Plant root exudation under drought implications for ecosystem functioning
Root exudates are a pathway for plant–microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent evidence that shows that plants of different growth strategies differ in their root exudation, that root exudates can select for beneficial soil mi...
Saved in:
Published in | The New phytologist Vol. 225; no. 5; pp. 1899 - 1905 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.03.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Root exudates are a pathway for plant–microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent evidence that shows that plants of different growth strategies differ in their root exudation, that root exudates can select for beneficial soil microbial communities, and that drought affects the quantity and quality of root exudation. We use this evidence to argue for a central involvement of root exudates in plant and microbial response to drought and propose a framework for understanding how root exudates influence ecosystem form and function during and after drought. Specifically, we propose that fast-growing plants modify their root exudates to recruit beneficial microbes that facilitate their regrowth after drought, with cascading impacts on their abundance and ecosystem functioning. We identify outstanding questions and methodological challenges that need to be addressed to advance and solidify our comprehension of the importance of root exudates in ecosystem response to drought. |
---|---|
AbstractList | Root exudates are a pathway for plant–microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent evidence that shows that plants of different growth strategies differ in their root exudation, that root exudates can select for beneficial soil microbial communities, and that drought affects the quantity and quality of root exudation. We use this evidence to argue for a central involvement of root exudates in plant and microbial response to drought and propose a framework for understanding how root exudates influence ecosystem form and function during and after drought. Specifically, we propose that fast‐growing plants modify their root exudates to recruit beneficial microbes that facilitate their regrowth after drought, with cascading impacts on their abundance and ecosystem functioning. We identify outstanding questions and methodological challenges that need to be addressed to advance and solidify our comprehension of the importance of root exudates in ecosystem response to drought. Summary Root exudates are a pathway for plant–microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent evidence that shows that plants of different growth strategies differ in their root exudation, that root exudates can select for beneficial soil microbial communities, and that drought affects the quantity and quality of root exudation. We use this evidence to argue for a central involvement of root exudates in plant and microbial response to drought and propose a framework for understanding how root exudates influence ecosystem form and function during and after drought. Specifically, we propose that fast‐growing plants modify their root exudates to recruit beneficial microbes that facilitate their regrowth after drought, with cascading impacts on their abundance and ecosystem functioning. We identify outstanding questions and methodological challenges that need to be addressed to advance and solidify our comprehension of the importance of root exudates in ecosystem response to drought. Root exudates are a pathway for plant-microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent evidence that shows that plants of different growth strategies differ in their root exudation, that root exudates can select for beneficial soil microbial communities, and that drought affects the quantity and quality of root exudation. We use this evidence to argue for a central involvement of root exudates in plant and microbial response to drought and propose a framework for understanding how root exudates influence ecosystem form and function during and after drought. Specifically, we propose that fast-growing plants modify their root exudates to recruit beneficial microbes that facilitate their regrowth after drought, with cascading impacts on their abundance and ecosystem functioning. We identify outstanding questions and methodological challenges that need to be addressed to advance and solidify our comprehension of the importance of root exudates in ecosystem response to drought.Root exudates are a pathway for plant-microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent evidence that shows that plants of different growth strategies differ in their root exudation, that root exudates can select for beneficial soil microbial communities, and that drought affects the quantity and quality of root exudation. We use this evidence to argue for a central involvement of root exudates in plant and microbial response to drought and propose a framework for understanding how root exudates influence ecosystem form and function during and after drought. Specifically, we propose that fast-growing plants modify their root exudates to recruit beneficial microbes that facilitate their regrowth after drought, with cascading impacts on their abundance and ecosystem functioning. We identify outstanding questions and methodological challenges that need to be addressed to advance and solidify our comprehension of the importance of root exudates in ecosystem response to drought. |
Author | Williams, Alex de Vries, Franciska T. |
Author_xml | – sequence: 1 givenname: Alex surname: Williams fullname: Williams, Alex – sequence: 2 givenname: Franciska T. surname: de Vries fullname: de Vries, Franciska T. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31571220$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0bFOwzAQBmALgaAUBh4AVMECQ-j57NjxiBBQJAQMILFZTuJCqjQudiLo22NaYKgEePHy_efz3TZZb1xjCdmjcErjGTazl1MqENka6VEuVJJRJtdJDwCzRHDxtEW2Q5gAgEoFbpItRlNJEaFHDu9r07QD71w7sO9dadrKNYOuKa0flN51zy_tDtkYmzrY3a-7Tx4vLx7OR8nN3dX1-dlNUnDOWFIoNPHtXGCZq5SWnFqFY5YbNMwomUOeS0o5pzkUKUMjJEvBGMikiKTkrE-Ol3Vn3r12NrR6WoXC1rFB67qgkQNwCQzF_xSVkiITNI30aIVOXOeb-BGNsQHImEIZ1cGX6vKpLfXMV1Pj5_p7UBGcLEHhXQjejn8IBf25BB2XoBdLiHa4YouqXQy29aaq_0q8VbWd_15a396PvhP7y8QktM7_JFBkSmTA2AeUr52D |
CitedBy_id | crossref_primary_10_3390_f12060724 crossref_primary_10_1007_s00374_020_01524_2 crossref_primary_10_17221_236_2021_PSE crossref_primary_10_1007_s11104_023_06205_1 crossref_primary_10_1111_1758_2229_13120 crossref_primary_10_1016_j_scitotenv_2024_173861 crossref_primary_10_1016_j_ecoenv_2023_115549 crossref_primary_10_1016_j_soilbio_2022_108811 crossref_primary_10_1016_j_ecolind_2023_110071 crossref_primary_10_1016_j_geoderma_2022_116235 crossref_primary_10_1007_s11104_024_06491_3 crossref_primary_10_1093_hr_uhae290 crossref_primary_10_3389_fmicb_2020_00704 crossref_primary_10_1111_nph_17908 crossref_primary_10_1111_ppl_13711 crossref_primary_10_1007_s11356_023_29093_5 crossref_primary_10_1016_j_geoderma_2021_115309 crossref_primary_10_3390_microorganisms10081644 crossref_primary_10_33275_1727_7485_2_2022_701 crossref_primary_10_1016_j_bcab_2022_102336 crossref_primary_10_1016_j_geoderma_2020_114738 crossref_primary_10_1016_j_rhisph_2023_100835 crossref_primary_10_1016_j_jhazmat_2024_136727 crossref_primary_10_1525_elementa_2021_00110 crossref_primary_10_1016_j_apsoil_2025_105994 crossref_primary_10_3389_fmicb_2023_1235708 crossref_primary_10_1111_1365_2435_14626 crossref_primary_10_1007_s11069_022_05219_9 crossref_primary_10_1007_s42729_024_01660_w crossref_primary_10_3390_agriculture13020326 crossref_primary_10_1038_s41477_021_00967_1 crossref_primary_10_1016_j_scitotenv_2024_176342 crossref_primary_10_1016_j_soilbio_2021_108426 crossref_primary_10_3390_ijms23042374 crossref_primary_10_1016_j_foreco_2021_119178 crossref_primary_10_1007_s00425_025_04635_y crossref_primary_10_1093_treephys_tpad098 crossref_primary_10_7717_peerj_18610 crossref_primary_10_1016_j_envres_2023_116185 crossref_primary_10_3390_plants13030384 crossref_primary_10_1016_j_stress_2024_100686 crossref_primary_10_3390_su151813303 crossref_primary_10_1016_j_soilbio_2023_109074 crossref_primary_10_1016_j_geoderma_2024_116803 crossref_primary_10_1186_s12870_024_05860_5 crossref_primary_10_1016_j_agwat_2022_107781 crossref_primary_10_1007_s11104_021_05047_z crossref_primary_10_1007_s00425_024_04459_2 crossref_primary_10_3390_agronomy12123002 crossref_primary_10_1093_jxb_erad045 crossref_primary_10_1080_15592324_2022_2129295 crossref_primary_10_1111_1365_2745_14215 crossref_primary_10_1080_17429145_2024_2326294 crossref_primary_10_1007_s10343_024_01013_8 crossref_primary_10_1007_s11104_020_04776_x crossref_primary_10_3389_fmicb_2022_1052567 crossref_primary_10_3389_fmicb_2022_1078836 crossref_primary_10_1016_j_geoderma_2021_115327 crossref_primary_10_1016_j_ejsobi_2022_103401 crossref_primary_10_1007_s11104_022_05669_x crossref_primary_10_1016_j_pedsph_2023_07_014 crossref_primary_10_1111_nph_17326 crossref_primary_10_1007_s00374_021_01578_w crossref_primary_10_1007_s11104_024_06657_z crossref_primary_10_1038_s41598_023_37564_5 crossref_primary_10_1139_cjm_2021_0272 crossref_primary_10_1016_j_scitotenv_2024_174943 crossref_primary_10_1111_nph_17432 crossref_primary_10_1002_jobm_202200361 crossref_primary_10_1016_j_scitotenv_2021_149701 crossref_primary_10_1080_01904167_2021_1952221 crossref_primary_10_1016_j_tree_2023_03_001 crossref_primary_10_1111_gwat_13143 crossref_primary_10_1111_gcb_16270 crossref_primary_10_1094_PBIOMES_06_23_0049_R crossref_primary_10_1073_pnas_2210044120 crossref_primary_10_1016_j_jhazmat_2023_132757 crossref_primary_10_3389_fpls_2021_751731 crossref_primary_10_1002_wat2_1495 crossref_primary_10_3390_plants12061209 crossref_primary_10_1111_gcb_16950 crossref_primary_10_1128_msystems_00092_20 crossref_primary_10_1007_s10533_022_01011_w crossref_primary_10_1111_1365_2435_14643 crossref_primary_10_1038_s43705_023_00235_7 crossref_primary_10_1007_s11104_023_06472_y crossref_primary_10_1111_nph_20314 crossref_primary_10_1111_ele_14129 crossref_primary_10_3389_fpls_2022_935829 crossref_primary_10_3389_fmicb_2024_1442001 crossref_primary_10_1007_s00374_022_01649_6 crossref_primary_10_1128_spectrum_00225_22 crossref_primary_10_1016_j_foreco_2023_121316 crossref_primary_10_1016_j_tim_2023_07_011 crossref_primary_10_1016_j_soilbio_2021_108453 crossref_primary_10_3389_ffgc_2022_1114390 crossref_primary_10_3390_f14091847 crossref_primary_10_1007_s11104_023_06181_6 crossref_primary_10_1111_nph_17707 crossref_primary_10_1371_journal_pwat_0000094 crossref_primary_10_1007_s11676_022_01517_x crossref_primary_10_1111_gcb_15131 crossref_primary_10_1094_PBIOMES_02_24_0028_R crossref_primary_10_1016_j_catena_2022_106904 crossref_primary_10_1007_s11104_023_06421_9 crossref_primary_10_1016_j_scitotenv_2020_143839 crossref_primary_10_1016_j_micres_2020_126588 crossref_primary_10_1016_j_rhisph_2021_100455 crossref_primary_10_1016_j_scitotenv_2024_171370 crossref_primary_10_1111_1365_2745_14107 crossref_primary_10_1128_spectrum_00068_23 crossref_primary_10_3390_agronomy12102458 crossref_primary_10_1016_j_plantsci_2025_112439 crossref_primary_10_1111_pce_14523 crossref_primary_10_1016_j_soilbio_2024_109658 crossref_primary_10_1016_j_micres_2023_127564 crossref_primary_10_1094_PBIOMES_5_2 crossref_primary_10_1111_oik_08959 crossref_primary_10_1016_j_envexpbot_2022_105071 crossref_primary_10_4081_ija_2022_2130 crossref_primary_10_3390_soilsystems8030084 crossref_primary_10_1016_j_ecoenv_2023_115172 crossref_primary_10_3390_metabo11080558 crossref_primary_10_1016_j_nanoen_2022_108097 crossref_primary_10_3390_microorganisms11122984 crossref_primary_10_3389_fmicb_2021_645784 crossref_primary_10_3389_fmicb_2023_1282689 crossref_primary_10_3390_biology13020095 crossref_primary_10_1007_s00344_023_11061_5 crossref_primary_10_1007_s11368_024_03844_4 crossref_primary_10_1038_s41396_023_01512_y crossref_primary_10_1016_j_scitotenv_2020_143505 crossref_primary_10_1111_pce_13999 crossref_primary_10_1016_j_scitotenv_2023_164406 crossref_primary_10_1111_1365_2745_14136 crossref_primary_10_1016_j_plaphy_2023_01_051 crossref_primary_10_1016_j_soilbio_2022_108670 crossref_primary_10_3389_fpls_2024_1344205 crossref_primary_10_1016_j_micres_2021_126885 crossref_primary_10_1007_s11104_024_06806_4 crossref_primary_10_1111_1365_2435_14034 crossref_primary_10_3390_f12121797 crossref_primary_10_1007_s11816_022_00770_0 crossref_primary_10_1016_j_pbi_2022_102316 crossref_primary_10_1042_BCJ20210793 crossref_primary_10_1002_ps_5850 crossref_primary_10_3390_agronomy13041036 crossref_primary_10_1111_1462_2920_15764 crossref_primary_10_3390_plants11223013 crossref_primary_10_1007_s11104_024_06696_6 crossref_primary_10_1111_gcb_17206 crossref_primary_10_1111_nph_17598 crossref_primary_10_3389_fpls_2022_894346 crossref_primary_10_1016_j_ecochg_2021_100013 crossref_primary_10_1128_spectrum_01254_24 crossref_primary_10_3389_frmbi_2023_1310790 crossref_primary_10_1016_j_scitotenv_2022_160660 crossref_primary_10_1016_j_jwpe_2023_103906 crossref_primary_10_1111_pce_14863 crossref_primary_10_1002_ecy_3997 crossref_primary_10_1007_s11104_025_07218_8 crossref_primary_10_1016_j_soilbio_2025_109731 crossref_primary_10_1016_j_soilbio_2023_109256 crossref_primary_10_1094_PBIOMES_07_20_0052_R crossref_primary_10_1111_nph_17118 crossref_primary_10_1128_msystems_00354_24 crossref_primary_10_3389_fpls_2020_587610 crossref_primary_10_1016_j_chemosphere_2023_138186 crossref_primary_10_1111_1462_2920_15647 crossref_primary_10_3389_fpls_2022_1004553 crossref_primary_10_3389_fpls_2022_1044896 crossref_primary_10_1016_j_cub_2023_10_028 crossref_primary_10_1186_s12284_023_00636_1 crossref_primary_10_1016_j_actao_2021_103788 crossref_primary_10_1111_nph_18157 crossref_primary_10_1007_s10343_025_01128_6 crossref_primary_10_3390_agronomy10070942 crossref_primary_10_1016_j_geoderma_2025_117202 crossref_primary_10_1111_1462_2920_16549 crossref_primary_10_3389_fpls_2023_1244591 crossref_primary_10_1016_j_jenvman_2024_123831 crossref_primary_10_1111_sum_70025 crossref_primary_10_3389_fmicb_2022_981288 crossref_primary_10_1016_j_pedobi_2023_150873 crossref_primary_10_1111_1365_2745_13746 crossref_primary_10_3389_fmicb_2020_553223 crossref_primary_10_1016_j_apsoil_2023_104957 crossref_primary_10_1111_nph_19000 crossref_primary_10_1016_j_tplants_2022_05_007 crossref_primary_10_1016_j_scitotenv_2023_165689 crossref_primary_10_1002_ldr_4786 crossref_primary_10_1016_j_still_2023_105717 crossref_primary_10_1016_j_scitotenv_2020_139554 crossref_primary_10_1126_science_aaz5192 crossref_primary_10_1093_conphys_coae037 crossref_primary_10_1525_elementa_2022_00043 crossref_primary_10_1039_D3MO00051F crossref_primary_10_1007_s11104_022_05530_1 crossref_primary_10_5194_gmd_16_3165_2023 crossref_primary_10_1007_s00344_023_11115_8 crossref_primary_10_1111_nph_16881 crossref_primary_10_3390_agronomy14112584 crossref_primary_10_1016_j_micres_2024_128031 crossref_primary_10_1007_s11104_023_06420_w crossref_primary_10_3390_plants11172256 crossref_primary_10_3390_agriculture13081467 crossref_primary_10_1016_j_soilbio_2021_108384 crossref_primary_10_3389_fpls_2021_621276 crossref_primary_10_3389_fsufs_2023_1253735 crossref_primary_10_1186_s12870_022_03978_y crossref_primary_10_1007_s11104_024_06784_7 crossref_primary_10_3390_ijms23031084 crossref_primary_10_1007_s11104_023_06078_4 crossref_primary_10_1016_j_envexpbot_2024_106006 crossref_primary_10_1111_nph_17854 crossref_primary_10_1016_j_apsoil_2021_104274 crossref_primary_10_1007_s11427_024_2876_0 crossref_primary_10_1016_j_xplc_2024_101139 crossref_primary_10_1016_j_tplants_2022_01_010 crossref_primary_10_5194_bg_17_6377_2020 crossref_primary_10_1016_j_ijbiomac_2022_04_015 crossref_primary_10_1002_saj2_20201 crossref_primary_10_1016_j_scitotenv_2022_155212 crossref_primary_10_1016_j_scitotenv_2024_175983 crossref_primary_10_1111_nph_18016 crossref_primary_10_1002_ldr_4768 crossref_primary_10_1093_plcell_koae055 crossref_primary_10_1016_j_ejsobi_2024_103690 crossref_primary_10_1029_2024JG008287 crossref_primary_10_1038_s41396_020_00735_7 crossref_primary_10_1016_j_geoderma_2020_114798 crossref_primary_10_1016_j_soilbio_2024_109644 crossref_primary_10_1111_ppl_13338 crossref_primary_10_1186_s40793_022_00407_3 crossref_primary_10_5194_nhess_24_3173_2024 crossref_primary_10_1016_j_plantsci_2023_111694 crossref_primary_10_1016_j_soilbio_2022_108753 crossref_primary_10_1016_j_jia_2024_12_014 crossref_primary_10_1111_gcb_16685 crossref_primary_10_1111_nph_16757 crossref_primary_10_1016_j_soilbio_2021_108391 crossref_primary_10_1093_aob_mcae151 crossref_primary_10_3390_agronomy14081662 crossref_primary_10_1111_jipb_13154 crossref_primary_10_1111_nph_18816 crossref_primary_10_1093_jxb_erad312 crossref_primary_10_1007_s11104_024_06691_x crossref_primary_10_1016_j_rhisph_2022_100615 crossref_primary_10_3390_cells12060858 crossref_primary_10_1111_1365_2745_13630 crossref_primary_10_1038_s41467_024_51073_7 crossref_primary_10_1016_j_apsoil_2023_104805 crossref_primary_10_1016_j_scienta_2025_114030 crossref_primary_10_2144_btn_2023_0083 crossref_primary_10_1007_s10342_020_01346_9 crossref_primary_10_1016_j_apsoil_2021_104296 crossref_primary_10_1038_s41477_024_01749_1 crossref_primary_10_3389_fmicb_2024_1362722 crossref_primary_10_1038_s41598_022_11754_z crossref_primary_10_1016_j_still_2024_106285 crossref_primary_10_1016_j_apsoil_2023_104994 crossref_primary_10_1016_j_scitotenv_2023_169048 crossref_primary_10_1038_s41598_024_79801_5 crossref_primary_10_3390_plants12030630 crossref_primary_10_1016_j_apsoil_2024_105449 crossref_primary_10_3389_fenvs_2022_821742 crossref_primary_10_1016_j_ecoenv_2025_117804 crossref_primary_10_1007_s10021_024_00946_5 crossref_primary_10_1016_j_indcrop_2022_115434 crossref_primary_10_1080_10643389_2020_1862561 crossref_primary_10_3390_plants10050975 crossref_primary_10_1016_j_apsoil_2020_103774 crossref_primary_10_1016_j_foreco_2022_120584 crossref_primary_10_1016_j_still_2023_105918 crossref_primary_10_3389_ffgc_2022_921191 crossref_primary_10_1002_jsfa_12011 crossref_primary_10_1016_j_soilbio_2024_109386 crossref_primary_10_1186_s40168_023_01513_1 crossref_primary_10_3390_agronomy14040692 crossref_primary_10_1111_1365_2664_14641 crossref_primary_10_1007_s11104_021_04861_9 crossref_primary_10_1016_j_scitotenv_2024_176307 crossref_primary_10_1111_1365_2435_14548 crossref_primary_10_1111_gcb_16978 crossref_primary_10_3390_agronomy14081731 crossref_primary_10_3390_plants10010038 crossref_primary_10_1016_j_micres_2020_126626 crossref_primary_10_1111_nph_17774 crossref_primary_10_1111_nph_18061 crossref_primary_10_3390_plants13050683 crossref_primary_10_1002_sae2_70038 crossref_primary_10_1098_rspb_2023_0469 crossref_primary_10_1007_s11104_023_06126_z crossref_primary_10_1016_j_soilbio_2022_108728 crossref_primary_10_1094_PBIOMES_12_21_0076_R crossref_primary_10_1016_j_catena_2024_108259 crossref_primary_10_1002_sae2_12031 crossref_primary_10_1016_j_agrformet_2023_109471 crossref_primary_10_3390_agronomy14061261 crossref_primary_10_1111_pce_14247 crossref_primary_10_1002_adsu_202100113 crossref_primary_10_1007_s00374_024_01804_1 crossref_primary_10_1007_s11104_022_05800_y crossref_primary_10_3389_fpls_2022_1082752 crossref_primary_10_1007_s00572_024_01164_6 crossref_primary_10_1016_j_micres_2021_126917 crossref_primary_10_1007_s11274_023_03837_4 crossref_primary_10_3389_fpls_2021_614968 crossref_primary_10_1002_ece3_9186 crossref_primary_10_1016_j_catena_2024_108282 crossref_primary_10_1111_ppl_14181 crossref_primary_10_1016_j_csbj_2023_10_043 crossref_primary_10_1016_j_geoderma_2022_115767 crossref_primary_10_3390_plants13233307 crossref_primary_10_1016_j_micres_2024_127698 crossref_primary_10_3389_fpls_2021_691651 crossref_primary_10_1016_j_ijbiomac_2023_123387 crossref_primary_10_1111_1365_2664_13774 crossref_primary_10_3390_agronomy15010234 crossref_primary_10_3390_ijms25179249 crossref_primary_10_1016_j_pbi_2023_102336 crossref_primary_10_1016_j_scitotenv_2022_155007 crossref_primary_10_1007_s00344_023_10987_0 crossref_primary_10_1016_j_soilbio_2020_107819 crossref_primary_10_1109_JSEN_2022_3175502 crossref_primary_10_1093_treephys_tpad118 crossref_primary_10_1016_j_agrformet_2021_108671 crossref_primary_10_3389_fpls_2023_1122285 crossref_primary_10_3389_fpls_2023_1221288 crossref_primary_10_2139_ssrn_3957958 crossref_primary_10_1038_s41598_022_16408_8 crossref_primary_10_1111_nph_18043 crossref_primary_10_1007_s00284_021_02536_3 crossref_primary_10_1007_s11368_023_03602_y crossref_primary_10_1016_j_jare_2022_07_009 crossref_primary_10_1111_ppl_13547 crossref_primary_10_1111_pce_14466 crossref_primary_10_1016_j_scitotenv_2022_160025 crossref_primary_10_1111_1365_2745_13550 crossref_primary_10_1007_s11104_022_05636_6 crossref_primary_10_1016_j_agwat_2020_106436 crossref_primary_10_1016_S1002_0160_21_60061_9 crossref_primary_10_1016_j_agrformet_2024_110178 |
Cites_doi | 10.1016/j.tplants.2016.01.008 10.1111/j.1461-0248.2010.01570.x 10.1111/1365-2745.12910 10.1007/s11104-016-3090-z 10.1111/nph.15361 10.1126/science.1249534 10.1016/j.sjbs.2017.10.015 10.3389/fpls.2018.01593 10.1093/treephys/tpx163 10.1038/s41559-018-0647-7 10.1016/j.gsd.2018.03.005 10.1016/j.plgene.2017.04.003 10.1371/journal.pone.0204128 10.1080/15592324.2015.1071004 10.1007/BF01343734 10.1038/s41467-018-05516-7 10.1111/j.1461-0248.2012.01844.x 10.1038/s41467-019-11006-1 10.1007/s11104-014-2283-6 10.1038/s41564-018-0129-3 10.1038/s41598-018-30150-0 10.1007/s10533-014-0028-5 10.1111/nph.16001 10.1002/ece3.4383 10.1016/j.rhisph.2016.06.003 10.1007/s11104-018-3824-1 10.1073/pnas.1717617115 10.1093/femsec/fix022 10.1111/1365-2745.12165 10.1016/j.apsoil.2017.07.030 10.1111/j.1558-5646.2012.01718.x 10.2134/jeq2006.0425sc 10.1128/mBio.01664-16 10.3389/fpls.2017.02223 10.1007/s11104-016-2964-4 10.1016/j.pbi.2015.05.003 10.1016/j.tplants.2017.09.003 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 10.1007/s11104-016-3040-9 10.1073/pnas.1722335115 10.1016/j.rhisph.2018.06.004 10.3389/fpls.2017.01056 10.1126/science.1094678 10.1111/tpj.13639 10.1007/s10021-017-0178-0 10.1016/j.scitotenv.2018.10.434 10.1016/j.sjbs.2018.11.005 10.3389/fpls.2016.00584 10.3389/fpls.2015.00547 10.1038/srep29033 10.1186/s40168-018-0615-0 10.1038/nature25783 |
ContentType | Journal Article |
Copyright | 2019 The Authors © 2019 New Phytologist Trust 2019 The Authors. New Phytologist © 2019 New Phytologist Trust 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. Copyright © 2020 New Phytologist Trust |
Copyright_xml | – notice: 2019 The Authors © 2019 New Phytologist Trust – notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust – notice: 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. – notice: Copyright © 2020 New Phytologist Trust |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.16223 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 1905 |
ExternalDocumentID | 31571220 10_1111_nph_16223 NPH16223 26896803 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: FTdVs BBSRC David Phillips Fellowship funderid: BB/L02456X/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L02456X/1 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AAHHS AASVR ABEFU ABEML ACCFJ ACHIC ACQPF ADULT AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM AS~ CAG COF DOOOF EJD ESX FIJ GTFYD HF~ HGD HQ2 HTVGU IPNFZ JSODD LPU LW6 MVM NEJ RCA WHG WRC XOL YXE ZCG AAYXX ABGDZ ABSQW ADXHL AGUYK CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4433-c92a469b62db951d41e92f3ba2a3a97b0bb711441b0c532a67350aa0876a2ad43 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:27:20 EDT 2025 Fri Jul 11 09:23:36 EDT 2025 Fri Jul 25 10:26:39 EDT 2025 Mon Jul 21 05:59:25 EDT 2025 Tue Jul 01 02:28:33 EDT 2025 Thu Apr 24 23:09:31 EDT 2025 Wed Jan 22 16:34:46 EST 2025 Thu Jul 03 21:56:10 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | root traits ecosystem function plant-soil communication root exudates microbiome climate change rhizosphere |
Language | English |
License | 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4433-c92a469b62db951d41e92f3ba2a3a97b0bb711441b0c532a67350aa0876a2ad43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3894-304X 0000-0002-6822-8883 |
OpenAccessLink | https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.16223 |
PMID | 31571220 |
PQID | 2350083927 |
PQPubID | 2026848 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2400470326 proquest_miscellaneous_2299768615 proquest_journals_2350083927 pubmed_primary_31571220 crossref_primary_10_1111_nph_16223 crossref_citationtrail_10_1111_nph_16223 wiley_primary_10_1111_nph_16223_NPH16223 jstor_primary_26896803 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200301 March 2020 2020-03-00 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200301 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2020 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2017; 119 2017; 7 2017; 8 2019; 10 1958; 10 2011; 14 2012; 15 2007; 36 2018; 7 2018; 6 2018; 9 2018; 8 2018; 3 2018; 2 2017; 37 2019; 26 2018b; 106 2012; 66 2018; 38 2015; 6 2004; 303 2016; 407 2015; 122 2016; 409 2013; 101 2019; 224 2018; 23 2018; 21 2019; 221 2018; 25 2016; 11 2001; 82 2016; 6 2016; 7 2015; 25 2016; 2 2017; 93 2017; 92 2017; 11 2018; 115 2018; 555 2018; 433 2016; 21 2019; 654 2018 2018a; 9 2014; 387 2014; 344 2018; 13 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Huang YM (e_1_2_9_21_1) 2017; 7 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 IPCC (e_1_2_9_23_1) 2018 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_46_1 e_1_2_9_44_1 e_1_2_9_7_1 Karst J (e_1_2_9_26_1) 2017; 37 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 92 start-page: 147 year: 2017 end-page: 162 article-title: Metabolite profiling of non‐sterile rhizosphere soil publication-title: The Plant Journal – volume: 8 start-page: 1 year: 2017 end-page: 15 article-title: Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought‐sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought‐tolerant cultivar publication-title: Frontiers in Plant Science – volume: 119 start-page: 384 year: 2017 end-page: 391 article-title: Combined effects of arbuscular mycorrhiza and drought stress on plant growth and mortality of forage sorghum publication-title: Applied Soil Ecology – volume: 21 start-page: 689 year: 2018 end-page: 703 article-title: Land use alters the drought responses of productivity and CO fluxes in mountain grassland publication-title: Ecosystems – volume: 409 start-page: 297 year: 2016 end-page: 312 article-title: Grassland species root response to drought: consequences for soil carbon and nitrogen availability publication-title: Plant and Soil – volume: 11 year: 2016 article-title: Synergistic effect of and ameliorates drought stress in chickpea ( L.) publication-title: Plant Signaling and Behavior – volume: 2 start-page: 1579 year: 2018 end-page: 1587 article-title: Multiple facets of biodiversity drive the diversity – stability relationship publication-title: Nature Ecology & Evolution – volume: 66 start-page: 3803 year: 2012 end-page: 3814 article-title: Reduced drought tolerance during domestication and the evolution of weediness results from tolerance‐growth trade‐offs publication-title: Evolution – volume: 8 start-page: 8573 year: 2018 end-page: 8581 article-title: Root exudation rate as functional trait involved in plant nutrient‐use strategy classification publication-title: Ecology and Evolution – volume: 26 start-page: 614 year: 2019 end-page: 624 article-title: Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea publication-title: Saudi Journal of Biological Sciences – volume: 221 start-page: 233 year: 2019 end-page: 246 article-title: Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon publication-title: New Phytologist – volume: 25 start-page: 107 year: 2015 end-page: 114 article-title: Paradigm shift in plant growth control publication-title: Current Opinion in Plant Biology – volume: 14 start-page: 187 year: 2011 end-page: 194 article-title: Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long‐term CO fumigation publication-title: Ecology Letters – volume: 6 start-page: 1 year: 2016 end-page: 11 article-title: Natural variation of root exudates in ‐linking metabolomic and genomic data publication-title: Scientific Reports – year: 2018 – volume: 23 start-page: 25 year: 2018 end-page: 41 article-title: Feed your friends: do plant exudates shape the root microbiome? publication-title: Trends in Plant Science – volume: 25 start-page: 1772 year: 2018 end-page: 1780 article-title: Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose publication-title: Saudi Journal of Biological Sciences – volume: 2 start-page: 85 year: 2016 end-page: 97 article-title: Drought effects on and metabolites: from phloem to root exudates publication-title: Rhizosphere – volume: 13 start-page: 1 year: 2018 end-page: 14 article-title: Linking root exudates to functional plant traits publication-title: PLoS ONE – volume: 9 start-page: 3033 year: 2018 article-title: Soil bacterial networks are less stable under drought than fungal networks publication-title: Nature Communications – volume: 6 start-page: 1 year: 2018 end-page: 12 article-title: Rhizosphere microorganisms can influence the timing of plant flowering publication-title: Microbiome – volume: 36 start-page: 904 year: 2007 article-title: Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress publication-title: Journal of Environment Quality – volume: 409 start-page: 1 year: 2016 end-page: 17 article-title: Rhizodeposition under drought and consequences for soil communities and ecosystem resilience publication-title: Plant and Soil – volume: 224 start-page: 132 year: 2019 end-page: 145 article-title: Changes in root‐exudate‐induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling publication-title: New Phytologist – volume: 433 start-page: 189 year: 2018 end-page: 200 article-title: Root architecture governs plasticity in response to drought publication-title: Plant and Soil – volume: 11 start-page: 154 year: 2017 end-page: 159 article-title: Impact of drought on photosynthesis: molecular perspective publication-title: Plant Gene – volume: 387 start-page: 131 year: 2014 end-page: 142 article-title: The importance of a sterile rhizosphere when phenotyping for root exudation publication-title: Plant and Soil – volume: 15 start-page: 1230 year: 2012 end-page: 1239 article-title: Abiotic drivers and plant traits explain landscape‐scale patterns in soil microbial communities publication-title: Ecology Letters – volume: 21 start-page: 256 year: 2016 end-page: 265 article-title: Metabolomics in the rhizosphere: tapping into belowground chemical communication publication-title: Trends in Plant Science – volume: 6 start-page: 1 year: 2015 end-page: 16 article-title: How tree roots respond to drought publication-title: Frontiers in Plant Science – volume: 7 start-page: 1 year: 2017 end-page: 9 article-title: Alleviation of drought stress by mycorrhizas is related to increased root H O efflux in trifoliate orange publication-title: Scientific Reports – volume: 407 start-page: 1 year: 2016 end-page: 8 article-title: Advances in the rhizosphere: stretching the interface of life publication-title: Plant and Soil – volume: 9 start-page: 1 year: 2018a end-page: 16 article-title: Drought‐induced accumulation of root exudates supports post‐drought recovery of microbes in mountain grassland publication-title: Frontiers in Plant Science – volume: 3 start-page: 470 year: 2018 end-page: 480 article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly publication-title: Nature Microbiology – volume: 10 start-page: 1 year: 2019 end-page: 9 article-title: A stomatal safety‐efficiency trade‐off constrains responses to leaf dehydration publication-title: Nature Communications – volume: 82 start-page: 2397 year: 2001 end-page: 2402 article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass publication-title: Ecology – volume: 7 start-page: 490 year: 2018 end-page: 494 article-title: Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants publication-title: Groundwater for Sustainable Development – volume: 115 start-page: E5213 year: 2018 end-page: E5222 article-title: MYB72‐dependent coumarin exudation shapes root microbiome assembly to promote plant health publication-title: Proceedings of the National Academy of Sciences, USA – volume: 106 start-page: 1230 year: 2018b end-page: 1243 article-title: Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant–microbial interactions publication-title: Journal of Ecology – volume: 93 start-page: 1 year: 2017 end-page: 11 article-title: The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites publication-title: FEMS Microbiology Ecology – volume: 101 start-page: 1459 year: 2013 end-page: 1470 article-title: Slow‐growing species cope best with drought: evidence from long‐term measurements in a tropical semi‐deciduous moist forest of Central Africa publication-title: Journal of Ecology – volume: 7 start-page: 1 year: 2016 end-page: 16 article-title: Alleviation of drought stress and metabolic changes in Timothy ( ) colonized with B26 publication-title: Frontiers in Plant Science – volume: 555 start-page: 94 year: 2018 article-title: Evolutionary history resolves global organization of root functional traits publication-title: Nature – volume: 8 start-page: 1 year: 2018 end-page: 16 article-title: Drought stress and root‐associated bacterial communities publication-title: Frontiers in Plant Science – volume: 344 start-page: 508 year: 2014 end-page: 510 article-title: Faster decomposition under increased atmospheric CO publication-title: Science – volume: 654 start-page: 811 year: 2019 end-page: 821 article-title: Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future publication-title: Science of the Total Environment – volume: 37 start-page: 154 year: 2017 end-page: 164 article-title: Stress differentially causes roots of tree seedlings to exude carbon publication-title: Tree physiology – volume: 7 year: 2016 article-title: early colonization of roots involves multiple chemotaxis receptors publication-title: mBio – volume: 122 start-page: 47 year: 2015 end-page: 59 article-title: A larger investment into exudation by competitive versus conservative plants is connected to more coupled plant–microbe N cycling publication-title: Biogeochemistry – volume: 8 start-page: 1 year: 2018 end-page: 15 article-title: Root exudate metabolomes change under drought and show limited capacity for recovery publication-title: Scientific Reports – volume: 303 start-page: 1876 year: 2004 end-page: 1879 article-title: Impact of nitrogen deposition grasslands publication-title: Science – volume: 115 start-page: E1157 year: 2018 end-page: E1165 article-title: Assembly and ecological function of the root microbiome across angiosperm plant species publication-title: Proceedings of the National Academy of Sciences, USA – volume: 38 start-page: 690 year: 2018 end-page: 695 article-title: Thirsty tree roots exude more carbon publication-title: Tree Physiology – volume: 10 start-page: 9 year: 1958 end-page: 31 article-title: The effect of soil drying on humus decomposition and nitrogen availability publication-title: Plant and Soil – volume: 6 start-page: 116 year: 2018 end-page: 133 article-title: Sampling root exudates – mission impossible? publication-title: Rhizosphere – ident: e_1_2_9_8_1 doi: 10.1016/j.tplants.2016.01.008 – ident: e_1_2_9_42_1 doi: 10.1111/j.1461-0248.2010.01570.x – ident: e_1_2_9_25_1 doi: 10.1111/1365-2745.12910 – ident: e_1_2_9_44_1 doi: 10.1007/s11104-016-3090-z – ident: e_1_2_9_47_1 doi: 10.1111/nph.15361 – ident: e_1_2_9_13_1 doi: 10.1126/science.1249534 – ident: e_1_2_9_2_1 doi: 10.1016/j.sjbs.2017.10.015 – ident: e_1_2_9_24_1 doi: 10.3389/fpls.2018.01593 – ident: e_1_2_9_43_1 doi: 10.1093/treephys/tpx163 – ident: e_1_2_9_7_1 doi: 10.1038/s41559-018-0647-7 – ident: e_1_2_9_40_1 doi: 10.1016/j.gsd.2018.03.005 – ident: e_1_2_9_55_1 doi: 10.1016/j.plgene.2017.04.003 – ident: e_1_2_9_20_1 doi: 10.1371/journal.pone.0204128 – ident: e_1_2_9_31_1 doi: 10.1080/15592324.2015.1071004 – ident: e_1_2_9_4_1 doi: 10.1007/BF01343734 – ident: e_1_2_9_52_1 doi: 10.1038/s41467-018-05516-7 – ident: e_1_2_9_53_1 doi: 10.1111/j.1461-0248.2012.01844.x – volume: 37 start-page: 154 year: 2017 ident: e_1_2_9_26_1 article-title: Stress differentially causes roots of tree seedlings to exude carbon publication-title: Tree physiology – ident: e_1_2_9_19_1 doi: 10.1038/s41467-019-11006-1 – ident: e_1_2_9_30_1 doi: 10.1007/s11104-014-2283-6 – ident: e_1_2_9_56_1 doi: 10.1038/s41564-018-0129-3 – ident: e_1_2_9_12_1 doi: 10.1038/s41598-018-30150-0 – ident: e_1_2_9_27_1 doi: 10.1007/s10533-014-0028-5 – ident: e_1_2_9_54_1 doi: 10.1111/nph.16001 – ident: e_1_2_9_14_1 doi: 10.1002/ece3.4383 – ident: e_1_2_9_6_1 doi: 10.1016/j.rhisph.2016.06.003 – ident: e_1_2_9_10_1 doi: 10.1007/s11104-018-3824-1 – ident: e_1_2_9_9_1 doi: 10.1073/pnas.1717617115 – ident: e_1_2_9_15_1 doi: 10.1093/femsec/fix022 – ident: e_1_2_9_39_1 doi: 10.1111/1365-2745.12165 – ident: e_1_2_9_50_1 doi: 10.1016/j.apsoil.2017.07.030 – ident: e_1_2_9_29_1 doi: 10.1111/j.1558-5646.2012.01718.x – ident: e_1_2_9_18_1 doi: 10.2134/jeq2006.0425sc – volume-title: An IPCC Special Report on the impacts of global warming of 1.5°C above pre‐industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty year: 2018 ident: e_1_2_9_23_1 – ident: e_1_2_9_3_1 doi: 10.1128/mBio.01664-16 – ident: e_1_2_9_37_1 doi: 10.3389/fpls.2017.02223 – ident: e_1_2_9_51_1 doi: 10.1007/s11104-016-2964-4 – ident: e_1_2_9_28_1 doi: 10.1016/j.pbi.2015.05.003 – ident: e_1_2_9_46_1 doi: 10.1016/j.tplants.2017.09.003 – ident: e_1_2_9_16_1 doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 – ident: e_1_2_9_35_1 doi: 10.1007/s11104-016-3040-9 – ident: e_1_2_9_49_1 doi: 10.1073/pnas.1722335115 – ident: e_1_2_9_38_1 doi: 10.1016/j.rhisph.2018.06.004 – ident: e_1_2_9_45_1 doi: 10.3389/fpls.2017.01056 – ident: e_1_2_9_48_1 doi: 10.1126/science.1094678 – ident: e_1_2_9_41_1 doi: 10.1111/tpj.13639 – ident: e_1_2_9_22_1 doi: 10.1007/s10021-017-0178-0 – ident: e_1_2_9_32_1 doi: 10.1016/j.scitotenv.2018.10.434 – ident: e_1_2_9_17_1 doi: 10.1016/j.sjbs.2018.11.005 – ident: e_1_2_9_11_1 doi: 10.3389/fpls.2016.00584 – ident: e_1_2_9_5_1 doi: 10.3389/fpls.2015.00547 – ident: e_1_2_9_36_1 doi: 10.1038/srep29033 – ident: e_1_2_9_33_1 doi: 10.1186/s40168-018-0615-0 – volume: 7 start-page: 1 year: 2017 ident: e_1_2_9_21_1 article-title: Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange publication-title: Scientific Reports – ident: e_1_2_9_34_1 doi: 10.1038/nature25783 |
SSID | ssj0009562 |
Score | 2.6986609 |
SecondaryResourceType | review_article |
Snippet | Root exudates are a pathway for plant–microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent... Summary Root exudates are a pathway for plant–microbial communication and play a key role in ecosystem response to environmental change. Here, we collate... Root exudates are a pathway for plant-microbial communication and play a key role in ecosystem response to environmental change. Here, we collate recent... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1899 |
SubjectTerms | beneficial microorganisms Cascading climate change Communication Drought Droughts ecological footprint Ecological function Ecosystem ecosystem function Ecosystems Environmental changes Exudates Exudation Microbial activity microbiome Microorganisms Plant Exudates Plant Roots Plants plant–soil communication Recruitment (fisheries) Regrowth rhizosphere root exudates root traits roots Soil Soil Microbiology soil microorganisms Tansley insight |
Subtitle | implications for ecosystem functioning |
Title | Plant root exudation under drought |
URI | https://www.jstor.org/stable/26896803 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16223 https://www.ncbi.nlm.nih.gov/pubmed/31571220 https://www.proquest.com/docview/2350083927 https://www.proquest.com/docview/2299768615 https://www.proquest.com/docview/2400470326 |
Volume | 225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4W8eDF92N9EcWDly5tkqZbPakoy4IiorAHoSRtFkXpinZB_fXOpA9WURFvhUwhr5n5Jpl8A7BnCcOLUHo6yChA0bEXZ0Z6w6wrhoGJu9KRJJ1fqN6N7A_CQQsO67cwJT9Ec-BGmuHsNSm4Ni8TSp4_3XUChd4N7S_lahEguuIThLuK1wzMSqpBxSpEWTzNn598UZmO-B3Q_IxbneM5m4PbustlvslDZ1yYTvr-hc3xn2Oah9kKkLKjcgctQMvmizB9PELQ-LYEfSpqVDCE1wWzr-OyABOjh2fPLHMVfooDdj-Rlc4QBDMMaUuGaEZuszryXYabs9Prk55XlV_wUimF8NKYawyejeKZQRyWycDGfCiM5lroODK-MVFA8Zjx01BwrSIR-loTxx2KZFKswFQ-yu0asGwobZBad-sjjTYmjVIbR5ZYcaXmfhv264VI0oqbnEpkPCZ1jIIzk7iZacNuI_pUEnJ8J7TiVrOR4Kobq66PDZv18iaVsr4kHPvtE1CM2rDTNKOa0d2Jzu1ojDLotjEyQ_z3iwzZQ7SgXLVhtdw6TQdEEEYBdyN1G-DnvicXlz33sf530Q2Y4XQO4HLjNmGqeB7bLQRLhdl2WvEBTw8N5w |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BrQQXoKWU5dG6VSv1klViO84GiUNbipbXqqpA2ltqJ16BQFkEWfH4TfwV_hMzzkNLRVEvHHqL5FFke2bsb-zxNwCfLGF4EUpPBxkFKDr24sxIb5B1xCAwcUc6kqT9nuoeyp1-2J-A2_otTMkP0Ry4kWe49ZocnA6kx7w8PztqBwq3tyqlctdeX2LAdrGxvYna_cz51o-D712vqingpVIK4aUx1xgRGsUzg-Aik4GN-UAYzbXQcWR8Y6KAggzjp6HgWkUi9LUm4jYUyaTA_07CC6ogTkz9m7_4GMWv4jXns5KqX_EYUd5Q09UHu1-ZAPkYtH2IlN1WtzUHd_UklRkuJ-1RYdrpzR_8kf_LLM7DbIW52dfSSV7BhM1fw8tvQ8TF1wuwQ3WbCoYRRMHs1aisMcXobd05y1wRo2KdHY8l3jPE-Qyj9pIEmxEyqE6138Dhs4xjEabyYW6XgGUDaYPUuostabQxaZTaOLJE_Cs191vwpdZ8klb061QF5DSpwzDUROI00YKPjehZyTnymNCiM59GgqtOrDo-NqzW9pRU69FFwrHfPmHhqAUfmmZcSeh6SOd2OEIZRCYYfCLEfUKGlnzcJLhqwdvSVpsOiCCMAu5G6izu731Pej-77mP530Xfw3T3YH8v2dvu7a7ADKdjD5cKuApTxfnIriE2LMw755IMfj-39d4DUgZqFg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VghAX_gsLBQwCiUtWie04ayQOwLLatrCqEJX2FuzYEQiUXbVZQXklXoWHYsb50RYVxKUHbpE8imzPjP2NPf4G4LEnDC9SGZnEUYBidKSdlVHpRqJMrB7JQJL0dqamB3J3ns434Ef3Fqbhh-gP3MgzwnpNDr505ZqTV8uPw0Th7tZmVO75468Yrx093xmjcp9wPnn9_tU0aksKRIWUQkSF5gYDQqu4s4gtnEy85qWwhhthdGZja7OEYgwbF6ngRmUijY0h3jYUcVLgf8_BealiTXUixu_4GsOv4h3ls5Jq3tIYUdpQ39UTm1-T_3gasj0JlMNON7kCP7s5ahJcPg9XtR0W33-jj_xPJvEqXG4RN3vRuMg12PDVdbjwcoGo-PgG7FLVppph_FAz_23VVJhi9LLukLlQwqh-xj6tpd0zRPkMY_aGApsRLmjPtG_CwZmMYws2q0XlbwNzpfRJ4cO1lrTG2iIrvM480f5Kw-MBPO0Unxct-TrVAPmSd0EYaiIPmhjAo1502TCOnCa0Faynl-BqpNUoxobtzpzydjU6yjn2OyYknA3gYd-M6whdDpnKL1Yog7gEQ08EuH-RoQUftwiuBnCrMdW-AyJJs4SHkQaD-3Pf89n-NHzc-XfRB3BxfzzJ3-zM9u7CJU5nHiEPcBs268OVv4fAsLb3g0My-HDWxvsLjE5oxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plant+root+exudation+under+drought%3A+implications+for+ecosystem+functioning&rft.jtitle=The+New+phytologist&rft.au=Williams%2C+Alex&rft.au=de+Vries%2C+Franciska+T&rft.date=2020-03-01&rft.eissn=1469-8137&rft.volume=225&rft.issue=5&rft.spage=1899&rft_id=info:doi/10.1111%2Fnph.16223&rft_id=info%3Apmid%2F31571220&rft.externalDocID=31571220 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |