Aspergillus nidulansα-galactosidase of glycoside hydrolase family 36 catalyses the formation of α-galacto-oligosaccharides by transglycosylation

The α-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α-galactosidases and α-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g·L⁻¹ culture) as His-tag fusion in Escher...

Full description

Saved in:
Bibliographic Details
Published inThe FEBS journal Vol. 277; no. 17; pp. 3538 - 3551
Main Authors Nakai, Hiroyuki, Baumann, Martin J, Petersen, Bent O, Westphal, Yvonne, Hachem, Maher Abou, Dilokpimol, Adiphol, Duus, Jens Ø, Schols, Henk A, Svensson, Birte
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.09.2010
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The α-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α-galactosidases and α-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g·L⁻¹ culture) as His-tag fusion in Escherichia coli, catalysed efficient transglycosylation with α-(1[rightward arrow]6) regioselectivity from 40 m m 4-nitrophenol α- d-galactopyranoside, melibiose or raffinose, resulting in a 37-74% yield of 4-nitrophenol α- d-Galp-(1[rightward arrow]6)- d-Galp, α- d-Galp-(1[rightward arrow]6)-α- d-Galp-(1[rightward arrow]6)- d-Glcp and α- d-Galp-(1[rightward arrow]6)-α- d-Galp-(1[rightward arrow]6)- d-Glcp-(α1[rightward arrow]β2)- d-Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 m m) and the donor 4-nitrophenol α- d-galactopyranoside (40 m m), α-(1[rightward arrow]6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39-58%. AglC did not transglycosylate monosaccharides without the 6-hydroxymethyl group, i.e. xylose, l-arabinose, l-fucose and l-rhamnose, or with axial 3-OH, i.e. gulose, allose, altrose and l-rhamnose. Structural modelling using Thermotoga maritima GH36 α-galactosidase as the template and superimposition of melibiose from the complex with human GH27 α-galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3-OH and Trp358 and a hydrophobic environment around the C-6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 m m), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred α-galactosyl to 6-OH of the terminal residue in the α-linked melibiose, maltose, trehalose, sucrose and turanose in 6-46% yield and the β-linked lactose, lactulose and cellobiose in 28-38% yield. The product structures were identified using NMR and ESI-MS and five of the 13 identified products were novel, i.e. α- d-Galp-(1[rightward arrow]6)- d-Manp; α- d-Galp-(1[rightward arrow]6)-β- d-Glcp-(1[rightward arrow]4)- d-Glcp; α- d-Galp-(1[rightward arrow]6)-β- d-Galp-(1[rightward arrow]4)- d-Fruf; α- d-Galp-(1[rightward arrow]6)- d-Glcp-(α1[rightward arrow]α1)- d-Glcp; and α- d-Galp-(1[rightward arrow]6)-α- d-Glcp-(1[rightward arrow]3)- d-Fruf.
AbstractList The α-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α-galactosidases and α-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g·L⁻¹ culture) as His-tag fusion in Escherichia coli, catalysed efficient transglycosylation with α-(1[rightward arrow]6) regioselectivity from 40 m m 4-nitrophenol α- d-galactopyranoside, melibiose or raffinose, resulting in a 37-74% yield of 4-nitrophenol α- d-Galp-(1[rightward arrow]6)- d-Galp, α- d-Galp-(1[rightward arrow]6)-α- d-Galp-(1[rightward arrow]6)- d-Glcp and α- d-Galp-(1[rightward arrow]6)-α- d-Galp-(1[rightward arrow]6)- d-Glcp-(α1[rightward arrow]β2)- d-Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 m m) and the donor 4-nitrophenol α- d-galactopyranoside (40 m m), α-(1[rightward arrow]6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39-58%. AglC did not transglycosylate monosaccharides without the 6-hydroxymethyl group, i.e. xylose, l-arabinose, l-fucose and l-rhamnose, or with axial 3-OH, i.e. gulose, allose, altrose and l-rhamnose. Structural modelling using Thermotoga maritima GH36 α-galactosidase as the template and superimposition of melibiose from the complex with human GH27 α-galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3-OH and Trp358 and a hydrophobic environment around the C-6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 m m), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred α-galactosyl to 6-OH of the terminal residue in the α-linked melibiose, maltose, trehalose, sucrose and turanose in 6-46% yield and the β-linked lactose, lactulose and cellobiose in 28-38% yield. The product structures were identified using NMR and ESI-MS and five of the 13 identified products were novel, i.e. α- d-Galp-(1[rightward arrow]6)- d-Manp; α- d-Galp-(1[rightward arrow]6)-β- d-Glcp-(1[rightward arrow]4)- d-Glcp; α- d-Galp-(1[rightward arrow]6)-β- d-Galp-(1[rightward arrow]4)- d-Fruf; α- d-Galp-(1[rightward arrow]6)- d-Glcp-(α1[rightward arrow]α1)- d-Glcp; and α- d-Galp-(1[rightward arrow]6)-α- d-Glcp-(1[rightward arrow]3)- d-Fruf.
The alpha-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic alpha-galactosidases and alpha-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g.L(-1) culture) as His-tag fusion in Escherichia coli, catalysed efficient transglycosylation with alpha-(1-->6) regioselectivity from 40 mm 4-nitrophenol alpha-d-galactopyranoside, melibiose or raffinose, resulting in a 37-74% yield of 4-nitrophenol alpha-D-Galp-(1-->6)-D-Galp, alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp and alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp-(alpha1-->beta2)-d-Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 mm) and the donor 4-nitrophenol alpha-D-galactopyranoside (40 mm), alpha-(1-->6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39-58%. AglC did not transglycosylate monosaccharides without the 6-hydroxymethyl group, i.e. xylose, L-arabinose, L-fucose and L-rhamnose, or with axial 3-OH, i.e. gulose, allose, altrose and L-rhamnose. Structural modelling using Thermotoga maritima GH36 alpha-galactosidase as the template and superimposition of melibiose from the complex with human GH27 alpha-galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3-OH and Trp358 and a hydrophobic environment around the C-6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 mm), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred alpha-galactosyl to 6-OH of the terminal residue in the alpha-linked melibiose, maltose, trehalose, sucrose and turanose in 6-46% yield and the beta-linked lactose, lactulose and cellobiose in 28-38% yield. The product structures were identified using NMR and ESI-MS and five of the 13 identified products were novel, i.e. alpha-D-Galp-(1-->6)-D-Manp; alpha-D-Galp-(1-->6)-beta-D-Glcp-(1-->4)-D-Glcp; alpha-D-Galp-(1-->6)-beta-D-Galp-(1-->4)-D-Fruf; alpha-D-Galp-(1-->6)-D-Glcp-(alpha1-->alpha1)-D-Glcp; and alpha-D-Galp-(1-->6)-alpha-D-Glcp-(1-->3)-D-Fruf.
The α‐galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α‐galactosidases and α‐galacto‐oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g·L−1 culture) as His‐tag fusion in Escherichia coli, catalysed efficient transglycosylation with α‐(1→6) regioselectivity from 40 mm 4‐nitrophenol α‐d‐galactopyranoside, melibiose or raffinose, resulting in a 37–74% yield of 4‐nitrophenol α‐d‐Galp‐(1→6)‐d‐Galp, α‐d‐Galp‐(1→6)‐α‐d‐Galp‐(1→6)‐d‐Glcp and α‐d‐Galp‐(1→6)‐α‐d‐Galp‐(1→6)‐d‐Glcp‐(α1→β2)‐d‐Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 mm) and the donor 4‐nitrophenol α‐d‐galactopyranoside (40 mm), α‐(1→6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39–58%. AglC did not transglycosylate monosaccharides without the 6‐hydroxymethyl group, i.e. xylose, l‐arabinose, l‐fucose and l‐rhamnose, or with axial 3‐OH, i.e. gulose, allose, altrose and l‐rhamnose. Structural modelling using Thermotoga maritima GH36 α‐galactosidase as the template and superimposition of melibiose from the complex with human GH27 α‐galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3‐OH and Trp358 and a hydrophobic environment around the C‐6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 mm), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred α‐galactosyl to 6‐OH of the terminal residue in the α‐linked melibiose, maltose, trehalose, sucrose and turanose in 6–46% yield and the β‐linked lactose, lactulose and cellobiose in 28–38% yield. The product structures were identified using NMR and ESI‐MS and five of the 13 identified products were novel, i.e. α‐d‐Galp‐(1→6)‐d‐Manp; α‐d‐Galp‐(1→6)‐β‐d‐Glcp‐(1→4)‐d‐Glcp; α‐d‐Galp‐(1→6)‐β‐d‐Galp‐(1→4)‐d‐Fruf; α‐d‐Galp‐(1→6)‐d‐Glcp‐(α1→α1)‐d‐Glcp; and α‐d‐Galp‐(1→6)‐α‐d‐Glcp‐(1→3)‐d‐Fruf.
The alpha-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic alpha-galactosidases and alpha-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g.L(-1) culture) as His-tag fusion in Escherichia coli, catalysed efficient transglycosylation with alpha-(1-->6) regioselectivity from 40 mm 4-nitrophenol alpha-d-galactopyranoside, melibiose or raffinose, resulting in a 37-74% yield of 4-nitrophenol alpha-D-Galp-(1-->6)-D-Galp, alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp and alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp-(alpha1-->beta2)-d-Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 mm) and the donor 4-nitrophenol alpha-D-galactopyranoside (40 mm), alpha-(1-->6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39-58%. AglC did not transglycosylate monosaccharides without the 6-hydroxymethyl group, i.e. xylose, L-arabinose, L-fucose and L-rhamnose, or with axial 3-OH, i.e. gulose, allose, altrose and L-rhamnose. Structural modelling using Thermotoga maritima GH36 alpha-galactosidase as the template and superimposition of melibiose from the complex with human GH27 alpha-galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3-OH and Trp358 and a hydrophobic environment around the C-6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 mm), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred alpha-galactosyl to 6-OH of the terminal residue in the alpha-linked melibiose, maltose, trehalose, sucrose and turanose in 6-46% yield and the beta-linked lactose, lactulose and cellobiose in 28-38% yield. The product structures were identified using NMR and ESI-MS and five of the 13 identified products were novel, i.e. alpha-D-Galp-(1-->6)-D-Manp; alpha-D-Galp-(1-->6)-beta-D-Glcp-(1-->4)-D-Glcp; alpha-D-Galp-(1-->6)-beta-D-Galp-(1-->4)-D-Fruf; alpha-D-Galp-(1-->6)-D-Glcp-(alpha1-->alpha1)-D-Glcp; and alpha-D-Galp-(1-->6)-alpha-D-Glcp-(1-->3)-D-Fruf.
The α‐galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α‐galactosidases and α‐galacto‐oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g·L −1 culture) as His‐tag fusion in Escherichia coli , catalysed efficient transglycosylation with α‐(1→6) regioselectivity from 40 m m 4‐nitrophenol α‐ d ‐galactopyranoside, melibiose or raffinose, resulting in a 37–74% yield of 4‐nitrophenol α‐ d ‐Gal p ‐(1→6)‐ d ‐Gal p , α‐ d ‐Gal p ‐(1→6)‐α‐ d ‐Gal p ‐(1→6)‐ d ‐Glc p and α‐ d ‐Gal p ‐(1→6)‐α‐ d ‐Gal p ‐(1→6)‐ d ‐Glc p ‐(α1→β2)‐ d ‐Fru f (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 m m ) and the donor 4‐nitrophenol α‐ d ‐galactopyranoside (40 m m ), α‐(1→6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39–58%. AglC did not transglycosylate monosaccharides without the 6‐hydroxymethyl group, i.e. xylose, l ‐arabinose, l ‐fucose and l ‐rhamnose, or with axial 3‐OH, i.e. gulose, allose, altrose and l ‐rhamnose. Structural modelling using Thermotoga maritima GH36 α‐galactosidase as the template and superimposition of melibiose from the complex with human GH27 α‐galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3‐OH and Trp358 and a hydrophobic environment around the C‐6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 m m ), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred α‐galactosyl to 6‐OH of the terminal residue in the α‐linked melibiose, maltose, trehalose, sucrose and turanose in 6–46% yield and the β‐linked lactose, lactulose and cellobiose in 28–38% yield. The product structures were identified using NMR and ESI‐MS and five of the 13 identified products were novel, i.e. α‐ d ‐Gal p ‐(1→6)‐ d ‐Man p ; α‐ d ‐Gal p ‐(1→6)‐β‐ d ‐Glc p ‐(1→4)‐ d ‐Glc p ; α‐ d ‐Gal p ‐(1→6)‐β‐ d ‐Gal p ‐(1→4)‐ d ‐Fru f ; α‐ d ‐Gal p ‐(1→6)‐ d ‐Glc p ‐(α1→α1)‐ d ‐Glc p ; and α‐ d ‐Gal p ‐(1→6)‐α‐ d ‐Glc p ‐(1→3)‐ d ‐Fru f .
Author Schols, Henk A
Svensson, Birte
Petersen, Bent O
Duus, Jens Ø
Baumann, Martin J
Hachem, Maher Abou
Dilokpimol, Adiphol
Westphal, Yvonne
Nakai, Hiroyuki
Author_xml – sequence: 1
  fullname: Nakai, Hiroyuki
– sequence: 2
  fullname: Baumann, Martin J
– sequence: 3
  fullname: Petersen, Bent O
– sequence: 4
  fullname: Westphal, Yvonne
– sequence: 5
  fullname: Hachem, Maher Abou
– sequence: 6
  fullname: Dilokpimol, Adiphol
– sequence: 7
  fullname: Duus, Jens Ø
– sequence: 8
  fullname: Schols, Henk A
– sequence: 9
  fullname: Svensson, Birte
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20681989$$D View this record in MEDLINE/PubMed
BookMark eNqNUctu1DAUtVARfcAvgHesMtiJx3E2SKVqAakSi1KJneX4kfHIiQffRDS_wZ_wI3wTTlOGLd743utzzrXOOUcnQxwsQpiSDc3n3X5Da1YWjG_FpiR5SuqaV5uHZ-js-HByrNm3U3QOsCek2rKmeYFOS8IFbURzhn5ewsGmzocwAR68mYIa4PevolNB6TGCNwosjg53YdZLa_FuNimGZexU78OMK461GlWYwQIed3keU69GH4eF-E-siMF3EZTWO5WyEuB2xmPKC1fxOTySXqLnTgWwr57uC3R_c_316lNx--Xj56vL20IzVlVFSwnXpNQl0aVxjLS2FaahShEnCK1dba0Sxrrc65YZTkndlqRy3BhthODVBXq76h5S_D5ZGGXvQduQHbBxAlkz0XCypSIjxYrUKQIk6-Qh-V6lWVIil0DkXi5ey8V3uQQiHwORD5n6-mnJ1PbWHIl_E8iA9yvghw92_m9heXP94W4ps8CbVcCpKFWXPMj7uwytCBXZiPz9P3Pbq7U
CitedBy_id crossref_primary_10_1074_jbc_M111_286039
crossref_primary_10_1016_j_jbiosc_2020_09_006
crossref_primary_10_1128_AEM_01350_12
crossref_primary_10_3389_fpls_2022_829118
crossref_primary_10_1021_acs_jafc_8b01939
crossref_primary_10_3109_10242422_2013_828048
crossref_primary_10_1134_S0006297913100052
crossref_primary_10_1016_j_ijbiomac_2019_10_140
crossref_primary_10_1039_c3fo30357h
crossref_primary_10_1016_j_foodchem_2015_08_015
crossref_primary_10_1016_j_carres_2014_11_003
crossref_primary_10_1111_1541_4337_12215
crossref_primary_10_1016_j_ijbiomac_2019_12_032
crossref_primary_10_1016_j_molcatb_2015_08_014
crossref_primary_10_5458_jag_jag_JAG_2021_0004
crossref_primary_10_3390_md16100349
crossref_primary_10_1007_s12010_014_1050_8
crossref_primary_10_1021_acs_jafc_0c00871
crossref_primary_10_1021_acs_jafc_0c06417
crossref_primary_10_3109_10242422_2012_674717
crossref_primary_10_1371_journal_pone_0160112
crossref_primary_10_1093_glycob_cwad015
crossref_primary_10_1016_j_biortech_2019_122258
crossref_primary_10_3136_fstr_26_265
crossref_primary_10_1007_s00253_020_10759_w
crossref_primary_10_1371_journal_pone_0197067
crossref_primary_10_1371_journal_pone_0235687
crossref_primary_10_1016_j_jbiotec_2018_05_003
crossref_primary_10_1021_acs_jafc_6b00255
crossref_primary_10_1016_j_biortech_2012_01_144
crossref_primary_10_1093_glycob_cwu124
crossref_primary_10_1016_j_tetasy_2017_07_007
crossref_primary_10_1016_j_resmic_2011_10_005
crossref_primary_10_3109_07388551_2013_794124
crossref_primary_10_1021_acs_biochem_5b00228
crossref_primary_10_1016_j_molcatb_2011_06_010
crossref_primary_10_1016_j_pep_2015_02_015
Cites_doi 10.1016/S0008-6215(00)00170-1
10.1016/j.enzmictec.2006.10.017
10.1007/s00253-003-1427-z
10.3168/jds.S0022-0302(90)78673-0
10.1046/j.1432-1327.2001.02188.x
10.1093/nar/gkn750
10.1111/j.1432-1033.1987.tb11438.x
10.1111/j.1470-8744.1993.tb00250.x
10.1074/jbc.M302292200
10.1016/S0723-2020(98)80002-7
10.1002/cbdv.200590013
10.1074/jbc.M109.060145
10.1021/ar970172
10.1073/pnas.0604632103
10.1111/j.1574-6968.1999.tb13655.x
10.1128/AEM.65.9.3955-3963.1999
10.1093/nar/gkn663
10.1039/jr9310001456
10.1016/S0014-5793(02)02879-X
10.1016/S0969-2126(02)00726-8
10.1046/j.1365-313X.2003.01609.x
10.1016/0378-1119(95)00592-7
10.1007/978-1-59745-466-7_29
10.1038/nbt984
10.1038/nbt0893-905
10.1021/bi0008074
10.1007/s00253-008-1750-5
10.1104/pp.119.3.979
10.1080/00021369.1982.10865204
10.1007/s00284-005-0442-y
10.1007/s002530051579
10.1080/713803702
10.1016/j.pep.2003.08.007
10.1042/bj3390043
10.1016/j.chroma.2009.12.005
10.1046/j.1365-313X.1999.00618.x
10.1111/j.1574-6968.2008.01246.x
10.1002/bit.20713
10.1007/s00253-003-1426-0
10.1128/AEM.67.4.1601-1616.2001
10.1099/00221287-137-4-757
10.1271/bbb.59.619
10.1038/nature04341
10.2144/96206bm08
10.1016/S0924-2244(98)00059-4
10.1016/S1389-1723(00)80105-X
10.1021/bi061521n
10.1038/nprot.2007.131
10.1111/j.1432-1033.1976.tb10637.x
10.1023/A:1005542521708
10.1074/jbc.M109734200
ContentType Journal Article
Copyright 2010 The Authors Journal compilation © 2010 FEBS
Copyright_xml – notice: 2010 The Authors Journal compilation © 2010 FEBS
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1111/j.1742-4658.2010.07763.x
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1742-4658
EndPage 3551
ExternalDocumentID 10_1111_j_1742_4658_2010_07763_x
20681989
FEBS7763
US201301880118
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABHUG
ABPTK
ABPVW
ABQWH
ABWRO
ABXGK
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
E3Z
EAD
EAP
EAS
EAU
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
EX3
F00
F01
F04
F5P
FBQ
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
HF~
HH5
HZI
HZ~
IHE
IX1
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OK1
OVD
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RNS
ROL
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
Y6R
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4433-b106c02c20c2df40beb8d91aa0f8017f7eea8defa0fcb4d6107b203f6ddcd8863
IEDL.DBID DR2
ISSN 1742-464X
IngestDate Fri Aug 16 07:42:40 EDT 2024
Fri Aug 23 02:26:02 EDT 2024
Sat Sep 28 07:47:31 EDT 2024
Sat Aug 24 01:06:38 EDT 2024
Wed Dec 27 19:20:24 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4433-b106c02c20c2df40beb8d91aa0f8017f7eea8defa0fcb4d6107b203f6ddcd8863
Notes http://dx.doi.org/10.1111/j.1742-4658.2010.07763.x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1742-4658.2010.07763.x
PMID 20681989
PQID 748960518
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_748960518
crossref_primary_10_1111_j_1742_4658_2010_07763_x
pubmed_primary_20681989
wiley_primary_10_1111_j_1742_4658_2010_07763_x_FEBS7763
fao_agris_US201301880118
PublicationCentury 2000
PublicationDate September 2010
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: September 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle The FEBS journal
PublicationTitleAlternate FEBS J
PublicationYear 2010
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References 2004; 22
2004; 64
1976; 67
2009; 82
2002; 10
2002; 277
2000; 50
2010; 1217
2000; 90
2003; 278
1931; 10
2001; 268
1984; 56
2000; 329
1999; 176
1999; 52
1995; 166
2007; 2
1996; 20
1999; 339
1990; 73
2006; 93
2006; 53
1987; 165
1995; 59
2005; 438
1999; 21
1999; 65
2010; 285
1999; 20
2001; 67
1998; 21
2008; 285
1991; 137
2003; 32
2003; 33
1982; 46
1993; 17
2000; 39
2007; 390
1993; 11
2000; 33
2002; 523
2007; 40
2005; 2
2003; 63
2007; 46
2009; 37
2006; 103
1999; 119
1998; 9
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_2
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
Dey PM (e_1_2_7_2_2) 1984; 56
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_35_2
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_36_2
e_1_2_7_38_2
References_xml – volume: 90
  start-page: 168
  year: 2000
  end-page: 173
  article-title: Molecular cloning and high‐level expression in of fungal α‐galactosidase from IFO 8084
  publication-title: J Biosci Bioeng
– volume: 21
  start-page: 1
  year: 1998
  end-page: 11
  article-title: Properties of an α‐galactosidase, and structure of its gene galA, within an α‐ and β‐galactoside utilization gene cluster of the hyperthermophilic bacterium
  publication-title: Syst Appl Microbiol
– volume: 63
  start-page: 286
  year: 2003
  end-page: 292
  article-title: Synthesis of α‐galactooligosaccharides with α‐galactosidase from of canine origin
  publication-title: Appl Microbiol Biotechnol
– volume: 165
  start-page: 275
  year: 1987
  end-page: 280
  article-title: Signal sequence and DNA‐mediated expression of human lysosomal α‐galactosidase A
  publication-title: Eur J Biochem
– volume: 278
  start-page: 20313
  year: 2003
  end-page: 20318
  article-title: Crystal structure of rice α‐galactosidase complexed with D‐galactose
  publication-title: J Biol Chem
– volume: 73
  start-page: 299
  year: 1990
  end-page: 307
  article-title: Growth of bifidobacteria and their enzyme profiles
  publication-title: J Dairy Sci
– volume: 285
  start-page: 3625
  year: 2010
  end-page: 3632
  article-title: Catalytic mechanism of human α‐galactosidase
  publication-title: J Biol Chem
– volume: 37
  start-page: D387
  year: 2009
  end-page: D392
  article-title: The SWISS‐MODEL Repository and associated resources
  publication-title: Nucleic Acids Res
– volume: 46
  start-page: 1089
  year: 1982
  end-page: 1090
  article-title: Transferase action of α‐galactosidase from tubers of
  publication-title: Agric Biol Chem
– volume: 37
  start-page: D233
  year: 2009
  end-page: 238
  article-title: The Carbohydrate‐Active EnZymes database (CAZy): an expert resource for glycogenomics
  publication-title: Nucleic Acids Res
– volume: 52
  start-page: 681
  year: 1999
  end-page: 688
  article-title: Transglycosidase activity of DSM 20083 α‐galactosidase
  publication-title: Appl Microbiol Biotechnol
– volume: 93
  start-page: 122
  year: 2006
  end-page: 131
  article-title: Increasing the transglycosylation activity of α‐galactosidase from DSM 20083 by site‐directed mutagenesis
  publication-title: Biotechnol Bioeng
– volume: 59
  start-page: 619
  year: 1995
  end-page: 623
  article-title: Transglycosylation catalyzed by α‐galactosidase from H‐404
  publication-title: Biosci Biotech Biochem
– volume: 17
  start-page: 361
  year: 1993
  end-page: 371
  article-title: Induction of α‐galactosidase in by guar ( ) gum
  publication-title: Biotechnol Appl Biochem
– volume: 64
  start-page: 106
  year: 2004
  end-page: 111
  article-title: In vitro evaluation of the fermentation properties of galactooligosaccharides synthesised by α‐galactosidase from
  publication-title: Appl Microbiol Biotechnol
– volume: 1217
  start-page: 689
  year: 2010
  end-page: 695
  article-title: Introducing porous graphitized carbon liquid chromatography with evaporative light scattering and mass spectrometry detection into cell wall oligosaccharide analysis
  publication-title: J Chromatogr
– volume: 438
  start-page: 1105
  year: 2005
  end-page: 1115
  article-title: Sequencing of and comparative analysis with and
  publication-title: Nature
– volume: 50
  start-page: 91
  year: 2000
  end-page: 97
  article-title: Purification and characterization of α‐ ‐acetylgalactosaminidase from
  publication-title: IUBMB Life
– volume: 390
  start-page: 429
  year: 2007
  end-page: 466
  article-title: Computational prediction of subcellular localization
  publication-title: Methods Mol Biol
– volume: 176
  start-page: 147
  year: 1999
  end-page: 153
  article-title: Thermostable α‐galactosidase from NUB3621: cloning, sequencing and characterization
  publication-title: FEMS Microbiol Lett
– volume: 285
  start-page: 278
  year: 2008
  end-page: 283
  article-title: Cloning and characterization of a novel α‐galactosidase from 203 capable of synthesizing Gal‐α‐1,4 linkage
  publication-title: FEMS Microbiol Lett
– volume: 339
  start-page: 43
  year: 1999
  end-page: 53
  article-title: Lignocellulose degradation by : purification and characterization of the main α‐galactosidase
  publication-title: Biochem J
– volume: 33
  start-page: 97
  year: 2003
  end-page: 106
  article-title: Cloning and functional expression of alkaline α‐galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases
  publication-title: Plant J
– volume: 11
  start-page: 905
  year: 1993
  end-page: 910
  article-title: Recent advances in the expression of foreign genes in
  publication-title: BioTechnology
– volume: 10
  start-page: 425
  year: 2002
  end-page: 434
  article-title: The 1.9 A structure of α‐ ‐acetylgalactosaminidase: molecular basis of glycosidase deficiency diseases
  publication-title: Structure
– volume: 82
  start-page: 471
  year: 2009
  end-page: 477
  article-title: A novel α‐galactosidase from with transgalactosylating properties: gene molecular cloning and heterologous expression
  publication-title: Appl Microbiol Biotechnol
– volume: 67
  start-page: 1601
  year: 2001
  end-page: 1606
  article-title: Purification and characterization of the recombinant sp. strain T2 α‐galactosidase expressed in
  publication-title: Appl Environ Microbiol
– volume: 2
  start-page: 953
  year: 2007
  end-page: 971
  article-title: Locating protein in the cell using TargetP, SignalP, and related tools
  publication-title: Nat Protoc
– volume: 119
  start-page: 979
  year: 1999
  end-page: 987
  article-title: A novel alkaline α‐galactosidase from melon fruit with a substrate preference for raffinose
  publication-title: Plant Physiol
– volume: 33
  start-page: 11
  year: 2000
  end-page: 18
  article-title: Glycosidase mechanisms: anatomy of a finely tuned catalyst
  publication-title: Acc Chem Res
– volume: 10
  start-page: 1456
  year: 1931
  end-page: 1462
  article-title: Universal buffer solutions and the dissociation constant of veronal
  publication-title: J Chem Soc
– volume: 523
  start-page: 17
  year: 2002
  end-page: 22
  article-title: Iterative database searches demonstrate that glycoside hydrolase families 27, 31, 36 and 66 share a common evolutionary origin with family 13
  publication-title: FEBS Lett
– volume: 166
  start-page: 277
  year: 1995
  end-page: 280
  article-title: Structural organization and expression of the mouse gene encoding α‐galactosidase A
  publication-title: Gene
– volume: 137
  start-page: 757
  year: 1991
  end-page: 764
  article-title: Biochemical and genetic analysis of α‐galactosidase
  publication-title: J Gen Microbiol
– volume: 32
  start-page: 309
  year: 2003
  end-page: 316
  article-title: Purification and characterization of a recombinant α‐ ‐acetylgalactosaminidase from
  publication-title: Protein Expr Purif
– volume: 329
  start-page: 65
  year: 2000
  end-page: 73
  article-title: Comparative study of new α‐galactosidases in transglycosylation reactions
  publication-title: Carbohydr Res
– volume: 67
  start-page: 95
  year: 1976
  end-page: 104
  article-title: Raffinose metabolism in K12. Purification and properties of a new α‐galactosidase specified by a transmissible plasmid
  publication-title: Eur J Biochem
– volume: 268
  start-page: 2982
  year: 2001
  end-page: 2990
  article-title: Cloning and characterization of genes encoding an α‐galactosidase and a β‐mannosidase involved in galactomannan degradation
  publication-title: Eur J Biochem
– volume: 22
  start-page: 877
  year: 2004
  end-page: 882
  article-title: Cold‐shock induced high‐yield protein production in
  publication-title: Nat Biotechnol
– volume: 65
  start-page: 3955
  year: 1999
  end-page: 3963
  article-title: Cloning of the gene encoding a novel thermostable α‐galactosidase from ITI360
  publication-title: Appl Environ Microbiol
– volume: 103
  start-page: 11417
  year: 2006
  end-page: 11422
  article-title: Development and application of a suite of polysaccharide‐degrading enzymes for analyzing plant cell walls
  publication-title: Proc Natl Acad Sci USA
– volume: 277
  start-page: 194
  year: 2002
  end-page: 200
  article-title: Chain elongation of raffinose in pea seeds. Isolation, characterization, and molecular cloning of mutifunctional enzyme catalyzing the synthesis of stachyose and verbascose
  publication-title: J Biol Chem
– volume: 39
  start-page: 9826
  year: 2000
  end-page: 9836
  article-title: Identification of Asp‐130 as the catalytic nucleophile in the main α‐galactosidase from , a family 27 glycosyl hydrolase
  publication-title: Biochemistry
– volume: 2
  start-page: 295
  year: 2005
  end-page: 317
  article-title: Seed galactomannans: an overview
  publication-title: Chem Biodivers
– volume: 20
  start-page: 509
  year: 1999
  end-page: 518
  article-title: Stachyose synthesis in seeds of adzuki bean ( ): molecular cloning and functional expression of stachyose synthase
  publication-title: Plant J
– volume: 20
  start-page: 980
  year: 1996
  end-page: 982
  article-title: Direct PCR screening of clones
  publication-title: BioTechniques
– volume: 46
  start-page: 3319
  year: 2007
  end-page: 3330
  article-title: Biochemical analysis of GH36 α‐galactosidase ( GalA) confirms the mechanistic commonality of clan GH‐D glycoside hydrolases
  publication-title: Biochemistry
– volume: 9
  start-page: 328
  year: 1998
  end-page: 335
  article-title: Technological aspects of functional food‐related carbohydrates
  publication-title: Trends Food Sci Technol
– volume: 21
  start-page: 441
  year: 1999
  end-page: 445
  article-title: Synthesis of α‐galacto‐oligosaccharides by a cloned α‐galactosidase from
  publication-title: Biotechnol Lett
– volume: 40
  start-page: 1373
  year: 2007
  end-page: 1380
  article-title: Molecular cloning and characterization of a novel α‐galactosidase gene from sp. F63 CGMCC 1669 and expression in Pichia pastoris
  publication-title: Enzyme Microb Technol
– volume: 53
  start-page: 374
  year: 2006
  end-page: 378
  article-title: A thermostable α‐galactosidase from CRL722: genetic characterization and main properties
  publication-title: Curr Microbiol
– volume: 56
  start-page: 141
  year: 1984
  end-page: 249
  article-title: α‐Galactosidase
  publication-title: Adv Enzymol Relat Areas Mol Biol
– ident: e_1_2_7_34_2
  doi: 10.1016/S0008-6215(00)00170-1
– ident: e_1_2_7_15_2
  doi: 10.1016/j.enzmictec.2006.10.017
– ident: e_1_2_7_37_2
  doi: 10.1007/s00253-003-1427-z
– ident: e_1_2_7_38_2
  doi: 10.3168/jds.S0022-0302(90)78673-0
– ident: e_1_2_7_14_2
  doi: 10.1046/j.1432-1327.2001.02188.x
– ident: e_1_2_7_54_2
  doi: 10.1093/nar/gkn750
– ident: e_1_2_7_19_2
  doi: 10.1111/j.1432-1033.1987.tb11438.x
– ident: e_1_2_7_21_2
  doi: 10.1111/j.1470-8744.1993.tb00250.x
– ident: e_1_2_7_29_2
  doi: 10.1074/jbc.M302292200
– volume: 56
  start-page: 141
  year: 1984
  ident: e_1_2_7_2_2
  article-title: α‐Galactosidase
  publication-title: Adv Enzymol Relat Areas Mol Biol
  contributor:
    fullname: Dey PM
– ident: e_1_2_7_10_2
  doi: 10.1016/S0723-2020(98)80002-7
– ident: e_1_2_7_49_2
  doi: 10.1002/cbdv.200590013
– ident: e_1_2_7_28_2
  doi: 10.1074/jbc.M109.060145
– ident: e_1_2_7_26_2
  doi: 10.1021/ar970172
– ident: e_1_2_7_13_2
  doi: 10.1073/pnas.0604632103
– ident: e_1_2_7_7_2
  doi: 10.1111/j.1574-6968.1999.tb13655.x
– ident: e_1_2_7_11_2
  doi: 10.1128/AEM.65.9.3955-3963.1999
– ident: e_1_2_7_22_2
  doi: 10.1093/nar/gkn663
– ident: e_1_2_7_52_2
  doi: 10.1039/jr9310001456
– ident: e_1_2_7_23_2
  doi: 10.1016/S0014-5793(02)02879-X
– ident: e_1_2_7_30_2
  doi: 10.1016/S0969-2126(02)00726-8
– ident: e_1_2_7_18_2
  doi: 10.1046/j.1365-313X.2003.01609.x
– ident: e_1_2_7_20_2
  doi: 10.1016/0378-1119(95)00592-7
– ident: e_1_2_7_43_2
  doi: 10.1007/978-1-59745-466-7_29
– ident: e_1_2_7_40_2
– ident: e_1_2_7_46_2
  doi: 10.1038/nbt984
– ident: e_1_2_7_51_2
  doi: 10.1038/nbt0893-905
– ident: e_1_2_7_27_2
  doi: 10.1021/bi0008074
– ident: e_1_2_7_4_2
  doi: 10.1007/s00253-008-1750-5
– ident: e_1_2_7_17_2
  doi: 10.1104/pp.119.3.979
– ident: e_1_2_7_31_2
  doi: 10.1080/00021369.1982.10865204
– ident: e_1_2_7_8_2
  doi: 10.1007/s00284-005-0442-y
– ident: e_1_2_7_33_2
  doi: 10.1007/s002530051579
– ident: e_1_2_7_47_2
  doi: 10.1080/713803702
– ident: e_1_2_7_48_2
  doi: 10.1016/j.pep.2003.08.007
– ident: e_1_2_7_24_2
  doi: 10.1042/bj3390043
– ident: e_1_2_7_53_2
  doi: 10.1016/j.chroma.2009.12.005
– ident: e_1_2_7_41_2
  doi: 10.1046/j.1365-313X.1999.00618.x
– ident: e_1_2_7_5_2
  doi: 10.1111/j.1574-6968.2008.01246.x
– ident: e_1_2_7_36_2
  doi: 10.1002/bit.20713
– ident: e_1_2_7_35_2
  doi: 10.1007/s00253-003-1426-0
– ident: e_1_2_7_12_2
  doi: 10.1128/AEM.67.4.1601-1616.2001
– ident: e_1_2_7_9_2
  doi: 10.1099/00221287-137-4-757
– ident: e_1_2_7_32_2
  doi: 10.1271/bbb.59.619
– ident: e_1_2_7_45_2
  doi: 10.1038/nature04341
– ident: e_1_2_7_50_2
  doi: 10.2144/96206bm08
– ident: e_1_2_7_39_2
  doi: 10.1016/S0924-2244(98)00059-4
– ident: e_1_2_7_16_2
  doi: 10.1016/S1389-1723(00)80105-X
– ident: e_1_2_7_25_2
  doi: 10.1021/bi061521n
– ident: e_1_2_7_44_2
  doi: 10.1038/nprot.2007.131
– ident: e_1_2_7_6_2
  doi: 10.1111/j.1432-1033.1976.tb10637.x
– ident: e_1_2_7_3_2
  doi: 10.1023/A:1005542521708
– ident: e_1_2_7_42_2
  doi: 10.1074/jbc.M109734200
SSID ssj0035499
Score 2.2348533
Snippet The α-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α-galactosidases and α-galacto-oligosaccharide...
The α‐galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α‐galactosidases and α‐galacto‐oligosaccharide...
The alpha-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic alpha-galactosidases and...
The α‐galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α‐galactosidases and α‐galacto‐oligosaccharide...
SourceID proquest
crossref
pubmed
wiley
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 3538
SubjectTerms acceptor specificity
alpha-Galactosidase - biosynthesis
alpha-Galactosidase - isolation & purification
alpha-Galactosidase - metabolism
Amino Acid Sequence
Aspergillus nidulans - enzymology
Biocatalysis
Carbohydrate Conformation
carbohydrate structural analysis
Cloning, Molecular
Escherichia coli - metabolism
Glycosylation
Hydrogen-Ion Concentration
Hydrolysis
Kinetics
Models, Molecular
Oligosaccharides - biosynthesis
Oligosaccharides - chemistry
Phylogeny
Recombinant Proteins - biosynthesis
Recombinant Proteins - isolation & purification
Recombinant Proteins - metabolism
Temperature
transglycosylation
α-galacto-oligosaccharides
α-galactosidase
Title Aspergillus nidulansα-galactosidase of glycoside hydrolase family 36 catalyses the formation of α-galacto-oligosaccharides by transglycosylation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1742-4658.2010.07763.x
https://www.ncbi.nlm.nih.gov/pubmed/20681989
https://search.proquest.com/docview/748960518
Volume 277
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbtswECXabNpNP0nbOGkLLoruZMgSI0pL52MEXXTR1IB3BL-uEVUqIguosgqQC2TdW_QiPUROkhnSNuIgiyDoThJE6jMzmveoxyEhnwZGYSGvInKsiCMmpYzUnjEA5HTuEpmk3Hq1xdfseMy-TPYmC_0TzoUJ9SFWA24YGf57jQEuVbMe5EDrIgYpdKHQ4hArfcSTg5Sjuuvw26qSVIo0KMyNxCZsclfUc09Ha5nqqZP1fSB0HdP6pDR6SU6XjxO0KKf9dq76-vxOpcf_87yvyIsFdqXD4GyvyRNbbZKtYQW8_WdHP1OvJvXD9Jvk2cFyJbkt8meI5cins7Jsm-uLy2pm2hIy5L-_1xdXkKBwxR-ICUintHZ0WnYady390ZkzIN5wOIzC0DSjfrSpa2xDAbjS1cxLbHi7O9iqy9m0bqTGaWXQW0NVR-eYmMMFuqABfEPGo6PvB8fRYk2ISDOWppECCqvjRCexToxjsbIqN8VAythBruWOWytzYx3sa8UMgEOukjh1mTHa5HmWviUbVV3ZbUKZim3GudRM5QAKdWFcASc5nQFHtIXukcHS_uJXKP0hblEmMIZAYwg0hvDGEL97ZBscRcgpfKHF-CTB_8JY8Q5oXI_QpfcIeP_4X0ZWtm4bgQWAgFXiKe-CV62ul8RZjqq2HuHeNx58I2J0tH-CmzuPbrlLngepBArq3pON-VlrPwACm6uPPrZuAC3_Kqs
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF5BOZQLPy3QQIE9IG6OHHvrn2NoGwUoPdBGym21v2mEsas6luqeKvUFOPMWvAgP0SdhZjeJmqoHhLjZlnfX9s7sfDP-doaQdz0tMZFXHliWhwETQgRyR2sAciqzkYji1Di2xWEyHLFP453xvBwQ7oXx-SGWATfUDLdeo4JjQHpVy8GvCxjY0DlFKwVl6QKgfADaH2M5g72vy1xSMTpCfncktmHj27SeO3pasVX3rajugqGrqNaZpcFjUixeyLNRvnWbmeyqi1u5Hv_TGz8hj-bwlfa9vD0l90y5QTb7Jbju31v6njpCqYvUb5D13UUxuU3ys48ZySfTomjq68urcqqbAozk71_Xlz_ARmHRH1ALsKi0snRStApPDT1p9Rn43nDZB2JonFAXcGprU1PArnS5-RIb3uwOjqpiOqlqoXBnGfRWU9nSGdpmP0DraYDPyGiwf7w7DOZlIQLFWBwHErxYFUYqClWkLQulkZnOe0KEFsxtalNjRKaNhXMlmQZ8mMoojG2itdJZlsTPyVpZlWaLUCZDk6SpUExmgAtVrm0ON1mVgJtoctUhvYUA8FOf_YPf8JpgMjhOBsfJ4G4y-HmHbIGkcDGBRZqPjiL8NYxJ78CT6xC6EB8O3x9_zYjSVE3NMQcQOJZ4ywsvVsvxojDJkNjWIakTjr9-ED7Y_3CEhy__ueVbsj48_nLADz4efn5FHnrmBPLrtsna7KwxrwGQzeQbp2h_ALL8LsU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtNAFB1BkYANjxZoeM4CsXM0sad-LEPbqDxUIUqk7EbzDFGNXdWxhFlV4gdY8xf8CB_RL-HemSRqqi4QYmdbnvHj3ut7zvjMHUJeDozCQl5F5HjBIi6ljNSOMQDkdO5iGSeZ9WqLw_RgzN9OdiYL_RPOhQn1IVYDbhgZ_nuNAX5i3HqQA62LOKTQhUIrg1jpA568wdOEobxr7-OqlFSCPChMjsQ2fHJZ1XNFT2up6rqT9VUodB3U-qw0ukuOl88TxCjH_Xau-vrbpVKP_-eB75E7C_BKh8Hb7pNrttokW8MKiPuXjr6iXk7qx-k3ya3d5VJyW-TnEOuRT2dl2TbnZ9-rmWlLSJG_f52f_YAMhUv-QFBAPqW1o9Oy07hr6efOnALzhsNhGIYmKfXDTV1jGwrIla6mXmLDi93BVl3OpnUjNc4rg94aqjo6x8wcLtAFEeADMh7tf9o9iBaLQkSa8ySJFHBYzWIdMx0bx5myKjfFQErmINlmLrNW5sY62NeKG0CHmYpZ4lJjtMnzNHlINqq6stuEcsVsmmVSc5UDKtSFcQWc5HQKJNEWukcGS_uLk1D7Q1zgTGAMgcYQaAzhjSG-9sg2OIqQU_hEi_FRjD-GseQd8LgeoUvvEfD-8ceMrGzdNgIrAAGtxFMeBa9aXS9maY6yth7JvG_89Y2I0f7rI9x8_M8tX5CbH_ZG4v2bw3dPyO0gm0Bx3VOyMT9t7TNAY3P13IfZHwkWLXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aspergillus+nidulans+alpha-galactosidase+of+glycoside+hydrolase+family+36+catalyses+the+formation+of+alpha-galacto-oligosaccharides+by+transglycosylation&rft.jtitle=The+FEBS+journal&rft.au=Nakai%2C+Hiroyuki&rft.au=Baumann%2C+Martin+J&rft.au=Petersen%2C+Bent+O&rft.au=Westphal%2C+Yvonne&rft.date=2010-09-01&rft.eissn=1742-4658&rft.volume=277&rft.issue=17&rft.spage=3538&rft.epage=3551&rft_id=info:doi/10.1111%2Fj.1742-4658.2010.07763.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon