028782
10.1093/nar/gks596
10.1111/j.1365-313X.2009.03879.x
10.1038/sj.emboj.7600864
10.1071/EA00087
10.1111/j.1469-8137.1979.tb00727.x
10.1105/tpc.108.064410
10.3389/fpls.2013.00350
10.1016/S0304-3940(02)01423-4
10.1038/nprot.2007.141
10.1038/srep39447
10.1007/s11627-013-9575-z
10.1126/science.1132563
10.1104/pp.111.3.893
10.1007/s13199-013-0221-7
10.1105/tpc.114.128736
10.3389/fpls.2013.00359
10.1139/B09-074
10.1016/0014-5793(95)00155-3
10.1104/pp.122.4.999
10.1038/nmeth.2019
10.1093/aob/mci226
10.1074/jbc.M106754200
10.1038/nmeth.2089
10.1038/s41477-019-0367-2
10.1111/tpj.12026
10.1080/01904169809365453
10.1042/bj1251075
10.1094/MPMI.2000.13.3.325
10.1002/yea.320100411
10.1038/srep42850
10.1111/j.1365-2958.1996.tb02561.x
10.1186/1471-2229-10-160
ContentType Journal Article
Copyright 2020 The Authors © 2020 New Phytologist Trust
2020 The Authors. New Phytologist © 2020 New Phytologist Trust
2020 The Authors. New Phytologist © 2020 New Phytologist Trust.
Copyright © 2020 New Phytologist Trust
Copyright_xml – notice: 2020 The Authors © 2020 New Phytologist Trust
– notice: 2020 The Authors. New Phytologist © 2020 New Phytologist Trust
– notice: 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.
– notice: Copyright © 2020 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.16734
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 681
ExternalDocumentID 32533710
10_1111_nph_16734
NPH16734
26968116
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP120102780, DP150102264 and IH140100013
– fundername: Grains Research and Development Corporation
  funderid: GRS10258
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4434-6d3bfe3708f44b2741b1a76aef71e075bce7b3519a8d3cea55331eadad5639a53
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:26:03 EDT 2025
Fri Jul 11 09:28:33 EDT 2025
Fri Jul 25 12:15:18 EDT 2025
Thu Apr 03 07:05:43 EDT 2025
Tue Jul 01 02:28:35 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Wed Jan 22 16:33:56 EST 2025
Thu Jul 03 21:56:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords soybean
SEN1
legume
rhizobia
symbiosome membrane
iron transporter
nodule
VTL
Language English
License 2020 The Authors. New Phytologist © 2020 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4434-6d3bfe3708f44b2741b1a76aef71e075bce7b3519a8d3cea55331eadad5639a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9841-1112
0000-0003-3636-1732
0000-0003-0179-8491
0000-0002-9940-5926
0000-0001-9850-0828
0000-0001-7967-2173
0000-0002-4444-598X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.16734
PMID 32533710
PQID 2445257703
PQPubID 2026848
PageCount 15
ParticipantIDs proquest_miscellaneous_2561543439
proquest_miscellaneous_2412987425
proquest_journals_2445257703
pubmed_primary_32533710
crossref_citationtrail_10_1111_nph_16734
crossref_primary_10_1111_nph_16734
wiley_primary_10_1111_nph_16734_NPH16734
jstor_primary_26968116
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201001
October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201001
  day: 1
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2020
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 7
2010; 10
2002; 15
2013; 4
2009; 87
1990; 14
2019; 10
1997; 48
2002; 277
2014; 26
1971; 125
2012; 58
2013; 5
2010; 63
2012; 53
2001; 41
2005; 24
2012; 72
2010; 22
2018; 176
2014; 5
1995; 27
2000; 13
2013; 94
1997; 100
2006; 1758
1998; 207
1995; 128
1982
2000; 122
2007; 2
2014; 9
2014; 50
1995; 361
1996; 178
1996; 21
2009; 59
1991; 130
2015; 14
2003; 339
2009; 21
2019; 5
2015; 168
1995; 11
2003; 35
2020; 226
2005
2017; 174
2006; 314
1998; 21
1991; 7
2012; 109
2003; 131
2001; 276
1982; 46
2016; 6
2004; 50
2013; 73
2013; 30
2005; 96
2016; 210
1996; 111
2015
2016; 29
2003; 269
1989; 16
2011; 49
2005; 17
1994; 10
1979; 83
2012; 9
2012; 40
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Bergersen FJ (e_1_2_7_4_1) 1982
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
González‐Guerrero M (e_1_2_7_25_1) 2016; 29
References_xml – volume: 46
  start-page: 1158
  year: 1982
  end-page: 1164
  article-title: Comparison of the abilities of hydroxamic, synthetic, and other natural organic acids to chelate iron and other ions in nutrient solution
  publication-title: Soil Science Society of America Journal
– volume: 178
  start-page: 161
  year: 1996
  end-page: 169
  article-title: Siderophore‐bound iron in the peribacteriod space of soybean root nodules
  publication-title: Plant and Soil
– volume: 168
  start-page: 256
  year: 2015
  end-page: 272
  article-title: natural resistance‐associated macrophage Protein1 is required for iron uptake by rhizobia‐infected nodule cells
  publication-title: Plant Physiology
– start-page: 683
  year: 2015
  end-page: 694
– volume: 40
  year: 2012
  article-title: Primer3‐new capabilities and interfaces
  publication-title: Nucleic Acids Research
– volume: 29
  start-page: 1088
  year: 2016
  article-title: Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia
  publication-title: Frontiers in Plant Science
– volume: 87
  start-page: 1117
  year: 2009
  end-page: 1138
  article-title: Getting around the legume nodule: I. The structure of the peripheral zone in four nodule types
  publication-title: Botany‐Botanique
– volume: 10
  start-page: 144
  year: 2019
  article-title: Molecular evolution of the vacuolar iron transporter (VIT) family genes in 14 plant species
  publication-title: Genes
– volume: 4
  start-page: 350
  year: 2013
  article-title: New insights into Fe localisation in plant tissues
  publication-title: Frontiers in Plant Science
– volume: 21
  start-page: 519
  year: 1996
  end-page: 528
  article-title: The role of the gene in the homeostasis of manganese ions
  publication-title: Molecular Microbiology
– volume: 21
  start-page: 2811
  year: 2009
  end-page: 2828
  article-title: Medicago N ‐fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity
  publication-title: The Plant Cell
– volume: 50
  start-page: 282
  year: 2014
  end-page: 291
  article-title: A novel method based on combination of semi‐ and conditions in ‐mediated hairy root transformation of species
  publication-title: Vitro Cellular & Developmental Biology‐Plant
– volume: 21
  start-page: 913
  year: 1998
  end-page: 927
  article-title: Evidence for reutilization of nodule iron in soybean seed development
  publication-title: Journal of Plant Nutrition
– volume: 14
  start-page: 449
  year: 1990
  end-page: 451
  article-title: A nodule‐specific sequence encoding a methionine‐rich polypeptide, nodulin‐21
  publication-title: Plant Molecular Biology
– volume: 24
  start-page: 4041
  year: 2005
  end-page: 4051
  article-title: Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron
  publication-title: EMBO Journal
– year: 1982
– volume: 174
  start-page: 2434
  year: 2017
  end-page: 2444
  article-title: Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification
  publication-title: Plant Physiology
– volume: 131
  start-page: 1080
  year: 2003
  end-page: 1090
  article-title: Proteome analysis. Novel proteins identified at the peribacteroid membrane from root nodules
  publication-title: Plant Physiology
– volume: 210
  start-page: 1011
  year: 2016
  end-page: 1021
  article-title: VAMP721a and VAMP721d are important for pectin dynamics and release of bacteria in soybean nodules
  publication-title: New Phytologist
– volume: 125
  start-page: 1075
  year: 1971
  end-page: 1080
  article-title: Control of leghemoglobin synthesis in snake beans
  publication-title: Biochemical Journal
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  article-title: Fiji: an open‐source platform for biological‐image analysis
  publication-title: Nature Methods
– volume: 109
  start-page: 8316
  year: 2012
  end-page: 8321
  article-title: Rhizobium–legume symbiosis shares an exocytotic pathway required for arbuscule formation
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 22
  start-page: 904
  year: 2010
  end-page: 917
  article-title: High‐affinity manganese uptake by the metal transporter NRAMP1 is essential for growth in low manganese conditions
  publication-title: The Plant Cell
– volume: 73
  start-page: 143
  year: 2013
  end-page: 153
  article-title: The fate of duplicated genes in a polyploid plant genome
  publication-title: The Plant Journal
– volume: 14
  start-page: 1301
  year: 2015
  end-page: 1322
  article-title: Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins
  publication-title: Molecular & Cellular Proteomics
– volume: 128
  start-page: 779
  year: 1995
  end-page: 792
  article-title: A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast
  publication-title: Journal of Cell Biology
– volume: 58
  start-page: 183
  year: 2012
  end-page: 190
  article-title: Movement of fluorescent dyes Lucifer Yellow (LYCH) and carboxyfluorescein (CF) in Gaertn. roots and root nodules
  publication-title: Symbiosis
– volume: 50
  start-page: 1141
  year: 2004
  end-page: 1150
  article-title: Regulation and function of AtNRAMP4 metal transporter protein
  publication-title: Soil Science and Plant Nutrition
– volume: 48
  start-page: 493
  year: 1997
  end-page: 523
  article-title: Metabolite transport across symbiotic membranes of legume nodules
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
– volume: 7
  start-page: 691
  year: 1991
  end-page: 692
  article-title: An efficient transformation procedure enabling long‐term storage of competent cells of various yeast genera
  publication-title: Yeast
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nature Methods
– volume: 94
  start-page: 60
  year: 2013
  end-page: 67
  article-title: The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals
  publication-title: Phytochemistry
– volume: 122
  start-page: 999
  year: 2000
  end-page: 1001
  article-title: Plant cells are not just green yeast
  publication-title: Plant Physiology
– volume: 9
  year: 2014
  article-title: Vacuolar‐iron‐transporter1‐like proteins mediate iron homeostasis in
  publication-title: PLoS ONE
– volume: 72
  start-page: 400
  year: 2012
  end-page: 410
  article-title: Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice
  publication-title: The Plant Journal
– volume: 226
  start-page: 1413
  year: 2020
  end-page: 1428
  article-title: A VIT‐like transporter facilitates iron transport into nodule symbiosomes for nitrogen fixation in soybean
  publication-title: New Phytologist
– volume: 26
  start-page: 3809
  year: 2014
  end-page: 3822
  article-title: Adjustment of host cells for accommodation of symbiotic bacteria: vacuole defunctionalization, hops suppression, and TIP1g retargeting in
  publication-title: The Plant Cell
– volume: 13
  start-page: 325
  year: 2000
  end-page: 333
  article-title: Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules
  publication-title: Molecular Plant–Microbe Interactions
– volume: 15
  start-page: 630
  year: 2002
  end-page: 636
  article-title: The soybean gene encodes a late nodulin expressed in the infected zone of nitrogen‐fixing nodules
  publication-title: Molecular Plant–Microbe Interactions
– volume: 83
  start-page: 63
  year: 1979
  end-page: 79
  article-title: Cobalt and nitrogen fixation in L. II. Nodule formation and function
  publication-title: New Phytologist
– volume: 35
  start-page: 295
  year: 2003
  end-page: 304
  article-title: The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport
  publication-title: The Plant Journal
– volume: 5
  start-page: 45
  year: 2014
  article-title: Fixating on metals: new insights into the role of metals in nodulation and symbiotic nitrogen fixation
  publication-title: Frontiers in Plant Science
– volume: 130
  start-page: 199
  year: 1991
  end-page: 209
  article-title: Iron uptake and metabolism in the rhizobia legume symbiosis
  publication-title: Plant and Soil
– volume: 11
  start-page: 355
  year: 1995
  end-page: 360
  article-title: Studies on the transformation of intact yeast‐cells by the LiAC/S‐DNA/PEG procedure
  publication-title: Yeast
– volume: 5
  start-page: 1247
  year: 2013
  end-page: 1253
  article-title: Iron distribution through the developmental stages of nodules
  publication-title: Metallomics
– volume: 53
  start-page: 225
  year: 2012
  end-page: 236
  article-title: The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in nodules
  publication-title: Plant and Cell Physiology
– volume: 2
  start-page: 948
  year: 2007
  end-page: 952
  article-title: ‐mediated transformation of soybean to study root biology
  publication-title: Nature Protocols
– volume: 314
  start-page: 1295
  year: 2006
  end-page: 1298
  article-title: Localisation of iron in seed requires the vacuolar membrane transporter VIT1
  publication-title: Science
– volume: 269
  start-page: 312
  year: 2003
  end-page: 320
  article-title: The gene controls rhizobial differentiation into nitrogen‐fixing bacteroids in nodules
  publication-title: Molecular Genetics and Genomics
– volume: 63
  start-page: 86
  year: 2010
  end-page: 99
  article-title: An integrated transcriptome atlas of the crop model , and its use in comparative analyses in plants
  publication-title: The Plant Journal
– volume: 10
  start-page: 160
  year: 2010
  article-title: RNA‐Seq Atlas of : a guide to the soybean transcriptome
  publication-title: BMC Plant Biology
– volume: 30
  start-page: 2725
  year: 2013
  end-page: 2729
  article-title: MEGA6: molecular evolutionary genetics analysis version 6.0
  publication-title: Molecular Biology and Evolution
– volume: 277
  start-page: 4738
  year: 2002
  end-page: 4746
  article-title: GmZIP1 encodes a symbiosis‐specific zinc transporter in soybean
  publication-title: Journal of Biological Chemistry
– volume: 1758
  start-page: 1165
  year: 2006
  end-page: 1175
  article-title: The structure, function and regulation of the nodulin 26‐like intrinsic protein family of plant aquaglyceroporins
  publication-title: Biochimica et Biophysica Acta
– volume: 16
  start-page: 69
  year: 1989
  end-page: 84
  article-title: Membrane Interface of the symbiosis: peribacteroid units from soyabean nodules
  publication-title: Functional Plant Biology
– volume: 4
  start-page: 359
  year: 2013
  article-title: Iron: an essential micronutrient for the legume‐rhizobium symbiosis
  publication-title: Frontiers in Plant Science
– volume: 207
  start-page: 83
  year: 1998
  end-page: 87
  article-title: Ferrous iron is transported across the peribacteroid membrane of soybean nodules
  publication-title: Planta
– volume: 59
  start-page: 437
  year: 2009
  end-page: 447
  article-title: A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation
  publication-title: The Plant Journal
– volume: 49
  start-page: 557
  year: 2011
  end-page: 564
  article-title: Members of a small family of nodulin‐like genes are regulated under iron deficiency in roots of
  publication-title: Plant Physiology and Biochemistry
– volume: 176
  start-page: 2315
  year: 2018
  end-page: 2329
  article-title: An iron‐activated citrate transporter, MtMATE67, is required for symbiotic nitrogen fixation
  publication-title: Plant Physiology
– volume: 361
  start-page: 225
  year: 1995
  end-page: 228
  article-title: Uptake of iron by symbiosomes and bacteroids from soybean nodules
  publication-title: FEBS Letters
– volume: 27
  start-page: 387
  year: 1995
  end-page: 399
  article-title: Symplastic transport in soybean root‐nodules
  publication-title: Soil Biology & Biochemistry
– volume: 96
  start-page: 745
  year: 2005
  end-page: 754
  article-title: The role of molybdenum in agricultural plant production
  publication-title: Annals of Botany
– volume: 7
  start-page: 42850
  year: 2017
  article-title: Recombinant vacuolar iron transporter family homologue PfVIT from human malaria‐causing is a Fe /H exchanger
  publication-title: Scientific Reports
– volume: 6
  start-page: 39447
  year: 2016
  article-title: Lotus base: an integrated information portal for the model legume
  publication-title: Scientific Reports
– volume: 41
  start-page: 417
  year: 2001
  end-page: 433
  article-title: Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review
  publication-title: Australian Journal of Experimental Agriculture
– volume: 10
  start-page: 515
  year: 1994
  end-page: 521
  article-title: Sequence, mapping and distribution of , a gene that cross‐complements the Ca ‐sensitive phenotype of mutants
  publication-title: Yeast
– start-page: 261
  year: 2005
  end-page: 277
– volume: 5
  start-page: 308
  year: 2019
  end-page: 315
  article-title: Crystal structure of plant vacuolar iron transporter VIT1
  publication-title: Nature Plants
– volume: 339
  start-page: 62
  year: 2003
  end-page: 66
  article-title: Assumption‐free analysis of quantitative real‐time polymerase chain reaction (PCR) data
  publication-title: Neuroscience Letters
– volume: 17
  start-page: 1625
  year: 2005
  end-page: 1636
  article-title: The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in root nodules
  publication-title: The Plant Cell
– volume: 111
  start-page: 893
  year: 1996
  end-page: 900
  article-title: Iron uptake by symbiosomes from soybean root nodules
  publication-title: Plant Physiology
– volume: 276
  start-page: 29515
  year: 2001
  end-page: 29519
  article-title: CCC1 is a transporter that mediates vacuolar iron storage in yeast
  publication-title: Journal of Biological Chemistry
– volume: 100
  start-page: 30
  year: 1997
  end-page: 44
  article-title: The peribacteroid membrane
  publication-title: Physiologia Plantarum
– ident: e_1_2_7_73_1
  doi: 10.1007/BF00011579
– ident: e_1_2_7_11_1
  doi: 10.1074/mcp.M114.043166
– ident: e_1_2_7_16_1
  doi: 10.1007/1-4020-3735-X_26
– ident: e_1_2_7_32_1
  doi: 10.1046/j.1365-313X.2003.01802.x
– ident: e_1_2_7_14_1
  doi: 10.1071/PP9890069
– ident: e_1_2_7_46_1
  doi: 10.1111/nph.16506
– ident: e_1_2_7_13_1
  doi: 10.1104/pp.17.00672
– ident: e_1_2_7_50_1
  doi: 10.1007/s004250050458
– ident: e_1_2_7_69_1
  doi: 10.1083/jcb.128.5.779
– ident: e_1_2_7_75_1
  doi: 10.1111/j.1365-313X.2012.05088.x
– ident: e_1_2_7_22_1
  doi: 10.1002/yea.320110408
– ident: e_1_2_7_70_1
  doi: 10.1016/j.bbamem.2006.03.024
– ident: e_1_2_7_64_1
  doi: 10.1093/molbev/mst197
– ident: e_1_2_7_72_1
  doi: 10.1104/pp.102.015362
– ident: e_1_2_7_57_1
  doi: 10.1039/c3mt00060e
– ident: e_1_2_7_71_1
  doi: 10.1111/j.1399-3054.1997.tb03452.x
– ident: e_1_2_7_67_1
  doi: 10.1146/annurev.arplant.48.1.493
– volume: 29
  start-page: 1088
  year: 2016
  ident: e_1_2_7_25_1
  article-title: Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia
  publication-title: Frontiers in Plant Science
– ident: e_1_2_7_43_1
  doi: 10.1074/jbc.M103944200
– ident: e_1_2_7_24_1
  doi: 10.1371/journal.pone.0110468
– volume-title: Root nodules of legumes; structure and functions
  year: 1982
  ident: e_1_2_7_4_1
– ident: e_1_2_7_12_1
  doi: 10.2136/sssaj1982.03615995004600060008x
– ident: e_1_2_7_20_1
  doi: 10.1111/nph.13837
– ident: e_1_2_7_39_1
  doi: 10.1080/00380768.2004.10408587
– ident: e_1_2_7_10_1
  doi: 10.3390/genes10020144
– ident: e_1_2_7_26_1
  doi: 10.3389/fpls.2014.00045
– ident: e_1_2_7_27_1
  doi: 10.1007/BF00011874
– ident: e_1_2_7_37_1
  doi: 10.1104/pp.17.01538
– ident: e_1_2_7_18_1
  doi: 10.1002/yea.320070704
– ident: e_1_2_7_48_1
  doi: 10.1002/9781119053095.ch68
– ident: e_1_2_7_23_1
  doi: 10.1016/j.plaphy.2011.02.011
– ident: e_1_2_7_30_1
  doi: 10.1073/pnas.1200407109
– ident: e_1_2_7_36_1
  doi: 10.1105/tpc.104.030106
– ident: e_1_2_7_44_1
  doi: 10.1111/j.1365-313X.2010.04222.x
– ident: e_1_2_7_7_1
  doi: 10.1016/0038-0717(95)98609-R
– ident: e_1_2_7_65_1
  doi: 10.1104/pp.114.254672
– ident: e_1_2_7_63_1
  doi: 10.1007/s00438-003-0840-4
– ident: e_1_2_7_74_1
  doi: 10.1016/j.phytochem.2013.04.017
– ident: e_1_2_7_29_1
  doi: 10.1093/pcp/pcr167
– ident: e_1_2_7_66_1
  doi: 10.1094/MPMI.2002.15.7.630
– ident: e_1_2_7_9_1
  doi: 10.1105/tpc.109.073023
– ident: e_1_2_7_15_1
  doi: 10.1007/BF00028782
– ident: e_1_2_7_68_1
  doi: 10.1093/nar/gks596
– ident: e_1_2_7_49_1
  doi: 10.1111/j.1365-313X.2009.03879.x
– ident: e_1_2_7_40_1
  doi: 10.1038/sj.emboj.7600864
– ident: e_1_2_7_54_1
  doi: 10.1071/EA00087
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1469-8137.1979.tb00727.x
– ident: e_1_2_7_45_1
  doi: 10.1105/tpc.108.064410
– ident: e_1_2_7_58_1
  doi: 10.3389/fpls.2013.00350
– ident: e_1_2_7_56_1
  doi: 10.1016/S0304-3940(02)01423-4
– ident: e_1_2_7_34_1
  doi: 10.1038/nprot.2007.141
– ident: e_1_2_7_53_1
  doi: 10.1038/srep39447
– ident: e_1_2_7_47_1
  doi: 10.1007/s11627-013-9575-z
– ident: e_1_2_7_35_1
  doi: 10.1126/science.1132563
– ident: e_1_2_7_42_1
  doi: 10.1104/pp.111.3.893
– ident: e_1_2_7_3_1
  doi: 10.1007/s13199-013-0221-7
– ident: e_1_2_7_21_1
  doi: 10.1105/tpc.114.128736
– ident: e_1_2_7_5_1
  doi: 10.3389/fpls.2013.00359
– ident: e_1_2_7_28_1
  doi: 10.1139/B09-074
– ident: e_1_2_7_51_1
  doi: 10.1016/0014-5793(95)00155-3
– ident: e_1_2_7_2_1
  doi: 10.1104/pp.122.4.999
– ident: e_1_2_7_60_1
  doi: 10.1038/nmeth.2019
– ident: e_1_2_7_31_1
  doi: 10.1093/aob/mci226
– ident: e_1_2_7_52_1
  doi: 10.1074/jbc.M106754200
– ident: e_1_2_7_61_1
  doi: 10.1038/nmeth.2089
– ident: e_1_2_7_33_1
  doi: 10.1038/s41477-019-0367-2
– ident: e_1_2_7_59_1
  doi: 10.1111/tpj.12026
– ident: e_1_2_7_8_1
  doi: 10.1080/01904169809365453
– ident: e_1_2_7_6_1
  doi: 10.1042/bj1251075
– ident: e_1_2_7_55_1
  doi: 10.1094/MPMI.2000.13.3.325
– ident: e_1_2_7_19_1
  doi: 10.1002/yea.320100411
– ident: e_1_2_7_38_1
  doi: 10.1038/srep42850
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1365-2958.1996.tb02561.x
– ident: e_1_2_7_62_1
  doi: 10.1186/1471-2229-10-160
SSID ssj0009562
Score 2.5190907
Snippet Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients...
Summary Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 667
SubjectTerms Amino acids
Bacteria
Bacteroids
carbon
Carbon sources
DNA
Exchanging
Glycine (amino acid)
Glycine max
Glycine max - genetics
Glycine max - metabolism
Hairy root
Homology
Iron
iron transporter
legume
Legumes
Lotus corniculatus var. japonicus
Membranes
Microscopy
Mutants
Nitrogen
Nitrogen Fixation
Nitrogenase
Nitrogenation
nodule
Nodules
Nucleotide sequence
Nutrients
PCR
Plant Proteins - genetics
Plant Proteins - metabolism
Proteomics
quantitative polymerase chain reaction
rhizobia
Root Nodules, Plant - metabolism
SEN1
Soil
Soil bacteria
Soil microorganisms
soybean
Soybeans
Substrates
Symbionts
Symbiosis
symbiosome membrane
Transport
vacuoles
VTL
Yeast
Yeasts
Title GmVTL1a is an iron transporter on the symbiosome membrane of soybean with an important role in nitrogen fixation
URI https://www.jstor.org/stable/26968116
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16734
https://www.ncbi.nlm.nih.gov/pubmed/32533710
https://www.proquest.com/docview/2445257703
https://www.proquest.com/docview/2412987425
https://www.proquest.com/docview/2561543439
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5C6KGXPtKmdZMGpfTQixfL0sq79NSGpEtIQilJ2UPBSLJMltb2svZCtr--M_KDpKSl9GbjEUijmdFnaeYTwFuTo1FEhodc8CyUhrvQSDMNp7mKjJOxtTkVCp9fqNmVPJ2P51vwvq-Fafkhhg038gwfr8nBtalvOXm5vB5xlQjiAqVcLQJEX-JbhLsq7hmYlVTzjlWIsniGlnfWojYd8T6geRe3-oXn5DF867vc5pt8H60bM7I_f2Nz_M8xPYFHHSBlH1oLegpbrtyBBx8rBI2bZ7D8VHy9POOaLWqmS0Y1cawZ-NBXjF6vHas3hVlUdVU4VrgCe1A6VuWsrjbGYTPa7PXNC4_2y4ZRUiNblAwDyqpCG2b54sbbyHO4Ojm-PJqF3SUNoZVSyFBlwuROJNEkl9IQGY7hOlHa5Ql3iEeMdYmhWwD1JBPW6THiS47mq7MxgiM9FruwXValewnM2omVWkU6o-NYp7SlMmAjrEw0oq4ogHf9dKW2YzCnizR-pP2fDOov9foL4M0gumxpO-4T2vVzPkjExBTEuQpgvzeCtHPpOkUcRMyxGCEDOBw-ozPSCQuqtVqTDMKnSYJx8C8yiFh9Pe80gBetgQ0dEDFqBzEfjtSbyZ_7nl58nvmHV_8uugcPY9ot8KmI-7DdrNbuNUKqxhx43_kFjk8ceQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VBQku_BdcCiwIJC6OsvZmnRw4AKWkNI0QSlFu7u5mrUbUdhQ7gvBMvArvxMz6Ry0qiEsP3GJlLO3Ozsx-u575BuC5TtAoupr7POQzX2hufS30wB8ksqutCIxJqFD4cCyHR-LDtDfdgB9NLUzFD9FeuJFnuHhNDk4X0me8PFucdLiMQlGnVB7Y9Vc8sBWv9ndxdV8Ewd67yduhX_cU8I0QofDlLNSJDaNuPxFCE3eL5iqSyiYRt7h9amMjTU3rVH8WGqt6CIc4alvNeriXK-oRgQH_CnUQJ6b-3U_BGYpfGTScz1LIac1jRHlD7VDP7X5VAuRF0PY8UnZb3d5N-Nkoqcpw-dJZlbpjvv_GH_m_aPEW3KgxN3tdOclt2LDZHbj6JkdcvL4Li_fp58mIKzYvmMoYlf2xsqV8XzJ6PLGsWKd6nhd5allqU5xyZlmesCJfa4uv0X22ez11B5qsZJS3yeYZw5i5zNFNWTL_5tzgHhxdymy3YDPLM_sAmDF9I5Tsqhl9cbZSGap01qERkUJg2fXgZWMfsalJ2qlXyGncHNZwvWK3Xh48a0UXFTPJRUJbzshaiYDIkDiXHuw0VhfXUauIEeoROS5uAh48bf_GeEMfkVCt-YpkECH2Iwz1f5FBUO5Klgce3K8suh1AGKB2ENbiTJ1d_nns8fjj0P3Y_nfRJ3BtODkcxaP98cFDuB7Q5YjLvNyBzXK5so8QQZb6sXNcBseXbeO_AI7Fe0U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5VBSEu_BdSCiwIJC6OvPZmnRw4ACGktEQValFu7u56rUbUdhQngvBKvAoPxcz6Ry0qiEsP3GJlLO3Ozsx-u575BuC5TtEofM09HvLEE5pbTws98Aap9LUVgTEpFQp_nMjxkfgw7U034EdTC1PxQ7QXbuQZLl6Tg8-T9IyT5_OTLpdRKOqMyj27_orntfLV7hAX90UQjN4dvh17dUsBzwgRCk8moU5tGPn9VAhN1C2aq0gqm0bc4u6pjY009axT_SQ0VvUQDXFUtkp6uJUrahGB8f6KkP6A-kQMPwVnGH5l0FA-SyGnNY0RpQ21Qz23-VX5jxch2_NA2e10o5vws9FRleDypbta6q75_ht95H-ixFtwo0bc7HXlIrdhw-Z34OqbAlHx-i7M32efD_e5YrOSqZxR0R9btoTvC0aPJ5aV60zPirLILMtshjPOLStSVhZrbfE1us12r2fuOJMvGWVtslnOMGIuCnRSls6-OSe4B0eXMtst2MyL3D4AZkzfCCV9ldD3ZiuVoTpnHRoRKYSVfgdeNuYRm5qinTqFnMbNUQ3XK3br1YFnrei84iW5SGjL2VgrERAVEueyAzuN0cV1zCpjBHpEjYtbQAeetn9jtKFPSKjWYkUyiA_7EQb6v8ggJHcFy4MO3K8Muh1AGKB2ENTiTJ1Z_nns8eRg7H5s_7voE7h2MBzF-7uTvYdwPaCbEZd2uQOby8XKPkL4uNSPndsyOL5sE_8FkeB59A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GmVTL1a+is+an+iron+transporter+on+the+symbiosome+membrane+of+soybean+with+an+important+role+in+nitrogen+fixation&rft.jtitle=The+New+phytologist&rft.au=Brear%2C+Ella+M.&rft.au=Bedon%2C+Frank&rft.au=Gavrin%2C+Aleksandr&rft.au=Kryvoruchko%2C+Igor+S.&rft.date=2020-10-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=228&rft.issue=2&rft.spage=667&rft.epage=681&rft_id=info:doi/10.1111%2Fnph.16734&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nph_16734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon