Plant root exudation under drought implications for ecosystem functioning

Root exudates are a pathway for plant–microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent evidence that shows that plants of different growth strategies differ in their root exudation, that root exudates can select for beneficial soil mi...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 225; no. 5; pp. 1899 - 1905
Main Authors Williams, Alex, de Vries, Franciska T.
Format Journal Article
LanguageEnglish
Published England Wiley 01.03.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Root exudates are a pathway for plant–microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent evidence that shows that plants of different growth strategies differ in their root exudation, that root exudates can select for beneficial soil microbial communities, and that drought affects the quantity and quality of root exudation. We use this evidence to argue for a central involvement of root exudates in plant and microbial response to drought and propose a framework for understanding how root exudates influence ecosystem form and function during and after drought. Specifically, we propose that fast-growing plants modify their root exudates to recruit beneficial microbes that facilitate their regrowth after drought, with cascading impacts on their abundance and ecosystem functioning. We identify outstanding questions and methodological challenges that need to be addressed to advance and solidify our comprehension of the importance of root exudates in ecosystem response to drought.
AbstractList Root exudates are a pathway for plant–microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent evidence that shows that plants of different growth strategies differ in their root exudation, that root exudates can select for beneficial soil microbial communities, and that drought affects the quantity and quality of root exudation. We use this evidence to argue for a central involvement of root exudates in plant and microbial response to drought and propose a framework for understanding how root exudates influence ecosystem form and function during and after drought. Specifically, we propose that fast‐growing plants modify their root exudates to recruit beneficial microbes that facilitate their regrowth after drought, with cascading impacts on their abundance and ecosystem functioning. We identify outstanding questions and methodological challenges that need to be addressed to advance and solidify our comprehension of the importance of root exudates in ecosystem response to drought.
Summary Root exudates are a pathway for plant–microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent evidence that shows that plants of different growth strategies differ in their root exudation, that root exudates can select for beneficial soil microbial communities, and that drought affects the quantity and quality of root exudation. We use this evidence to argue for a central involvement of root exudates in plant and microbial response to drought and propose a framework for understanding how root exudates influence ecosystem form and function during and after drought. Specifically, we propose that fast‐growing plants modify their root exudates to recruit beneficial microbes that facilitate their regrowth after drought, with cascading impacts on their abundance and ecosystem functioning. We identify outstanding questions and methodological challenges that need to be addressed to advance and solidify our comprehension of the importance of root exudates in ecosystem response to drought.
Root exudates are a pathway for plant-microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent evidence that shows that plants of different growth strategies differ in their root exudation, that root exudates can select for beneficial soil microbial communities, and that drought affects the quantity and quality of root exudation. We use this evidence to argue for a central involvement of root exudates in plant and microbial response to drought and propose a framework for understanding how root exudates influence ecosystem form and function during and after drought. Specifically, we propose that fast-growing plants modify their root exudates to recruit beneficial microbes that facilitate their regrowth after drought, with cascading impacts on their abundance and ecosystem functioning. We identify outstanding questions and methodological challenges that need to be addressed to advance and solidify our comprehension of the importance of root exudates in ecosystem response to drought.Root exudates are a pathway for plant-microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent evidence that shows that plants of different growth strategies differ in their root exudation, that root exudates can select for beneficial soil microbial communities, and that drought affects the quantity and quality of root exudation. We use this evidence to argue for a central involvement of root exudates in plant and microbial response to drought and propose a framework for understanding how root exudates influence ecosystem form and function during and after drought. Specifically, we propose that fast-growing plants modify their root exudates to recruit beneficial microbes that facilitate their regrowth after drought, with cascading impacts on their abundance and ecosystem functioning. We identify outstanding questions and methodological challenges that need to be addressed to advance and solidify our comprehension of the importance of root exudates in ecosystem response to drought.
Author Williams, Alex
de Vries, Franciska T.
Author_xml – sequence: 1
  givenname: Alex
  surname: Williams
  fullname: Williams, Alex
– sequence: 2
  givenname: Franciska T.
  surname: de Vries
  fullname: de Vries, Franciska T.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31571220$$D View this record in MEDLINE/PubMed
BookMark eNqF0bFOwzAQBmALgaAUBh4AVMECQ-j57NjxiBBQJAQMILFZTuJCqjQudiLo22NaYKgEePHy_efz3TZZb1xjCdmjcErjGTazl1MqENka6VEuVJJRJtdJDwCzRHDxtEW2Q5gAgEoFbpItRlNJEaFHDu9r07QD71w7sO9dadrKNYOuKa0flN51zy_tDtkYmzrY3a-7Tx4vLx7OR8nN3dX1-dlNUnDOWFIoNPHtXGCZq5SWnFqFY5YbNMwomUOeS0o5pzkUKUMjJEvBGMikiKTkrE-Ol3Vn3r12NrR6WoXC1rFB67qgkQNwCQzF_xSVkiITNI30aIVOXOeb-BGNsQHImEIZ1cGX6vKpLfXMV1Pj5_p7UBGcLEHhXQjejn8IBf25BB2XoBdLiHa4YouqXQy29aaq_0q8VbWd_15a396PvhP7y8QktM7_JFBkSmTA2AeUr52D
CitedBy_id crossref_primary_10_3390_f12060724
crossref_primary_10_1007_s00374_020_01524_2
crossref_primary_10_17221_236_2021_PSE
crossref_primary_10_1007_s11104_023_06205_1
crossref_primary_10_1111_1758_2229_13120
crossref_primary_10_1016_j_scitotenv_2024_173861
crossref_primary_10_1016_j_ecoenv_2023_115549
crossref_primary_10_1016_j_soilbio_2022_108811
crossref_primary_10_1016_j_ecolind_2023_110071
crossref_primary_10_1016_j_geoderma_2022_116235
crossref_primary_10_1007_s11104_024_06491_3
crossref_primary_10_1093_hr_uhae290
crossref_primary_10_3389_fmicb_2020_00704
crossref_primary_10_1111_nph_17908
crossref_primary_10_1111_ppl_13711
crossref_primary_10_1007_s11356_023_29093_5
crossref_primary_10_1016_j_geoderma_2021_115309
crossref_primary_10_3390_microorganisms10081644
crossref_primary_10_33275_1727_7485_2_2022_701
crossref_primary_10_1016_j_bcab_2022_102336
crossref_primary_10_1016_j_geoderma_2020_114738
crossref_primary_10_1016_j_rhisph_2023_100835
crossref_primary_10_1016_j_jhazmat_2024_136727
crossref_primary_10_1525_elementa_2021_00110
crossref_primary_10_1016_j_apsoil_2025_105994
crossref_primary_10_3389_fmicb_2023_1235708
crossref_primary_10_1111_1365_2435_14626
crossref_primary_10_1007_s11069_022_05219_9
crossref_primary_10_1007_s42729_024_01660_w
crossref_primary_10_3390_agriculture13020326
crossref_primary_10_1038_s41477_021_00967_1
crossref_primary_10_1016_j_scitotenv_2024_176342
crossref_primary_10_1016_j_soilbio_2021_108426
crossref_primary_10_3390_ijms23042374
crossref_primary_10_1016_j_foreco_2021_119178
crossref_primary_10_1007_s00425_025_04635_y
crossref_primary_10_1093_treephys_tpad098
crossref_primary_10_7717_peerj_18610
crossref_primary_10_1016_j_envres_2023_116185
crossref_primary_10_3390_plants13030384
crossref_primary_10_1016_j_stress_2024_100686
crossref_primary_10_3390_su151813303
crossref_primary_10_1016_j_soilbio_2023_109074
crossref_primary_10_1016_j_geoderma_2024_116803
crossref_primary_10_1186_s12870_024_05860_5
crossref_primary_10_1016_j_agwat_2022_107781
crossref_primary_10_1007_s11104_021_05047_z
crossref_primary_10_1007_s00425_024_04459_2
crossref_primary_10_3390_agronomy12123002
crossref_primary_10_1093_jxb_erad045
crossref_primary_10_1080_15592324_2022_2129295
crossref_primary_10_1111_1365_2745_14215
crossref_primary_10_1080_17429145_2024_2326294
crossref_primary_10_1007_s10343_024_01013_8
crossref_primary_10_1007_s11104_020_04776_x
crossref_primary_10_3389_fmicb_2022_1052567
crossref_primary_10_3389_fmicb_2022_1078836
crossref_primary_10_1016_j_geoderma_2021_115327
crossref_primary_10_1016_j_ejsobi_2022_103401
crossref_primary_10_1007_s11104_022_05669_x
crossref_primary_10_1016_j_pedsph_2023_07_014
crossref_primary_10_1111_nph_17326
crossref_primary_10_1007_s00374_021_01578_w
crossref_primary_10_1007_s11104_024_06657_z
crossref_primary_10_1038_s41598_023_37564_5
crossref_primary_10_1139_cjm_2021_0272
crossref_primary_10_1016_j_scitotenv_2024_174943
crossref_primary_10_1111_nph_17432
crossref_primary_10_1002_jobm_202200361
crossref_primary_10_1016_j_scitotenv_2021_149701
crossref_primary_10_1080_01904167_2021_1952221
crossref_primary_10_1016_j_tree_2023_03_001
crossref_primary_10_1111_gwat_13143
crossref_primary_10_1111_gcb_16270
crossref_primary_10_1094_PBIOMES_06_23_0049_R
crossref_primary_10_1073_pnas_2210044120
crossref_primary_10_1016_j_jhazmat_2023_132757
crossref_primary_10_3389_fpls_2021_751731
crossref_primary_10_1002_wat2_1495
crossref_primary_10_3390_plants12061209
crossref_primary_10_1111_gcb_16950
crossref_primary_10_1128_msystems_00092_20
crossref_primary_10_1007_s10533_022_01011_w
crossref_primary_10_1111_1365_2435_14643
crossref_primary_10_1038_s43705_023_00235_7
crossref_primary_10_1007_s11104_023_06472_y
crossref_primary_10_1111_nph_20314
crossref_primary_10_1111_ele_14129
crossref_primary_10_3389_fpls_2022_935829
crossref_primary_10_3389_fmicb_2024_1442001
crossref_primary_10_1007_s00374_022_01649_6
crossref_primary_10_1128_spectrum_00225_22
crossref_primary_10_1016_j_foreco_2023_121316
crossref_primary_10_1016_j_tim_2023_07_011
crossref_primary_10_1016_j_soilbio_2021_108453
crossref_primary_10_3389_ffgc_2022_1114390
crossref_primary_10_3390_f14091847
crossref_primary_10_1007_s11104_023_06181_6
crossref_primary_10_1111_nph_17707
crossref_primary_10_1371_journal_pwat_0000094
crossref_primary_10_1007_s11676_022_01517_x
crossref_primary_10_1111_gcb_15131
crossref_primary_10_1094_PBIOMES_02_24_0028_R
crossref_primary_10_1016_j_catena_2022_106904
crossref_primary_10_1007_s11104_023_06421_9
crossref_primary_10_1016_j_scitotenv_2020_143839
crossref_primary_10_1016_j_micres_2020_126588
crossref_primary_10_1016_j_rhisph_2021_100455
crossref_primary_10_1016_j_scitotenv_2024_171370
crossref_primary_10_1111_1365_2745_14107
crossref_primary_10_1128_spectrum_00068_23
crossref_primary_10_3390_agronomy12102458
crossref_primary_10_1016_j_plantsci_2025_112439
crossref_primary_10_1111_pce_14523
crossref_primary_10_1016_j_soilbio_2024_109658
crossref_primary_10_1016_j_micres_2023_127564
crossref_primary_10_1094_PBIOMES_5_2
crossref_primary_10_1111_oik_08959
crossref_primary_10_1016_j_envexpbot_2022_105071
crossref_primary_10_4081_ija_2022_2130
crossref_primary_10_3390_soilsystems8030084
crossref_primary_10_1016_j_ecoenv_2023_115172
crossref_primary_10_3390_metabo11080558
crossref_primary_10_1016_j_nanoen_2022_108097
crossref_primary_10_3390_microorganisms11122984
crossref_primary_10_3389_fmicb_2021_645784
crossref_primary_10_3389_fmicb_2023_1282689
crossref_primary_10_3390_biology13020095
crossref_primary_10_1007_s00344_023_11061_5
crossref_primary_10_1007_s11368_024_03844_4
crossref_primary_10_1038_s41396_023_01512_y
crossref_primary_10_1016_j_scitotenv_2020_143505
crossref_primary_10_1111_pce_13999
crossref_primary_10_1016_j_scitotenv_2023_164406
crossref_primary_10_1111_1365_2745_14136
crossref_primary_10_1016_j_plaphy_2023_01_051
crossref_primary_10_1016_j_soilbio_2022_108670
crossref_primary_10_3389_fpls_2024_1344205
crossref_primary_10_1016_j_micres_2021_126885
crossref_primary_10_1007_s11104_024_06806_4
crossref_primary_10_1111_1365_2435_14034
crossref_primary_10_3390_f12121797
crossref_primary_10_1007_s11816_022_00770_0
crossref_primary_10_1016_j_pbi_2022_102316
crossref_primary_10_1042_BCJ20210793
crossref_primary_10_1002_ps_5850
crossref_primary_10_3390_agronomy13041036
crossref_primary_10_1111_1462_2920_15764
crossref_primary_10_3390_plants11223013
crossref_primary_10_1007_s11104_024_06696_6
crossref_primary_10_1111_gcb_17206
crossref_primary_10_1111_nph_17598
crossref_primary_10_3389_fpls_2022_894346
crossref_primary_10_1016_j_ecochg_2021_100013
crossref_primary_10_1128_spectrum_01254_24
crossref_primary_10_3389_frmbi_2023_1310790
crossref_primary_10_1016_j_scitotenv_2022_160660
crossref_primary_10_1016_j_jwpe_2023_103906
crossref_primary_10_1111_pce_14863
crossref_primary_10_1002_ecy_3997
crossref_primary_10_1007_s11104_025_07218_8
crossref_primary_10_1016_j_soilbio_2025_109731
crossref_primary_10_1016_j_soilbio_2023_109256
crossref_primary_10_1094_PBIOMES_07_20_0052_R
crossref_primary_10_1111_nph_17118
crossref_primary_10_1128_msystems_00354_24
crossref_primary_10_3389_fpls_2020_587610
crossref_primary_10_1016_j_chemosphere_2023_138186
crossref_primary_10_1111_1462_2920_15647
crossref_primary_10_3389_fpls_2022_1004553
crossref_primary_10_3389_fpls_2022_1044896
crossref_primary_10_1016_j_cub_2023_10_028
crossref_primary_10_1186_s12284_023_00636_1
crossref_primary_10_1016_j_actao_2021_103788
crossref_primary_10_1111_nph_18157
crossref_primary_10_1007_s10343_025_01128_6
crossref_primary_10_3390_agronomy10070942
crossref_primary_10_1016_j_geoderma_2025_117202
crossref_primary_10_1111_1462_2920_16549
crossref_primary_10_3389_fpls_2023_1244591
crossref_primary_10_1016_j_jenvman_2024_123831
crossref_primary_10_1111_sum_70025
crossref_primary_10_3389_fmicb_2022_981288
crossref_primary_10_1016_j_pedobi_2023_150873
crossref_primary_10_1111_1365_2745_13746
crossref_primary_10_3389_fmicb_2020_553223
crossref_primary_10_1016_j_apsoil_2023_104957
crossref_primary_10_1111_nph_19000
crossref_primary_10_1016_j_tplants_2022_05_007
crossref_primary_10_1016_j_scitotenv_2023_165689
crossref_primary_10_1002_ldr_4786
crossref_primary_10_1016_j_still_2023_105717
crossref_primary_10_1016_j_scitotenv_2020_139554
crossref_primary_10_1126_science_aaz5192
crossref_primary_10_1093_conphys_coae037
crossref_primary_10_1525_elementa_2022_00043
crossref_primary_10_1039_D3MO00051F
crossref_primary_10_1007_s11104_022_05530_1
crossref_primary_10_5194_gmd_16_3165_2023
crossref_primary_10_1007_s00344_023_11115_8
crossref_primary_10_1111_nph_16881
crossref_primary_10_3390_agronomy14112584
crossref_primary_10_1016_j_micres_2024_128031
crossref_primary_10_1007_s11104_023_06420_w
crossref_primary_10_3390_plants11172256
crossref_primary_10_3390_agriculture13081467
crossref_primary_10_1016_j_soilbio_2021_108384
crossref_primary_10_3389_fpls_2021_621276
crossref_primary_10_3389_fsufs_2023_1253735
crossref_primary_10_1186_s12870_022_03978_y
crossref_primary_10_1007_s11104_024_06784_7
crossref_primary_10_3390_ijms23031084
crossref_primary_10_1007_s11104_023_06078_4
crossref_primary_10_1016_j_envexpbot_2024_106006
crossref_primary_10_1111_nph_17854
crossref_primary_10_1016_j_apsoil_2021_104274
crossref_primary_10_1007_s11427_024_2876_0
crossref_primary_10_1016_j_xplc_2024_101139
crossref_primary_10_1016_j_tplants_2022_01_010
crossref_primary_10_5194_bg_17_6377_2020
crossref_primary_10_1016_j_ijbiomac_2022_04_015
crossref_primary_10_1002_saj2_20201
crossref_primary_10_1016_j_scitotenv_2022_155212
crossref_primary_10_1016_j_scitotenv_2024_175983
crossref_primary_10_1111_nph_18016
crossref_primary_10_1002_ldr_4768
crossref_primary_10_1093_plcell_koae055
crossref_primary_10_1016_j_ejsobi_2024_103690
crossref_primary_10_1029_2024JG008287
crossref_primary_10_1038_s41396_020_00735_7
crossref_primary_10_1016_j_geoderma_2020_114798
crossref_primary_10_1016_j_soilbio_2024_109644
crossref_primary_10_1111_ppl_13338
crossref_primary_10_1186_s40793_022_00407_3
crossref_primary_10_5194_nhess_24_3173_2024
crossref_primary_10_1016_j_plantsci_2023_111694
crossref_primary_10_1016_j_soilbio_2022_108753
crossref_primary_10_1016_j_jia_2024_12_014
crossref_primary_10_1111_gcb_16685
crossref_primary_10_1111_nph_16757
crossref_primary_10_1016_j_soilbio_2021_108391
crossref_primary_10_1093_aob_mcae151
crossref_primary_10_3390_agronomy14081662
crossref_primary_10_1111_jipb_13154
crossref_primary_10_1111_nph_18816
crossref_primary_10_1093_jxb_erad312
crossref_primary_10_1007_s11104_024_06691_x
crossref_primary_10_1016_j_rhisph_2022_100615
crossref_primary_10_3390_cells12060858
crossref_primary_10_1111_1365_2745_13630
crossref_primary_10_1038_s41467_024_51073_7
crossref_primary_10_1016_j_apsoil_2023_104805
crossref_primary_10_1016_j_scienta_2025_114030
crossref_primary_10_2144_btn_2023_0083
crossref_primary_10_1007_s10342_020_01346_9
crossref_primary_10_1016_j_apsoil_2021_104296
crossref_primary_10_1038_s41477_024_01749_1
crossref_primary_10_3389_fmicb_2024_1362722
crossref_primary_10_1038_s41598_022_11754_z
crossref_primary_10_1016_j_still_2024_106285
crossref_primary_10_1016_j_apsoil_2023_104994
crossref_primary_10_1016_j_scitotenv_2023_169048
crossref_primary_10_1038_s41598_024_79801_5
crossref_primary_10_3390_plants12030630
crossref_primary_10_1016_j_apsoil_2024_105449
crossref_primary_10_3389_fenvs_2022_821742
crossref_primary_10_1016_j_ecoenv_2025_117804
crossref_primary_10_1007_s10021_024_00946_5
crossref_primary_10_1016_j_indcrop_2022_115434
crossref_primary_10_1080_10643389_2020_1862561
crossref_primary_10_3390_plants10050975
crossref_primary_10_1016_j_apsoil_2020_103774
crossref_primary_10_1016_j_foreco_2022_120584
crossref_primary_10_1016_j_still_2023_105918
crossref_primary_10_3389_ffgc_2022_921191
crossref_primary_10_1002_jsfa_12011
crossref_primary_10_1016_j_soilbio_2024_109386
crossref_primary_10_1186_s40168_023_01513_1
crossref_primary_10_3390_agronomy14040692
crossref_primary_10_1111_1365_2664_14641
crossref_primary_10_1007_s11104_021_04861_9
crossref_primary_10_1016_j_scitotenv_2024_176307
crossref_primary_10_1111_1365_2435_14548
crossref_primary_10_1111_gcb_16978
crossref_primary_10_3390_agronomy14081731
crossref_primary_10_3390_plants10010038
crossref_primary_10_1016_j_micres_2020_126626
crossref_primary_10_1111_nph_17774
crossref_primary_10_1111_nph_18061
crossref_primary_10_3390_plants13050683
crossref_primary_10_1002_sae2_70038
crossref_primary_10_1098_rspb_2023_0469
crossref_primary_10_1007_s11104_023_06126_z
crossref_primary_10_1016_j_soilbio_2022_108728
crossref_primary_10_1094_PBIOMES_12_21_0076_R
crossref_primary_10_1016_j_catena_2024_108259
crossref_primary_10_1002_sae2_12031
crossref_primary_10_1016_j_agrformet_2023_109471
crossref_primary_10_3390_agronomy14061261
crossref_primary_10_1111_pce_14247
crossref_primary_10_1002_adsu_202100113
crossref_primary_10_1007_s00374_024_01804_1
crossref_primary_10_1007_s11104_022_05800_y
crossref_primary_10_3389_fpls_2022_1082752
crossref_primary_10_1007_s00572_024_01164_6
crossref_primary_10_1016_j_micres_2021_126917
crossref_primary_10_1007_s11274_023_03837_4
crossref_primary_10_3389_fpls_2021_614968
crossref_primary_10_1002_ece3_9186
crossref_primary_10_1016_j_catena_2024_108282
crossref_primary_10_1111_ppl_14181
crossref_primary_10_1016_j_csbj_2023_10_043
crossref_primary_10_1016_j_geoderma_2022_115767
crossref_primary_10_3390_plants13233307
crossref_primary_10_1016_j_micres_2024_127698
crossref_primary_10_3389_fpls_2021_691651
crossref_primary_10_1016_j_ijbiomac_2023_123387
crossref_primary_10_1111_1365_2664_13774
crossref_primary_10_3390_agronomy15010234
crossref_primary_10_3390_ijms25179249
crossref_primary_10_1016_j_pbi_2023_102336
crossref_primary_10_1016_j_scitotenv_2022_155007
crossref_primary_10_1007_s00344_023_10987_0
crossref_primary_10_1016_j_soilbio_2020_107819
crossref_primary_10_1109_JSEN_2022_3175502
crossref_primary_10_1093_treephys_tpad118
crossref_primary_10_1016_j_agrformet_2021_108671
crossref_primary_10_3389_fpls_2023_1122285
crossref_primary_10_3389_fpls_2023_1221288
crossref_primary_10_2139_ssrn_3957958
crossref_primary_10_1038_s41598_022_16408_8
crossref_primary_10_1111_nph_18043
crossref_primary_10_1007_s00284_021_02536_3
crossref_primary_10_1007_s11368_023_03602_y
crossref_primary_10_1016_j_jare_2022_07_009
crossref_primary_10_1111_ppl_13547
crossref_primary_10_1111_pce_14466
crossref_primary_10_1016_j_scitotenv_2022_160025
crossref_primary_10_1111_1365_2745_13550
crossref_primary_10_1007_s11104_022_05636_6
crossref_primary_10_1016_j_agwat_2020_106436
crossref_primary_10_1016_S1002_0160_21_60061_9
crossref_primary_10_1016_j_agrformet_2024_110178
Cites_doi 10.1016/j.tplants.2016.01.008
10.1111/j.1461-0248.2010.01570.x
10.1111/1365-2745.12910
10.1007/s11104-016-3090-z
10.1111/nph.15361
10.1126/science.1249534
10.1016/j.sjbs.2017.10.015
10.3389/fpls.2018.01593
10.1093/treephys/tpx163
10.1038/s41559-018-0647-7
10.1016/j.gsd.2018.03.005
10.1016/j.plgene.2017.04.003
10.1371/journal.pone.0204128
10.1080/15592324.2015.1071004
10.1007/BF01343734
10.1038/s41467-018-05516-7
10.1111/j.1461-0248.2012.01844.x
10.1038/s41467-019-11006-1
10.1007/s11104-014-2283-6
10.1038/s41564-018-0129-3
10.1038/s41598-018-30150-0
10.1007/s10533-014-0028-5
10.1111/nph.16001
10.1002/ece3.4383
10.1016/j.rhisph.2016.06.003
10.1007/s11104-018-3824-1
10.1073/pnas.1717617115
10.1093/femsec/fix022
10.1111/1365-2745.12165
10.1016/j.apsoil.2017.07.030
10.1111/j.1558-5646.2012.01718.x
10.2134/jeq2006.0425sc
10.1128/mBio.01664-16
10.3389/fpls.2017.02223
10.1007/s11104-016-2964-4
10.1016/j.pbi.2015.05.003
10.1016/j.tplants.2017.09.003
10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
10.1007/s11104-016-3040-9
10.1073/pnas.1722335115
10.1016/j.rhisph.2018.06.004
10.3389/fpls.2017.01056
10.1126/science.1094678
10.1111/tpj.13639
10.1007/s10021-017-0178-0
10.1016/j.scitotenv.2018.10.434
10.1016/j.sjbs.2018.11.005
10.3389/fpls.2016.00584
10.3389/fpls.2015.00547
10.1038/srep29033
10.1186/s40168-018-0615-0
10.1038/nature25783
ContentType Journal Article
Copyright 2019 The Authors © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust
2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Copyright © 2020 New Phytologist Trust
Copyright_xml – notice: 2019 The Authors © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust
– notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
– notice: Copyright © 2020 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.16223
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1905
ExternalDocumentID 31571220
10_1111_nph_16223
NPH16223
26896803
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: FTdVs BBSRC David Phillips Fellowship
  funderid: BB/L02456X/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L02456X/1
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACHIC
ACQPF
ADULT
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
AS~
CAG
COF
DOOOF
EJD
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
LW6
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ABSQW
ADXHL
AGUYK
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4433-c92a469b62db951d41e92f3ba2a3a97b0bb711441b0c532a67350aa0876a2ad43
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:27:20 EDT 2025
Fri Jul 11 09:23:36 EDT 2025
Fri Jul 25 10:26:39 EDT 2025
Mon Jul 21 05:59:25 EDT 2025
Tue Jul 01 02:28:33 EDT 2025
Thu Apr 24 23:09:31 EDT 2025
Wed Jan 22 16:34:46 EST 2025
Thu Jul 03 21:56:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords root traits
ecosystem function
plant-soil communication
root exudates
microbiome
climate change
rhizosphere
Language English
License 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4433-c92a469b62db951d41e92f3ba2a3a97b0bb711441b0c532a67350aa0876a2ad43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3894-304X
0000-0002-6822-8883
OpenAccessLink https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.16223
PMID 31571220
PQID 2350083927
PQPubID 2026848
PageCount 7
ParticipantIDs proquest_miscellaneous_2400470326
proquest_miscellaneous_2299768615
proquest_journals_2350083927
pubmed_primary_31571220
crossref_primary_10_1111_nph_16223
crossref_citationtrail_10_1111_nph_16223
wiley_primary_10_1111_nph_16223_NPH16223
jstor_primary_26896803
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200301
March 2020
2020-03-00
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200301
  day: 1
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2020
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 119
2017; 7
2017; 8
2019; 10
1958; 10
2011; 14
2012; 15
2007; 36
2018; 7
2018; 6
2018; 9
2018; 8
2018; 3
2018; 2
2017; 37
2019; 26
2018b; 106
2012; 66
2018; 38
2015; 6
2004; 303
2016; 407
2015; 122
2016; 409
2013; 101
2019; 224
2018; 23
2018; 21
2019; 221
2018; 25
2016; 11
2001; 82
2016; 6
2016; 7
2015; 25
2016; 2
2017; 93
2017; 92
2017; 11
2018; 115
2018; 555
2018; 433
2016; 21
2019; 654
2018
2018a; 9
2014; 387
2014; 344
2018; 13
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Huang YM (e_1_2_9_21_1) 2017; 7
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
IPCC (e_1_2_9_23_1) 2018
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_7_1
Karst J (e_1_2_9_26_1) 2017; 37
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 92
  start-page: 147
  year: 2017
  end-page: 162
  article-title: Metabolite profiling of non‐sterile rhizosphere soil
  publication-title: The Plant Journal
– volume: 8
  start-page: 1
  year: 2017
  end-page: 15
  article-title: Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought‐sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought‐tolerant cultivar
  publication-title: Frontiers in Plant Science
– volume: 119
  start-page: 384
  year: 2017
  end-page: 391
  article-title: Combined effects of arbuscular mycorrhiza and drought stress on plant growth and mortality of forage sorghum
  publication-title: Applied Soil Ecology
– volume: 21
  start-page: 689
  year: 2018
  end-page: 703
  article-title: Land use alters the drought responses of productivity and CO fluxes in mountain grassland
  publication-title: Ecosystems
– volume: 409
  start-page: 297
  year: 2016
  end-page: 312
  article-title: Grassland species root response to drought: consequences for soil carbon and nitrogen availability
  publication-title: Plant and Soil
– volume: 11
  year: 2016
  article-title: Synergistic effect of and ameliorates drought stress in chickpea ( L.)
  publication-title: Plant Signaling and Behavior
– volume: 2
  start-page: 1579
  year: 2018
  end-page: 1587
  article-title: Multiple facets of biodiversity drive the diversity – stability relationship
  publication-title: Nature Ecology & Evolution
– volume: 66
  start-page: 3803
  year: 2012
  end-page: 3814
  article-title: Reduced drought tolerance during domestication and the evolution of weediness results from tolerance‐growth trade‐offs
  publication-title: Evolution
– volume: 8
  start-page: 8573
  year: 2018
  end-page: 8581
  article-title: Root exudation rate as functional trait involved in plant nutrient‐use strategy classification
  publication-title: Ecology and Evolution
– volume: 26
  start-page: 614
  year: 2019
  end-page: 624
  article-title: Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea
  publication-title: Saudi Journal of Biological Sciences
– volume: 221
  start-page: 233
  year: 2019
  end-page: 246
  article-title: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon
  publication-title: New Phytologist
– volume: 25
  start-page: 107
  year: 2015
  end-page: 114
  article-title: Paradigm shift in plant growth control
  publication-title: Current Opinion in Plant Biology
– volume: 14
  start-page: 187
  year: 2011
  end-page: 194
  article-title: Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long‐term CO fumigation
  publication-title: Ecology Letters
– volume: 6
  start-page: 1
  year: 2016
  end-page: 11
  article-title: Natural variation of root exudates in ‐linking metabolomic and genomic data
  publication-title: Scientific Reports
– year: 2018
– volume: 23
  start-page: 25
  year: 2018
  end-page: 41
  article-title: Feed your friends: do plant exudates shape the root microbiome?
  publication-title: Trends in Plant Science
– volume: 25
  start-page: 1772
  year: 2018
  end-page: 1780
  article-title: Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose
  publication-title: Saudi Journal of Biological Sciences
– volume: 2
  start-page: 85
  year: 2016
  end-page: 97
  article-title: Drought effects on and metabolites: from phloem to root exudates
  publication-title: Rhizosphere
– volume: 13
  start-page: 1
  year: 2018
  end-page: 14
  article-title: Linking root exudates to functional plant traits
  publication-title: PLoS ONE
– volume: 9
  start-page: 3033
  year: 2018
  article-title: Soil bacterial networks are less stable under drought than fungal networks
  publication-title: Nature Communications
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Rhizosphere microorganisms can influence the timing of plant flowering
  publication-title: Microbiome
– volume: 36
  start-page: 904
  year: 2007
  article-title: Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress
  publication-title: Journal of Environment Quality
– volume: 409
  start-page: 1
  year: 2016
  end-page: 17
  article-title: Rhizodeposition under drought and consequences for soil communities and ecosystem resilience
  publication-title: Plant and Soil
– volume: 224
  start-page: 132
  year: 2019
  end-page: 145
  article-title: Changes in root‐exudate‐induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling
  publication-title: New Phytologist
– volume: 433
  start-page: 189
  year: 2018
  end-page: 200
  article-title: Root architecture governs plasticity in response to drought
  publication-title: Plant and Soil
– volume: 11
  start-page: 154
  year: 2017
  end-page: 159
  article-title: Impact of drought on photosynthesis: molecular perspective
  publication-title: Plant Gene
– volume: 387
  start-page: 131
  year: 2014
  end-page: 142
  article-title: The importance of a sterile rhizosphere when phenotyping for root exudation
  publication-title: Plant and Soil
– volume: 15
  start-page: 1230
  year: 2012
  end-page: 1239
  article-title: Abiotic drivers and plant traits explain landscape‐scale patterns in soil microbial communities
  publication-title: Ecology Letters
– volume: 21
  start-page: 256
  year: 2016
  end-page: 265
  article-title: Metabolomics in the rhizosphere: tapping into belowground chemical communication
  publication-title: Trends in Plant Science
– volume: 6
  start-page: 1
  year: 2015
  end-page: 16
  article-title: How tree roots respond to drought
  publication-title: Frontiers in Plant Science
– volume: 7
  start-page: 1
  year: 2017
  end-page: 9
  article-title: Alleviation of drought stress by mycorrhizas is related to increased root H O efflux in trifoliate orange
  publication-title: Scientific Reports
– volume: 407
  start-page: 1
  year: 2016
  end-page: 8
  article-title: Advances in the rhizosphere: stretching the interface of life
  publication-title: Plant and Soil
– volume: 9
  start-page: 1
  year: 2018a
  end-page: 16
  article-title: Drought‐induced accumulation of root exudates supports post‐drought recovery of microbes in mountain grassland
  publication-title: Frontiers in Plant Science
– volume: 3
  start-page: 470
  year: 2018
  end-page: 480
  article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly
  publication-title: Nature Microbiology
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  article-title: A stomatal safety‐efficiency trade‐off constrains responses to leaf dehydration
  publication-title: Nature Communications
– volume: 82
  start-page: 2397
  year: 2001
  end-page: 2402
  article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass
  publication-title: Ecology
– volume: 7
  start-page: 490
  year: 2018
  end-page: 494
  article-title: Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants
  publication-title: Groundwater for Sustainable Development
– volume: 115
  start-page: E5213
  year: 2018
  end-page: E5222
  article-title: MYB72‐dependent coumarin exudation shapes root microbiome assembly to promote plant health
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 106
  start-page: 1230
  year: 2018b
  end-page: 1243
  article-title: Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant–microbial interactions
  publication-title: Journal of Ecology
– volume: 93
  start-page: 1
  year: 2017
  end-page: 11
  article-title: The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites
  publication-title: FEMS Microbiology Ecology
– volume: 101
  start-page: 1459
  year: 2013
  end-page: 1470
  article-title: Slow‐growing species cope best with drought: evidence from long‐term measurements in a tropical semi‐deciduous moist forest of Central Africa
  publication-title: Journal of Ecology
– volume: 7
  start-page: 1
  year: 2016
  end-page: 16
  article-title: Alleviation of drought stress and metabolic changes in Timothy ( ) colonized with B26
  publication-title: Frontiers in Plant Science
– volume: 555
  start-page: 94
  year: 2018
  article-title: Evolutionary history resolves global organization of root functional traits
  publication-title: Nature
– volume: 8
  start-page: 1
  year: 2018
  end-page: 16
  article-title: Drought stress and root‐associated bacterial communities
  publication-title: Frontiers in Plant Science
– volume: 344
  start-page: 508
  year: 2014
  end-page: 510
  article-title: Faster decomposition under increased atmospheric CO
  publication-title: Science
– volume: 654
  start-page: 811
  year: 2019
  end-page: 821
  article-title: Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future
  publication-title: Science of the Total Environment
– volume: 37
  start-page: 154
  year: 2017
  end-page: 164
  article-title: Stress differentially causes roots of tree seedlings to exude carbon
  publication-title: Tree physiology
– volume: 7
  year: 2016
  article-title: early colonization of roots involves multiple chemotaxis receptors
  publication-title: mBio
– volume: 122
  start-page: 47
  year: 2015
  end-page: 59
  article-title: A larger investment into exudation by competitive versus conservative plants is connected to more coupled plant–microbe N cycling
  publication-title: Biogeochemistry
– volume: 8
  start-page: 1
  year: 2018
  end-page: 15
  article-title: Root exudate metabolomes change under drought and show limited capacity for recovery
  publication-title: Scientific Reports
– volume: 303
  start-page: 1876
  year: 2004
  end-page: 1879
  article-title: Impact of nitrogen deposition grasslands
  publication-title: Science
– volume: 115
  start-page: E1157
  year: 2018
  end-page: E1165
  article-title: Assembly and ecological function of the root microbiome across angiosperm plant species
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 38
  start-page: 690
  year: 2018
  end-page: 695
  article-title: Thirsty tree roots exude more carbon
  publication-title: Tree Physiology
– volume: 10
  start-page: 9
  year: 1958
  end-page: 31
  article-title: The effect of soil drying on humus decomposition and nitrogen availability
  publication-title: Plant and Soil
– volume: 6
  start-page: 116
  year: 2018
  end-page: 133
  article-title: Sampling root exudates – mission impossible?
  publication-title: Rhizosphere
– ident: e_1_2_9_8_1
  doi: 10.1016/j.tplants.2016.01.008
– ident: e_1_2_9_42_1
  doi: 10.1111/j.1461-0248.2010.01570.x
– ident: e_1_2_9_25_1
  doi: 10.1111/1365-2745.12910
– ident: e_1_2_9_44_1
  doi: 10.1007/s11104-016-3090-z
– ident: e_1_2_9_47_1
  doi: 10.1111/nph.15361
– ident: e_1_2_9_13_1
  doi: 10.1126/science.1249534
– ident: e_1_2_9_2_1
  doi: 10.1016/j.sjbs.2017.10.015
– ident: e_1_2_9_24_1
  doi: 10.3389/fpls.2018.01593
– ident: e_1_2_9_43_1
  doi: 10.1093/treephys/tpx163
– ident: e_1_2_9_7_1
  doi: 10.1038/s41559-018-0647-7
– ident: e_1_2_9_40_1
  doi: 10.1016/j.gsd.2018.03.005
– ident: e_1_2_9_55_1
  doi: 10.1016/j.plgene.2017.04.003
– ident: e_1_2_9_20_1
  doi: 10.1371/journal.pone.0204128
– ident: e_1_2_9_31_1
  doi: 10.1080/15592324.2015.1071004
– ident: e_1_2_9_4_1
  doi: 10.1007/BF01343734
– ident: e_1_2_9_52_1
  doi: 10.1038/s41467-018-05516-7
– ident: e_1_2_9_53_1
  doi: 10.1111/j.1461-0248.2012.01844.x
– volume: 37
  start-page: 154
  year: 2017
  ident: e_1_2_9_26_1
  article-title: Stress differentially causes roots of tree seedlings to exude carbon
  publication-title: Tree physiology
– ident: e_1_2_9_19_1
  doi: 10.1038/s41467-019-11006-1
– ident: e_1_2_9_30_1
  doi: 10.1007/s11104-014-2283-6
– ident: e_1_2_9_56_1
  doi: 10.1038/s41564-018-0129-3
– ident: e_1_2_9_12_1
  doi: 10.1038/s41598-018-30150-0
– ident: e_1_2_9_27_1
  doi: 10.1007/s10533-014-0028-5
– ident: e_1_2_9_54_1
  doi: 10.1111/nph.16001
– ident: e_1_2_9_14_1
  doi: 10.1002/ece3.4383
– ident: e_1_2_9_6_1
  doi: 10.1016/j.rhisph.2016.06.003
– ident: e_1_2_9_10_1
  doi: 10.1007/s11104-018-3824-1
– ident: e_1_2_9_9_1
  doi: 10.1073/pnas.1717617115
– ident: e_1_2_9_15_1
  doi: 10.1093/femsec/fix022
– ident: e_1_2_9_39_1
  doi: 10.1111/1365-2745.12165
– ident: e_1_2_9_50_1
  doi: 10.1016/j.apsoil.2017.07.030
– ident: e_1_2_9_29_1
  doi: 10.1111/j.1558-5646.2012.01718.x
– ident: e_1_2_9_18_1
  doi: 10.2134/jeq2006.0425sc
– volume-title: An IPCC Special Report on the impacts of global warming of 1.5°C above pre‐industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty
  year: 2018
  ident: e_1_2_9_23_1
– ident: e_1_2_9_3_1
  doi: 10.1128/mBio.01664-16
– ident: e_1_2_9_37_1
  doi: 10.3389/fpls.2017.02223
– ident: e_1_2_9_51_1
  doi: 10.1007/s11104-016-2964-4
– ident: e_1_2_9_28_1
  doi: 10.1016/j.pbi.2015.05.003
– ident: e_1_2_9_46_1
  doi: 10.1016/j.tplants.2017.09.003
– ident: e_1_2_9_16_1
  doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
– ident: e_1_2_9_35_1
  doi: 10.1007/s11104-016-3040-9
– ident: e_1_2_9_49_1
  doi: 10.1073/pnas.1722335115
– ident: e_1_2_9_38_1
  doi: 10.1016/j.rhisph.2018.06.004
– ident: e_1_2_9_45_1
  doi: 10.3389/fpls.2017.01056
– ident: e_1_2_9_48_1
  doi: 10.1126/science.1094678
– ident: e_1_2_9_41_1
  doi: 10.1111/tpj.13639
– ident: e_1_2_9_22_1
  doi: 10.1007/s10021-017-0178-0
– ident: e_1_2_9_32_1
  doi: 10.1016/j.scitotenv.2018.10.434
– ident: e_1_2_9_17_1
  doi: 10.1016/j.sjbs.2018.11.005
– ident: e_1_2_9_11_1
  doi: 10.3389/fpls.2016.00584
– ident: e_1_2_9_5_1
  doi: 10.3389/fpls.2015.00547
– ident: e_1_2_9_36_1
  doi: 10.1038/srep29033
– ident: e_1_2_9_33_1
  doi: 10.1186/s40168-018-0615-0
– volume: 7
  start-page: 1
  year: 2017
  ident: e_1_2_9_21_1
  article-title: Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange
  publication-title: Scientific Reports
– ident: e_1_2_9_34_1
  doi: 10.1038/nature25783
SSID ssj0009562
Score 2.6986609
SecondaryResourceType review_article
Snippet Root exudates are a pathway for plant–microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent...
Summary Root exudates are a pathway for plant–microbial communication and play a key role in ecosystem response to environmental change. Here, we collate...
Root exudates are a pathway for plant-microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1899
SubjectTerms beneficial microorganisms
Cascading
climate change
Communication
Drought
Droughts
ecological footprint
Ecological function
Ecosystem
ecosystem function
Ecosystems
Environmental changes
Exudates
Exudation
Microbial activity
microbiome
Microorganisms
Plant Exudates
Plant Roots
Plants
plant–soil communication
Recruitment (fisheries)
Regrowth
rhizosphere
root exudates
root traits
roots
Soil
Soil Microbiology
soil microorganisms
Tansley insight
Subtitle implications for ecosystem functioning
Title Plant root exudation under drought
URI https://www.jstor.org/stable/26896803
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16223
https://www.ncbi.nlm.nih.gov/pubmed/31571220
https://www.proquest.com/docview/2350083927
https://www.proquest.com/docview/2299768615
https://www.proquest.com/docview/2400470326
Volume 225
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4W8eDF92N9EcWDly5tkqZbPakoy4IiorAHoSRtFkXpinZB_fXOpA9WURFvhUwhr5n5Jpl8A7BnCcOLUHo6yChA0bEXZ0Z6w6wrhoGJu9KRJJ1fqN6N7A_CQQsO67cwJT9Ec-BGmuHsNSm4Ni8TSp4_3XUChd4N7S_lahEguuIThLuK1wzMSqpBxSpEWTzNn598UZmO-B3Q_IxbneM5m4PbustlvslDZ1yYTvr-hc3xn2Oah9kKkLKjcgctQMvmizB9PELQ-LYEfSpqVDCE1wWzr-OyABOjh2fPLHMVfooDdj-Rlc4QBDMMaUuGaEZuszryXYabs9Prk55XlV_wUimF8NKYawyejeKZQRyWycDGfCiM5lroODK-MVFA8Zjx01BwrSIR-loTxx2KZFKswFQ-yu0asGwobZBad-sjjTYmjVIbR5ZYcaXmfhv264VI0oqbnEpkPCZ1jIIzk7iZacNuI_pUEnJ8J7TiVrOR4Kobq66PDZv18iaVsr4kHPvtE1CM2rDTNKOa0d2Jzu1ojDLotjEyQ_z3iwzZQ7SgXLVhtdw6TQdEEEYBdyN1G-DnvicXlz33sf530Q2Y4XQO4HLjNmGqeB7bLQRLhdl2WvEBTw8N5w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BrQQXoKWU5dG6VSv1klViO84GiUNbipbXqqpA2ltqJ16BQFkEWfH4TfwV_hMzzkNLRVEvHHqL5FFke2bsb-zxNwCfLGF4EUpPBxkFKDr24sxIb5B1xCAwcUc6kqT9nuoeyp1-2J-A2_otTMkP0Ry4kWe49ZocnA6kx7w8PztqBwq3tyqlctdeX2LAdrGxvYna_cz51o-D712vqingpVIK4aUx1xgRGsUzg-Aik4GN-UAYzbXQcWR8Y6KAggzjp6HgWkUi9LUm4jYUyaTA_07CC6ogTkz9m7_4GMWv4jXns5KqX_EYUd5Q09UHu1-ZAPkYtH2IlN1WtzUHd_UklRkuJ-1RYdrpzR_8kf_LLM7DbIW52dfSSV7BhM1fw8tvQ8TF1wuwQ3WbCoYRRMHs1aisMcXobd05y1wRo2KdHY8l3jPE-Qyj9pIEmxEyqE6138Dhs4xjEabyYW6XgGUDaYPUuostabQxaZTaOLJE_Cs191vwpdZ8klb061QF5DSpwzDUROI00YKPjehZyTnymNCiM59GgqtOrDo-NqzW9pRU69FFwrHfPmHhqAUfmmZcSeh6SOd2OEIZRCYYfCLEfUKGlnzcJLhqwdvSVpsOiCCMAu5G6izu731Pej-77mP530Xfw3T3YH8v2dvu7a7ADKdjD5cKuApTxfnIriE2LMw755IMfj-39d4DUgZqFg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAX_gsLBQwCiUtWie04ayQOwLLatrCqEJX2FuzYEQiUXbVZQXklXoWHYsb50RYVxKUHbpE8imzPjP2NPf4G4LEnDC9SGZnEUYBidKSdlVHpRqJMrB7JQJL0dqamB3J3ns434Ef3Fqbhh-gP3MgzwnpNDr505ZqTV8uPw0Th7tZmVO75468Yrx093xmjcp9wPnn9_tU0aksKRIWUQkSF5gYDQqu4s4gtnEy85qWwhhthdGZja7OEYgwbF6ngRmUijY0h3jYUcVLgf8_BealiTXUixu_4GsOv4h3ls5Jq3tIYUdpQ39UTm1-T_3gasj0JlMNON7kCP7s5ahJcPg9XtR0W33-jj_xPJvEqXG4RN3vRuMg12PDVdbjwcoGo-PgG7FLVppph_FAz_23VVJhi9LLukLlQwqh-xj6tpd0zRPkMY_aGApsRLmjPtG_CwZmMYws2q0XlbwNzpfRJ4cO1lrTG2iIrvM480f5Kw-MBPO0Unxct-TrVAPmSd0EYaiIPmhjAo1502TCOnCa0Faynl-BqpNUoxobtzpzydjU6yjn2OyYknA3gYd-M6whdDpnKL1Yog7gEQ08EuH-RoQUftwiuBnCrMdW-AyJJs4SHkQaD-3Pf89n-NHzc-XfRB3BxfzzJ3-zM9u7CJU5nHiEPcBs268OVv4fAsLb3g0My-HDWxvsLjE5oxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+root+exudation+under+drought%3A+implications+for+ecosystem+functioning&rft.jtitle=The+New+phytologist&rft.au=Williams%2C+Alex&rft.au=de+Vries%2C+Franciska+T&rft.date=2020-03-01&rft.eissn=1469-8137&rft.volume=225&rft.issue=5&rft.spage=1899&rft_id=info:doi/10.1111%2Fnph.16223&rft_id=info%3Apmid%2F31571220&rft.externalDocID=31571220
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon