Radar-based human identification using deep neural network for long-term stability
Human identification plays a vital role in daily lives. A majority of biometric technologies require the active cooperation of humans, while gait recognition does not. Compared with other identification technologies, radar-based technology can monitor the human body around the clock without being af...
Saved in:
Published in | IET radar, sonar & navigation Vol. 14; no. 10; pp. 1521 - 1527 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
The Institution of Engineering and Technology
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human identification plays a vital role in daily lives. A majority of biometric technologies require the active cooperation of humans, while gait recognition does not. Compared with other identification technologies, radar-based technology can monitor the human body around the clock without being affected by light/weather, and is not easy to be forged while protecting privacy. Previous researches have revealed that gait signatures acquired using radar can be used for human identification, but there is almost no literature on the long-term stability of gait signatures. Due to the long-term interval observation, the human micro-Doppler will change according to the subject (such as slight differences in walking posture). In this study, a novel network is proposed to realise stable identification of humans by extracting long-term stable features. The micro-Doppler data is processed by a short-time Fourier transform and finally classified by the proposed neural network. Data acquisition was carried out within more than a month. The experimental results demonstrate that the recognition accuracy of the validation set can reach about 99%, and the recognition accuracy of the test set can reach 90% (improved 3% compared with the network without a recurrent neural network), showing the potential of the proposed method in long-term stable identification. |
---|---|
AbstractList | Human identification plays a vital role in daily lives. A majority of biometric technologies require the active cooperation of humans, while gait recognition does not. Compared with other identification technologies, radar-based technology can monitor the human body around the clock without being affected by light/weather, and is not easy to be forged while protecting privacy. Previous researches have revealed that gait signatures acquired using radar can be used for human identification, but there is almost no literature on the long-term stability of gait signatures. Due to the long-term interval observation, the human micro-Doppler will change according to the subject (such as slight differences in walking posture). In this study, a novel network is proposed to realise stable identification of humans by extracting long-term stable features. The micro-Doppler data is processed by a short-time Fourier transform and finally classified by the proposed neural network. Data acquisition was carried out within more than a month. The experimental results demonstrate that the recognition accuracy of the validation set can reach about 99%, and the recognition accuracy of the test set can reach 90% (improved 3% compared with the network without a recurrent neural network), showing the potential of the proposed method in long-term stable identification. |
Author | Tu, Dehao Zhang, Qi Xia, Weijie Dong, Shiqi Li, Yi |
Author_xml | – sequence: 1 givenname: Shiqi orcidid: 0000-0001-6153-9905 surname: Dong fullname: Dong, Shiqi organization: 2College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China – sequence: 2 givenname: Weijie surname: Xia fullname: Xia, Weijie email: nuaaxwj@nuaa.edu.cn organization: 2College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China – sequence: 3 givenname: Yi orcidid: 0000-0002-6776-860X surname: Li fullname: Li, Yi organization: 2College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China – sequence: 4 givenname: Qi surname: Zhang fullname: Zhang, Qi organization: 2College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China – sequence: 5 givenname: Dehao surname: Tu fullname: Tu, Dehao organization: 2College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China |
BookMark | eNqFkM1OAjEURhujiYA-gLu-QLHtdOjUnRJRE6IJ6ropnTtYHDqk7YTw9s6IceECV99d3HN_zhCd-sYDQleMjhkV6tpBIiH6MadMjemEFSdowGTOSCEVP_2tC3GOhjGuKc3ziVADtFiY0gSyNBFK_NFujMeuBJ9c5axJrvG4jc6vcAmwxR7aYOou0q4Jn7hqAq4bvyIJwgbHZJaudml_gc4qU0e4_MkRep_dv00fyfzl4Wl6OydWiCwjuZxIKxijHMAsbWEYZVZkJi9yVZmCScozWVFWMSEN50bxUgF0zVZBkcMkGyF5mGtDE2OASluXvm9OwbhaM6p7NbpTozs1ulejezUdyf6Q2-A2JuyPMjcHZudq2P8P6MXrM7-bUdY_O0LkAPdt66YNvhNzZNkXA7SNkg |
CitedBy_id | crossref_primary_10_1109_JERM_2022_3198814 crossref_primary_10_3390_s23020604 crossref_primary_10_1049_rsn2_12147 crossref_primary_10_1109_TCCN_2022_3222193 crossref_primary_10_1109_ACCESS_2024_3517668 crossref_primary_10_3390_s21217130 crossref_primary_10_1049_rsn2_12108 crossref_primary_10_1109_JSEN_2024_3510572 crossref_primary_10_1049_rsn2_12171 crossref_primary_10_1109_LSENS_2024_3502780 crossref_primary_10_1109_TGRS_2021_3073664 |
Cites_doi | 10.1109/TIFS.2011.2158423 10.1109/TGRS.2018.2816812 10.23919/WMNC.2019.8881354 10.1049/iet-rsn.2017.0511 10.1049/iet-rsn.2019.0124 10.1109/NISS.2009.12 10.1109/TAES.2006.1603402 10.1109/MSP.2018.2890128 10.1162/neco.1997.9.8.1735 10.1109/TAES.2018.2799758 10.1109/BIOWIRELESS.2016.7445558 10.1109/CVPR.2017.195 10.1109/CVPR.2016.308 10.1145/3117811.3117839 10.3390/s120201738 10.1109/DCOSS.2016.30 10.1109/LGRS.2015.2491329 10.1016/B978-0-12-374457-9.00025-1 10.3390/s18051613 10.1109/CVPR.2016.90 10.1109/CVPR.2015.7298594 10.1073/pnas.1410272112 10.1109/TGRS.2009.2012849 |
ContentType | Journal Article |
Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
DBID | AAYXX CITATION |
DOI | 10.1049/iet-rsn.2019.0618 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-8792 |
EndPage | 1527 |
ExternalDocumentID | 10_1049_iet_rsn_2019_0618 RSN2BF01443 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: NS2019026 |
GroupedDBID | 0R 24P 29I 4.4 4IJ 6IK 8FE 8FG 8VB AAJGR ABJCF ABPTK ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BFFAM BGLVJ DU5 EBS EJD ESX GOZPB GRPMH HCIFZ HZ IFIPE IPLJI JAVBF L6V LAI LOTEE LXI M43 M7S MS NADUK NXXTH O9- OCL P62 PTHSS QWB RIE RNS RUI S0W U5U UNMZH UNR ZL0 .DC 0R~ 0ZK 1OC 96U AAHHS AAHJG ABMDY ABQXS ACCFJ ACCMX ACESK ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AFAZI AIWBW AJBDE ALUQN AVUZU CCPQU F8P GROUPED_DOAJ HZ~ IAO IGS ITC K1G MCNEO MS~ OK1 ROL AAYXX CITATION IDLOA IMI PHGZM PHGZT |
ID | FETCH-LOGICAL-c4433-5767c41102eeabc8a101c43a5859fa8170237f01f147a22a92d9ee2eec9e85e63 |
IEDL.DBID | IDLOA |
ISSN | 1751-8784 |
IngestDate | Tue Jul 01 05:13:37 EDT 2025 Thu Apr 24 23:04:32 EDT 2025 Wed Jan 22 16:30:45 EST 2025 Tue Jan 05 21:45:22 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Fourier transforms gait recognition recurrent neural network image classification continuous wave radar recurrent neural nets CW radar human body radar-based technology biometrics (access control) biometric technologies gait analysis gait signatures microDoppler data RNN radar-based human identification radar imaging data acquisition data privacy Doppler radar short-time Fourier transform deep neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4433-5767c41102eeabc8a101c43a5859fa8170237f01f147a22a92d9ee2eec9e85e63 |
ORCID | 0000-0001-6153-9905 0000-0002-6776-860X |
OpenAccessLink | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-rsn.2019.0618 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1049_iet_rsn_2019_0618 iet_journals_10_1049_iet_rsn_2019_0618 wiley_primary_10_1049_iet_rsn_2019_0618_RSN2BF01443 crossref_primary_10_1049_iet_rsn_2019_0618 |
ProviderPackageCode | RUI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201000 October 2020 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
PublicationDecade | 2020 |
PublicationTitle | IET radar, sonar & navigation |
PublicationYear | 2020 |
Publisher | The Institution of Engineering and Technology |
Publisher_xml | – name: The Institution of Engineering and Technology |
References | Solanki, K.; Pittalia, P. (C5) 2016; 133 Krizhevsky, A.; Sutskever, I.; Hinton, G. E. (C22) 2012 Yoon, S.; Jain, A.K. (C1) 2015; 112 Vandersmissen, B.; Knudde, N.; Jalalvand, A. (C20) 2018; 56 Gurbuz, S.Z.; Amin, M.G. (C12) 2019; 36 Seyfioglu, M.S.; Ozbayoglu, A.M.; Gurbuz, S.Z. (C18) 2018; 54 Chen, V.C.; Li, F.; Ho, S.S. (C9) 2006; 42 Yang, G.; Xi, X.; Yin, Y. (C6) 2012; 12 Rucco, R.; Sorriso, A.; Liparoti, M. (C13) 2018; 18 Zhou, Y.; Kumar, A. (C2) 2011; 6 Cao, P.; Xia, W.; Ye, M. (C19) 2018; 12 Kim, Y.; Ling, H. (C17) 2016; 13 Kim, Y.; Ling, H. (C15) 2009; 47 Luo, Y.; Chen, Y.J.; Zhu, Y.Z. (C16) 2019; 14 Schmidhuber, J.; Hochreiter, S. (C28) 1997; 9 2018; 18 2009; 47 2006; 42 2012 2015; 112 2019; 36 2019; 14 2009 2008 2019 2016; 133 2018 2017 2016 2015 2014 2018; 12 2018; 56 2011; 6 2012; 12 2018; 54 1997; 9 2016; 13 e_1_2_7_4_1 e_1_2_7_3_1 Krizhevsky A. (e_1_2_7_23_1) 2012 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 Solanki K. (e_1_2_7_6_1) 2016; 133 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Kim Y. (e_1_2_7_15_1) 2008 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 Daugman J. (e_1_2_7_5_1) 2009 |
References_xml | – volume: 133 start-page: 20 issue: 12 year: 2016 end-page: 24 ident: C5 article-title: Review of face recognition techniques publication-title: Int. J. Comput. Appl. – volume: 47 start-page: 1328 issue: 5 year: 2009 end-page: 1337 ident: C15 article-title: Human activity classification based on micro-Doppler signatures using a support vector machine publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 112 start-page: 8555 issue: 28 year: 2015 end-page: 8560 ident: C1 article-title: Longitudinal study of fingerprint recognition publication-title: Proc. Natl. Acad. Sci. – volume: 18 start-page: 1613 issue: 5 year: 2018 ident: C13 article-title: Type and location of wearable sensors for monitoring falls during static and dynamic tasks in healthy elderly: a review publication-title: Sensors – volume: 14 start-page: 2 issue: 1 year: 2019 end-page: 9 ident: C16 article-title: Doppler effect and micro-Doppler effect of vortex-electromagnetic-wave-based radar publication-title: IET Radar Sonar Navig. – volume: 12 start-page: 1738 issue: 12 year: 2012 end-page: 1757 ident: C6 article-title: Finger vein recognition based on a personalized best bit map publication-title: Sensors – volume: 13 start-page: 8 issue: 1 year: 2016 end-page: 12 ident: C17 article-title: Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 42 start-page: 2 issue: 1 year: 2006 end-page: 21 ident: C9 article-title: Micro-Doppler effect in radar: phenomenon, model, and simulation study publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 56 start-page: 3941 issue: 7 year: 2018 end-page: 3952 ident: C20 article-title: Indoor person identification using a low-power FMCW radar publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: C28 article-title: Long short-term memory publication-title: Neural Comput. – volume: 36 start-page: 16 issue: 4 year: 2019 end-page: 28 ident: C12 article-title: Radar-based human-motion recognition with deep learning: promising applications for indoor monitoring publication-title: IEEE Signal Process. Mag. – volume: 12 start-page: 729 issue: 7 year: 2018 end-page: 734 ident: C19 article-title: Radar-ID: human identification based on radar micro-Doppler signatures using deep convolutional neural networks publication-title: IET Radar Sonar Navig. – volume: 54 start-page: 1709 issue: 4 year: 2018 end-page: 1723 ident: C18 article-title: Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities publication-title: IEEE Trans. Aerosp. Electron. Syst. – start-page: 1097 year: 2012 end-page: 1105 ident: C22 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural. Inf. Process. Syst. – volume: 6 start-page: 1259 issue: 4 year: 2011 end-page: 1274 ident: C2 article-title: Human identification using palm-vein images publication-title: IEEE Trans. Inf. Forensics Sec. – start-page: 211 year: 2019 end-page: 218 – volume: 12 start-page: 1738 issue: 12 year: 2012 end-page: 1757 article-title: Finger vein recognition based on a personalized best bit map publication-title: Sensors – volume: 36 start-page: 16 issue: 4 year: 2019 end-page: 28 article-title: Radar‐based human‐motion recognition with deep learning: promising applications for indoor monitoring publication-title: IEEE Signal Process. Mag. – start-page: 1097 year: 2012 end-page: 1105 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural. Inf. Process. Syst. – volume: 12 start-page: 729 issue: 7 year: 2018 end-page: 734 article-title: Radar‐ID: human identification based on radar micro‐Doppler signatures using deep convolutional neural networks publication-title: IET Radar Sonar Navig. – start-page: 46 year: 2016 end-page: 48 – volume: 14 start-page: 2 issue: 1 year: 2019 end-page: 9 article-title: Doppler effect and micro‐Doppler effect of vortex‐electromagnetic‐wave‐based radar publication-title: IET Radar Sonar Navig. – volume: 13 start-page: 8 issue: 1 year: 2016 end-page: 12 article-title: Human detection and activity classification based on micro‐Doppler signatures using deep convolutional neural networks publication-title: IEEE Geosci. Remote Sens. Lett. – year: 2018 – start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition – year: 2014 – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Comput. – start-page: 315 year: 2017 end-page: 328 – volume: 54 start-page: 1709 issue: 4 year: 2018 end-page: 1723 article-title: Deep convolutional autoencoder for radar‐based classification of similar aided and unaided human activities publication-title: IEEE Trans. Aerosp. Electron. Syst. – start-page: 715 year: 2009 end-page: 739 – volume: 6 start-page: 1259 issue: 4 year: 2011 end-page: 1274 article-title: Human identification using palm‐vein images publication-title: IEEE Trans. Inf. Forensics Sec. – start-page: 1 year: 2015 end-page: 9 article-title: Going deeper with convolutions – start-page: 2818 year: 2016 end-page: 2826 article-title: Rethinking the inception architecture for computer vision – start-page: 75 year: 2016 end-page: 82 – volume: 18 start-page: 1613 issue: 5 year: 2018 article-title: Type and location of wearable sensors for monitoring falls during static and dynamic tasks in healthy elderly: a review publication-title: Sensors – start-page: 1 year: 2008 end-page: 4 – volume: 133 start-page: 20 issue: 12 year: 2016 end-page: 24 article-title: Review of face recognition techniques publication-title: Int. J. Comput. Appl. – start-page: 1251 year: 2017 end-page: 1258 article-title: Xception: deep learning with depthwise separable convolutions – volume: 42 start-page: 2 issue: 1 year: 2006 end-page: 21 article-title: Micro‐Doppler effect in radar: phenomenon, model, and simulation study publication-title: IEEE Trans. Aerosp. Electron. Syst. – start-page: 835 year: 2009 end-page: 840 – volume: 112 start-page: 8555 issue: 28 year: 2015 end-page: 8560 article-title: Longitudinal study of fingerprint recognition publication-title: Proc. Natl. Acad. Sci. – volume: 47 start-page: 1328 issue: 5 year: 2009 end-page: 1337 article-title: Human activity classification based on micro‐Doppler signatures using a support vector machine publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 56 start-page: 3941 issue: 7 year: 2018 end-page: 3952 article-title: Indoor person identification using a low‐power FMCW radar publication-title: IEEE Trans. Geosci. Remote Sens. – ident: e_1_2_7_3_1 doi: 10.1109/TIFS.2011.2158423 – ident: e_1_2_7_21_1 doi: 10.1109/TGRS.2018.2816812 – ident: e_1_2_7_22_1 doi: 10.23919/WMNC.2019.8881354 – ident: e_1_2_7_20_1 doi: 10.1049/iet-rsn.2017.0511 – ident: e_1_2_7_17_1 doi: 10.1049/iet-rsn.2019.0124 – ident: e_1_2_7_4_1 doi: 10.1109/NISS.2009.12 – ident: e_1_2_7_10_1 doi: 10.1109/TAES.2006.1603402 – ident: e_1_2_7_13_1 doi: 10.1109/MSP.2018.2890128 – start-page: 1 volume-title: 2008 IEEE Antennas and Propagation Society Int. Symp. year: 2008 ident: e_1_2_7_15_1 – ident: e_1_2_7_29_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_2_7_19_1 doi: 10.1109/TAES.2018.2799758 – ident: e_1_2_7_8_1 doi: 10.1109/BIOWIRELESS.2016.7445558 – ident: e_1_2_7_28_1 doi: 10.1109/CVPR.2017.195 – ident: e_1_2_7_25_1 doi: 10.1109/CVPR.2016.308 – ident: e_1_2_7_9_1 doi: 10.1145/3117811.3117839 – volume: 133 start-page: 20 issue: 12 year: 2016 ident: e_1_2_7_6_1 article-title: Review of face recognition techniques publication-title: Int. J. Comput. Appl. – ident: e_1_2_7_7_1 doi: 10.3390/s120201738 – ident: e_1_2_7_11_1 doi: 10.1109/DCOSS.2016.30 – ident: e_1_2_7_27_1 – ident: e_1_2_7_18_1 doi: 10.1109/LGRS.2015.2491329 – start-page: 1097 year: 2012 ident: e_1_2_7_23_1 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural. Inf. Process. Syst. – start-page: 715 volume-title: ‘How Iris recognition works’, the essential guide to image processing’ year: 2009 ident: e_1_2_7_5_1 doi: 10.1016/B978-0-12-374457-9.00025-1 – ident: e_1_2_7_14_1 doi: 10.3390/s18051613 – ident: e_1_2_7_26_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_7_24_1 doi: 10.1109/CVPR.2015.7298594 – ident: e_1_2_7_12_1 – ident: e_1_2_7_2_1 doi: 10.1073/pnas.1410272112 – ident: e_1_2_7_16_1 doi: 10.1109/TGRS.2009.2012849 |
SSID | ssj0055649 |
Score | 2.3429236 |
Snippet | Human identification plays a vital role in daily lives. A majority of biometric technologies require the active cooperation of humans, while gait recognition... |
SourceID | crossref wiley iet |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1521 |
SubjectTerms | biometric technologies biometrics (access control) continuous wave radar CW radar data acquisition data privacy deep neural network Doppler radar Fourier transforms gait analysis gait recognition gait signatures human body image classification microDoppler data radar imaging radar‐based human identification radar‐based technology recurrent neural nets recurrent neural network Research Article RNN short‐time Fourier transform |
SummonAdditionalLinks | – databaseName: Wiley Open Access (UHCL Subscription) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF7aetGD-Iv1jz2IByHabjZN9qjFUgSLVCu9hclmtxRKWtp68OYj-Iw-iTObtFiECl6TnT3MZma-yc58w9gF1ASE1loPvaLyZGiVpxDGe6CInUolWmtqcH7sNNo9-dAP-iXWXPTC5PwQyx9uZBnOX5OBQ5JPIUFQi4c4NHNvOiMK07q6xqgUldkGtdgSgb6QTwt3HAQNh4ExTNbR9CO5vNpUN7-2WAlOZXy9ClldzGntsO0CLPLb_HR3Wclke2zrB4XgPnvtQgrTr49PCkcpdyP3-DAtaoCc2jnVtg94asyEE30l7pjlxd8cESsfjbMBypOL5ggVXbHs-wHrte5fmm2vmJXgaSl938O0IdQSY7kwBhIdAZqalj5gNqAsEAuf8ENbq9u6DEEIUCJVxuBirUwUmIZ_yCrZODNHjEOCWSMiAQjASmsNSGONSNLUN1YmNaiy2kJJsS6IxGmexSh2F9pSxai4GPUak15j0muVXS1FJjmLxrrFl_SssKXZuoW-O5y_t4y7zx1xR70O0j_-l9QJ2xSUabsyvlNWmU_fzBnCkXly7j63b3aK3Go priority: 102 providerName: Wiley-Blackwell |
Title | Radar-based human identification using deep neural network for long-term stability |
URI | http://digital-library.theiet.org/content/journals/10.1049/iet-rsn.2019.0618 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-rsn.2019.0618 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZou8CAeIryqDwgBiTTxHaaeORVFQQVKlTqFjmOXVWq0qqUgX_PXZIWKqHCmlxu-OzcfWffg5Bz7XEdOucYWEXFZOgUU0DjmVbYnUolxhgscH7utjp9-TgIBt_l0eloiLMy2OLEDU_LbVF5gKnbYIebJcbFQBLgt00QYLN37GXqqytwT1GF1HgY-rJKag93TxhiFZY5CFo5HQaP6YMViOTylvMXJSt-qgKvV9lr7n7aO2S75I30uljoXbJhsz2y9aOb4D7p9XSqZwz9Ukrz2Xt0lJbJQDn-FJPchzS1dkqxjyXoy4oscArUlY4n2ZChpabAGPOc2c8D0m_fv912WDkygRkphWAQPYRGgkvn1urERBr-OCOFhqBAOY3N-LgInec7X4aac614qqwFYaNsFNiWOCTVbJLZI0J1AsEjEAIdaCeds1paZ3mSpsI6mXi6TrwFQLEp-4njWItxnN9rSxUDaDFgGiOmMWJaJ5fLT6ZFM411whf4bLHc6wRFvjB_q4x7r11-gyUPUhz_V_0J2eQYY-cJfKekOp992DMgIvOkQSpcvjTKXfYF2z7blg |
linkProvider | Institution of Engineering and Technology |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4AD-rB-Iz47MF4MFllu12WHn0RVCAGwXDbdLstISELATx48yf4G_0lznQXIjHBxOvudA7Tzsw37fQrIWeyxGRgjHEgKgqHB0Y4AmC8IwWyU4lIKYUXnBvNcq3DH7t-N0fuZndhUn6I-YYbeoaN1-jguCGdFpwcSTL7euqMJ8hh6opLSEuVPFnhZRagezL-PIvHvl-2IBjypAu-X-Hzs01x9UvFQnbKw-9FzGqTTnWTbGRokV6n07tFcjrZJus_OAR3yGtLxnL89fGJ-Sim9s092o-zJiBrd4rN7T0aaz2iyF8JGpO0-5sCZKWDYdKD8RijKWBF2y37vks61fv2bc3JHktwFOee50DdECgOyZxpLSNVkeBrinsSygFhJNLwMS8wJde4PJCMScFioTUIK6Ervi57e6SQDBO9T6iMoGwEKCB9abgxWnJtNIvi2NOGRyVZJKWZkUKVMYnjgxaD0J5ocxGC4UKwa4h2DdGuRXIxHzJKaTSWCZ_jt8yZJssEPTs5f6sMWy9NdoOXHbh38K9Rp2S11m7Uw_pD8-mQrDEsu21P3xEpTMdv-hiwyTQ6sUvvG2MR39Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG54JEYPxmfEZw_Gg8kqdLssPSJK8EUMCiFeNt1uS0jIQgAP3vwJ_kZ_iTPdhUhMMPG6becw7cx8s535SsipLDLpG2Mc8IrC4b4RjgAY70iB7FQiVEphg_Njs9xo87uu182Q2qwXJuGHmP9wQ8uw_hoNfBSZJN_kyJHZ11NnPEEK05K4gKhUyZI8suXB0c5XO-3X9swhe17ZomAIlCUw_gqfX26Ky19CFsJTFoYXQauNOvUNsp7CRVpN9neTZHS8RdZ-kAhuk05LRnL89fGJASmi9tE92o_SKiCreIrV7T0aaT2iSGAJEuOk_JsCZqWDYdyD9eikKYBFWy77vkPa9ZuXWsNJX0twFOeu60Di4CsO0ZxpLUNVkWBsirsS8gFhJPLwMdc3xZIpcV8yJgWLhNYwWQld8XTZ3SW5eBjrPUJlCHkjYAHpScON0ZJro1kYRa42PCzKAinOlBSolEocX7QYBPZKm4sAFBeAXgPUa4B6LZDz-ZJRwqOxbPIZfkutabJsoms352-RQeu5ya6w24G7-_9adUJWnq7rwcNt8_6ArDJMu21N3yHJTcdv-giwyTQ8Ts_eN2eY4M4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radar-based+human+identification+using+deep+neural+network+for+long-term+stability&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=Dong%2C+Shiqi&rft.au=Xia%2C+Weijie&rft.au=Li%2C+Yi&rft.au=Zhang%2C+Qi&rft.date=2020-10-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=14&rft.issue=10&rft.spage=1521&rft.epage=1527&rft_id=info:doi/10.1049%2Fiet-rsn.2019.0618&rft.externalDocID=10_1049_iet_rsn_2019_0618 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon |