Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands
Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may a...
Saved in:
Published in | Global change biology Vol. 26; no. 4; pp. 2060 - 2071 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.04.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change.
In this study, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under unfertilized and fertilized conditions. We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization; the highest soil C and N pools were found in grazed (+H) and fertilized plots (+F). Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide and incorporating local‐scale herbivory within global‐scale models to better predict land–atmosphere interactions under future climate change. |
---|---|
AbstractList | Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change. Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change. Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change. In this study, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under unfertilized and fertilized conditions. We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization; the highest soil C and N pools were found in grazed (+H) and fertilized plots (+F). Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide and incorporating local‐scale herbivory within global‐scale models to better predict land–atmosphere interactions under future climate change. Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change.Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change. |
Author | McCulley, Rebecca L. Crowther, Thomas W. Bakker, Elisabeth S. Gherardi, Laureano MacDougall, Andrew S. Stevens, Carly J. Hagenah, Nicole Risch, Anita C. Sitters, Judith Wubs, E. R. Jasper Veen, G. F. (Ciska) Knops, Johannes M. H. Mortensen, Brent Hautier, Yann Moore, Joslin L. Prober, Suzanne M. Hobbie, Sarah E. Peri, Pablo L. Bagchi, Sumanta Adler, Peter B. Firn, Jennifer Bakker, Jonathan D. Siebert, Julia Borer, Elizabeth T. Seabloom, Eric W. Cleland, Elsa E. Schütz, Martin Biederman, Lori Eisenhauer, Nico Riggs, Charlotte |
AuthorAffiliation | 15 School of Life Sciences and Global Drylands Center Arizona State University Tempe AZ USA 27 Swiss Federal Institute for Forest, Snow and Landscape Research Birmensdorf Switzerland 2 Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands 4 Sustainable Agroecosystems Group Institute of Agricultural Sciences Department of Environmental Systems Science ETH Zurich Zurich Switzerland 25 CSIRO Land and Water Wembley WA Australia 3 Ecology and Biodiversity Department Biology Vrije Universiteit Brussel Brussels Belgium 21 School of Biological Sciences Monash University Clayton Vic. Australia 12 German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany 20 Department of Plant & Soil Sciences University of Kentucky Lexington KY USA 18 Department of Health & Environmental Science Xi’an Jiaotong Liverpool University Suzhou China 19 Department of Integrative Biology University of Guelph Guelph ON Canada 22 Department of Bi |
AuthorAffiliation_xml | – name: 3 Ecology and Biodiversity Department Biology Vrije Universiteit Brussel Brussels Belgium – name: 4 Sustainable Agroecosystems Group Institute of Agricultural Sciences Department of Environmental Systems Science ETH Zurich Zurich Switzerland – name: 23 Instituto Nacional de Tecnología Agropecuaria (INTA) Rio Gallegos Argentina – name: 2 Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands – name: 10 Department of Eology, Evolution, and Behavior University of Minnesota St. Paul MN USA – name: 12 German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany – name: 8 School of Environmental and Forest Sciences University of Washington Seattle WA USA – name: 26 Department of Soil, Water, and Climate University of Minnesota St. Paul MN USA – name: 27 Swiss Federal Institute for Forest, Snow and Landscape Research Birmensdorf Switzerland – name: 28 Lancaster Environment Centre Lancaster University Lancaster UK – name: 13 Institute of Biology Leipzig University Leipzig Germany – name: 5 Institute of Integrative Biology Department of Environmental Systems Science ETH Zurich Zurich Switzerland – name: 21 School of Biological Sciences Monash University Clayton Vic. Australia – name: 11 Ecology, Behavior & Evolution Section University of California, San Diego La Jolla CA USA – name: 25 CSIRO Land and Water Wembley WA Australia – name: 24 Universidad Nacional de la Patagonia Austral (UNPA)‐CONICET Rio Gallegos Argentina – name: 16 Mammal Research Institute Department of Zoology and Entomology University of Pretoria Pretoria South Africa – name: 9 Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames IA USA – name: 7 Centre for Ecological Sciences Indian Institute of Science Bangalore India – name: 15 School of Life Sciences and Global Drylands Center Arizona State University Tempe AZ USA – name: 1 Department of Aquatic Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands – name: 22 Department of Biology Benedictine College Atchison KS USA – name: 18 Department of Health & Environmental Science Xi’an Jiaotong Liverpool University Suzhou China – name: 20 Department of Plant & Soil Sciences University of Kentucky Lexington KY USA – name: 6 Department of Wildland Resources and the Ecology Center Utah State University Logan UT USA – name: 14 Queensland University of Technology (QUT) Brisbane Qld Australia – name: 19 Department of Integrative Biology University of Guelph Guelph ON Canada – name: 17 Ecology and Biodiversity Group Department of Biology Utrecht University Utrecht The Netherlands |
Author_xml | – sequence: 1 givenname: Judith orcidid: 0000-0003-2926-5339 surname: Sitters fullname: Sitters, Judith email: judith.sitters@vub.be organization: Vrije Universiteit Brussel – sequence: 2 givenname: E. R. Jasper surname: Wubs fullname: Wubs, E. R. Jasper organization: ETH Zurich – sequence: 3 givenname: Elisabeth S. surname: Bakker fullname: Bakker, Elisabeth S. organization: Netherlands Institute of Ecology (NIOO‐KNAW) – sequence: 4 givenname: Thomas W. surname: Crowther fullname: Crowther, Thomas W. organization: ETH Zurich – sequence: 5 givenname: Peter B. surname: Adler fullname: Adler, Peter B. organization: Utah State University – sequence: 6 givenname: Sumanta surname: Bagchi fullname: Bagchi, Sumanta organization: Indian Institute of Science – sequence: 7 givenname: Jonathan D. surname: Bakker fullname: Bakker, Jonathan D. organization: University of Washington – sequence: 8 givenname: Lori orcidid: 0000-0003-2171-7898 surname: Biederman fullname: Biederman, Lori organization: Iowa State University – sequence: 9 givenname: Elizabeth T. surname: Borer fullname: Borer, Elizabeth T. organization: University of Minnesota – sequence: 10 givenname: Elsa E. orcidid: 0000-0003-3920-0029 surname: Cleland fullname: Cleland, Elsa E. organization: University of California, San Diego – sequence: 11 givenname: Nico surname: Eisenhauer fullname: Eisenhauer, Nico organization: Leipzig University – sequence: 12 givenname: Jennifer surname: Firn fullname: Firn, Jennifer organization: Queensland University of Technology (QUT) – sequence: 13 givenname: Laureano surname: Gherardi fullname: Gherardi, Laureano organization: Arizona State University – sequence: 14 givenname: Nicole surname: Hagenah fullname: Hagenah, Nicole organization: University of Pretoria – sequence: 15 givenname: Yann surname: Hautier fullname: Hautier, Yann organization: Utrecht University – sequence: 16 givenname: Sarah E. surname: Hobbie fullname: Hobbie, Sarah E. organization: University of Minnesota – sequence: 17 givenname: Johannes M. H. surname: Knops fullname: Knops, Johannes M. H. organization: Xi’an Jiaotong Liverpool University – sequence: 18 givenname: Andrew S. surname: MacDougall fullname: MacDougall, Andrew S. organization: University of Guelph – sequence: 19 givenname: Rebecca L. surname: McCulley fullname: McCulley, Rebecca L. organization: University of Kentucky – sequence: 20 givenname: Joslin L. surname: Moore fullname: Moore, Joslin L. organization: Monash University – sequence: 21 givenname: Brent surname: Mortensen fullname: Mortensen, Brent organization: Benedictine College – sequence: 22 givenname: Pablo L. surname: Peri fullname: Peri, Pablo L. organization: Universidad Nacional de la Patagonia Austral (UNPA)‐CONICET – sequence: 23 givenname: Suzanne M. surname: Prober fullname: Prober, Suzanne M. organization: CSIRO Land and Water – sequence: 24 givenname: Charlotte surname: Riggs fullname: Riggs, Charlotte organization: University of Minnesota – sequence: 25 givenname: Anita C. surname: Risch fullname: Risch, Anita C. organization: Swiss Federal Institute for Forest, Snow and Landscape Research – sequence: 26 givenname: Martin surname: Schütz fullname: Schütz, Martin organization: Swiss Federal Institute for Forest, Snow and Landscape Research – sequence: 27 givenname: Eric W. surname: Seabloom fullname: Seabloom, Eric W. organization: University of Minnesota – sequence: 28 givenname: Julia orcidid: 0000-0001-9720-4146 surname: Siebert fullname: Siebert, Julia organization: Leipzig University – sequence: 29 givenname: Carly J. surname: Stevens fullname: Stevens, Carly J. organization: Lancaster University – sequence: 30 givenname: G. F. (Ciska) surname: Veen fullname: Veen, G. F. (Ciska) organization: Netherlands Institute of Ecology (NIOO‐KNAW) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32012421$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vEzEQhi1URD_gwB9AlrjQw7b2-it7QSpRKZWq9gJna9bxJq68dmp7g_LvcUipaCWYy4w0z7yaV-8xOggxWITeU3JGa50vTX9GBWnZK3REmRRNy2fyYDcL3lBC2SE6zvmeEMJaIt-gw9poy1t6hB5up5KcDQXDBpyH3nlXttjEUFL0GZeVxW5cgyk4DniEcQTvIOCVTb3bxGQzjgHn6Dw2kPo6Q1jg4Or10ga8jjsRF_AyQc6-7vJb9HoAn-27x36Cfny9_D7_1tzcXV3PL24awzljjVBUUW6YBNt1EmZczkQvBsLNMNCuJ0ZJyRXh1FBZnYMaeFcXA5iOL2AB7AR93uuup360C1M9JvB6ndwIaasjOP18E9xKL-NGKyoEYbMq8OlRIMWHyeaiR5eN9dWFjVPWLROko6TloqIfX6D3cUqh2quUUq1gnVKV-vD3R0-v_EmjAqd7wKSYc7LDE0KJ3iWta9L6d9KVPX_BGleguF1wNcj_Xfx03m7_La2v5l_2F78AByO6yQ |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2024_105640 crossref_primary_10_24072_pci_ecology_100073 crossref_primary_10_1111_1365_2745_13623 crossref_primary_10_1016_j_agee_2021_107605 crossref_primary_10_1126_science_ade1833 crossref_primary_10_1016_j_scitotenv_2021_150738 crossref_primary_10_1111_gcb_17155 crossref_primary_10_1016_j_cub_2022_01_041 crossref_primary_10_1111_1365_2435_13778 crossref_primary_10_1016_j_agee_2023_108553 crossref_primary_10_1016_j_jenvman_2024_120430 crossref_primary_10_1016_j_jenvman_2024_122259 crossref_primary_10_1360_TB_2024_0285 crossref_primary_10_1038_s41598_020_79647_7 crossref_primary_10_1016_j_tree_2021_09_006 crossref_primary_10_3390_land12122135 crossref_primary_10_1016_j_catena_2025_108714 crossref_primary_10_1016_j_cosust_2020_09_005 crossref_primary_10_1016_j_catena_2021_105366 crossref_primary_10_1111_geb_13664 crossref_primary_10_1111_csp2_601 crossref_primary_10_3389_fpls_2024_1362125 crossref_primary_10_1146_annurev_ecolsys_011720_104730 crossref_primary_10_1016_j_catena_2024_108179 crossref_primary_10_1016_j_scitotenv_2023_165273 crossref_primary_10_1894_0038_4909_66_3_213 crossref_primary_10_1016_j_tree_2022_02_013 crossref_primary_10_1111_1365_2435_13611 crossref_primary_10_1016_j_catena_2020_104799 crossref_primary_10_1111_geb_13737 crossref_primary_10_1007_s11104_024_07089_5 crossref_primary_10_1016_j_scitotenv_2024_173128 crossref_primary_10_1016_j_geoderma_2023_116578 crossref_primary_10_1007_s11258_024_01452_3 crossref_primary_10_1016_j_apsoil_2024_105509 crossref_primary_10_1111_1365_2435_14270 crossref_primary_10_3390_plants11172251 crossref_primary_10_1016_j_scitotenv_2025_178702 crossref_primary_10_1016_j_jenvman_2023_117769 crossref_primary_10_1111_gcb_15988 crossref_primary_10_1111_geb_13408 crossref_primary_10_3390_grasses1010002 crossref_primary_10_1002_ldr_4910 crossref_primary_10_1016_j_scitotenv_2022_153380 crossref_primary_10_1016_j_agee_2024_109442 crossref_primary_10_1111_1365_2745_14323 crossref_primary_10_1073_pnas_2211317119 crossref_primary_10_1111_1365_2745_13871 crossref_primary_10_3390_su14106078 crossref_primary_10_1126_science_abo2380 crossref_primary_10_1016_j_ecolind_2023_110801 crossref_primary_10_1038_s41559_024_02327_6 crossref_primary_10_1038_s42003_023_05607_2 |
Cites_doi | 10.1016/0038-0717(78)90099-8 10.1038/nature13144 10.1016/S0031-0182(01)00359-5 10.1111/j.1526-100X.2009.00599.x 10.1890/0012-9658(2001)082[2045:TIOHOP]2.0.CO;2 10.1007/s10533-007-9132-0 10.1016/j.agee.2011.03.009 10.1007/s10533-004-0370-0 10.2307/1939308 10.1016/j.agee.2007.08.008 10.1038/nplants.2015.80 10.1007/s11258-014-0438-4 10.1890/11-2070.1 10.1007/s00267-003-9106-5 10.1007/s10021-013-9715-7 10.1007/s00265-010-1035-8 10.1890/0012-9658(1998)079[0165:HEOPAN]2.0.CO;2 10.1002/sim.3107 10.1016/S0169-5347(98)01364-0 10.1002/joc.1276 10.2307/2937150 10.1038/s41559-017-0118 10.2307/1942578 10.1111/2041-210X.12125 10.1126/sciadv.1400103 10.1890/02-0274 10.1111/gcb.12370 10.2307/2265835 10.1111/gcb.12144 10.1007/s10021-019-00350-4 10.1021/acs.est.7b01427 10.1890/0012-9658(2001)082[1319:FLIEHF]2.0.CO;2 10.1007/s00442-003-1402-5 10.1007/BF02861083 10.1007/s11104-005-2554-3 10.7717/peerj.233 10.2111/08-255.1 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 10.1023/A:1010760720215 10.1038/ncomms7707 10.1890/12-0114.1 10.1016/j.geoderma.2007.09.004 10.1111/ele.13258 10.1890/0012-9658(2002)083[0602:CCOGPP]2.0.CO;2 10.1029/2007GB003168 10.1038/nature20150 10.1111/1365-2745.12236 10.1890/12-0292.1 10.1007/s00442-010-1899-3 10.1111/j.1600-0587.2012.07348.x 10.1038/s41598-017-17348-4 10.1073/pnas.1502556112 10.1016/j.baae.2006.07.001 10.1007/s10533-016-0191-y 10.1890/0012-9658(1998)079[2242:GOANCW]2.0.CO;2 10.1890/0012-9658(1997)078[2238:EONGOG]2.0.CO;2 10.2307/1313313 10.1890/04-0268 10.1016/j.ppees.2012.12.001 10.1016/S0378-1127(03)00133-6 10.1038/s41561-018-0258-6 10.1111/gcb.13431 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 10.1081/CSS-100103897 10.1126/science.1251817 10.1079/9781845938093.0003 10.1111/j.1469-185X.2011.00185.x 10.1023/A:1010653913530 10.1007/BF00317727 10.1890/12-0279.1 10.2307/2265518 10.1017/CBO9780511617461.012 10.1126/science.1091390 10.1016/0038-0717(92)90061-2 10.1111/j.1461-0248.2008.01250.x 10.1007/978-1-4614-7501-9_14 10.5194/bg-15-5929-2018 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Ltd 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Ltd – notice: 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7SN 7UA C1K F1W H97 L.G 7X8 5PM |
DOI | 10.1111/gcb.15023 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Environmental Sciences |
DocumentTitleAlternate | SITTERS et al |
EISSN | 1365-2486 |
EndPage | 2071 |
ExternalDocumentID | PMC7155038 32012421 10_1111_gcb_15023 GCB15023 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek funderid: 019.181EN.01; 863.14.013 – fundername: National Science Foundation funderid: NSF‐DEB‐1042132; NSF‐DEB‐1234162 – fundername: Fonds Wetenschappelijk Onderzoek funderid: 12N2615N – fundername: Deutsche Forschungsgemeinschaft funderid: FZT 118 – fundername: Strategic Resources of the Netherlands Institute of Ecology – fundername: Institute on the Environment, University of Minnesota funderid: DG‐0001‐13 – fundername: National Science Foundation grantid: NSF-DEB-1042132 – fundername: Fonds Wetenschappelijk Onderzoek grantid: 12N2615N – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek grantid: 863.14.013 – fundername: National Science Foundation grantid: NSF-DEB-1234162 – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek grantid: 019.181EN.01 – fundername: Deutsche Forschungsgemeinschaft grantid: FZT 118 – fundername: Institute on the Environment, University of Minnesota grantid: DG-0001-13 – fundername: ; grantid: 12N2615N – fundername: ; grantid: 019.181EN.01; 863.14.013 – fundername: ; grantid: DG‐0001‐13 – fundername: ; grantid: NSF‐DEB‐1042132; NSF‐DEB‐1234162 – fundername: ; grantid: FZT 118 |
GroupedDBID | -DZ .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29I 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 UQL VOH W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT ESX NPM WRC WUP 7SN 7UA C1K F1W H97 L.G 7X8 5PM |
ID | FETCH-LOGICAL-c4433-571714c36ae996a84685b5f04cff19b0c76647041c16023a7f49f19fac94dada3 |
IEDL.DBID | DR2 |
ISSN | 1354-1013 1365-2486 |
IngestDate | Thu Aug 21 18:05:54 EDT 2025 Fri Jul 11 07:05:29 EDT 2025 Sun Jul 13 04:34:18 EDT 2025 Wed Feb 19 02:31:06 EST 2025 Tue Jul 01 03:53:03 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Sun Jul 06 04:45:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | nutrient dynamics fertilization grazing global change carbon sequestration herbivory soil microorganisms exclosure Nutrient Network (NutNet) nutrient enrichment |
Language | English |
License | Attribution 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4433-571714c36ae996a84685b5f04cff19b0c76647041c16023a7f49f19fac94dada3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Judith Sitters and E. R. Jasper Wubs should be considered joint first author. |
ORCID | 0000-0003-2171-7898 0000-0003-2926-5339 0000-0001-9720-4146 0000-0003-3920-0029 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.15023 |
PMID | 32012421 |
PQID | 2377253977 |
PQPubID | 30327 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7155038 proquest_miscellaneous_2350910245 proquest_journals_2377253977 pubmed_primary_32012421 crossref_primary_10_1111_gcb_15023 crossref_citationtrail_10_1111_gcb_15023 wiley_primary_10_1111_gcb_15023_GCB15023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Global change biology |
PublicationTitleAlternate | Glob Chang Biol |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd John Wiley and Sons Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley and Sons Inc |
References | 1998; 48 2017; 7 2017; 1 2010; 18 2019; 12 1993; 63 1995; 76 2016; 540 2008; 143 2010; 63 2005; 25 1996; 77 2013; 19 2004; 33 2004; 138 2014; 5 2013; 15 2004; 70 2014; 2 2000 2019; 22 2002; 83 2000; 10 2013; 94 2008; 27 1993; 74 2016; 113 2007; 8 2011; 65 1985; 51 2006; 280 2015; 216 2014; 17 1985; 55 2003; 84 2001; 53 2011; 165 2001; 54 1998; 13 2009; 23 2015; 1 2015; 6 2011 1978; 10 2010 2013; 83 2002; 177 2017; 23 2006 2005 2016; 127 2008; 11 2002 2008; 124 2017; 51 2012; 93 2001; 82 2014; 508 2013; 36 1997; 78 1993; 96 2003; 181 1992; 24 2014 2007; 85 2003; 302 2005; 15 2011; 141 2014; 345 2012; 87 2018; 15 2001; 32 1998; 79 2014; 102 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 IPCC (e_1_2_8_37_1) 2014 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Bardgett R. D. (e_1_2_8_8_1) 2010 Burnham K. (e_1_2_8_13_1) 2002 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 Souttie J. (e_1_2_8_69_1) 2005 e_1_2_8_14_1 e_1_2_8_35_1 White R. (e_1_2_8_81_1) 2000 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 13 start-page: 261 issue: 7 year: 1998 end-page: 265 article-title: Effects of herbivores on grassland plant diversity publication-title: Trends in Ecology & Evolution – volume: 8 start-page: 354 issue: 4 year: 2007 end-page: 363 article-title: Patch choice of avian herbivores along a migration trajectory – From Temperate to Arctic publication-title: Basic and Applied Ecology – volume: 216 start-page: 307 issue: 2 year: 2015 end-page: 318 article-title: Functional trait expression of grassland species shift with short‐ and long‐term nutrient additions publication-title: Plant Ecology – volume: 82 start-page: 1319 issue: 5 year: 2001 end-page: 1329 article-title: Feedback loops in ecological hierarchies following urine deposition in tallgrass prairie publication-title: Ecology – volume: 54 start-page: 1 issue: 1 year: 2001 end-page: 39 article-title: Physical and biogeochemical controls over terrestrial ecosystem responses to nitrogen deposition publication-title: Biogeochemistry – volume: 36 start-page: 27 issue: 1 year: 2013 end-page: 46 article-title: Collinearity: A review of methods to deal with it and a simulation study evaluating their performance publication-title: Ecography – volume: 12 start-page: 46 issue: 1 year: 2019 end-page: 53 article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input publication-title: Nature Geoscience – year: 2005 – volume: 27 start-page: 2865 issue: 15 year: 2008 end-page: 2873 article-title: Scaling regression inputs by dividing by two standard deviations publication-title: Statistics in Medicine – volume: 55 start-page: 259 issue: 3 year: 1985 end-page: 294 article-title: Ecology of a grazing ecosystem – The Serengeti publication-title: Ecological Monographs – volume: 1 issue: 7 year: 2015 article-title: Grassland productivity limited by multiple nutrients publication-title: Nature Plants – volume: 94 start-page: 726 issue: 3 year: 2013 end-page: 738 article-title: Responses of ecosystem carbon cycle to experimental warming: A meta‐analysis publication-title: Ecology – volume: 124 start-page: 33 issue: 1–2 year: 2008 end-page: 39 article-title: Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China publication-title: Agriculture Ecosystems & Environment – volume: 51 start-page: 163 issue: 2 year: 1985 end-page: 201 article-title: Rise of the grassland biome, central North America publication-title: Botanical Review – volume: 79 start-page: 2242 issue: 7 year: 1998 end-page: 2252 article-title: Grazing optimization and nutrient cycling: When do herbivores enhance plant production? publication-title: Ecology – volume: 23 year: 2009 article-title: Grazing effects on belowground C and N stocks along a network of cattle exclosures in temperate and subtropical grasslands of South America publication-title: Global Biogeochemical Cycles – volume: 77 start-page: 974 issue: 3 year: 1996 end-page: 977 article-title: How can net primary productivity be measured in grazing ecosystems? publication-title: Ecology – volume: 18 start-page: 205 year: 2010 end-page: 216 article-title: Nitrogen depletion and redistribution by free‐ranging cattle in the restoration process of mosaic landscapes: The role of foraging strategy and habitat proportion publication-title: Restoration Ecology – volume: 33 start-page: 485 issue: 4 year: 2004 end-page: 495 article-title: Response of organic and inorganic carbon and nitrogen to long‐term grazing of the shortgrass steppe publication-title: Environmental Management – volume: 508 start-page: 517 issue: 7497 year: 2014 end-page: 520 article-title: Herbivores and nutrients control grassland plant diversity via light limitation publication-title: Nature – volume: 32 start-page: 633 issue: 5–6 year: 2001 end-page: 642 article-title: Standard procedure in the hydrometer method for particle size analysis publication-title: Communications in Soil Science and Plant Analysis – volume: 540 start-page: 104 issue: 7631 year: 2016 end-page: 109 article-title: Quantifying global soil carbon losses in response to warming publication-title: Nature – volume: 17 start-page: 344 issue: 2 year: 2014 end-page: 359 article-title: Animating the carbon cycle publication-title: Ecosystems – start-page: 151 year: 2014 – volume: 87 start-page: 72 issue: 1 year: 2012 end-page: 94 article-title: Carbon storage in terrestrial ecosystems: Do browsing and grazing herbivores matter? publication-title: Biological Reviews – volume: 280 start-page: 77 issue: 1–2 year: 2006 end-page: 90 article-title: Grazing and ecosystem carbon storage in the North American Great Plains publication-title: Plant and Soil – volume: 25 start-page: 1965 issue: 15 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 82 start-page: 2045 issue: 7 year: 2001 end-page: 2058 article-title: The impact of herbivory on plants in different resource conditions: A meta‐analysis publication-title: Ecology – volume: 19 start-page: 3677 issue: 12 year: 2013 end-page: 3687 article-title: Predicting invasion in grassland ecosystems: Is exotic dominance the real embarrassment of richness? publication-title: Global Change Biology – volume: 83 start-page: 602 issue: 3 year: 2002 end-page: 606 article-title: Consumer control of grassland plant production publication-title: Ecology – start-page: 289 year: 2006 end-page: 319 – volume: 79 start-page: 165 issue: 1 year: 1998 end-page: 177 article-title: Herbivore effects on plant and nitrogen dynamics in oak savanna publication-title: Ecology – volume: 53 start-page: 51 issue: 1 year: 2001 end-page: 77 article-title: The distribution of soil nutrients with depth: Global patterns and the imprint of plants publication-title: Biogeochemistry – volume: 63 start-page: 327 issue: 4 year: 1993 end-page: 366 article-title: Quantitative effects of grazing on vegetation and soils over a global range of environments publication-title: Ecological Monographs – volume: 1 issue: 5 year: 2017 article-title: A decade of insights into grassland ecosystem responses to global environmental change publication-title: Nature Ecology & Evolution – volume: 6 year: 2015 article-title: Plant diversity increases soil microbial activity and soil carbon storage publication-title: Nature Communications – volume: 181 start-page: 189 year: 2003 end-page: 204 article-title: Do ungulates accelerate or decelerate nitrogen cycling? publication-title: Forest Ecology and Management – volume: 85 start-page: 235 issue: 3 year: 2007 end-page: 252 article-title: C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? publication-title: Biogeochemistry – volume: 15 start-page: 87 issue: 1 year: 2005 end-page: 95 article-title: Multi‐decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah publication-title: Ecological Applications – volume: 65 start-page: 77 issue: 1 year: 2011 end-page: 89 article-title: Model selection and model averaging in behavioural ecology: The utility of the IT‐AIC framework publication-title: Behavioral Ecology and Sociobiology – volume: 23 start-page: 1167 issue: 3 year: 2017 end-page: 1179 article-title: Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta‐analysis publication-title: Global Change Biology – volume: 5 start-page: 65 issue: 1 year: 2014 end-page: 73 article-title: Finding generality in ecology: A model for globally distributed experiments publication-title: Methods in Ecology and Evolution – volume: 15 start-page: 32 issue: 1 year: 2013 end-page: 44 article-title: An integrated perspective to explain nitrogen mineralization in grazed ecosystems publication-title: Perspectives in Plant Ecology Evolution and Systematics – volume: 2 year: 2014 article-title: Plant compensation to grazing and soil carbon dynamics in a tropical grassland publication-title: Peerj – volume: 82 start-page: 2397 issue: 9 year: 2001 end-page: 2402 article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass publication-title: Ecology – volume: 74 start-page: 467 issue: 2 year: 1993 end-page: 480 article-title: Moose browsing and soil fertility in the boreal forests of Isle Royale National Park publication-title: Ecology – volume: 51 start-page: 4738 issue: 9 year: 2017 end-page: 4739 article-title: Sequestering soil organic carbon: A nitrogen dilemma publication-title: Environmental Science & Technology – volume: 22 start-page: 1466 issue: 7 year: 2019 end-page: 1477 article-title: Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands publication-title: Ecosystems – volume: 113 start-page: 898 issue: 4 year: 2016 end-page: 906 article-title: Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 93 start-page: 2030 issue: 9 year: 2012 end-page: 2036 article-title: Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition publication-title: Ecology – volume: 22 start-page: 936 issue: 6 year: 2019 end-page: 945 article-title: Sensitivity of global soil carbon stocks to combined nutrient enrichment publication-title: Ecology Letters – volume: 48 start-page: 513 issue: 7 year: 1998 end-page: 521 article-title: The ecology of the Earth’s grazing ecosystems publication-title: BioScience – volume: 15 start-page: 5929 issue: 19 year: 2018 end-page: 5949 article-title: Reviews and syntheses: Carbon use efficiency from organisms to ecosystems – Definitions, theories, and empirical evidence publication-title: Biogeosciences – volume: 84 start-page: 2258 issue: 9 year: 2003 end-page: 2268 article-title: Herbivore‐mediated linkages between aboveground and belowground communities publication-title: Ecology – volume: 19 start-page: 1347 issue: 5 year: 2013 end-page: 1357 article-title: Effects of grazing on grassland soil carbon: A global review publication-title: Global Change Biology – volume: 94 start-page: 106 issue: 1 year: 2013 end-page: 116 article-title: Nutrients and defoliation increase soil carbon inputs in grassland publication-title: Ecology – volume: 83 start-page: 195 issue: 2 year: 2013 end-page: 219 article-title: N balance and cycling of Inner Mongolia typical steppe: A comprehensive case study of grazing effects publication-title: Ecological Monographs – volume: 10 start-page: 423 issue: 2 year: 2000 end-page: 436 article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation publication-title: Ecological Applications – volume: 102 start-page: 896 issue: 4 year: 2014 end-page: 904 article-title: Land management trumps the effects of climate change and elevated CO on grassland functioning publication-title: Journal of Ecology – volume: 177 start-page: 183 issue: 1–2 year: 2002 end-page: 198 article-title: The origins and evolution of the North American grassland biome: The story from the hoofed mammals publication-title: Palaeogeography Palaeoclimatology Palaeoecology – year: 2000 – start-page: 3 year: 2011 end-page: 18 – volume: 138 start-page: 91 issue: 1 year: 2004 end-page: 101 article-title: Impact of herbivores on nitrogen cycling: Contrasting effects of small and large species publication-title: Oecologia – volume: 24 start-page: 1113 issue: 11 year: 1992 end-page: 1118 article-title: Automated measurement of the respiratory response of soil microcompartments – Active microbial biomass in earthworm feces publication-title: Soil Biology & Biochemistry – volume: 63 start-page: 109 issue: 1 year: 2010 end-page: 119 article-title: Pathways of grazing effects on soil organic carbon and nitrogen publication-title: Rangeland Ecology & Management – year: 2010 – volume: 143 start-page: 63 issue: 1–2 year: 2008 end-page: 72 article-title: Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China) publication-title: Geoderma – start-page: 389 year: 2014 end-page: 423 – volume: 345 start-page: 401 issue: 6195 year: 2014 end-page: 406 article-title: Defaunation in the Anthropocene publication-title: Science – volume: 302 start-page: 1512 issue: 5650 year: 2003 end-page: 1513 article-title: Nitrogen and climate change publication-title: Science – volume: 165 start-page: 1095 issue: 4 year: 2011 end-page: 1107 article-title: Large herbivores may alter vegetation structure of semi‐arid savannas through soil nutrient mediation publication-title: Oecologia – year: 2002 – volume: 96 start-page: 157 issue: 2 year: 1993 end-page: 161 article-title: Evidence for the promotion of aboveground grassland production by native large herbivores in Yellowstone National Park publication-title: Oecologia – volume: 10 start-page: 215 year: 1978 end-page: 221 article-title: A physiological method for the quantitative measurement of microbial biomass in soils publication-title: Soil Biology and Biochemistry – volume: 76 start-page: 2648 issue: 8 year: 1995 end-page: 2655 article-title: Responses of legumes to herbivores and nutrients during succession on a nitrogen‐poor soil publication-title: Ecology – volume: 141 start-page: 310 issue: 3–4 year: 2011 end-page: 322 article-title: Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie publication-title: Agriculture Ecosystems & Environment – volume: 70 start-page: 153 issue: 2 year: 2004 end-page: 226 article-title: Nitrogen cycles: Past, present, and future publication-title: Biogeochemistry – volume: 7 start-page: 17196 year: 2017 article-title: The consequences of replacing wildlife with livestock in Africa publication-title: Scientific Reports – volume: 1 year: 2015 article-title: Collapse of the world’s largest herbivores publication-title: Science Advances – volume: 78 start-page: 2238 issue: 7 year: 1997 end-page: 2248 article-title: Effects of native grazers on grassland N cycling in Yellowstone National Park publication-title: Ecology – volume: 11 start-page: 1351 issue: 12 year: 2008 end-page: 1363 article-title: Global change and species interactions in terrestrial ecosystems publication-title: Ecology Letters – volume: 127 start-page: 173 issue: 2–3 year: 2016 end-page: 188 article-title: Microbial carbon use efficiency: Accounting for population, community, and ecosystem‐scale controls over the fate of metabolized organic matter publication-title: Biogeochemistry – ident: e_1_2_8_2_1 doi: 10.1016/0038-0717(78)90099-8 – ident: e_1_2_8_12_1 doi: 10.1038/nature13144 – ident: e_1_2_8_38_1 doi: 10.1016/S0031-0182(01)00359-5 – ident: e_1_2_8_80_1 doi: 10.1111/j.1526-100X.2009.00599.x – ident: e_1_2_8_33_1 doi: 10.1890/0012-9658(2001)082[2045:TIOHOP]2.0.CO;2 – ident: e_1_2_8_15_1 doi: 10.1007/s10533-007-9132-0 – ident: e_1_2_8_74_1 doi: 10.1016/j.agee.2011.03.009 – volume-title: Pilot analysis of global ecosystems: Grassland ecosystems technical report year: 2000 ident: e_1_2_8_81_1 – ident: e_1_2_8_28_1 doi: 10.1007/s10533-004-0370-0 – ident: e_1_2_8_53_1 doi: 10.2307/1939308 – ident: e_1_2_8_54_1 doi: 10.1016/j.agee.2007.08.008 – ident: e_1_2_8_22_1 doi: 10.1038/nplants.2015.80 – ident: e_1_2_8_41_1 doi: 10.1007/s11258-014-0438-4 – ident: e_1_2_8_83_1 doi: 10.1890/11-2070.1 – volume-title: Aboveground‐belowground linkages: Biotic interactions, ecosystem processes, and global change year: 2010 ident: e_1_2_8_8_1 – ident: e_1_2_8_57_1 doi: 10.1007/s00267-003-9106-5 – ident: e_1_2_8_64_1 doi: 10.1007/s10021-013-9715-7 – ident: e_1_2_8_58_1 doi: 10.1007/s00265-010-1035-8 – ident: e_1_2_8_62_1 doi: 10.1890/0012-9658(1998)079[0165:HEOPAN]2.0.CO;2 – ident: e_1_2_8_29_1 doi: 10.1002/sim.3107 – ident: e_1_2_8_50_1 doi: 10.1016/S0169-5347(98)01364-0 – ident: e_1_2_8_35_1 doi: 10.1002/joc.1276 – ident: e_1_2_8_48_1 doi: 10.2307/2937150 – volume-title: Model selection and multimodel inference: A practical information‐theoretic approach year: 2002 ident: e_1_2_8_13_1 – ident: e_1_2_8_10_1 doi: 10.1038/s41559-017-0118 – ident: e_1_2_8_45_1 doi: 10.2307/1942578 – ident: e_1_2_8_11_1 doi: 10.1111/2041-210X.12125 – ident: e_1_2_8_59_1 doi: 10.1126/sciadv.1400103 – ident: e_1_2_8_7_1 doi: 10.1890/02-0274 – ident: e_1_2_8_66_1 doi: 10.1111/gcb.12370 – ident: e_1_2_8_61_1 doi: 10.2307/2265835 – ident: e_1_2_8_47_1 doi: 10.1111/gcb.12144 – ident: e_1_2_8_14_1 doi: 10.1007/s10021-019-00350-4 – ident: e_1_2_8_79_1 doi: 10.1021/acs.est.7b01427 – ident: e_1_2_8_71_1 doi: 10.1890/0012-9658(2001)082[1319:FLIEHF]2.0.CO;2 – ident: e_1_2_8_6_1 doi: 10.1007/s00442-003-1402-5 – ident: e_1_2_8_5_1 doi: 10.1007/BF02861083 – ident: e_1_2_8_19_1 doi: 10.1007/s11104-005-2554-3 – ident: e_1_2_8_60_1 doi: 10.7717/peerj.233 – ident: e_1_2_8_56_1 doi: 10.2111/08-255.1 – ident: e_1_2_8_39_1 doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 – ident: e_1_2_8_40_1 doi: 10.1023/A:1010760720215 – ident: e_1_2_8_42_1 doi: 10.1038/ncomms7707 – ident: e_1_2_8_31_1 doi: 10.1890/12-0114.1 – ident: e_1_2_8_70_1 doi: 10.1016/j.geoderma.2007.09.004 – ident: e_1_2_8_16_1 doi: 10.1111/ele.13258 – ident: e_1_2_8_25_1 doi: 10.1890/0012-9658(2002)083[0602:CCOGPP]2.0.CO;2 – ident: e_1_2_8_55_1 doi: 10.1029/2007GB003168 – ident: e_1_2_8_17_1 doi: 10.1038/nature20150 – ident: e_1_2_8_75_1 doi: 10.1111/1365-2745.12236 – ident: e_1_2_8_23_1 doi: 10.1890/12-0292.1 – ident: e_1_2_8_78_1 doi: 10.1007/s00442-010-1899-3 – ident: e_1_2_8_21_1 doi: 10.1111/j.1600-0587.2012.07348.x – ident: e_1_2_8_34_1 doi: 10.1038/s41598-017-17348-4 – start-page: 151 volume-title: Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change year: 2014 ident: e_1_2_8_37_1 – ident: e_1_2_8_72_1 doi: 10.1073/pnas.1502556112 – ident: e_1_2_8_77_1 doi: 10.1016/j.baae.2006.07.001 – ident: e_1_2_8_30_1 doi: 10.1007/s10533-016-0191-y – ident: e_1_2_8_18_1 doi: 10.1890/0012-9658(1998)079[2242:GOANCW]2.0.CO;2 – ident: e_1_2_8_24_1 doi: 10.1890/0012-9658(1997)078[2238:EONGOG]2.0.CO;2 – ident: e_1_2_8_27_1 doi: 10.2307/1313313 – ident: e_1_2_8_49_1 doi: 10.1890/04-0268 – volume-title: Grasslands of the world year: 2005 ident: e_1_2_8_69_1 – ident: e_1_2_8_65_1 doi: 10.1016/j.ppees.2012.12.001 – ident: e_1_2_8_67_1 doi: 10.1016/S0378-1127(03)00133-6 – ident: e_1_2_8_68_1 doi: 10.1038/s41561-018-0258-6 – ident: e_1_2_8_82_1 doi: 10.1111/gcb.13431 – ident: e_1_2_8_32_1 doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2 – ident: e_1_2_8_3_1 doi: 10.1081/CSS-100103897 – ident: e_1_2_8_20_1 doi: 10.1126/science.1251817 – ident: e_1_2_8_51_1 doi: 10.1079/9781845938093.0003 – ident: e_1_2_8_73_1 doi: 10.1111/j.1469-185X.2011.00185.x – ident: e_1_2_8_4_1 doi: 10.1023/A:1010653913530 – ident: e_1_2_8_26_1 doi: 10.1007/BF00317727 – ident: e_1_2_8_43_1 doi: 10.1890/12-0279.1 – ident: e_1_2_8_46_1 doi: 10.2307/2265518 – ident: e_1_2_8_52_1 doi: 10.1017/CBO9780511617461.012 – ident: e_1_2_8_36_1 doi: 10.1126/science.1091390 – ident: e_1_2_8_63_1 doi: 10.1016/0038-0717(92)90061-2 – ident: e_1_2_8_76_1 doi: 10.1111/j.1461-0248.2008.01250.x – ident: e_1_2_8_9_1 doi: 10.1007/978-1-4614-7501-9_14 – ident: e_1_2_8_44_1 doi: 10.5194/bg-15-5929-2018 |
SSID | ssj0003206 |
Score | 2.5247302 |
Snippet | Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2060 |
SubjectTerms | Atmospheric models Availability Biological activity Biological fertilization Carbon carbon sequestration Climate change Climate models exclosure Fertilization Fluxes global change Grasslands grazing Herbivores Herbivory Human influences Mammals Microbial activity Micronutrients Microorganisms Nitrogen Nutrient availability Nutrient concentrations Nutrient cycles nutrient dynamics Nutrient enrichment Nutrient Network (NutNet) Nutrients Organic matter Plant biomass Pools Populations Primary Primary s Scale models Soil soil microorganisms Soil nutrients Soil temperature Soils Storage Temperature |
Title | Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.15023 https://www.ncbi.nlm.nih.gov/pubmed/32012421 https://www.proquest.com/docview/2377253977 https://www.proquest.com/docview/2350910245 https://pubmed.ncbi.nlm.nih.gov/PMC7155038 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD7MgeCL06vT6hxRRHzppWnSpsWn7bI5BIeIgz0IJUmbWXZvu7X3DuZf70n6Y7tOQXxrySlt0--k30lOvgPwNs0DrVO79G9Y6PNcpr4MjPIjzUNuYs2odlm-x_HRCf90Gp1uwIdhL0ynDzFOuFnPcOO1dXCp2ltOfqbVFNlMaJU-ba6WJURfb6SjWOjqalIWcRxqKOtVhWwWz3jl-r_oDsG8myd5m7-6H9DhFnwfHr3LOzmfrpZqqn_-pur4n-_2CB72xJTsdUh6DBtFNYH7XanK6wlsH9zsiEOzfkhoJ-B9RtpdN86MvCOzeYkc2J09gctjq_WPVxB5Jct5Jwl-Tfr0-JYg-STdNk1SG7KQi4WbdSGII1Ve1U3RkroibV3OiZaNwmNZ5QQHoaZG3BNbHqwlZUXOGgwB3Kblp3ByePBtduT3NR58zTljfiRsBXbNYllg5CWRDSWRikzAtTE0VYEWccxFwKmmMfaHFIan2GCkThFYuWTbsFnVVfEcCDd5SlmeSy0Fz4VMkjgxGGJqQQuFXMCD98PXznQvgG7rcMyzIRDCbs9ct3vwZjS96FQ__mS0M0Am6x2_zUKG4UpkWbUHr8dmdFm7DiOrol5ZG8fSQh558KxD2HgXhC21q_QeiDXsjQZWDny9pSp_OFlwYaNNluBrOmj9_cGzj7N9d_Di301fwoPQzjS4nKUd2Fw2q-IV0rGl2oV7If-y67zvFwP4NLc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXHgulgQIGIcQlqzh2XhIXWFoWaPeAWqkXFNlOXCJ2k5LsViq_nrHzaJeChLgl8kRJnG-cb-zxNwAvk8xTKjFL_5r5Ls9E4gpPSzdQ3Oc6VIwqm-U7C6dH_NNxcLwBb_q9MK0-xDDhZjzDjtfGwc2E9CUvP1FyjHTGZ9fguqnobZTz33-5EI9ivq2sSVnAcbChrNMVMnk8w6Xrf6MrFPNqpuRlBmt_QXt34Gv_8G3myffxainH6udvuo7_-3Z34XbHTcnbFkz3YCMvR3CjrVZ5PoKt3YtNcWjWjQrNCJwDZN5Vbc3IKzKZF0iD7dl9-DEzcv94BRFnopi3quDnpMuQbwjyT9Lu1CSVJguxWNiJF4JQksVZVecNqUrSVMWcKFFLPBZlRnAcqiuEPjEVwhpSlOSkxijA7lt-AEd7u4eTqduVeXAV54y5QWSKsCsWihyDL4GEKA5koD2utKaJ9FQUhjzyOFU0xP4QkeYJNmihEsRWJtgWbJZVmW8D4TpLKMsyoUTEs0jEcRhrjDJVRHOJdMCB1_3nTlWngW5KcczTPhbCbk9ttzvwYjA9bYU__mS002Mm7Xy_SX2GEUtgiLUDz4dm9FqzFCPKvFoZG0vUfB448LCF2HAXxC01C_UORGvgGwyMIvh6S1l8s8rgkQk4WYyvabH19wdPP0ze2YNH_276DG5ODw_20_2Ps8-P4ZZvJh5sCtMObC7rVf4E2dlSPrVO-AvdLDf8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIhAXBAstgRYGhBCXVEnsxIk40aVLea16oFJvkWPHbaTdpCRtpf57xk42dFWQuCXyWHnMjP2N5wXwNtOBUpl1_RsW-VzLzJeBKfxY8YibRLFQuSjfeXJ4zL-exCcb8GGVC9PXhxgP3KxmuPXaKvi5NjeU_FQVe4RmInYH7lpnn43nivjRuAyzyDXWDFnMaa0J2VBWyIbxjFPXN6NbCPN2oORNAOt2oNkjeDhAR_zY8_oxbJT1BO71zSSvJ7B18CdnjcgGpe0m4P0gYNy0jgzf4XRREUp1d0_g19xW46cZKK9kteiLdl_jEMDeIcFD7BMpsTG4lMulOxdB4nRRXTVkq2NTY9dUC1SyLeha1hppmWgbkky0Dbw6rGo8bQmku7Tip3A8O_g5PfSHLgy-4pwxPxa2R7piiSzJNpKEV9K4iE3AlTFhVgRKJAkXAQ9VmNAvlcLwjAaMVBmxXku2BZt1U5fPALnRWci0lkoKroVM0yQ1ZAQqEZYF7dYevF-xI1dDiXLbKWORr0wV4lzuOOfBm5H0vK_L8TeinRVP80E1uzxiZFDEFvd68HocJqWynhJZl82lpXE4KuKxB9u9CIxPIbkKrR_dA7EmHCOBLdi9PlJXZ65wt7D2IEvpM50Y_fvF88_TfXfx_P9JX8H9o0-z_PuX-bcX8CCyxwIuwGgHNi_ay3KXsNNF8dLpyG-ntBaS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nutrient+availability+controls+the+impact+of+mammalian+herbivores+on+soil+carbon+and+nitrogen+pools+in+grasslands&rft.jtitle=Global+change+biology&rft.au=Sitters%2C+Judith&rft.au=Wubs%2C+E+R+Jasper&rft.au=Bakker%2C+Elisabeth+S&rft.au=Crowther%2C+Thomas+W&rft.date=2020-04-01&rft.eissn=1365-2486&rft_id=info:doi/10.1111%2Fgcb.15023&rft_id=info%3Apmid%2F32012421&rft.externalDocID=32012421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon |