Aspergillus nidulansα-galactosidase of glycoside hydrolase family 36 catalyses the formation of α-galacto-oligosaccharides by transglycosylation
The α-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α-galactosidases and α-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g·L⁻¹ culture) as His-tag fusion in Escher...
Saved in:
Published in | The FEBS journal Vol. 277; no. 17; pp. 3538 - 3551 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.09.2010
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The α-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α-galactosidases and α-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g·L⁻¹ culture) as His-tag fusion in Escherichia coli, catalysed efficient transglycosylation with α-(1[rightward arrow]6) regioselectivity from 40 m m 4-nitrophenol α- d-galactopyranoside, melibiose or raffinose, resulting in a 37-74% yield of 4-nitrophenol α- d-Galp-(1[rightward arrow]6)- d-Galp, α- d-Galp-(1[rightward arrow]6)-α- d-Galp-(1[rightward arrow]6)- d-Glcp and α- d-Galp-(1[rightward arrow]6)-α- d-Galp-(1[rightward arrow]6)- d-Glcp-(α1[rightward arrow]β2)- d-Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 m m) and the donor 4-nitrophenol α- d-galactopyranoside (40 m m), α-(1[rightward arrow]6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39-58%. AglC did not transglycosylate monosaccharides without the 6-hydroxymethyl group, i.e. xylose, l-arabinose, l-fucose and l-rhamnose, or with axial 3-OH, i.e. gulose, allose, altrose and l-rhamnose. Structural modelling using Thermotoga maritima GH36 α-galactosidase as the template and superimposition of melibiose from the complex with human GH27 α-galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3-OH and Trp358 and a hydrophobic environment around the C-6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 m m), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred α-galactosyl to 6-OH of the terminal residue in the α-linked melibiose, maltose, trehalose, sucrose and turanose in 6-46% yield and the β-linked lactose, lactulose and cellobiose in 28-38% yield. The product structures were identified using NMR and ESI-MS and five of the 13 identified products were novel, i.e. α- d-Galp-(1[rightward arrow]6)- d-Manp; α- d-Galp-(1[rightward arrow]6)-β- d-Glcp-(1[rightward arrow]4)- d-Glcp; α- d-Galp-(1[rightward arrow]6)-β- d-Galp-(1[rightward arrow]4)- d-Fruf; α- d-Galp-(1[rightward arrow]6)- d-Glcp-(α1[rightward arrow]α1)- d-Glcp; and α- d-Galp-(1[rightward arrow]6)-α- d-Glcp-(1[rightward arrow]3)- d-Fruf. |
---|---|
AbstractList | The α-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α-galactosidases and α-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g·L⁻¹ culture) as His-tag fusion in Escherichia coli, catalysed efficient transglycosylation with α-(1[rightward arrow]6) regioselectivity from 40 m m 4-nitrophenol α- d-galactopyranoside, melibiose or raffinose, resulting in a 37-74% yield of 4-nitrophenol α- d-Galp-(1[rightward arrow]6)- d-Galp, α- d-Galp-(1[rightward arrow]6)-α- d-Galp-(1[rightward arrow]6)- d-Glcp and α- d-Galp-(1[rightward arrow]6)-α- d-Galp-(1[rightward arrow]6)- d-Glcp-(α1[rightward arrow]β2)- d-Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 m m) and the donor 4-nitrophenol α- d-galactopyranoside (40 m m), α-(1[rightward arrow]6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39-58%. AglC did not transglycosylate monosaccharides without the 6-hydroxymethyl group, i.e. xylose, l-arabinose, l-fucose and l-rhamnose, or with axial 3-OH, i.e. gulose, allose, altrose and l-rhamnose. Structural modelling using Thermotoga maritima GH36 α-galactosidase as the template and superimposition of melibiose from the complex with human GH27 α-galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3-OH and Trp358 and a hydrophobic environment around the C-6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 m m), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred α-galactosyl to 6-OH of the terminal residue in the α-linked melibiose, maltose, trehalose, sucrose and turanose in 6-46% yield and the β-linked lactose, lactulose and cellobiose in 28-38% yield. The product structures were identified using NMR and ESI-MS and five of the 13 identified products were novel, i.e. α- d-Galp-(1[rightward arrow]6)- d-Manp; α- d-Galp-(1[rightward arrow]6)-β- d-Glcp-(1[rightward arrow]4)- d-Glcp; α- d-Galp-(1[rightward arrow]6)-β- d-Galp-(1[rightward arrow]4)- d-Fruf; α- d-Galp-(1[rightward arrow]6)- d-Glcp-(α1[rightward arrow]α1)- d-Glcp; and α- d-Galp-(1[rightward arrow]6)-α- d-Glcp-(1[rightward arrow]3)- d-Fruf. The alpha-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic alpha-galactosidases and alpha-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g.L(-1) culture) as His-tag fusion in Escherichia coli, catalysed efficient transglycosylation with alpha-(1-->6) regioselectivity from 40 mm 4-nitrophenol alpha-d-galactopyranoside, melibiose or raffinose, resulting in a 37-74% yield of 4-nitrophenol alpha-D-Galp-(1-->6)-D-Galp, alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp and alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp-(alpha1-->beta2)-d-Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 mm) and the donor 4-nitrophenol alpha-D-galactopyranoside (40 mm), alpha-(1-->6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39-58%. AglC did not transglycosylate monosaccharides without the 6-hydroxymethyl group, i.e. xylose, L-arabinose, L-fucose and L-rhamnose, or with axial 3-OH, i.e. gulose, allose, altrose and L-rhamnose. Structural modelling using Thermotoga maritima GH36 alpha-galactosidase as the template and superimposition of melibiose from the complex with human GH27 alpha-galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3-OH and Trp358 and a hydrophobic environment around the C-6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 mm), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred alpha-galactosyl to 6-OH of the terminal residue in the alpha-linked melibiose, maltose, trehalose, sucrose and turanose in 6-46% yield and the beta-linked lactose, lactulose and cellobiose in 28-38% yield. The product structures were identified using NMR and ESI-MS and five of the 13 identified products were novel, i.e. alpha-D-Galp-(1-->6)-D-Manp; alpha-D-Galp-(1-->6)-beta-D-Glcp-(1-->4)-D-Glcp; alpha-D-Galp-(1-->6)-beta-D-Galp-(1-->4)-D-Fruf; alpha-D-Galp-(1-->6)-D-Glcp-(alpha1-->alpha1)-D-Glcp; and alpha-D-Galp-(1-->6)-alpha-D-Glcp-(1-->3)-D-Fruf. The α‐galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α‐galactosidases and α‐galacto‐oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g·L−1 culture) as His‐tag fusion in Escherichia coli, catalysed efficient transglycosylation with α‐(1→6) regioselectivity from 40 mm 4‐nitrophenol α‐d‐galactopyranoside, melibiose or raffinose, resulting in a 37–74% yield of 4‐nitrophenol α‐d‐Galp‐(1→6)‐d‐Galp, α‐d‐Galp‐(1→6)‐α‐d‐Galp‐(1→6)‐d‐Glcp and α‐d‐Galp‐(1→6)‐α‐d‐Galp‐(1→6)‐d‐Glcp‐(α1→β2)‐d‐Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 mm) and the donor 4‐nitrophenol α‐d‐galactopyranoside (40 mm), α‐(1→6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39–58%. AglC did not transglycosylate monosaccharides without the 6‐hydroxymethyl group, i.e. xylose, l‐arabinose, l‐fucose and l‐rhamnose, or with axial 3‐OH, i.e. gulose, allose, altrose and l‐rhamnose. Structural modelling using Thermotoga maritima GH36 α‐galactosidase as the template and superimposition of melibiose from the complex with human GH27 α‐galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3‐OH and Trp358 and a hydrophobic environment around the C‐6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 mm), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred α‐galactosyl to 6‐OH of the terminal residue in the α‐linked melibiose, maltose, trehalose, sucrose and turanose in 6–46% yield and the β‐linked lactose, lactulose and cellobiose in 28–38% yield. The product structures were identified using NMR and ESI‐MS and five of the 13 identified products were novel, i.e. α‐d‐Galp‐(1→6)‐d‐Manp; α‐d‐Galp‐(1→6)‐β‐d‐Glcp‐(1→4)‐d‐Glcp; α‐d‐Galp‐(1→6)‐β‐d‐Galp‐(1→4)‐d‐Fruf; α‐d‐Galp‐(1→6)‐d‐Glcp‐(α1→α1)‐d‐Glcp; and α‐d‐Galp‐(1→6)‐α‐d‐Glcp‐(1→3)‐d‐Fruf. The alpha-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic alpha-galactosidases and alpha-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g.L(-1) culture) as His-tag fusion in Escherichia coli, catalysed efficient transglycosylation with alpha-(1-->6) regioselectivity from 40 mm 4-nitrophenol alpha-d-galactopyranoside, melibiose or raffinose, resulting in a 37-74% yield of 4-nitrophenol alpha-D-Galp-(1-->6)-D-Galp, alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp and alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp-(alpha1-->beta2)-d-Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 mm) and the donor 4-nitrophenol alpha-D-galactopyranoside (40 mm), alpha-(1-->6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39-58%. AglC did not transglycosylate monosaccharides without the 6-hydroxymethyl group, i.e. xylose, L-arabinose, L-fucose and L-rhamnose, or with axial 3-OH, i.e. gulose, allose, altrose and L-rhamnose. Structural modelling using Thermotoga maritima GH36 alpha-galactosidase as the template and superimposition of melibiose from the complex with human GH27 alpha-galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3-OH and Trp358 and a hydrophobic environment around the C-6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 mm), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred alpha-galactosyl to 6-OH of the terminal residue in the alpha-linked melibiose, maltose, trehalose, sucrose and turanose in 6-46% yield and the beta-linked lactose, lactulose and cellobiose in 28-38% yield. The product structures were identified using NMR and ESI-MS and five of the 13 identified products were novel, i.e. alpha-D-Galp-(1-->6)-D-Manp; alpha-D-Galp-(1-->6)-beta-D-Glcp-(1-->4)-D-Glcp; alpha-D-Galp-(1-->6)-beta-D-Galp-(1-->4)-D-Fruf; alpha-D-Galp-(1-->6)-D-Glcp-(alpha1-->alpha1)-D-Glcp; and alpha-D-Galp-(1-->6)-alpha-D-Glcp-(1-->3)-D-Fruf. The α‐galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α‐galactosidases and α‐galacto‐oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g·L −1 culture) as His‐tag fusion in Escherichia coli , catalysed efficient transglycosylation with α‐(1→6) regioselectivity from 40 m m 4‐nitrophenol α‐ d ‐galactopyranoside, melibiose or raffinose, resulting in a 37–74% yield of 4‐nitrophenol α‐ d ‐Gal p ‐(1→6)‐ d ‐Gal p , α‐ d ‐Gal p ‐(1→6)‐α‐ d ‐Gal p ‐(1→6)‐ d ‐Glc p and α‐ d ‐Gal p ‐(1→6)‐α‐ d ‐Gal p ‐(1→6)‐ d ‐Glc p ‐(α1→β2)‐ d ‐Fru f (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 m m ) and the donor 4‐nitrophenol α‐ d ‐galactopyranoside (40 m m ), α‐(1→6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39–58%. AglC did not transglycosylate monosaccharides without the 6‐hydroxymethyl group, i.e. xylose, l ‐arabinose, l ‐fucose and l ‐rhamnose, or with axial 3‐OH, i.e. gulose, allose, altrose and l ‐rhamnose. Structural modelling using Thermotoga maritima GH36 α‐galactosidase as the template and superimposition of melibiose from the complex with human GH27 α‐galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3‐OH and Trp358 and a hydrophobic environment around the C‐6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 m m ), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred α‐galactosyl to 6‐OH of the terminal residue in the α‐linked melibiose, maltose, trehalose, sucrose and turanose in 6–46% yield and the β‐linked lactose, lactulose and cellobiose in 28–38% yield. The product structures were identified using NMR and ESI‐MS and five of the 13 identified products were novel, i.e. α‐ d ‐Gal p ‐(1→6)‐ d ‐Man p ; α‐ d ‐Gal p ‐(1→6)‐β‐ d ‐Glc p ‐(1→4)‐ d ‐Glc p ; α‐ d ‐Gal p ‐(1→6)‐β‐ d ‐Gal p ‐(1→4)‐ d ‐Fru f ; α‐ d ‐Gal p ‐(1→6)‐ d ‐Glc p ‐(α1→α1)‐ d ‐Glc p ; and α‐ d ‐Gal p ‐(1→6)‐α‐ d ‐Glc p ‐(1→3)‐ d ‐Fru f . |
Author | Schols, Henk A Svensson, Birte Petersen, Bent O Duus, Jens Ø Baumann, Martin J Hachem, Maher Abou Dilokpimol, Adiphol Westphal, Yvonne Nakai, Hiroyuki |
Author_xml | – sequence: 1 fullname: Nakai, Hiroyuki – sequence: 2 fullname: Baumann, Martin J – sequence: 3 fullname: Petersen, Bent O – sequence: 4 fullname: Westphal, Yvonne – sequence: 5 fullname: Hachem, Maher Abou – sequence: 6 fullname: Dilokpimol, Adiphol – sequence: 7 fullname: Duus, Jens Ø – sequence: 8 fullname: Schols, Henk A – sequence: 9 fullname: Svensson, Birte |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20681989$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUctu1DAUtVARfcAvgHesMtiJx3E2SKVqAakSi1KJneX4kfHIiQffRDS_wZ_wI3wTTlOGLd743utzzrXOOUcnQxwsQpiSDc3n3X5Da1YWjG_FpiR5SuqaV5uHZ-js-HByrNm3U3QOsCek2rKmeYFOS8IFbURzhn5ewsGmzocwAR68mYIa4PevolNB6TGCNwosjg53YdZLa_FuNimGZexU78OMK461GlWYwQIed3keU69GH4eF-E-siMF3EZTWO5WyEuB2xmPKC1fxOTySXqLnTgWwr57uC3R_c_316lNx--Xj56vL20IzVlVFSwnXpNQl0aVxjLS2FaahShEnCK1dba0Sxrrc65YZTkndlqRy3BhthODVBXq76h5S_D5ZGGXvQduQHbBxAlkz0XCypSIjxYrUKQIk6-Qh-V6lWVIil0DkXi5ey8V3uQQiHwORD5n6-mnJ1PbWHIl_E8iA9yvghw92_m9heXP94W4ps8CbVcCpKFWXPMj7uwytCBXZiPz9P3Pbq7U |
CitedBy_id | crossref_primary_10_1074_jbc_M111_286039 crossref_primary_10_1016_j_jbiosc_2020_09_006 crossref_primary_10_1128_AEM_01350_12 crossref_primary_10_3389_fpls_2022_829118 crossref_primary_10_1021_acs_jafc_8b01939 crossref_primary_10_3109_10242422_2013_828048 crossref_primary_10_1134_S0006297913100052 crossref_primary_10_1016_j_ijbiomac_2019_10_140 crossref_primary_10_1039_c3fo30357h crossref_primary_10_1016_j_foodchem_2015_08_015 crossref_primary_10_1016_j_carres_2014_11_003 crossref_primary_10_1111_1541_4337_12215 crossref_primary_10_1016_j_ijbiomac_2019_12_032 crossref_primary_10_1016_j_molcatb_2015_08_014 crossref_primary_10_5458_jag_jag_JAG_2021_0004 crossref_primary_10_3390_md16100349 crossref_primary_10_1007_s12010_014_1050_8 crossref_primary_10_1021_acs_jafc_0c00871 crossref_primary_10_1021_acs_jafc_0c06417 crossref_primary_10_3109_10242422_2012_674717 crossref_primary_10_1371_journal_pone_0160112 crossref_primary_10_1093_glycob_cwad015 crossref_primary_10_1016_j_biortech_2019_122258 crossref_primary_10_3136_fstr_26_265 crossref_primary_10_1007_s00253_020_10759_w crossref_primary_10_1371_journal_pone_0197067 crossref_primary_10_1371_journal_pone_0235687 crossref_primary_10_1016_j_jbiotec_2018_05_003 crossref_primary_10_1021_acs_jafc_6b00255 crossref_primary_10_1016_j_biortech_2012_01_144 crossref_primary_10_1093_glycob_cwu124 crossref_primary_10_1016_j_tetasy_2017_07_007 crossref_primary_10_1016_j_resmic_2011_10_005 crossref_primary_10_3109_07388551_2013_794124 crossref_primary_10_1021_acs_biochem_5b00228 crossref_primary_10_1016_j_molcatb_2011_06_010 crossref_primary_10_1016_j_pep_2015_02_015 |
Cites_doi | 10.1016/S0008-6215(00)00170-1 10.1016/j.enzmictec.2006.10.017 10.1007/s00253-003-1427-z 10.3168/jds.S0022-0302(90)78673-0 10.1046/j.1432-1327.2001.02188.x 10.1093/nar/gkn750 10.1111/j.1432-1033.1987.tb11438.x 10.1111/j.1470-8744.1993.tb00250.x 10.1074/jbc.M302292200 10.1016/S0723-2020(98)80002-7 10.1002/cbdv.200590013 10.1074/jbc.M109.060145 10.1021/ar970172 10.1073/pnas.0604632103 10.1111/j.1574-6968.1999.tb13655.x 10.1128/AEM.65.9.3955-3963.1999 10.1093/nar/gkn663 10.1039/jr9310001456 10.1016/S0014-5793(02)02879-X 10.1016/S0969-2126(02)00726-8 10.1046/j.1365-313X.2003.01609.x 10.1016/0378-1119(95)00592-7 10.1007/978-1-59745-466-7_29 10.1038/nbt984 10.1038/nbt0893-905 10.1021/bi0008074 10.1007/s00253-008-1750-5 10.1104/pp.119.3.979 10.1080/00021369.1982.10865204 10.1007/s00284-005-0442-y 10.1007/s002530051579 10.1080/713803702 10.1016/j.pep.2003.08.007 10.1042/bj3390043 10.1016/j.chroma.2009.12.005 10.1046/j.1365-313X.1999.00618.x 10.1111/j.1574-6968.2008.01246.x 10.1002/bit.20713 10.1007/s00253-003-1426-0 10.1128/AEM.67.4.1601-1616.2001 10.1099/00221287-137-4-757 10.1271/bbb.59.619 10.1038/nature04341 10.2144/96206bm08 10.1016/S0924-2244(98)00059-4 10.1016/S1389-1723(00)80105-X 10.1021/bi061521n 10.1038/nprot.2007.131 10.1111/j.1432-1033.1976.tb10637.x 10.1023/A:1005542521708 10.1074/jbc.M109734200 |
ContentType | Journal Article |
Copyright | 2010 The Authors Journal compilation © 2010 FEBS |
Copyright_xml | – notice: 2010 The Authors Journal compilation © 2010 FEBS |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1111/j.1742-4658.2010.07763.x |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1742-4658 |
EndPage | 3551 |
ExternalDocumentID | 10_1111_j_1742_4658_2010_07763_x 20681989 FEBS7763 US201301880118 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29H 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AAESR AAEVG AAHHS AANLZ AAONW AASGY AAVGM AAXRX AAZKR ABCQN ABCUV ABDBF ABEFU ABEML ABHUG ABPTK ABPVW ABQWH ABWRO ABXGK ACAHQ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADBTR ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEQTP AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIACR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM E3Z EAD EAP EAS EAU EBB EBC EBD EBS EBX EJD EMB EMK EMOBN EST ESTFP ESX EX3 F00 F01 F04 F5P FBQ FIJ FUBAC G-S G.N GODZA GX1 H.X HF~ HH5 HZI HZ~ IHE IX1 J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBS OK1 OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RNS ROL RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V W99 WBFHL WBKPD WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 Y6R ~IA ~KM ~WT AAHBH AHBTC AITYG HGLYW OIG CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c4433-b106c02c20c2df40beb8d91aa0f8017f7eea8defa0fcb4d6107b203f6ddcd8863 |
IEDL.DBID | DR2 |
ISSN | 1742-464X |
IngestDate | Fri Aug 16 07:42:40 EDT 2024 Fri Aug 23 02:26:02 EDT 2024 Sat Sep 28 07:47:31 EDT 2024 Sat Aug 24 01:06:38 EDT 2024 Wed Dec 27 19:20:24 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4433-b106c02c20c2df40beb8d91aa0f8017f7eea8defa0fcb4d6107b203f6ddcd8863 |
Notes | http://dx.doi.org/10.1111/j.1742-4658.2010.07763.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1742-4658.2010.07763.x |
PMID | 20681989 |
PQID | 748960518 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_748960518 crossref_primary_10_1111_j_1742_4658_2010_07763_x pubmed_primary_20681989 wiley_primary_10_1111_j_1742_4658_2010_07763_x_FEBS7763 fao_agris_US201301880118 |
PublicationCentury | 2000 |
PublicationDate | September 2010 |
PublicationDateYYYYMMDD | 2010-09-01 |
PublicationDate_xml | – month: 09 year: 2010 text: September 2010 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | The FEBS journal |
PublicationTitleAlternate | FEBS J |
PublicationYear | 2010 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
References | 2004; 22 2004; 64 1976; 67 2009; 82 2002; 10 2002; 277 2000; 50 2010; 1217 2000; 90 2003; 278 1931; 10 2001; 268 1984; 56 2000; 329 1999; 176 1999; 52 1995; 166 2007; 2 1996; 20 1999; 339 1990; 73 2006; 93 2006; 53 1987; 165 1995; 59 2005; 438 1999; 21 1999; 65 2010; 285 1999; 20 2001; 67 1998; 21 2008; 285 1991; 137 2003; 32 2003; 33 1982; 46 1993; 17 2000; 39 2007; 390 1993; 11 2000; 33 2002; 523 2007; 40 2005; 2 2003; 63 2007; 46 2009; 37 2006; 103 1999; 119 1998; 9 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 Dey PM (e_1_2_7_2_2) 1984; 56 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_35_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_46_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_36_2 e_1_2_7_38_2 |
References_xml | – volume: 90 start-page: 168 year: 2000 end-page: 173 article-title: Molecular cloning and high‐level expression in of fungal α‐galactosidase from IFO 8084 publication-title: J Biosci Bioeng – volume: 21 start-page: 1 year: 1998 end-page: 11 article-title: Properties of an α‐galactosidase, and structure of its gene galA, within an α‐ and β‐galactoside utilization gene cluster of the hyperthermophilic bacterium publication-title: Syst Appl Microbiol – volume: 63 start-page: 286 year: 2003 end-page: 292 article-title: Synthesis of α‐galactooligosaccharides with α‐galactosidase from of canine origin publication-title: Appl Microbiol Biotechnol – volume: 165 start-page: 275 year: 1987 end-page: 280 article-title: Signal sequence and DNA‐mediated expression of human lysosomal α‐galactosidase A publication-title: Eur J Biochem – volume: 278 start-page: 20313 year: 2003 end-page: 20318 article-title: Crystal structure of rice α‐galactosidase complexed with D‐galactose publication-title: J Biol Chem – volume: 73 start-page: 299 year: 1990 end-page: 307 article-title: Growth of bifidobacteria and their enzyme profiles publication-title: J Dairy Sci – volume: 285 start-page: 3625 year: 2010 end-page: 3632 article-title: Catalytic mechanism of human α‐galactosidase publication-title: J Biol Chem – volume: 37 start-page: D387 year: 2009 end-page: D392 article-title: The SWISS‐MODEL Repository and associated resources publication-title: Nucleic Acids Res – volume: 46 start-page: 1089 year: 1982 end-page: 1090 article-title: Transferase action of α‐galactosidase from tubers of publication-title: Agric Biol Chem – volume: 37 start-page: D233 year: 2009 end-page: 238 article-title: The Carbohydrate‐Active EnZymes database (CAZy): an expert resource for glycogenomics publication-title: Nucleic Acids Res – volume: 52 start-page: 681 year: 1999 end-page: 688 article-title: Transglycosidase activity of DSM 20083 α‐galactosidase publication-title: Appl Microbiol Biotechnol – volume: 93 start-page: 122 year: 2006 end-page: 131 article-title: Increasing the transglycosylation activity of α‐galactosidase from DSM 20083 by site‐directed mutagenesis publication-title: Biotechnol Bioeng – volume: 59 start-page: 619 year: 1995 end-page: 623 article-title: Transglycosylation catalyzed by α‐galactosidase from H‐404 publication-title: Biosci Biotech Biochem – volume: 17 start-page: 361 year: 1993 end-page: 371 article-title: Induction of α‐galactosidase in by guar ( ) gum publication-title: Biotechnol Appl Biochem – volume: 64 start-page: 106 year: 2004 end-page: 111 article-title: In vitro evaluation of the fermentation properties of galactooligosaccharides synthesised by α‐galactosidase from publication-title: Appl Microbiol Biotechnol – volume: 1217 start-page: 689 year: 2010 end-page: 695 article-title: Introducing porous graphitized carbon liquid chromatography with evaporative light scattering and mass spectrometry detection into cell wall oligosaccharide analysis publication-title: J Chromatogr – volume: 438 start-page: 1105 year: 2005 end-page: 1115 article-title: Sequencing of and comparative analysis with and publication-title: Nature – volume: 50 start-page: 91 year: 2000 end-page: 97 article-title: Purification and characterization of α‐ ‐acetylgalactosaminidase from publication-title: IUBMB Life – volume: 390 start-page: 429 year: 2007 end-page: 466 article-title: Computational prediction of subcellular localization publication-title: Methods Mol Biol – volume: 176 start-page: 147 year: 1999 end-page: 153 article-title: Thermostable α‐galactosidase from NUB3621: cloning, sequencing and characterization publication-title: FEMS Microbiol Lett – volume: 285 start-page: 278 year: 2008 end-page: 283 article-title: Cloning and characterization of a novel α‐galactosidase from 203 capable of synthesizing Gal‐α‐1,4 linkage publication-title: FEMS Microbiol Lett – volume: 339 start-page: 43 year: 1999 end-page: 53 article-title: Lignocellulose degradation by : purification and characterization of the main α‐galactosidase publication-title: Biochem J – volume: 33 start-page: 97 year: 2003 end-page: 106 article-title: Cloning and functional expression of alkaline α‐galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases publication-title: Plant J – volume: 11 start-page: 905 year: 1993 end-page: 910 article-title: Recent advances in the expression of foreign genes in publication-title: BioTechnology – volume: 10 start-page: 425 year: 2002 end-page: 434 article-title: The 1.9 A structure of α‐ ‐acetylgalactosaminidase: molecular basis of glycosidase deficiency diseases publication-title: Structure – volume: 82 start-page: 471 year: 2009 end-page: 477 article-title: A novel α‐galactosidase from with transgalactosylating properties: gene molecular cloning and heterologous expression publication-title: Appl Microbiol Biotechnol – volume: 67 start-page: 1601 year: 2001 end-page: 1606 article-title: Purification and characterization of the recombinant sp. strain T2 α‐galactosidase expressed in publication-title: Appl Environ Microbiol – volume: 2 start-page: 953 year: 2007 end-page: 971 article-title: Locating protein in the cell using TargetP, SignalP, and related tools publication-title: Nat Protoc – volume: 119 start-page: 979 year: 1999 end-page: 987 article-title: A novel alkaline α‐galactosidase from melon fruit with a substrate preference for raffinose publication-title: Plant Physiol – volume: 33 start-page: 11 year: 2000 end-page: 18 article-title: Glycosidase mechanisms: anatomy of a finely tuned catalyst publication-title: Acc Chem Res – volume: 10 start-page: 1456 year: 1931 end-page: 1462 article-title: Universal buffer solutions and the dissociation constant of veronal publication-title: J Chem Soc – volume: 523 start-page: 17 year: 2002 end-page: 22 article-title: Iterative database searches demonstrate that glycoside hydrolase families 27, 31, 36 and 66 share a common evolutionary origin with family 13 publication-title: FEBS Lett – volume: 166 start-page: 277 year: 1995 end-page: 280 article-title: Structural organization and expression of the mouse gene encoding α‐galactosidase A publication-title: Gene – volume: 137 start-page: 757 year: 1991 end-page: 764 article-title: Biochemical and genetic analysis of α‐galactosidase publication-title: J Gen Microbiol – volume: 32 start-page: 309 year: 2003 end-page: 316 article-title: Purification and characterization of a recombinant α‐ ‐acetylgalactosaminidase from publication-title: Protein Expr Purif – volume: 329 start-page: 65 year: 2000 end-page: 73 article-title: Comparative study of new α‐galactosidases in transglycosylation reactions publication-title: Carbohydr Res – volume: 67 start-page: 95 year: 1976 end-page: 104 article-title: Raffinose metabolism in K12. Purification and properties of a new α‐galactosidase specified by a transmissible plasmid publication-title: Eur J Biochem – volume: 268 start-page: 2982 year: 2001 end-page: 2990 article-title: Cloning and characterization of genes encoding an α‐galactosidase and a β‐mannosidase involved in galactomannan degradation publication-title: Eur J Biochem – volume: 22 start-page: 877 year: 2004 end-page: 882 article-title: Cold‐shock induced high‐yield protein production in publication-title: Nat Biotechnol – volume: 65 start-page: 3955 year: 1999 end-page: 3963 article-title: Cloning of the gene encoding a novel thermostable α‐galactosidase from ITI360 publication-title: Appl Environ Microbiol – volume: 103 start-page: 11417 year: 2006 end-page: 11422 article-title: Development and application of a suite of polysaccharide‐degrading enzymes for analyzing plant cell walls publication-title: Proc Natl Acad Sci USA – volume: 277 start-page: 194 year: 2002 end-page: 200 article-title: Chain elongation of raffinose in pea seeds. Isolation, characterization, and molecular cloning of mutifunctional enzyme catalyzing the synthesis of stachyose and verbascose publication-title: J Biol Chem – volume: 39 start-page: 9826 year: 2000 end-page: 9836 article-title: Identification of Asp‐130 as the catalytic nucleophile in the main α‐galactosidase from , a family 27 glycosyl hydrolase publication-title: Biochemistry – volume: 2 start-page: 295 year: 2005 end-page: 317 article-title: Seed galactomannans: an overview publication-title: Chem Biodivers – volume: 20 start-page: 509 year: 1999 end-page: 518 article-title: Stachyose synthesis in seeds of adzuki bean ( ): molecular cloning and functional expression of stachyose synthase publication-title: Plant J – volume: 20 start-page: 980 year: 1996 end-page: 982 article-title: Direct PCR screening of clones publication-title: BioTechniques – volume: 46 start-page: 3319 year: 2007 end-page: 3330 article-title: Biochemical analysis of GH36 α‐galactosidase ( GalA) confirms the mechanistic commonality of clan GH‐D glycoside hydrolases publication-title: Biochemistry – volume: 9 start-page: 328 year: 1998 end-page: 335 article-title: Technological aspects of functional food‐related carbohydrates publication-title: Trends Food Sci Technol – volume: 21 start-page: 441 year: 1999 end-page: 445 article-title: Synthesis of α‐galacto‐oligosaccharides by a cloned α‐galactosidase from publication-title: Biotechnol Lett – volume: 40 start-page: 1373 year: 2007 end-page: 1380 article-title: Molecular cloning and characterization of a novel α‐galactosidase gene from sp. F63 CGMCC 1669 and expression in Pichia pastoris publication-title: Enzyme Microb Technol – volume: 53 start-page: 374 year: 2006 end-page: 378 article-title: A thermostable α‐galactosidase from CRL722: genetic characterization and main properties publication-title: Curr Microbiol – volume: 56 start-page: 141 year: 1984 end-page: 249 article-title: α‐Galactosidase publication-title: Adv Enzymol Relat Areas Mol Biol – ident: e_1_2_7_34_2 doi: 10.1016/S0008-6215(00)00170-1 – ident: e_1_2_7_15_2 doi: 10.1016/j.enzmictec.2006.10.017 – ident: e_1_2_7_37_2 doi: 10.1007/s00253-003-1427-z – ident: e_1_2_7_38_2 doi: 10.3168/jds.S0022-0302(90)78673-0 – ident: e_1_2_7_14_2 doi: 10.1046/j.1432-1327.2001.02188.x – ident: e_1_2_7_54_2 doi: 10.1093/nar/gkn750 – ident: e_1_2_7_19_2 doi: 10.1111/j.1432-1033.1987.tb11438.x – ident: e_1_2_7_21_2 doi: 10.1111/j.1470-8744.1993.tb00250.x – ident: e_1_2_7_29_2 doi: 10.1074/jbc.M302292200 – volume: 56 start-page: 141 year: 1984 ident: e_1_2_7_2_2 article-title: α‐Galactosidase publication-title: Adv Enzymol Relat Areas Mol Biol contributor: fullname: Dey PM – ident: e_1_2_7_10_2 doi: 10.1016/S0723-2020(98)80002-7 – ident: e_1_2_7_49_2 doi: 10.1002/cbdv.200590013 – ident: e_1_2_7_28_2 doi: 10.1074/jbc.M109.060145 – ident: e_1_2_7_26_2 doi: 10.1021/ar970172 – ident: e_1_2_7_13_2 doi: 10.1073/pnas.0604632103 – ident: e_1_2_7_7_2 doi: 10.1111/j.1574-6968.1999.tb13655.x – ident: e_1_2_7_11_2 doi: 10.1128/AEM.65.9.3955-3963.1999 – ident: e_1_2_7_22_2 doi: 10.1093/nar/gkn663 – ident: e_1_2_7_52_2 doi: 10.1039/jr9310001456 – ident: e_1_2_7_23_2 doi: 10.1016/S0014-5793(02)02879-X – ident: e_1_2_7_30_2 doi: 10.1016/S0969-2126(02)00726-8 – ident: e_1_2_7_18_2 doi: 10.1046/j.1365-313X.2003.01609.x – ident: e_1_2_7_20_2 doi: 10.1016/0378-1119(95)00592-7 – ident: e_1_2_7_43_2 doi: 10.1007/978-1-59745-466-7_29 – ident: e_1_2_7_40_2 – ident: e_1_2_7_46_2 doi: 10.1038/nbt984 – ident: e_1_2_7_51_2 doi: 10.1038/nbt0893-905 – ident: e_1_2_7_27_2 doi: 10.1021/bi0008074 – ident: e_1_2_7_4_2 doi: 10.1007/s00253-008-1750-5 – ident: e_1_2_7_17_2 doi: 10.1104/pp.119.3.979 – ident: e_1_2_7_31_2 doi: 10.1080/00021369.1982.10865204 – ident: e_1_2_7_8_2 doi: 10.1007/s00284-005-0442-y – ident: e_1_2_7_33_2 doi: 10.1007/s002530051579 – ident: e_1_2_7_47_2 doi: 10.1080/713803702 – ident: e_1_2_7_48_2 doi: 10.1016/j.pep.2003.08.007 – ident: e_1_2_7_24_2 doi: 10.1042/bj3390043 – ident: e_1_2_7_53_2 doi: 10.1016/j.chroma.2009.12.005 – ident: e_1_2_7_41_2 doi: 10.1046/j.1365-313X.1999.00618.x – ident: e_1_2_7_5_2 doi: 10.1111/j.1574-6968.2008.01246.x – ident: e_1_2_7_36_2 doi: 10.1002/bit.20713 – ident: e_1_2_7_35_2 doi: 10.1007/s00253-003-1426-0 – ident: e_1_2_7_12_2 doi: 10.1128/AEM.67.4.1601-1616.2001 – ident: e_1_2_7_9_2 doi: 10.1099/00221287-137-4-757 – ident: e_1_2_7_32_2 doi: 10.1271/bbb.59.619 – ident: e_1_2_7_45_2 doi: 10.1038/nature04341 – ident: e_1_2_7_50_2 doi: 10.2144/96206bm08 – ident: e_1_2_7_39_2 doi: 10.1016/S0924-2244(98)00059-4 – ident: e_1_2_7_16_2 doi: 10.1016/S1389-1723(00)80105-X – ident: e_1_2_7_25_2 doi: 10.1021/bi061521n – ident: e_1_2_7_44_2 doi: 10.1038/nprot.2007.131 – ident: e_1_2_7_6_2 doi: 10.1111/j.1432-1033.1976.tb10637.x – ident: e_1_2_7_3_2 doi: 10.1023/A:1005542521708 – ident: e_1_2_7_42_2 doi: 10.1074/jbc.M109734200 |
SSID | ssj0035499 |
Score | 2.2348533 |
Snippet | The α-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α-galactosidases and α-galacto-oligosaccharide... The α‐galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α‐galactosidases and α‐galacto‐oligosaccharide... The alpha-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic alpha-galactosidases and... The α‐galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic α‐galactosidases and α‐galacto‐oligosaccharide... |
SourceID | proquest crossref pubmed wiley fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3538 |
SubjectTerms | acceptor specificity alpha-Galactosidase - biosynthesis alpha-Galactosidase - isolation & purification alpha-Galactosidase - metabolism Amino Acid Sequence Aspergillus nidulans - enzymology Biocatalysis Carbohydrate Conformation carbohydrate structural analysis Cloning, Molecular Escherichia coli - metabolism Glycosylation Hydrogen-Ion Concentration Hydrolysis Kinetics Models, Molecular Oligosaccharides - biosynthesis Oligosaccharides - chemistry Phylogeny Recombinant Proteins - biosynthesis Recombinant Proteins - isolation & purification Recombinant Proteins - metabolism Temperature transglycosylation α-galacto-oligosaccharides α-galactosidase |
Title | Aspergillus nidulansα-galactosidase of glycoside hydrolase family 36 catalyses the formation of α-galacto-oligosaccharides by transglycosylation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1742-4658.2010.07763.x https://www.ncbi.nlm.nih.gov/pubmed/20681989 https://search.proquest.com/docview/748960518 |
Volume | 277 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbtswECXabNpNP0nbOGkLLoruZMgSI0pL52MEXXTR1IB3BL-uEVUqIguosgqQC2TdW_QiPUROkhnSNuIgiyDoThJE6jMzmveoxyEhnwZGYSGvInKsiCMmpYzUnjEA5HTuEpmk3Hq1xdfseMy-TPYmC_0TzoUJ9SFWA24YGf57jQEuVbMe5EDrIgYpdKHQ4hArfcSTg5Sjuuvw26qSVIo0KMyNxCZsclfUc09Ha5nqqZP1fSB0HdP6pDR6SU6XjxO0KKf9dq76-vxOpcf_87yvyIsFdqXD4GyvyRNbbZKtYQW8_WdHP1OvJvXD9Jvk2cFyJbkt8meI5cins7Jsm-uLy2pm2hIy5L-_1xdXkKBwxR-ICUintHZ0WnYady390ZkzIN5wOIzC0DSjfrSpa2xDAbjS1cxLbHi7O9iqy9m0bqTGaWXQW0NVR-eYmMMFuqABfEPGo6PvB8fRYk2ISDOWppECCqvjRCexToxjsbIqN8VAythBruWOWytzYx3sa8UMgEOukjh1mTHa5HmWviUbVV3ZbUKZim3GudRM5QAKdWFcASc5nQFHtIXukcHS_uJXKP0hblEmMIZAYwg0hvDGEL97ZBscRcgpfKHF-CTB_8JY8Q5oXI_QpfcIeP_4X0ZWtm4bgQWAgFXiKe-CV62ul8RZjqq2HuHeNx58I2J0tH-CmzuPbrlLngepBArq3pON-VlrPwACm6uPPrZuAC3_Kqs |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF5BOZQLPy3QQIE9IG6OHHvrn2NoGwUoPdBGym21v2mEsas6luqeKvUFOPMWvAgP0SdhZjeJmqoHhLjZlnfX9s7sfDP-doaQdz0tMZFXHliWhwETQgRyR2sAciqzkYji1Di2xWEyHLFP453xvBwQ7oXx-SGWATfUDLdeo4JjQHpVy8GvCxjY0DlFKwVl6QKgfADaH2M5g72vy1xSMTpCfncktmHj27SeO3pasVX3rajugqGrqNaZpcFjUixeyLNRvnWbmeyqi1u5Hv_TGz8hj-bwlfa9vD0l90y5QTb7Jbju31v6njpCqYvUb5D13UUxuU3ys48ZySfTomjq68urcqqbAozk71_Xlz_ARmHRH1ALsKi0snRStApPDT1p9Rn43nDZB2JonFAXcGprU1PArnS5-RIb3uwOjqpiOqlqoXBnGfRWU9nSGdpmP0DraYDPyGiwf7w7DOZlIQLFWBwHErxYFUYqClWkLQulkZnOe0KEFsxtalNjRKaNhXMlmQZ8mMoojG2itdJZlsTPyVpZlWaLUCZDk6SpUExmgAtVrm0ON1mVgJtoctUhvYUA8FOf_YPf8JpgMjhOBsfJ4G4y-HmHbIGkcDGBRZqPjiL8NYxJ78CT6xC6EB8O3x9_zYjSVE3NMQcQOJZ4ywsvVsvxojDJkNjWIakTjr9-ED7Y_3CEhy__ueVbsj48_nLADz4efn5FHnrmBPLrtsna7KwxrwGQzeQbp2h_ALL8LsU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtNAFB1BkYANjxZoeM4CsXM0sad-LEPbqDxUIUqk7EbzDFGNXdWxhFlV4gdY8xf8CB_RL-HemSRqqi4QYmdbnvHj3ut7zvjMHUJeDozCQl5F5HjBIi6ljNSOMQDkdO5iGSeZ9WqLw_RgzN9OdiYL_RPOhQn1IVYDbhgZ_nuNAX5i3HqQA62LOKTQhUIrg1jpA568wdOEobxr7-OqlFSCPChMjsQ2fHJZ1XNFT2up6rqT9VUodB3U-qw0ukuOl88TxCjH_Xau-vrbpVKP_-eB75E7C_BKh8Hb7pNrttokW8MKiPuXjr6iXk7qx-k3ya3d5VJyW-TnEOuRT2dl2TbnZ9-rmWlLSJG_f52f_YAMhUv-QFBAPqW1o9Oy07hr6efOnALzhsNhGIYmKfXDTV1jGwrIla6mXmLDi93BVl3OpnUjNc4rg94aqjo6x8wcLtAFEeADMh7tf9o9iBaLQkSa8ySJFHBYzWIdMx0bx5myKjfFQErmINlmLrNW5sY62NeKG0CHmYpZ4lJjtMnzNHlINqq6stuEcsVsmmVSc5UDKtSFcQWc5HQKJNEWukcGS_uLk1D7Q1zgTGAMgcYQaAzhjSG-9sg2OIqQU_hEi_FRjD-GseQd8LgeoUvvEfD-8ceMrGzdNgIrAAGtxFMeBa9aXS9maY6yth7JvG_89Y2I0f7rI9x8_M8tX5CbH_ZG4v2bw3dPyO0gm0Bx3VOyMT9t7TNAY3P13IfZHwkWLXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aspergillus+nidulans+alpha-galactosidase+of+glycoside+hydrolase+family+36+catalyses+the+formation+of+alpha-galacto-oligosaccharides+by+transglycosylation&rft.jtitle=The+FEBS+journal&rft.au=Nakai%2C+Hiroyuki&rft.au=Baumann%2C+Martin+J&rft.au=Petersen%2C+Bent+O&rft.au=Westphal%2C+Yvonne&rft.date=2010-09-01&rft.eissn=1742-4658&rft.volume=277&rft.issue=17&rft.spage=3538&rft.epage=3551&rft_id=info:doi/10.1111%2Fj.1742-4658.2010.07763.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-464X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-464X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-464X&client=summon |