Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands

Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may a...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 26; no. 4; pp. 2060 - 2071
Main Authors Sitters, Judith, Wubs, E. R. Jasper, Bakker, Elisabeth S., Crowther, Thomas W., Adler, Peter B., Bagchi, Sumanta, Bakker, Jonathan D., Biederman, Lori, Borer, Elizabeth T., Cleland, Elsa E., Eisenhauer, Nico, Firn, Jennifer, Gherardi, Laureano, Hagenah, Nicole, Hautier, Yann, Hobbie, Sarah E., Knops, Johannes M. H., MacDougall, Andrew S., McCulley, Rebecca L., Moore, Joslin L., Mortensen, Brent, Peri, Pablo L., Prober, Suzanne M., Riggs, Charlotte, Risch, Anita C., Schütz, Martin, Seabloom, Eric W., Siebert, Julia, Stevens, Carly J., Veen, G. F. (Ciska)
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.04.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change. In this study, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under unfertilized and fertilized conditions. We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization; the highest soil C and N pools were found in grazed (+H) and fertilized plots (+F). Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide and incorporating local‐scale herbivory within global‐scale models to better predict land–atmosphere interactions under future climate change.
AbstractList Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change.
Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change.
Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature – herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local‐scale herbivory, and its interaction with nutrient enrichment and climate, within global‐scale models to better predict land–atmosphere interactions under future climate change. In this study, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under unfertilized and fertilized conditions. We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization; the highest soil C and N pools were found in grazed (+H) and fertilized plots (+F). Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide and incorporating local‐scale herbivory within global‐scale models to better predict land–atmosphere interactions under future climate change.
Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change.Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change.
Author McCulley, Rebecca L.
Crowther, Thomas W.
Bakker, Elisabeth S.
Gherardi, Laureano
MacDougall, Andrew S.
Stevens, Carly J.
Hagenah, Nicole
Risch, Anita C.
Sitters, Judith
Wubs, E. R. Jasper
Veen, G. F. (Ciska)
Knops, Johannes M. H.
Mortensen, Brent
Hautier, Yann
Moore, Joslin L.
Prober, Suzanne M.
Hobbie, Sarah E.
Peri, Pablo L.
Bagchi, Sumanta
Adler, Peter B.
Firn, Jennifer
Bakker, Jonathan D.
Siebert, Julia
Borer, Elizabeth T.
Seabloom, Eric W.
Cleland, Elsa E.
Schütz, Martin
Biederman, Lori
Eisenhauer, Nico
Riggs, Charlotte
AuthorAffiliation 15 School of Life Sciences and Global Drylands Center Arizona State University Tempe AZ USA
27 Swiss Federal Institute for Forest, Snow and Landscape Research Birmensdorf Switzerland
2 Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
4 Sustainable Agroecosystems Group Institute of Agricultural Sciences Department of Environmental Systems Science ETH Zurich Zurich Switzerland
25 CSIRO Land and Water Wembley WA Australia
3 Ecology and Biodiversity Department Biology Vrije Universiteit Brussel Brussels Belgium
21 School of Biological Sciences Monash University Clayton Vic. Australia
12 German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
20 Department of Plant & Soil Sciences University of Kentucky Lexington KY USA
18 Department of Health & Environmental Science Xi’an Jiaotong Liverpool University Suzhou China
19 Department of Integrative Biology University of Guelph Guelph ON Canada
22 Department of Bi
AuthorAffiliation_xml – name: 3 Ecology and Biodiversity Department Biology Vrije Universiteit Brussel Brussels Belgium
– name: 4 Sustainable Agroecosystems Group Institute of Agricultural Sciences Department of Environmental Systems Science ETH Zurich Zurich Switzerland
– name: 23 Instituto Nacional de Tecnología Agropecuaria (INTA) Rio Gallegos Argentina
– name: 2 Department of Terrestrial Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
– name: 10 Department of Eology, Evolution, and Behavior University of Minnesota St. Paul MN USA
– name: 12 German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
– name: 8 School of Environmental and Forest Sciences University of Washington Seattle WA USA
– name: 26 Department of Soil, Water, and Climate University of Minnesota St. Paul MN USA
– name: 27 Swiss Federal Institute for Forest, Snow and Landscape Research Birmensdorf Switzerland
– name: 28 Lancaster Environment Centre Lancaster University Lancaster UK
– name: 13 Institute of Biology Leipzig University Leipzig Germany
– name: 5 Institute of Integrative Biology Department of Environmental Systems Science ETH Zurich Zurich Switzerland
– name: 21 School of Biological Sciences Monash University Clayton Vic. Australia
– name: 11 Ecology, Behavior & Evolution Section University of California, San Diego La Jolla CA USA
– name: 25 CSIRO Land and Water Wembley WA Australia
– name: 24 Universidad Nacional de la Patagonia Austral (UNPA)‐CONICET Rio Gallegos Argentina
– name: 16 Mammal Research Institute Department of Zoology and Entomology University of Pretoria Pretoria South Africa
– name: 9 Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames IA USA
– name: 7 Centre for Ecological Sciences Indian Institute of Science Bangalore India
– name: 15 School of Life Sciences and Global Drylands Center Arizona State University Tempe AZ USA
– name: 1 Department of Aquatic Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
– name: 22 Department of Biology Benedictine College Atchison KS USA
– name: 18 Department of Health & Environmental Science Xi’an Jiaotong Liverpool University Suzhou China
– name: 20 Department of Plant & Soil Sciences University of Kentucky Lexington KY USA
– name: 6 Department of Wildland Resources and the Ecology Center Utah State University Logan UT USA
– name: 14 Queensland University of Technology (QUT) Brisbane Qld Australia
– name: 19 Department of Integrative Biology University of Guelph Guelph ON Canada
– name: 17 Ecology and Biodiversity Group Department of Biology Utrecht University Utrecht The Netherlands
Author_xml – sequence: 1
  givenname: Judith
  orcidid: 0000-0003-2926-5339
  surname: Sitters
  fullname: Sitters, Judith
  email: judith.sitters@vub.be
  organization: Vrije Universiteit Brussel
– sequence: 2
  givenname: E. R. Jasper
  surname: Wubs
  fullname: Wubs, E. R. Jasper
  organization: ETH Zurich
– sequence: 3
  givenname: Elisabeth S.
  surname: Bakker
  fullname: Bakker, Elisabeth S.
  organization: Netherlands Institute of Ecology (NIOO‐KNAW)
– sequence: 4
  givenname: Thomas W.
  surname: Crowther
  fullname: Crowther, Thomas W.
  organization: ETH Zurich
– sequence: 5
  givenname: Peter B.
  surname: Adler
  fullname: Adler, Peter B.
  organization: Utah State University
– sequence: 6
  givenname: Sumanta
  surname: Bagchi
  fullname: Bagchi, Sumanta
  organization: Indian Institute of Science
– sequence: 7
  givenname: Jonathan D.
  surname: Bakker
  fullname: Bakker, Jonathan D.
  organization: University of Washington
– sequence: 8
  givenname: Lori
  orcidid: 0000-0003-2171-7898
  surname: Biederman
  fullname: Biederman, Lori
  organization: Iowa State University
– sequence: 9
  givenname: Elizabeth T.
  surname: Borer
  fullname: Borer, Elizabeth T.
  organization: University of Minnesota
– sequence: 10
  givenname: Elsa E.
  orcidid: 0000-0003-3920-0029
  surname: Cleland
  fullname: Cleland, Elsa E.
  organization: University of California, San Diego
– sequence: 11
  givenname: Nico
  surname: Eisenhauer
  fullname: Eisenhauer, Nico
  organization: Leipzig University
– sequence: 12
  givenname: Jennifer
  surname: Firn
  fullname: Firn, Jennifer
  organization: Queensland University of Technology (QUT)
– sequence: 13
  givenname: Laureano
  surname: Gherardi
  fullname: Gherardi, Laureano
  organization: Arizona State University
– sequence: 14
  givenname: Nicole
  surname: Hagenah
  fullname: Hagenah, Nicole
  organization: University of Pretoria
– sequence: 15
  givenname: Yann
  surname: Hautier
  fullname: Hautier, Yann
  organization: Utrecht University
– sequence: 16
  givenname: Sarah E.
  surname: Hobbie
  fullname: Hobbie, Sarah E.
  organization: University of Minnesota
– sequence: 17
  givenname: Johannes M. H.
  surname: Knops
  fullname: Knops, Johannes M. H.
  organization: Xi’an Jiaotong Liverpool University
– sequence: 18
  givenname: Andrew S.
  surname: MacDougall
  fullname: MacDougall, Andrew S.
  organization: University of Guelph
– sequence: 19
  givenname: Rebecca L.
  surname: McCulley
  fullname: McCulley, Rebecca L.
  organization: University of Kentucky
– sequence: 20
  givenname: Joslin L.
  surname: Moore
  fullname: Moore, Joslin L.
  organization: Monash University
– sequence: 21
  givenname: Brent
  surname: Mortensen
  fullname: Mortensen, Brent
  organization: Benedictine College
– sequence: 22
  givenname: Pablo L.
  surname: Peri
  fullname: Peri, Pablo L.
  organization: Universidad Nacional de la Patagonia Austral (UNPA)‐CONICET
– sequence: 23
  givenname: Suzanne M.
  surname: Prober
  fullname: Prober, Suzanne M.
  organization: CSIRO Land and Water
– sequence: 24
  givenname: Charlotte
  surname: Riggs
  fullname: Riggs, Charlotte
  organization: University of Minnesota
– sequence: 25
  givenname: Anita C.
  surname: Risch
  fullname: Risch, Anita C.
  organization: Swiss Federal Institute for Forest, Snow and Landscape Research
– sequence: 26
  givenname: Martin
  surname: Schütz
  fullname: Schütz, Martin
  organization: Swiss Federal Institute for Forest, Snow and Landscape Research
– sequence: 27
  givenname: Eric W.
  surname: Seabloom
  fullname: Seabloom, Eric W.
  organization: University of Minnesota
– sequence: 28
  givenname: Julia
  orcidid: 0000-0001-9720-4146
  surname: Siebert
  fullname: Siebert, Julia
  organization: Leipzig University
– sequence: 29
  givenname: Carly J.
  surname: Stevens
  fullname: Stevens, Carly J.
  organization: Lancaster University
– sequence: 30
  givenname: G. F. (Ciska)
  surname: Veen
  fullname: Veen, G. F. (Ciska)
  organization: Netherlands Institute of Ecology (NIOO‐KNAW)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32012421$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URD_gwB9AlrjQw7b2-it7QSpRKZWq9gJna9bxJq68dmp7g_LvcUipaCWYy4w0z7yaV-8xOggxWITeU3JGa50vTX9GBWnZK3REmRRNy2fyYDcL3lBC2SE6zvmeEMJaIt-gw9poy1t6hB5up5KcDQXDBpyH3nlXttjEUFL0GZeVxW5cgyk4DniEcQTvIOCVTb3bxGQzjgHn6Dw2kPo6Q1jg4Or10ga8jjsRF_AyQc6-7vJb9HoAn-27x36Cfny9_D7_1tzcXV3PL24awzljjVBUUW6YBNt1EmZczkQvBsLNMNCuJ0ZJyRXh1FBZnYMaeFcXA5iOL2AB7AR93uuup360C1M9JvB6ndwIaasjOP18E9xKL-NGKyoEYbMq8OlRIMWHyeaiR5eN9dWFjVPWLROko6TloqIfX6D3cUqh2quUUq1gnVKV-vD3R0-v_EmjAqd7wKSYc7LDE0KJ3iWta9L6d9KVPX_BGleguF1wNcj_Xfx03m7_La2v5l_2F78AByO6yQ
CitedBy_id crossref_primary_10_1016_j_apsoil_2024_105640
crossref_primary_10_24072_pci_ecology_100073
crossref_primary_10_1111_1365_2745_13623
crossref_primary_10_1016_j_agee_2021_107605
crossref_primary_10_1126_science_ade1833
crossref_primary_10_1016_j_scitotenv_2021_150738
crossref_primary_10_1111_gcb_17155
crossref_primary_10_1016_j_cub_2022_01_041
crossref_primary_10_1111_1365_2435_13778
crossref_primary_10_1016_j_agee_2023_108553
crossref_primary_10_1016_j_jenvman_2024_120430
crossref_primary_10_1016_j_jenvman_2024_122259
crossref_primary_10_1360_TB_2024_0285
crossref_primary_10_1038_s41598_020_79647_7
crossref_primary_10_1016_j_tree_2021_09_006
crossref_primary_10_3390_land12122135
crossref_primary_10_1016_j_catena_2025_108714
crossref_primary_10_1016_j_cosust_2020_09_005
crossref_primary_10_1016_j_catena_2021_105366
crossref_primary_10_1111_geb_13664
crossref_primary_10_1111_csp2_601
crossref_primary_10_3389_fpls_2024_1362125
crossref_primary_10_1146_annurev_ecolsys_011720_104730
crossref_primary_10_1016_j_catena_2024_108179
crossref_primary_10_1016_j_scitotenv_2023_165273
crossref_primary_10_1894_0038_4909_66_3_213
crossref_primary_10_1016_j_tree_2022_02_013
crossref_primary_10_1111_1365_2435_13611
crossref_primary_10_1016_j_catena_2020_104799
crossref_primary_10_1111_geb_13737
crossref_primary_10_1007_s11104_024_07089_5
crossref_primary_10_1016_j_scitotenv_2024_173128
crossref_primary_10_1016_j_geoderma_2023_116578
crossref_primary_10_1007_s11258_024_01452_3
crossref_primary_10_1016_j_apsoil_2024_105509
crossref_primary_10_1111_1365_2435_14270
crossref_primary_10_3390_plants11172251
crossref_primary_10_1016_j_scitotenv_2025_178702
crossref_primary_10_1016_j_jenvman_2023_117769
crossref_primary_10_1111_gcb_15988
crossref_primary_10_1111_geb_13408
crossref_primary_10_3390_grasses1010002
crossref_primary_10_1002_ldr_4910
crossref_primary_10_1016_j_scitotenv_2022_153380
crossref_primary_10_1016_j_agee_2024_109442
crossref_primary_10_1111_1365_2745_14323
crossref_primary_10_1073_pnas_2211317119
crossref_primary_10_1111_1365_2745_13871
crossref_primary_10_3390_su14106078
crossref_primary_10_1126_science_abo2380
crossref_primary_10_1016_j_ecolind_2023_110801
crossref_primary_10_1038_s41559_024_02327_6
crossref_primary_10_1038_s42003_023_05607_2
Cites_doi 10.1016/0038-0717(78)90099-8
10.1038/nature13144
10.1016/S0031-0182(01)00359-5
10.1111/j.1526-100X.2009.00599.x
10.1890/0012-9658(2001)082[2045:TIOHOP]2.0.CO;2
10.1007/s10533-007-9132-0
10.1016/j.agee.2011.03.009
10.1007/s10533-004-0370-0
10.2307/1939308
10.1016/j.agee.2007.08.008
10.1038/nplants.2015.80
10.1007/s11258-014-0438-4
10.1890/11-2070.1
10.1007/s00267-003-9106-5
10.1007/s10021-013-9715-7
10.1007/s00265-010-1035-8
10.1890/0012-9658(1998)079[0165:HEOPAN]2.0.CO;2
10.1002/sim.3107
10.1016/S0169-5347(98)01364-0
10.1002/joc.1276
10.2307/2937150
10.1038/s41559-017-0118
10.2307/1942578
10.1111/2041-210X.12125
10.1126/sciadv.1400103
10.1890/02-0274
10.1111/gcb.12370
10.2307/2265835
10.1111/gcb.12144
10.1007/s10021-019-00350-4
10.1021/acs.est.7b01427
10.1890/0012-9658(2001)082[1319:FLIEHF]2.0.CO;2
10.1007/s00442-003-1402-5
10.1007/BF02861083
10.1007/s11104-005-2554-3
10.7717/peerj.233
10.2111/08-255.1
10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
10.1023/A:1010760720215
10.1038/ncomms7707
10.1890/12-0114.1
10.1016/j.geoderma.2007.09.004
10.1111/ele.13258
10.1890/0012-9658(2002)083[0602:CCOGPP]2.0.CO;2
10.1029/2007GB003168
10.1038/nature20150
10.1111/1365-2745.12236
10.1890/12-0292.1
10.1007/s00442-010-1899-3
10.1111/j.1600-0587.2012.07348.x
10.1038/s41598-017-17348-4
10.1073/pnas.1502556112
10.1016/j.baae.2006.07.001
10.1007/s10533-016-0191-y
10.1890/0012-9658(1998)079[2242:GOANCW]2.0.CO;2
10.1890/0012-9658(1997)078[2238:EONGOG]2.0.CO;2
10.2307/1313313
10.1890/04-0268
10.1016/j.ppees.2012.12.001
10.1016/S0378-1127(03)00133-6
10.1038/s41561-018-0258-6
10.1111/gcb.13431
10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
10.1081/CSS-100103897
10.1126/science.1251817
10.1079/9781845938093.0003
10.1111/j.1469-185X.2011.00185.x
10.1023/A:1010653913530
10.1007/BF00317727
10.1890/12-0279.1
10.2307/2265518
10.1017/CBO9780511617461.012
10.1126/science.1091390
10.1016/0038-0717(92)90061-2
10.1111/j.1461-0248.2008.01250.x
10.1007/978-1-4614-7501-9_14
10.5194/bg-15-5929-2018
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd
2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd
– notice: 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
5PM
DOI 10.1111/gcb.15023
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
DocumentTitleAlternate SITTERS et al
EISSN 1365-2486
EndPage 2071
ExternalDocumentID PMC7155038
32012421
10_1111_gcb_15023
GCB15023
Genre article
Journal Article
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  funderid: 019.181EN.01; 863.14.013
– fundername: National Science Foundation
  funderid: NSF‐DEB‐1042132; NSF‐DEB‐1234162
– fundername: Fonds Wetenschappelijk Onderzoek
  funderid: 12N2615N
– fundername: Deutsche Forschungsgemeinschaft
  funderid: FZT 118
– fundername: Strategic Resources of the Netherlands Institute of Ecology
– fundername: Institute on the Environment, University of Minnesota
  funderid: DG‐0001‐13
– fundername: National Science Foundation
  grantid: NSF-DEB-1042132
– fundername: Fonds Wetenschappelijk Onderzoek
  grantid: 12N2615N
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  grantid: 863.14.013
– fundername: National Science Foundation
  grantid: NSF-DEB-1234162
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  grantid: 019.181EN.01
– fundername: Deutsche Forschungsgemeinschaft
  grantid: FZT 118
– fundername: Institute on the Environment, University of Minnesota
  grantid: DG-0001-13
– fundername: ;
  grantid: 12N2615N
– fundername: ;
  grantid: 019.181EN.01; 863.14.013
– fundername: ;
  grantid: DG‐0001‐13
– fundername: ;
  grantid: NSF‐DEB‐1042132; NSF‐DEB‐1234162
– fundername: ;
  grantid: FZT 118
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
AEUQT
AFPWT
ESX
NPM
WRC
WUP
7SN
7UA
C1K
F1W
H97
L.G
7X8
5PM
ID FETCH-LOGICAL-c4433-571714c36ae996a84685b5f04cff19b0c76647041c16023a7f49f19fac94dada3
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Thu Aug 21 18:05:54 EDT 2025
Fri Jul 11 07:05:29 EDT 2025
Sun Jul 13 04:34:18 EDT 2025
Wed Feb 19 02:31:06 EST 2025
Tue Jul 01 03:53:03 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Sun Jul 06 04:45:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords nutrient dynamics
fertilization
grazing
global change
carbon sequestration
herbivory
soil microorganisms
exclosure
Nutrient Network (NutNet)
nutrient enrichment
Language English
License Attribution
2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4433-571714c36ae996a84685b5f04cff19b0c76647041c16023a7f49f19fac94dada3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Judith Sitters and E. R. Jasper Wubs should be considered joint first author.
ORCID 0000-0003-2171-7898
0000-0003-2926-5339
0000-0001-9720-4146
0000-0003-3920-0029
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.15023
PMID 32012421
PQID 2377253977
PQPubID 30327
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7155038
proquest_miscellaneous_2350910245
proquest_journals_2377253977
pubmed_primary_32012421
crossref_primary_10_1111_gcb_15023
crossref_citationtrail_10_1111_gcb_15023
wiley_primary_10_1111_gcb_15023_GCB15023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
John Wiley and Sons Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley and Sons Inc
References 1998; 48
2017; 7
2017; 1
2010; 18
2019; 12
1993; 63
1995; 76
2016; 540
2008; 143
2010; 63
2005; 25
1996; 77
2013; 19
2004; 33
2004; 138
2014; 5
2013; 15
2004; 70
2014; 2
2000
2019; 22
2002; 83
2000; 10
2013; 94
2008; 27
1993; 74
2016; 113
2007; 8
2011; 65
1985; 51
2006; 280
2015; 216
2014; 17
1985; 55
2003; 84
2001; 53
2011; 165
2001; 54
1998; 13
2009; 23
2015; 1
2015; 6
2011
1978; 10
2010
2013; 83
2002; 177
2017; 23
2006
2005
2016; 127
2008; 11
2002
2008; 124
2017; 51
2012; 93
2001; 82
2014; 508
2013; 36
1997; 78
1993; 96
2003; 181
1992; 24
2014
2007; 85
2003; 302
2005; 15
2011; 141
2014; 345
2012; 87
2018; 15
2001; 32
1998; 79
2014; 102
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
IPCC (e_1_2_8_37_1) 2014
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Bardgett R. D. (e_1_2_8_8_1) 2010
Burnham K. (e_1_2_8_13_1) 2002
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
Souttie J. (e_1_2_8_69_1) 2005
e_1_2_8_14_1
e_1_2_8_35_1
White R. (e_1_2_8_81_1) 2000
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 13
  start-page: 261
  issue: 7
  year: 1998
  end-page: 265
  article-title: Effects of herbivores on grassland plant diversity
  publication-title: Trends in Ecology & Evolution
– volume: 8
  start-page: 354
  issue: 4
  year: 2007
  end-page: 363
  article-title: Patch choice of avian herbivores along a migration trajectory – From Temperate to Arctic
  publication-title: Basic and Applied Ecology
– volume: 216
  start-page: 307
  issue: 2
  year: 2015
  end-page: 318
  article-title: Functional trait expression of grassland species shift with short‐ and long‐term nutrient additions
  publication-title: Plant Ecology
– volume: 82
  start-page: 1319
  issue: 5
  year: 2001
  end-page: 1329
  article-title: Feedback loops in ecological hierarchies following urine deposition in tallgrass prairie
  publication-title: Ecology
– volume: 54
  start-page: 1
  issue: 1
  year: 2001
  end-page: 39
  article-title: Physical and biogeochemical controls over terrestrial ecosystem responses to nitrogen deposition
  publication-title: Biogeochemistry
– volume: 36
  start-page: 27
  issue: 1
  year: 2013
  end-page: 46
  article-title: Collinearity: A review of methods to deal with it and a simulation study evaluating their performance
  publication-title: Ecography
– volume: 12
  start-page: 46
  issue: 1
  year: 2019
  end-page: 53
  article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input
  publication-title: Nature Geoscience
– year: 2005
– volume: 27
  start-page: 2865
  issue: 15
  year: 2008
  end-page: 2873
  article-title: Scaling regression inputs by dividing by two standard deviations
  publication-title: Statistics in Medicine
– volume: 55
  start-page: 259
  issue: 3
  year: 1985
  end-page: 294
  article-title: Ecology of a grazing ecosystem – The Serengeti
  publication-title: Ecological Monographs
– volume: 1
  issue: 7
  year: 2015
  article-title: Grassland productivity limited by multiple nutrients
  publication-title: Nature Plants
– volume: 94
  start-page: 726
  issue: 3
  year: 2013
  end-page: 738
  article-title: Responses of ecosystem carbon cycle to experimental warming: A meta‐analysis
  publication-title: Ecology
– volume: 124
  start-page: 33
  issue: 1–2
  year: 2008
  end-page: 39
  article-title: Changes in soil properties and vegetation following exclosure and grazing in degraded Alxa desert steppe of Inner Mongolia, China
  publication-title: Agriculture Ecosystems & Environment
– volume: 51
  start-page: 163
  issue: 2
  year: 1985
  end-page: 201
  article-title: Rise of the grassland biome, central North America
  publication-title: Botanical Review
– volume: 79
  start-page: 2242
  issue: 7
  year: 1998
  end-page: 2252
  article-title: Grazing optimization and nutrient cycling: When do herbivores enhance plant production?
  publication-title: Ecology
– volume: 23
  year: 2009
  article-title: Grazing effects on belowground C and N stocks along a network of cattle exclosures in temperate and subtropical grasslands of South America
  publication-title: Global Biogeochemical Cycles
– volume: 77
  start-page: 974
  issue: 3
  year: 1996
  end-page: 977
  article-title: How can net primary productivity be measured in grazing ecosystems?
  publication-title: Ecology
– volume: 18
  start-page: 205
  year: 2010
  end-page: 216
  article-title: Nitrogen depletion and redistribution by free‐ranging cattle in the restoration process of mosaic landscapes: The role of foraging strategy and habitat proportion
  publication-title: Restoration Ecology
– volume: 33
  start-page: 485
  issue: 4
  year: 2004
  end-page: 495
  article-title: Response of organic and inorganic carbon and nitrogen to long‐term grazing of the shortgrass steppe
  publication-title: Environmental Management
– volume: 508
  start-page: 517
  issue: 7497
  year: 2014
  end-page: 520
  article-title: Herbivores and nutrients control grassland plant diversity via light limitation
  publication-title: Nature
– volume: 32
  start-page: 633
  issue: 5–6
  year: 2001
  end-page: 642
  article-title: Standard procedure in the hydrometer method for particle size analysis
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 540
  start-page: 104
  issue: 7631
  year: 2016
  end-page: 109
  article-title: Quantifying global soil carbon losses in response to warming
  publication-title: Nature
– volume: 17
  start-page: 344
  issue: 2
  year: 2014
  end-page: 359
  article-title: Animating the carbon cycle
  publication-title: Ecosystems
– start-page: 151
  year: 2014
– volume: 87
  start-page: 72
  issue: 1
  year: 2012
  end-page: 94
  article-title: Carbon storage in terrestrial ecosystems: Do browsing and grazing herbivores matter?
  publication-title: Biological Reviews
– volume: 280
  start-page: 77
  issue: 1–2
  year: 2006
  end-page: 90
  article-title: Grazing and ecosystem carbon storage in the North American Great Plains
  publication-title: Plant and Soil
– volume: 25
  start-page: 1965
  issue: 15
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 82
  start-page: 2045
  issue: 7
  year: 2001
  end-page: 2058
  article-title: The impact of herbivory on plants in different resource conditions: A meta‐analysis
  publication-title: Ecology
– volume: 19
  start-page: 3677
  issue: 12
  year: 2013
  end-page: 3687
  article-title: Predicting invasion in grassland ecosystems: Is exotic dominance the real embarrassment of richness?
  publication-title: Global Change Biology
– volume: 83
  start-page: 602
  issue: 3
  year: 2002
  end-page: 606
  article-title: Consumer control of grassland plant production
  publication-title: Ecology
– start-page: 289
  year: 2006
  end-page: 319
– volume: 79
  start-page: 165
  issue: 1
  year: 1998
  end-page: 177
  article-title: Herbivore effects on plant and nitrogen dynamics in oak savanna
  publication-title: Ecology
– volume: 53
  start-page: 51
  issue: 1
  year: 2001
  end-page: 77
  article-title: The distribution of soil nutrients with depth: Global patterns and the imprint of plants
  publication-title: Biogeochemistry
– volume: 63
  start-page: 327
  issue: 4
  year: 1993
  end-page: 366
  article-title: Quantitative effects of grazing on vegetation and soils over a global range of environments
  publication-title: Ecological Monographs
– volume: 1
  issue: 5
  year: 2017
  article-title: A decade of insights into grassland ecosystem responses to global environmental change
  publication-title: Nature Ecology & Evolution
– volume: 6
  year: 2015
  article-title: Plant diversity increases soil microbial activity and soil carbon storage
  publication-title: Nature Communications
– volume: 181
  start-page: 189
  year: 2003
  end-page: 204
  article-title: Do ungulates accelerate or decelerate nitrogen cycling?
  publication-title: Forest Ecology and Management
– volume: 85
  start-page: 235
  issue: 3
  year: 2007
  end-page: 252
  article-title: C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass?
  publication-title: Biogeochemistry
– volume: 15
  start-page: 87
  issue: 1
  year: 2005
  end-page: 95
  article-title: Multi‐decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah
  publication-title: Ecological Applications
– volume: 65
  start-page: 77
  issue: 1
  year: 2011
  end-page: 89
  article-title: Model selection and model averaging in behavioural ecology: The utility of the IT‐AIC framework
  publication-title: Behavioral Ecology and Sociobiology
– volume: 23
  start-page: 1167
  issue: 3
  year: 2017
  end-page: 1179
  article-title: Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta‐analysis
  publication-title: Global Change Biology
– volume: 5
  start-page: 65
  issue: 1
  year: 2014
  end-page: 73
  article-title: Finding generality in ecology: A model for globally distributed experiments
  publication-title: Methods in Ecology and Evolution
– volume: 15
  start-page: 32
  issue: 1
  year: 2013
  end-page: 44
  article-title: An integrated perspective to explain nitrogen mineralization in grazed ecosystems
  publication-title: Perspectives in Plant Ecology Evolution and Systematics
– volume: 2
  year: 2014
  article-title: Plant compensation to grazing and soil carbon dynamics in a tropical grassland
  publication-title: Peerj
– volume: 82
  start-page: 2397
  issue: 9
  year: 2001
  end-page: 2402
  article-title: Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass
  publication-title: Ecology
– volume: 74
  start-page: 467
  issue: 2
  year: 1993
  end-page: 480
  article-title: Moose browsing and soil fertility in the boreal forests of Isle Royale National Park
  publication-title: Ecology
– volume: 51
  start-page: 4738
  issue: 9
  year: 2017
  end-page: 4739
  article-title: Sequestering soil organic carbon: A nitrogen dilemma
  publication-title: Environmental Science & Technology
– volume: 22
  start-page: 1466
  issue: 7
  year: 2019
  end-page: 1477
  article-title: Belowground biomass response to nutrient enrichment depends on light limitation across globally distributed grasslands
  publication-title: Ecosystems
– volume: 113
  start-page: 898
  issue: 4
  year: 2016
  end-page: 906
  article-title: Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 93
  start-page: 2030
  issue: 9
  year: 2012
  end-page: 2036
  article-title: Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition
  publication-title: Ecology
– volume: 22
  start-page: 936
  issue: 6
  year: 2019
  end-page: 945
  article-title: Sensitivity of global soil carbon stocks to combined nutrient enrichment
  publication-title: Ecology Letters
– volume: 48
  start-page: 513
  issue: 7
  year: 1998
  end-page: 521
  article-title: The ecology of the Earth’s grazing ecosystems
  publication-title: BioScience
– volume: 15
  start-page: 5929
  issue: 19
  year: 2018
  end-page: 5949
  article-title: Reviews and syntheses: Carbon use efficiency from organisms to ecosystems – Definitions, theories, and empirical evidence
  publication-title: Biogeosciences
– volume: 84
  start-page: 2258
  issue: 9
  year: 2003
  end-page: 2268
  article-title: Herbivore‐mediated linkages between aboveground and belowground communities
  publication-title: Ecology
– volume: 19
  start-page: 1347
  issue: 5
  year: 2013
  end-page: 1357
  article-title: Effects of grazing on grassland soil carbon: A global review
  publication-title: Global Change Biology
– volume: 94
  start-page: 106
  issue: 1
  year: 2013
  end-page: 116
  article-title: Nutrients and defoliation increase soil carbon inputs in grassland
  publication-title: Ecology
– volume: 83
  start-page: 195
  issue: 2
  year: 2013
  end-page: 219
  article-title: N balance and cycling of Inner Mongolia typical steppe: A comprehensive case study of grazing effects
  publication-title: Ecological Monographs
– volume: 10
  start-page: 423
  issue: 2
  year: 2000
  end-page: 436
  article-title: The vertical distribution of soil organic carbon and its relation to climate and vegetation
  publication-title: Ecological Applications
– volume: 102
  start-page: 896
  issue: 4
  year: 2014
  end-page: 904
  article-title: Land management trumps the effects of climate change and elevated CO on grassland functioning
  publication-title: Journal of Ecology
– volume: 177
  start-page: 183
  issue: 1–2
  year: 2002
  end-page: 198
  article-title: The origins and evolution of the North American grassland biome: The story from the hoofed mammals
  publication-title: Palaeogeography Palaeoclimatology Palaeoecology
– year: 2000
– start-page: 3
  year: 2011
  end-page: 18
– volume: 138
  start-page: 91
  issue: 1
  year: 2004
  end-page: 101
  article-title: Impact of herbivores on nitrogen cycling: Contrasting effects of small and large species
  publication-title: Oecologia
– volume: 24
  start-page: 1113
  issue: 11
  year: 1992
  end-page: 1118
  article-title: Automated measurement of the respiratory response of soil microcompartments – Active microbial biomass in earthworm feces
  publication-title: Soil Biology & Biochemistry
– volume: 63
  start-page: 109
  issue: 1
  year: 2010
  end-page: 119
  article-title: Pathways of grazing effects on soil organic carbon and nitrogen
  publication-title: Rangeland Ecology & Management
– year: 2010
– volume: 143
  start-page: 63
  issue: 1–2
  year: 2008
  end-page: 72
  article-title: Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (PR China)
  publication-title: Geoderma
– start-page: 389
  year: 2014
  end-page: 423
– volume: 345
  start-page: 401
  issue: 6195
  year: 2014
  end-page: 406
  article-title: Defaunation in the Anthropocene
  publication-title: Science
– volume: 302
  start-page: 1512
  issue: 5650
  year: 2003
  end-page: 1513
  article-title: Nitrogen and climate change
  publication-title: Science
– volume: 165
  start-page: 1095
  issue: 4
  year: 2011
  end-page: 1107
  article-title: Large herbivores may alter vegetation structure of semi‐arid savannas through soil nutrient mediation
  publication-title: Oecologia
– year: 2002
– volume: 96
  start-page: 157
  issue: 2
  year: 1993
  end-page: 161
  article-title: Evidence for the promotion of aboveground grassland production by native large herbivores in Yellowstone National Park
  publication-title: Oecologia
– volume: 10
  start-page: 215
  year: 1978
  end-page: 221
  article-title: A physiological method for the quantitative measurement of microbial biomass in soils
  publication-title: Soil Biology and Biochemistry
– volume: 76
  start-page: 2648
  issue: 8
  year: 1995
  end-page: 2655
  article-title: Responses of legumes to herbivores and nutrients during succession on a nitrogen‐poor soil
  publication-title: Ecology
– volume: 141
  start-page: 310
  issue: 3–4
  year: 2011
  end-page: 322
  article-title: Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie
  publication-title: Agriculture Ecosystems & Environment
– volume: 70
  start-page: 153
  issue: 2
  year: 2004
  end-page: 226
  article-title: Nitrogen cycles: Past, present, and future
  publication-title: Biogeochemistry
– volume: 7
  start-page: 17196
  year: 2017
  article-title: The consequences of replacing wildlife with livestock in Africa
  publication-title: Scientific Reports
– volume: 1
  year: 2015
  article-title: Collapse of the world’s largest herbivores
  publication-title: Science Advances
– volume: 78
  start-page: 2238
  issue: 7
  year: 1997
  end-page: 2248
  article-title: Effects of native grazers on grassland N cycling in Yellowstone National Park
  publication-title: Ecology
– volume: 11
  start-page: 1351
  issue: 12
  year: 2008
  end-page: 1363
  article-title: Global change and species interactions in terrestrial ecosystems
  publication-title: Ecology Letters
– volume: 127
  start-page: 173
  issue: 2–3
  year: 2016
  end-page: 188
  article-title: Microbial carbon use efficiency: Accounting for population, community, and ecosystem‐scale controls over the fate of metabolized organic matter
  publication-title: Biogeochemistry
– ident: e_1_2_8_2_1
  doi: 10.1016/0038-0717(78)90099-8
– ident: e_1_2_8_12_1
  doi: 10.1038/nature13144
– ident: e_1_2_8_38_1
  doi: 10.1016/S0031-0182(01)00359-5
– ident: e_1_2_8_80_1
  doi: 10.1111/j.1526-100X.2009.00599.x
– ident: e_1_2_8_33_1
  doi: 10.1890/0012-9658(2001)082[2045:TIOHOP]2.0.CO;2
– ident: e_1_2_8_15_1
  doi: 10.1007/s10533-007-9132-0
– ident: e_1_2_8_74_1
  doi: 10.1016/j.agee.2011.03.009
– volume-title: Pilot analysis of global ecosystems: Grassland ecosystems technical report
  year: 2000
  ident: e_1_2_8_81_1
– ident: e_1_2_8_28_1
  doi: 10.1007/s10533-004-0370-0
– ident: e_1_2_8_53_1
  doi: 10.2307/1939308
– ident: e_1_2_8_54_1
  doi: 10.1016/j.agee.2007.08.008
– ident: e_1_2_8_22_1
  doi: 10.1038/nplants.2015.80
– ident: e_1_2_8_41_1
  doi: 10.1007/s11258-014-0438-4
– ident: e_1_2_8_83_1
  doi: 10.1890/11-2070.1
– volume-title: Aboveground‐belowground linkages: Biotic interactions, ecosystem processes, and global change
  year: 2010
  ident: e_1_2_8_8_1
– ident: e_1_2_8_57_1
  doi: 10.1007/s00267-003-9106-5
– ident: e_1_2_8_64_1
  doi: 10.1007/s10021-013-9715-7
– ident: e_1_2_8_58_1
  doi: 10.1007/s00265-010-1035-8
– ident: e_1_2_8_62_1
  doi: 10.1890/0012-9658(1998)079[0165:HEOPAN]2.0.CO;2
– ident: e_1_2_8_29_1
  doi: 10.1002/sim.3107
– ident: e_1_2_8_50_1
  doi: 10.1016/S0169-5347(98)01364-0
– ident: e_1_2_8_35_1
  doi: 10.1002/joc.1276
– ident: e_1_2_8_48_1
  doi: 10.2307/2937150
– volume-title: Model selection and multimodel inference: A practical information‐theoretic approach
  year: 2002
  ident: e_1_2_8_13_1
– ident: e_1_2_8_10_1
  doi: 10.1038/s41559-017-0118
– ident: e_1_2_8_45_1
  doi: 10.2307/1942578
– ident: e_1_2_8_11_1
  doi: 10.1111/2041-210X.12125
– ident: e_1_2_8_59_1
  doi: 10.1126/sciadv.1400103
– ident: e_1_2_8_7_1
  doi: 10.1890/02-0274
– ident: e_1_2_8_66_1
  doi: 10.1111/gcb.12370
– ident: e_1_2_8_61_1
  doi: 10.2307/2265835
– ident: e_1_2_8_47_1
  doi: 10.1111/gcb.12144
– ident: e_1_2_8_14_1
  doi: 10.1007/s10021-019-00350-4
– ident: e_1_2_8_79_1
  doi: 10.1021/acs.est.7b01427
– ident: e_1_2_8_71_1
  doi: 10.1890/0012-9658(2001)082[1319:FLIEHF]2.0.CO;2
– ident: e_1_2_8_6_1
  doi: 10.1007/s00442-003-1402-5
– ident: e_1_2_8_5_1
  doi: 10.1007/BF02861083
– ident: e_1_2_8_19_1
  doi: 10.1007/s11104-005-2554-3
– ident: e_1_2_8_60_1
  doi: 10.7717/peerj.233
– ident: e_1_2_8_56_1
  doi: 10.2111/08-255.1
– ident: e_1_2_8_39_1
  doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
– ident: e_1_2_8_40_1
  doi: 10.1023/A:1010760720215
– ident: e_1_2_8_42_1
  doi: 10.1038/ncomms7707
– ident: e_1_2_8_31_1
  doi: 10.1890/12-0114.1
– ident: e_1_2_8_70_1
  doi: 10.1016/j.geoderma.2007.09.004
– ident: e_1_2_8_16_1
  doi: 10.1111/ele.13258
– ident: e_1_2_8_25_1
  doi: 10.1890/0012-9658(2002)083[0602:CCOGPP]2.0.CO;2
– ident: e_1_2_8_55_1
  doi: 10.1029/2007GB003168
– ident: e_1_2_8_17_1
  doi: 10.1038/nature20150
– ident: e_1_2_8_75_1
  doi: 10.1111/1365-2745.12236
– ident: e_1_2_8_23_1
  doi: 10.1890/12-0292.1
– ident: e_1_2_8_78_1
  doi: 10.1007/s00442-010-1899-3
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1600-0587.2012.07348.x
– ident: e_1_2_8_34_1
  doi: 10.1038/s41598-017-17348-4
– start-page: 151
  volume-title: Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change
  year: 2014
  ident: e_1_2_8_37_1
– ident: e_1_2_8_72_1
  doi: 10.1073/pnas.1502556112
– ident: e_1_2_8_77_1
  doi: 10.1016/j.baae.2006.07.001
– ident: e_1_2_8_30_1
  doi: 10.1007/s10533-016-0191-y
– ident: e_1_2_8_18_1
  doi: 10.1890/0012-9658(1998)079[2242:GOANCW]2.0.CO;2
– ident: e_1_2_8_24_1
  doi: 10.1890/0012-9658(1997)078[2238:EONGOG]2.0.CO;2
– ident: e_1_2_8_27_1
  doi: 10.2307/1313313
– ident: e_1_2_8_49_1
  doi: 10.1890/04-0268
– volume-title: Grasslands of the world
  year: 2005
  ident: e_1_2_8_69_1
– ident: e_1_2_8_65_1
  doi: 10.1016/j.ppees.2012.12.001
– ident: e_1_2_8_67_1
  doi: 10.1016/S0378-1127(03)00133-6
– ident: e_1_2_8_68_1
  doi: 10.1038/s41561-018-0258-6
– ident: e_1_2_8_82_1
  doi: 10.1111/gcb.13431
– ident: e_1_2_8_32_1
  doi: 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2
– ident: e_1_2_8_3_1
  doi: 10.1081/CSS-100103897
– ident: e_1_2_8_20_1
  doi: 10.1126/science.1251817
– ident: e_1_2_8_51_1
  doi: 10.1079/9781845938093.0003
– ident: e_1_2_8_73_1
  doi: 10.1111/j.1469-185X.2011.00185.x
– ident: e_1_2_8_4_1
  doi: 10.1023/A:1010653913530
– ident: e_1_2_8_26_1
  doi: 10.1007/BF00317727
– ident: e_1_2_8_43_1
  doi: 10.1890/12-0279.1
– ident: e_1_2_8_46_1
  doi: 10.2307/2265518
– ident: e_1_2_8_52_1
  doi: 10.1017/CBO9780511617461.012
– ident: e_1_2_8_36_1
  doi: 10.1126/science.1091390
– ident: e_1_2_8_63_1
  doi: 10.1016/0038-0717(92)90061-2
– ident: e_1_2_8_76_1
  doi: 10.1111/j.1461-0248.2008.01250.x
– ident: e_1_2_8_9_1
  doi: 10.1007/978-1-4614-7501-9_14
– ident: e_1_2_8_44_1
  doi: 10.5194/bg-15-5929-2018
SSID ssj0003206
Score 2.5247302
Snippet Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2060
SubjectTerms Atmospheric models
Availability
Biological activity
Biological fertilization
Carbon
carbon sequestration
Climate change
Climate models
exclosure
Fertilization
Fluxes
global change
Grasslands
grazing
Herbivores
Herbivory
Human influences
Mammals
Microbial activity
Micronutrients
Microorganisms
Nitrogen
Nutrient availability
Nutrient concentrations
Nutrient cycles
nutrient dynamics
Nutrient enrichment
Nutrient Network (NutNet)
Nutrients
Organic matter
Plant biomass
Pools
Populations
Primary
Primary s
Scale models
Soil
soil microorganisms
Soil nutrients
Soil temperature
Soils
Storage
Temperature
Title Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.15023
https://www.ncbi.nlm.nih.gov/pubmed/32012421
https://www.proquest.com/docview/2377253977
https://www.proquest.com/docview/2350910245
https://pubmed.ncbi.nlm.nih.gov/PMC7155038
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD7MgeCL06vT6hxRRHzppWnSpsWn7bI5BIeIgz0IJUmbWXZvu7X3DuZf70n6Y7tOQXxrySlt0--k30lOvgPwNs0DrVO79G9Y6PNcpr4MjPIjzUNuYs2odlm-x_HRCf90Gp1uwIdhL0ynDzFOuFnPcOO1dXCp2ltOfqbVFNlMaJU-ba6WJURfb6SjWOjqalIWcRxqKOtVhWwWz3jl-r_oDsG8myd5m7-6H9DhFnwfHr3LOzmfrpZqqn_-pur4n-_2CB72xJTsdUh6DBtFNYH7XanK6wlsH9zsiEOzfkhoJ-B9RtpdN86MvCOzeYkc2J09gctjq_WPVxB5Jct5Jwl-Tfr0-JYg-STdNk1SG7KQi4WbdSGII1Ve1U3RkroibV3OiZaNwmNZ5QQHoaZG3BNbHqwlZUXOGgwB3Kblp3ByePBtduT3NR58zTljfiRsBXbNYllg5CWRDSWRikzAtTE0VYEWccxFwKmmMfaHFIan2GCkThFYuWTbsFnVVfEcCDd5SlmeSy0Fz4VMkjgxGGJqQQuFXMCD98PXznQvgG7rcMyzIRDCbs9ct3vwZjS96FQ__mS0M0Am6x2_zUKG4UpkWbUHr8dmdFm7DiOrol5ZG8fSQh558KxD2HgXhC21q_QeiDXsjQZWDny9pSp_OFlwYaNNluBrOmj9_cGzj7N9d_Di301fwoPQzjS4nKUd2Fw2q-IV0rGl2oV7If-y67zvFwP4NLc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXHgulgQIGIcQlqzh2XhIXWFoWaPeAWqkXFNlOXCJ2k5LsViq_nrHzaJeChLgl8kRJnG-cb-zxNwAvk8xTKjFL_5r5Ls9E4gpPSzdQ3Oc6VIwqm-U7C6dH_NNxcLwBb_q9MK0-xDDhZjzDjtfGwc2E9CUvP1FyjHTGZ9fguqnobZTz33-5EI9ivq2sSVnAcbChrNMVMnk8w6Xrf6MrFPNqpuRlBmt_QXt34Gv_8G3myffxainH6udvuo7_-3Z34XbHTcnbFkz3YCMvR3CjrVZ5PoKt3YtNcWjWjQrNCJwDZN5Vbc3IKzKZF0iD7dl9-DEzcv94BRFnopi3quDnpMuQbwjyT9Lu1CSVJguxWNiJF4JQksVZVecNqUrSVMWcKFFLPBZlRnAcqiuEPjEVwhpSlOSkxijA7lt-AEd7u4eTqduVeXAV54y5QWSKsCsWihyDL4GEKA5koD2utKaJ9FQUhjzyOFU0xP4QkeYJNmihEsRWJtgWbJZVmW8D4TpLKMsyoUTEs0jEcRhrjDJVRHOJdMCB1_3nTlWngW5KcczTPhbCbk9ttzvwYjA9bYU__mS002Mm7Xy_SX2GEUtgiLUDz4dm9FqzFCPKvFoZG0vUfB448LCF2HAXxC01C_UORGvgGwyMIvh6S1l8s8rgkQk4WYyvabH19wdPP0ze2YNH_276DG5ODw_20_2Ps8-P4ZZvJh5sCtMObC7rVf4E2dlSPrVO-AvdLDf8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIhAXBAstgRYGhBCXVEnsxIk40aVLea16oFJvkWPHbaTdpCRtpf57xk42dFWQuCXyWHnMjP2N5wXwNtOBUpl1_RsW-VzLzJeBKfxY8YibRLFQuSjfeXJ4zL-exCcb8GGVC9PXhxgP3KxmuPXaKvi5NjeU_FQVe4RmInYH7lpnn43nivjRuAyzyDXWDFnMaa0J2VBWyIbxjFPXN6NbCPN2oORNAOt2oNkjeDhAR_zY8_oxbJT1BO71zSSvJ7B18CdnjcgGpe0m4P0gYNy0jgzf4XRREUp1d0_g19xW46cZKK9kteiLdl_jEMDeIcFD7BMpsTG4lMulOxdB4nRRXTVkq2NTY9dUC1SyLeha1hppmWgbkky0Dbw6rGo8bQmku7Tip3A8O_g5PfSHLgy-4pwxPxa2R7piiSzJNpKEV9K4iE3AlTFhVgRKJAkXAQ9VmNAvlcLwjAaMVBmxXku2BZt1U5fPALnRWci0lkoKroVM0yQ1ZAQqEZYF7dYevF-xI1dDiXLbKWORr0wV4lzuOOfBm5H0vK_L8TeinRVP80E1uzxiZFDEFvd68HocJqWynhJZl82lpXE4KuKxB9u9CIxPIbkKrR_dA7EmHCOBLdi9PlJXZ65wt7D2IEvpM50Y_fvF88_TfXfx_P9JX8H9o0-z_PuX-bcX8CCyxwIuwGgHNi_ay3KXsNNF8dLpyG-ntBaS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nutrient+availability+controls+the+impact+of+mammalian+herbivores+on+soil+carbon+and+nitrogen+pools+in+grasslands&rft.jtitle=Global+change+biology&rft.au=Sitters%2C+Judith&rft.au=Wubs%2C+E+R+Jasper&rft.au=Bakker%2C+Elisabeth+S&rft.au=Crowther%2C+Thomas+W&rft.date=2020-04-01&rft.eissn=1365-2486&rft_id=info:doi/10.1111%2Fgcb.15023&rft_id=info%3Apmid%2F32012421&rft.externalDocID=32012421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon