Radar-based human identification using deep neural network for long-term stability

Human identification plays a vital role in daily lives. A majority of biometric technologies require the active cooperation of humans, while gait recognition does not. Compared with other identification technologies, radar-based technology can monitor the human body around the clock without being af...

Full description

Saved in:
Bibliographic Details
Published inIET radar, sonar & navigation Vol. 14; no. 10; pp. 1521 - 1527
Main Authors Dong, Shiqi, Xia, Weijie, Li, Yi, Zhang, Qi, Tu, Dehao
Format Journal Article
LanguageEnglish
Published The Institution of Engineering and Technology 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human identification plays a vital role in daily lives. A majority of biometric technologies require the active cooperation of humans, while gait recognition does not. Compared with other identification technologies, radar-based technology can monitor the human body around the clock without being affected by light/weather, and is not easy to be forged while protecting privacy. Previous researches have revealed that gait signatures acquired using radar can be used for human identification, but there is almost no literature on the long-term stability of gait signatures. Due to the long-term interval observation, the human micro-Doppler will change according to the subject (such as slight differences in walking posture). In this study, a novel network is proposed to realise stable identification of humans by extracting long-term stable features. The micro-Doppler data is processed by a short-time Fourier transform and finally classified by the proposed neural network. Data acquisition was carried out within more than a month. The experimental results demonstrate that the recognition accuracy of the validation set can reach about 99%, and the recognition accuracy of the test set can reach 90% (improved 3% compared with the network without a recurrent neural network), showing the potential of the proposed method in long-term stable identification.
AbstractList Human identification plays a vital role in daily lives. A majority of biometric technologies require the active cooperation of humans, while gait recognition does not. Compared with other identification technologies, radar-based technology can monitor the human body around the clock without being affected by light/weather, and is not easy to be forged while protecting privacy. Previous researches have revealed that gait signatures acquired using radar can be used for human identification, but there is almost no literature on the long-term stability of gait signatures. Due to the long-term interval observation, the human micro-Doppler will change according to the subject (such as slight differences in walking posture). In this study, a novel network is proposed to realise stable identification of humans by extracting long-term stable features. The micro-Doppler data is processed by a short-time Fourier transform and finally classified by the proposed neural network. Data acquisition was carried out within more than a month. The experimental results demonstrate that the recognition accuracy of the validation set can reach about 99%, and the recognition accuracy of the test set can reach 90% (improved 3% compared with the network without a recurrent neural network), showing the potential of the proposed method in long-term stable identification.
Author Tu, Dehao
Zhang, Qi
Xia, Weijie
Dong, Shiqi
Li, Yi
Author_xml – sequence: 1
  givenname: Shiqi
  orcidid: 0000-0001-6153-9905
  surname: Dong
  fullname: Dong, Shiqi
  organization: 2College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
– sequence: 2
  givenname: Weijie
  surname: Xia
  fullname: Xia, Weijie
  email: nuaaxwj@nuaa.edu.cn
  organization: 2College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
– sequence: 3
  givenname: Yi
  orcidid: 0000-0002-6776-860X
  surname: Li
  fullname: Li, Yi
  organization: 2College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
– sequence: 4
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
  organization: 2College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
– sequence: 5
  givenname: Dehao
  surname: Tu
  fullname: Tu, Dehao
  organization: 2College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
BookMark eNqFkM1OAjEURhujiYA-gLu-QLHtdOjUnRJRE6IJ6ropnTtYHDqk7YTw9s6IceECV99d3HN_zhCd-sYDQleMjhkV6tpBIiH6MadMjemEFSdowGTOSCEVP_2tC3GOhjGuKc3ziVADtFiY0gSyNBFK_NFujMeuBJ9c5axJrvG4jc6vcAmwxR7aYOou0q4Jn7hqAq4bvyIJwgbHZJaudml_gc4qU0e4_MkRep_dv00fyfzl4Wl6OydWiCwjuZxIKxijHMAsbWEYZVZkJi9yVZmCScozWVFWMSEN50bxUgF0zVZBkcMkGyF5mGtDE2OASluXvm9OwbhaM6p7NbpTozs1ulejezUdyf6Q2-A2JuyPMjcHZudq2P8P6MXrM7-bUdY_O0LkAPdt66YNvhNzZNkXA7SNkg
CitedBy_id crossref_primary_10_1109_JERM_2022_3198814
crossref_primary_10_3390_s23020604
crossref_primary_10_1049_rsn2_12147
crossref_primary_10_1109_TCCN_2022_3222193
crossref_primary_10_1109_ACCESS_2024_3517668
crossref_primary_10_3390_s21217130
crossref_primary_10_1049_rsn2_12108
crossref_primary_10_1109_JSEN_2024_3510572
crossref_primary_10_1049_rsn2_12171
crossref_primary_10_1109_LSENS_2024_3502780
crossref_primary_10_1109_TGRS_2021_3073664
Cites_doi 10.1109/TIFS.2011.2158423
10.1109/TGRS.2018.2816812
10.23919/WMNC.2019.8881354
10.1049/iet-rsn.2017.0511
10.1049/iet-rsn.2019.0124
10.1109/NISS.2009.12
10.1109/TAES.2006.1603402
10.1109/MSP.2018.2890128
10.1162/neco.1997.9.8.1735
10.1109/TAES.2018.2799758
10.1109/BIOWIRELESS.2016.7445558
10.1109/CVPR.2017.195
10.1109/CVPR.2016.308
10.1145/3117811.3117839
10.3390/s120201738
10.1109/DCOSS.2016.30
10.1109/LGRS.2015.2491329
10.1016/B978-0-12-374457-9.00025-1
10.3390/s18051613
10.1109/CVPR.2016.90
10.1109/CVPR.2015.7298594
10.1073/pnas.1410272112
10.1109/TGRS.2009.2012849
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-rsn.2019.0618
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8792
EndPage 1527
ExternalDocumentID 10_1049_iet_rsn_2019_0618
RSN2BF01443
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: NS2019026
GroupedDBID 0R
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
DU5
EBS
EJD
ESX
GOZPB
GRPMH
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
L6V
LAI
LOTEE
LXI
M43
M7S
MS
NADUK
NXXTH
O9-
OCL
P62
PTHSS
QWB
RIE
RNS
RUI
S0W
U5U
UNMZH
UNR
ZL0
.DC
0R~
0ZK
1OC
96U
AAHHS
AAHJG
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
F8P
GROUPED_DOAJ
HZ~
IAO
IGS
ITC
K1G
MCNEO
MS~
OK1
ROL
AAYXX
CITATION
IDLOA
IMI
PHGZM
PHGZT
ID FETCH-LOGICAL-c4433-5767c41102eeabc8a101c43a5859fa8170237f01f147a22a92d9ee2eec9e85e63
IEDL.DBID IDLOA
ISSN 1751-8784
IngestDate Tue Jul 01 05:13:37 EDT 2025
Thu Apr 24 23:04:32 EDT 2025
Wed Jan 22 16:30:45 EST 2025
Tue Jan 05 21:45:22 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Fourier transforms
gait recognition
recurrent neural network
image classification
continuous wave radar
recurrent neural nets
CW radar
human body
radar-based technology
biometrics (access control)
biometric technologies
gait analysis
gait signatures
microDoppler data
RNN
radar-based human identification
radar imaging
data acquisition
data privacy
Doppler radar
short-time Fourier transform
deep neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4433-5767c41102eeabc8a101c43a5859fa8170237f01f147a22a92d9ee2eec9e85e63
ORCID 0000-0001-6153-9905
0000-0002-6776-860X
OpenAccessLink https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-rsn.2019.0618
PageCount 7
ParticipantIDs crossref_citationtrail_10_1049_iet_rsn_2019_0618
iet_journals_10_1049_iet_rsn_2019_0618
wiley_primary_10_1049_iet_rsn_2019_0618_RSN2BF01443
crossref_primary_10_1049_iet_rsn_2019_0618
ProviderPackageCode RUI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201000
October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationTitle IET radar, sonar & navigation
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Solanki, K.; Pittalia, P. (C5) 2016; 133
Krizhevsky, A.; Sutskever, I.; Hinton, G. E. (C22) 2012
Yoon, S.; Jain, A.K. (C1) 2015; 112
Vandersmissen, B.; Knudde, N.; Jalalvand, A. (C20) 2018; 56
Gurbuz, S.Z.; Amin, M.G. (C12) 2019; 36
Seyfioglu, M.S.; Ozbayoglu, A.M.; Gurbuz, S.Z. (C18) 2018; 54
Chen, V.C.; Li, F.; Ho, S.S. (C9) 2006; 42
Yang, G.; Xi, X.; Yin, Y. (C6) 2012; 12
Rucco, R.; Sorriso, A.; Liparoti, M. (C13) 2018; 18
Zhou, Y.; Kumar, A. (C2) 2011; 6
Cao, P.; Xia, W.; Ye, M. (C19) 2018; 12
Kim, Y.; Ling, H. (C17) 2016; 13
Kim, Y.; Ling, H. (C15) 2009; 47
Luo, Y.; Chen, Y.J.; Zhu, Y.Z. (C16) 2019; 14
Schmidhuber, J.; Hochreiter, S. (C28) 1997; 9
2018; 18
2009; 47
2006; 42
2012
2015; 112
2019; 36
2019; 14
2009
2008
2019
2016; 133
2018
2017
2016
2015
2014
2018; 12
2018; 56
2011; 6
2012; 12
2018; 54
1997; 9
2016; 13
e_1_2_7_4_1
e_1_2_7_3_1
Krizhevsky A. (e_1_2_7_23_1) 2012
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
Solanki K. (e_1_2_7_6_1) 2016; 133
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Kim Y. (e_1_2_7_15_1) 2008
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Daugman J. (e_1_2_7_5_1) 2009
References_xml – volume: 133
  start-page: 20
  issue: 12
  year: 2016
  end-page: 24
  ident: C5
  article-title: Review of face recognition techniques
  publication-title: Int. J. Comput. Appl.
– volume: 47
  start-page: 1328
  issue: 5
  year: 2009
  end-page: 1337
  ident: C15
  article-title: Human activity classification based on micro-Doppler signatures using a support vector machine
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 112
  start-page: 8555
  issue: 28
  year: 2015
  end-page: 8560
  ident: C1
  article-title: Longitudinal study of fingerprint recognition
  publication-title: Proc. Natl. Acad. Sci.
– volume: 18
  start-page: 1613
  issue: 5
  year: 2018
  ident: C13
  article-title: Type and location of wearable sensors for monitoring falls during static and dynamic tasks in healthy elderly: a review
  publication-title: Sensors
– volume: 14
  start-page: 2
  issue: 1
  year: 2019
  end-page: 9
  ident: C16
  article-title: Doppler effect and micro-Doppler effect of vortex-electromagnetic-wave-based radar
  publication-title: IET Radar Sonar Navig.
– volume: 12
  start-page: 1738
  issue: 12
  year: 2012
  end-page: 1757
  ident: C6
  article-title: Finger vein recognition based on a personalized best bit map
  publication-title: Sensors
– volume: 13
  start-page: 8
  issue: 1
  year: 2016
  end-page: 12
  ident: C17
  article-title: Human detection and activity classification based on micro-Doppler signatures using deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 42
  start-page: 2
  issue: 1
  year: 2006
  end-page: 21
  ident: C9
  article-title: Micro-Doppler effect in radar: phenomenon, model, and simulation study
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 56
  start-page: 3941
  issue: 7
  year: 2018
  end-page: 3952
  ident: C20
  article-title: Indoor person identification using a low-power FMCW radar
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: C28
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 36
  start-page: 16
  issue: 4
  year: 2019
  end-page: 28
  ident: C12
  article-title: Radar-based human-motion recognition with deep learning: promising applications for indoor monitoring
  publication-title: IEEE Signal Process. Mag.
– volume: 12
  start-page: 729
  issue: 7
  year: 2018
  end-page: 734
  ident: C19
  article-title: Radar-ID: human identification based on radar micro-Doppler signatures using deep convolutional neural networks
  publication-title: IET Radar Sonar Navig.
– volume: 54
  start-page: 1709
  issue: 4
  year: 2018
  end-page: 1723
  ident: C18
  article-title: Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: C22
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 6
  start-page: 1259
  issue: 4
  year: 2011
  end-page: 1274
  ident: C2
  article-title: Human identification using palm-vein images
  publication-title: IEEE Trans. Inf. Forensics Sec.
– start-page: 211
  year: 2019
  end-page: 218
– volume: 12
  start-page: 1738
  issue: 12
  year: 2012
  end-page: 1757
  article-title: Finger vein recognition based on a personalized best bit map
  publication-title: Sensors
– volume: 36
  start-page: 16
  issue: 4
  year: 2019
  end-page: 28
  article-title: Radar‐based human‐motion recognition with deep learning: promising applications for indoor monitoring
  publication-title: IEEE Signal Process. Mag.
– start-page: 1097
  year: 2012
  end-page: 1105
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 12
  start-page: 729
  issue: 7
  year: 2018
  end-page: 734
  article-title: Radar‐ID: human identification based on radar micro‐Doppler signatures using deep convolutional neural networks
  publication-title: IET Radar Sonar Navig.
– start-page: 46
  year: 2016
  end-page: 48
– volume: 14
  start-page: 2
  issue: 1
  year: 2019
  end-page: 9
  article-title: Doppler effect and micro‐Doppler effect of vortex‐electromagnetic‐wave‐based radar
  publication-title: IET Radar Sonar Navig.
– volume: 13
  start-page: 8
  issue: 1
  year: 2016
  end-page: 12
  article-title: Human detection and activity classification based on micro‐Doppler signatures using deep convolutional neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– year: 2018
– start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition
– year: 2014
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Comput.
– start-page: 315
  year: 2017
  end-page: 328
– volume: 54
  start-page: 1709
  issue: 4
  year: 2018
  end-page: 1723
  article-title: Deep convolutional autoencoder for radar‐based classification of similar aided and unaided human activities
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– start-page: 715
  year: 2009
  end-page: 739
– volume: 6
  start-page: 1259
  issue: 4
  year: 2011
  end-page: 1274
  article-title: Human identification using palm‐vein images
  publication-title: IEEE Trans. Inf. Forensics Sec.
– start-page: 1
  year: 2015
  end-page: 9
  article-title: Going deeper with convolutions
– start-page: 2818
  year: 2016
  end-page: 2826
  article-title: Rethinking the inception architecture for computer vision
– start-page: 75
  year: 2016
  end-page: 82
– volume: 18
  start-page: 1613
  issue: 5
  year: 2018
  article-title: Type and location of wearable sensors for monitoring falls during static and dynamic tasks in healthy elderly: a review
  publication-title: Sensors
– start-page: 1
  year: 2008
  end-page: 4
– volume: 133
  start-page: 20
  issue: 12
  year: 2016
  end-page: 24
  article-title: Review of face recognition techniques
  publication-title: Int. J. Comput. Appl.
– start-page: 1251
  year: 2017
  end-page: 1258
  article-title: Xception: deep learning with depthwise separable convolutions
– volume: 42
  start-page: 2
  issue: 1
  year: 2006
  end-page: 21
  article-title: Micro‐Doppler effect in radar: phenomenon, model, and simulation study
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– start-page: 835
  year: 2009
  end-page: 840
– volume: 112
  start-page: 8555
  issue: 28
  year: 2015
  end-page: 8560
  article-title: Longitudinal study of fingerprint recognition
  publication-title: Proc. Natl. Acad. Sci.
– volume: 47
  start-page: 1328
  issue: 5
  year: 2009
  end-page: 1337
  article-title: Human activity classification based on micro‐Doppler signatures using a support vector machine
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 56
  start-page: 3941
  issue: 7
  year: 2018
  end-page: 3952
  article-title: Indoor person identification using a low‐power FMCW radar
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: e_1_2_7_3_1
  doi: 10.1109/TIFS.2011.2158423
– ident: e_1_2_7_21_1
  doi: 10.1109/TGRS.2018.2816812
– ident: e_1_2_7_22_1
  doi: 10.23919/WMNC.2019.8881354
– ident: e_1_2_7_20_1
  doi: 10.1049/iet-rsn.2017.0511
– ident: e_1_2_7_17_1
  doi: 10.1049/iet-rsn.2019.0124
– ident: e_1_2_7_4_1
  doi: 10.1109/NISS.2009.12
– ident: e_1_2_7_10_1
  doi: 10.1109/TAES.2006.1603402
– ident: e_1_2_7_13_1
  doi: 10.1109/MSP.2018.2890128
– start-page: 1
  volume-title: 2008 IEEE Antennas and Propagation Society Int. Symp.
  year: 2008
  ident: e_1_2_7_15_1
– ident: e_1_2_7_29_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_7_19_1
  doi: 10.1109/TAES.2018.2799758
– ident: e_1_2_7_8_1
  doi: 10.1109/BIOWIRELESS.2016.7445558
– ident: e_1_2_7_28_1
  doi: 10.1109/CVPR.2017.195
– ident: e_1_2_7_25_1
  doi: 10.1109/CVPR.2016.308
– ident: e_1_2_7_9_1
  doi: 10.1145/3117811.3117839
– volume: 133
  start-page: 20
  issue: 12
  year: 2016
  ident: e_1_2_7_6_1
  article-title: Review of face recognition techniques
  publication-title: Int. J. Comput. Appl.
– ident: e_1_2_7_7_1
  doi: 10.3390/s120201738
– ident: e_1_2_7_11_1
  doi: 10.1109/DCOSS.2016.30
– ident: e_1_2_7_27_1
– ident: e_1_2_7_18_1
  doi: 10.1109/LGRS.2015.2491329
– start-page: 1097
  year: 2012
  ident: e_1_2_7_23_1
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural. Inf. Process. Syst.
– start-page: 715
  volume-title: ‘How Iris recognition works’, the essential guide to image processing’
  year: 2009
  ident: e_1_2_7_5_1
  doi: 10.1016/B978-0-12-374457-9.00025-1
– ident: e_1_2_7_14_1
  doi: 10.3390/s18051613
– ident: e_1_2_7_26_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_7_24_1
  doi: 10.1109/CVPR.2015.7298594
– ident: e_1_2_7_12_1
– ident: e_1_2_7_2_1
  doi: 10.1073/pnas.1410272112
– ident: e_1_2_7_16_1
  doi: 10.1109/TGRS.2009.2012849
SSID ssj0055649
Score 2.3429236
Snippet Human identification plays a vital role in daily lives. A majority of biometric technologies require the active cooperation of humans, while gait recognition...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1521
SubjectTerms biometric technologies
biometrics (access control)
continuous wave radar
CW radar
data acquisition
data privacy
deep neural network
Doppler radar
Fourier transforms
gait analysis
gait recognition
gait signatures
human body
image classification
microDoppler data
radar imaging
radar‐based human identification
radar‐based technology
recurrent neural nets
recurrent neural network
Research Article
RNN
short‐time Fourier transform
SummonAdditionalLinks – databaseName: Wiley Open Access (UHCL Subscription)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSsNAEF7aetGD-Iv1jz2IByHabjZN9qjFUgSLVCu9hclmtxRKWtp68OYj-Iw-iTObtFiECl6TnT3MZma-yc58w9gF1ASE1loPvaLyZGiVpxDGe6CInUolWmtqcH7sNNo9-dAP-iXWXPTC5PwQyx9uZBnOX5OBQ5JPIUFQi4c4NHNvOiMK07q6xqgUldkGtdgSgb6QTwt3HAQNh4ExTNbR9CO5vNpUN7-2WAlOZXy9ClldzGntsO0CLPLb_HR3Wclke2zrB4XgPnvtQgrTr49PCkcpdyP3-DAtaoCc2jnVtg94asyEE30l7pjlxd8cESsfjbMBypOL5ggVXbHs-wHrte5fmm2vmJXgaSl938O0IdQSY7kwBhIdAZqalj5gNqAsEAuf8ENbq9u6DEEIUCJVxuBirUwUmIZ_yCrZODNHjEOCWSMiAQjASmsNSGONSNLUN1YmNaiy2kJJsS6IxGmexSh2F9pSxai4GPUak15j0muVXS1FJjmLxrrFl_SssKXZuoW-O5y_t4y7zx1xR70O0j_-l9QJ2xSUabsyvlNWmU_fzBnCkXly7j63b3aK3Go
  priority: 102
  providerName: Wiley-Blackwell
Title Radar-based human identification using deep neural network for long-term stability
URI http://digital-library.theiet.org/content/journals/10.1049/iet-rsn.2019.0618
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-rsn.2019.0618
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZou8CAeIryqDwgBiTTxHaaeORVFQQVKlTqFjmOXVWq0qqUgX_PXZIWKqHCmlxu-OzcfWffg5Bz7XEdOucYWEXFZOgUU0DjmVbYnUolxhgscH7utjp9-TgIBt_l0eloiLMy2OLEDU_LbVF5gKnbYIebJcbFQBLgt00QYLN37GXqqytwT1GF1HgY-rJKag93TxhiFZY5CFo5HQaP6YMViOTylvMXJSt-qgKvV9lr7n7aO2S75I30uljoXbJhsz2y9aOb4D7p9XSqZwz9Ukrz2Xt0lJbJQDn-FJPchzS1dkqxjyXoy4oscArUlY4n2ZChpabAGPOc2c8D0m_fv912WDkygRkphWAQPYRGgkvn1urERBr-OCOFhqBAOY3N-LgInec7X4aac614qqwFYaNsFNiWOCTVbJLZI0J1AsEjEAIdaCeds1paZ3mSpsI6mXi6TrwFQLEp-4njWItxnN9rSxUDaDFgGiOmMWJaJ5fLT6ZFM411whf4bLHc6wRFvjB_q4x7r11-gyUPUhz_V_0J2eQYY-cJfKekOp992DMgIvOkQSpcvjTKXfYF2z7blg
linkProvider Institution of Engineering and Technology
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4AD-rB-Iz47MF4MFllu12WHn0RVCAGwXDbdLstISELATx48yf4G_0lznQXIjHBxOvudA7Tzsw37fQrIWeyxGRgjHEgKgqHB0Y4AmC8IwWyU4lIKYUXnBvNcq3DH7t-N0fuZndhUn6I-YYbeoaN1-jguCGdFpwcSTL7euqMJ8hh6opLSEuVPFnhZRagezL-PIvHvl-2IBjypAu-X-Hzs01x9UvFQnbKw-9FzGqTTnWTbGRokV6n07tFcjrZJus_OAR3yGtLxnL89fGJ-Sim9s092o-zJiBrd4rN7T0aaz2iyF8JGpO0-5sCZKWDYdKD8RijKWBF2y37vks61fv2bc3JHktwFOee50DdECgOyZxpLSNVkeBrinsSygFhJNLwMS8wJde4PJCMScFioTUIK6Ervi57e6SQDBO9T6iMoGwEKCB9abgxWnJtNIvi2NOGRyVZJKWZkUKVMYnjgxaD0J5ocxGC4UKwa4h2DdGuRXIxHzJKaTSWCZ_jt8yZJssEPTs5f6sMWy9NdoOXHbh38K9Rp2S11m7Uw_pD8-mQrDEsu21P3xEpTMdv-hiwyTQ6sUvvG2MR39Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG54JEYPxmfEZw_Gg8kqdLssPSJK8EUMCiFeNt1uS0jIQgAP3vwJ_kZ_iTPdhUhMMPG6becw7cx8s535SsipLDLpG2Mc8IrC4b4RjgAY70iB7FQiVEphg_Njs9xo87uu182Q2qwXJuGHmP9wQ8uw_hoNfBSZJN_kyJHZ11NnPEEK05K4gKhUyZI8suXB0c5XO-3X9swhe17ZomAIlCUw_gqfX26Ky19CFsJTFoYXQauNOvUNsp7CRVpN9neTZHS8RdZ-kAhuk05LRnL89fGJASmi9tE92o_SKiCreIrV7T0aaT2iSGAJEuOk_JsCZqWDYdyD9eikKYBFWy77vkPa9ZuXWsNJX0twFOeu60Di4CsO0ZxpLUNVkWBsirsS8gFhJPLwMdc3xZIpcV8yJgWLhNYwWQld8XTZ3SW5eBjrPUJlCHkjYAHpScON0ZJro1kYRa42PCzKAinOlBSolEocX7QYBPZKm4sAFBeAXgPUa4B6LZDz-ZJRwqOxbPIZfkutabJsoms352-RQeu5ya6w24G7-_9adUJWnq7rwcNt8_6ArDJMu21N3yHJTcdv-giwyTQ8Ts_eN2eY4M4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radar-based+human+identification+using+deep+neural+network+for+long-term+stability&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=Dong%2C+Shiqi&rft.au=Xia%2C+Weijie&rft.au=Li%2C+Yi&rft.au=Zhang%2C+Qi&rft.date=2020-10-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=14&rft.issue=10&rft.spage=1521&rft.epage=1527&rft_id=info:doi/10.1049%2Fiet-rsn.2019.0618&rft.externalDocID=10_1049_iet_rsn_2019_0618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon