Automated T2 relaxometry of the hippocampus for temporal lobe epilepsy
Summary Objective Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentati...
Saved in:
Published in | Epilepsia (Copenhagen) Vol. 58; no. 9; pp. 1645 - 1652 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.09.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Objective
Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentation for volumetry has been automated, T2 relaxometry currently involves subjective and time‐consuming manual delineation of regions of interest. In this work, we develop and validate an automated technique for hippocampal T2 relaxometry.
Methods
Fifty patients with unilateral or bilateral HS and 50 healthy controls underwent T1‐weighted and dual‐echo fast recovery fast spin echo scans. Hippocampi were automatically segmented using a multi‐atlas–based segmentation algorithm (STEPS) and a template database. Voxelwise T2 maps were determined using a monoexponential fit. The hippocampal segmentations were registered to the T2 maps and eroded to reduce partial volume effect. Voxels with T2 >170 msec excluded to minimize cerebrospinal fluid (CSF) contamination. Manual determination of T2 values was performed twice in each subject. Twenty controls underwent repeat scans to assess interscan reproducibility.
Results
Hippocampal T2 values were reliably determined using the automated method. There was a significant ipsilateral increase in T2 values in HS (p < 0.001), and a smaller but significant contralateral increase. The combination of hippocampal volumes and T2 values separated the groups well. There was a strong correlation between automated and manual methods for hippocampal T2 measurement (0.917 left, 0.896 right, both p < 0.001). Interscan reproducibility was superior for automated compared to manual measurements.
Significance
Automated hippocampal segmentation can be reliably extended to the determination of hippocampal T2 values, and a combination of hippocampal volumes and T2 values can separate subjects with HS from healthy controls. There is good agreement with manual measurements, and the technique is more reproducible on repeat scans than manual measurement. This protocol can be readily introduced into a clinical workflow for the assessment of patients with focal epilepsy. |
---|---|
AbstractList | Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentation for volumetry has been automated, T2 relaxometry currently involves subjective and time-consuming manual delineation of regions of interest. In this work, we develop and validate an automated technique for hippocampal T2 relaxometry.
Fifty patients with unilateral or bilateral HS and 50 healthy controls underwent T
-weighted and dual-echo fast recovery fast spin echo scans. Hippocampi were automatically segmented using a multi-atlas-based segmentation algorithm (STEPS) and a template database. Voxelwise T2 maps were determined using a monoexponential fit. The hippocampal segmentations were registered to the T2 maps and eroded to reduce partial volume effect. Voxels with T2 >170 msec excluded to minimize cerebrospinal fluid (CSF) contamination. Manual determination of T2 values was performed twice in each subject. Twenty controls underwent repeat scans to assess interscan reproducibility.
Hippocampal T2 values were reliably determined using the automated method. There was a significant ipsilateral increase in T2 values in HS (p < 0.001), and a smaller but significant contralateral increase. The combination of hippocampal volumes and T2 values separated the groups well. There was a strong correlation between automated and manual methods for hippocampal T2 measurement (0.917 left, 0.896 right, both p < 0.001). Interscan reproducibility was superior for automated compared to manual measurements.
Automated hippocampal segmentation can be reliably extended to the determination of hippocampal T2 values, and a combination of hippocampal volumes and T2 values can separate subjects with HS from healthy controls. There is good agreement with manual measurements, and the technique is more reproducible on repeat scans than manual measurement. This protocol can be readily introduced into a clinical workflow for the assessment of patients with focal epilepsy. Summary Objective Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentation for volumetry has been automated, T2 relaxometry currently involves subjective and time-consuming manual delineation of regions of interest. In this work, we develop and validate an automated technique for hippocampal T2 relaxometry. Methods Fifty patients with unilateral or bilateral HS and 50 healthy controls underwent T1-weighted and dual-echo fast recovery fast spin echo scans. Hippocampi were automatically segmented using a multi-atlas-based segmentation algorithm (STEPS) and a template database. Voxelwise T2 maps were determined using a monoexponential fit. The hippocampal segmentations were registered to the T2 maps and eroded to reduce partial volume effect. Voxels with T2 >170 msec excluded to minimize cerebrospinal fluid (CSF) contamination. Manual determination of T2 values was performed twice in each subject. Twenty controls underwent repeat scans to assess interscan reproducibility. Results Hippocampal T2 values were reliably determined using the automated method. There was a significant ipsilateral increase in T2 values in HS (p < 0.001), and a smaller but significant contralateral increase. The combination of hippocampal volumes and T2 values separated the groups well. There was a strong correlation between automated and manual methods for hippocampal T2 measurement (0.917 left, 0.896 right, both p < 0.001). Interscan reproducibility was superior for automated compared to manual measurements. Significance Automated hippocampal segmentation can be reliably extended to the determination of hippocampal T2 values, and a combination of hippocampal volumes and T2 values can separate subjects with HS from healthy controls. There is good agreement with manual measurements, and the technique is more reproducible on repeat scans than manual measurement. This protocol can be readily introduced into a clinical workflow for the assessment of patients with focal epilepsy. Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentation for volumetry has been automated, T2 relaxometry currently involves subjective and time-consuming manual delineation of regions of interest. In this work, we develop and validate an automated technique for hippocampal T2 relaxometry.OBJECTIVEHippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentation for volumetry has been automated, T2 relaxometry currently involves subjective and time-consuming manual delineation of regions of interest. In this work, we develop and validate an automated technique for hippocampal T2 relaxometry.Fifty patients with unilateral or bilateral HS and 50 healthy controls underwent T1 -weighted and dual-echo fast recovery fast spin echo scans. Hippocampi were automatically segmented using a multi-atlas-based segmentation algorithm (STEPS) and a template database. Voxelwise T2 maps were determined using a monoexponential fit. The hippocampal segmentations were registered to the T2 maps and eroded to reduce partial volume effect. Voxels with T2 >170 msec excluded to minimize cerebrospinal fluid (CSF) contamination. Manual determination of T2 values was performed twice in each subject. Twenty controls underwent repeat scans to assess interscan reproducibility.METHODSFifty patients with unilateral or bilateral HS and 50 healthy controls underwent T1 -weighted and dual-echo fast recovery fast spin echo scans. Hippocampi were automatically segmented using a multi-atlas-based segmentation algorithm (STEPS) and a template database. Voxelwise T2 maps were determined using a monoexponential fit. The hippocampal segmentations were registered to the T2 maps and eroded to reduce partial volume effect. Voxels with T2 >170 msec excluded to minimize cerebrospinal fluid (CSF) contamination. Manual determination of T2 values was performed twice in each subject. Twenty controls underwent repeat scans to assess interscan reproducibility.Hippocampal T2 values were reliably determined using the automated method. There was a significant ipsilateral increase in T2 values in HS (p < 0.001), and a smaller but significant contralateral increase. The combination of hippocampal volumes and T2 values separated the groups well. There was a strong correlation between automated and manual methods for hippocampal T2 measurement (0.917 left, 0.896 right, both p < 0.001). Interscan reproducibility was superior for automated compared to manual measurements.RESULTSHippocampal T2 values were reliably determined using the automated method. There was a significant ipsilateral increase in T2 values in HS (p < 0.001), and a smaller but significant contralateral increase. The combination of hippocampal volumes and T2 values separated the groups well. There was a strong correlation between automated and manual methods for hippocampal T2 measurement (0.917 left, 0.896 right, both p < 0.001). Interscan reproducibility was superior for automated compared to manual measurements.Automated hippocampal segmentation can be reliably extended to the determination of hippocampal T2 values, and a combination of hippocampal volumes and T2 values can separate subjects with HS from healthy controls. There is good agreement with manual measurements, and the technique is more reproducible on repeat scans than manual measurement. This protocol can be readily introduced into a clinical workflow for the assessment of patients with focal epilepsy.SIGNIFICANCEAutomated hippocampal segmentation can be reliably extended to the determination of hippocampal T2 values, and a combination of hippocampal volumes and T2 values can separate subjects with HS from healthy controls. There is good agreement with manual measurements, and the technique is more reproducible on repeat scans than manual measurement. This protocol can be readily introduced into a clinical workflow for the assessment of patients with focal epilepsy. Summary Objective Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentation for volumetry has been automated, T2 relaxometry currently involves subjective and time‐consuming manual delineation of regions of interest. In this work, we develop and validate an automated technique for hippocampal T2 relaxometry. Methods Fifty patients with unilateral or bilateral HS and 50 healthy controls underwent T1‐weighted and dual‐echo fast recovery fast spin echo scans. Hippocampi were automatically segmented using a multi‐atlas–based segmentation algorithm (STEPS) and a template database. Voxelwise T2 maps were determined using a monoexponential fit. The hippocampal segmentations were registered to the T2 maps and eroded to reduce partial volume effect. Voxels with T2 >170 msec excluded to minimize cerebrospinal fluid (CSF) contamination. Manual determination of T2 values was performed twice in each subject. Twenty controls underwent repeat scans to assess interscan reproducibility. Results Hippocampal T2 values were reliably determined using the automated method. There was a significant ipsilateral increase in T2 values in HS (p < 0.001), and a smaller but significant contralateral increase. The combination of hippocampal volumes and T2 values separated the groups well. There was a strong correlation between automated and manual methods for hippocampal T2 measurement (0.917 left, 0.896 right, both p < 0.001). Interscan reproducibility was superior for automated compared to manual measurements. Significance Automated hippocampal segmentation can be reliably extended to the determination of hippocampal T2 values, and a combination of hippocampal volumes and T2 values can separate subjects with HS from healthy controls. There is good agreement with manual measurements, and the technique is more reproducible on repeat scans than manual measurement. This protocol can be readily introduced into a clinical workflow for the assessment of patients with focal epilepsy. |
Author | Winston, Gavin P. Cardoso, M. Jorge Burdett, Jane L. Vos, Sjoerd B. Ourselin, Sebastien Duncan, John S. |
AuthorAffiliation | 2 Epilepsy Society MRI Unit Chalfont St Peter United Kingdom 1 Department of Clinical and Experimental Epilepsy UCL Institute of Neurology London United Kingdom 3 Translational Imaging Group Centre for Medical Image Computing UCL London United Kingdom |
AuthorAffiliation_xml | – name: 2 Epilepsy Society MRI Unit Chalfont St Peter United Kingdom – name: 1 Department of Clinical and Experimental Epilepsy UCL Institute of Neurology London United Kingdom – name: 3 Translational Imaging Group Centre for Medical Image Computing UCL London United Kingdom |
Author_xml | – sequence: 1 givenname: Gavin P. orcidid: 0000-0001-9395-1478 surname: Winston fullname: Winston, Gavin P. email: g.winston@ucl.ac.uk organization: Epilepsy Society MRI Unit – sequence: 2 givenname: Sjoerd B. surname: Vos fullname: Vos, Sjoerd B. organization: UCL – sequence: 3 givenname: Jane L. surname: Burdett fullname: Burdett, Jane L. organization: Epilepsy Society MRI Unit – sequence: 4 givenname: M. Jorge surname: Cardoso fullname: Cardoso, M. Jorge organization: UCL – sequence: 5 givenname: Sebastien surname: Ourselin fullname: Ourselin, Sebastien organization: UCL – sequence: 6 givenname: John S. surname: Duncan fullname: Duncan, John S. organization: Epilepsy Society MRI Unit |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28699215$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFP3DAQha0KVJZtD_0DlaVeyiHgsePEvlRaIShISPRAz5ZJJl2jJE5tB7r_Hm8XUIvU-jKH-eb5zbxDsjf6EQn5AOwY8jvByR2DUKV4QxYguSoAqnqPLBgDUWip2AE5jPGOMVZXtXhLDriqtOYgF-R8NSc_2IQtveE0YG9_-QFT2FDf0bRGunbT5Bs7THOknQ804TD5YHva-1uk-ecep7h5R_Y720d8_1SX5Pv52c3pRXF1_fXydHVVNGUpRFHKtmNM10IgUx23UkAFuuMSSobMKlvZuuE1g6aqVAW1tUq1qm63DWiFFkvyZac7zbcDtg2OKXsxU3CDDRvjrTN_d0a3Nj_8vZFSa50vtCSfnwSC_zljTGZwscG-tyP6ORrQoIQCziGjn16hd34OY14vU0JqWQq2Ffz4p6MXK88nzsDRDmiCjzFg94IAM9v4TD6i-R1fZk9esY1LNjm_Xcb1_5t4yEFs_i1tzr5d7iYeAcjHqlw |
CitedBy_id | crossref_primary_10_1002_acn3_50851 crossref_primary_10_3390_curroncol29040210 crossref_primary_10_1002_hipo_23572 crossref_primary_10_1055_s_0042_1760104 crossref_primary_10_1002_epi4_12679 crossref_primary_10_1002_nbm_4952 crossref_primary_10_1016_j_lfs_2021_119971 crossref_primary_10_1016_j_neurad_2018_02_007 crossref_primary_10_1111_epi_16416 crossref_primary_10_1111_epi_17861 crossref_primary_10_1186_s12880_020_00440_z crossref_primary_10_1007_s00330_022_08707_5 crossref_primary_10_1016_j_yacr_2021_04_018 crossref_primary_10_1007_s00429_020_02172_w crossref_primary_10_1016_j_nicl_2020_102231 crossref_primary_10_3174_ajnr_A6545 crossref_primary_10_1007_s00062_023_01308_9 crossref_primary_10_1097_WCO_0000000000000568 crossref_primary_10_3345_kjp_2019_00871 crossref_primary_10_1002_mrm_28309 crossref_primary_10_1097_WCO_0000000000000539 crossref_primary_10_1016_j_ejrad_2018_06_019 crossref_primary_10_1016_j_compmedimag_2023_102240 crossref_primary_10_1093_brain_awad284 crossref_primary_10_1016_j_yebeh_2019_106516 crossref_primary_10_1111_nyas_14431 crossref_primary_10_1088_1681_7575_adbcaf crossref_primary_10_1111_epi_15612 crossref_primary_10_1212_WNL_0000000000012699 crossref_primary_10_17749_2077_8333_2019_11_3_208_232 crossref_primary_10_3389_fvets_2022_802272 crossref_primary_10_2214_AJR_20_23990 crossref_primary_10_3389_fneur_2021_801195 crossref_primary_10_1016_j_eplepsyres_2022_106971 crossref_primary_10_1016_j_nicl_2024_103647 crossref_primary_10_3390_diagnostics14242838 crossref_primary_10_1186_s12883_020_01680_w crossref_primary_10_1007_s00330_020_07075_2 crossref_primary_10_1016_j_ebiom_2023_104460 crossref_primary_10_1093_braincomms_fcab284 crossref_primary_10_1007_s42399_024_01705_2 crossref_primary_10_1002_jmri_27184 crossref_primary_10_1016_j_eplepsyres_2021_106638 crossref_primary_10_1186_s41983_021_00347_8 crossref_primary_10_1007_s12022_024_09819_y |
Cites_doi | 10.1093/brain/89.3.499 10.1016/j.neuroimage.2004.06.009 10.1016/j.eplepsyres.2009.04.001 10.1212/WNL.43.9.1793 10.1016/j.nicl.2015.03.004 10.1093/brain/awg199 10.1136/jnnp.65.5.656 10.1002/ana.410410109 10.1148/radiology.175.2.2183282 10.1212/WNL.45.12.2233 10.3174/ajnr.A3640 10.1212/WNL.0b013e3181b783dd 10.1111/j.1552-6569.2006.00051.x 10.1002/ana.410420512 10.1212/WNL.58.2.265 10.1016/j.neuroimage.2003.09.059 10.1016/S0920-1211(01)00325-4 10.1016/j.eplepsyres.2016.06.001 10.1016/j.neuroimage.2007.09.061 10.1006/nimg.2000.0724 10.1212/WNL.58.2.257 10.3174/ajnr.A0505 10.1111/j.1552-6569.2003.tb00183.x 10.1111/j.1528-1157.1999.tb02015.x 10.1002/ana.410310204 10.1111/epi.12408 10.1212/WNL.37.3.405 10.1006/nimg.1998.0331 |
ContentType | Journal Article |
Copyright | 2017 The Authors. published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy. 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy. Copyright © 2017 International League Against Epilepsy |
Copyright_xml | – notice: 2017 The Authors. published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy. – notice: 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy. – notice: Copyright © 2017 International League Against Epilepsy |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1111/epi.13843 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | G. P. Winston et al |
EISSN | 1528-1167 |
EndPage | 1652 |
ExternalDocumentID | PMC5599984 28699215 10_1111_epi_13843 EPI13843 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Institute for Health Research University College London Hospitals Biomedical Research Centre funderid: BW.mn.BRC10269 – fundername: Wellcome Trust Translational Award funderid: WT106882 – fundername: MRC Clinician Scientist Fellowship funderid: MR/M00841X/1 – fundername: Medical Research Council grantid: MR/M00841X/1 – fundername: Wellcome Trust – fundername: National Institute for Health Research University College London Hospitals Biomedical Research Centre grantid: BW.mn.BRC10269 – fundername: Wellcome Trust Translational Award grantid: WT106882 – fundername: MRC Clinician Scientist Fellowship grantid: MR/M00841X/1 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29G 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAGKA AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIVO ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FYBCS G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K V9Y VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c4433-45df009733e08f2a531619f25140e0a8a6a7c2701c668617aa88d87d8a6a1d393 |
IEDL.DBID | DR2 |
ISSN | 0013-9580 1528-1167 |
IngestDate | Thu Aug 21 18:12:25 EDT 2025 Thu Jul 10 22:39:42 EDT 2025 Fri Jul 25 10:23:45 EDT 2025 Mon Jul 21 05:50:50 EDT 2025 Thu Apr 24 23:00:25 EDT 2025 Tue Jul 01 03:17:51 EDT 2025 Wed Jan 22 17:12:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Temporal lobe epilepsy T2 relaxometry Magnetic resonance imaging Hippocampus |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4433-45df009733e08f2a531619f25140e0a8a6a7c2701c668617aa88d87d8a6a1d393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Joint first authors. |
ORCID | 0000-0001-9395-1478 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.13843 |
PMID | 28699215 |
PQID | 1935954304 |
PQPubID | 1066359 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5599984 proquest_miscellaneous_1918381221 proquest_journals_1935954304 pubmed_primary_28699215 crossref_primary_10_1111_epi_13843 crossref_citationtrail_10_1111_epi_13843 wiley_primary_10_1111_epi_13843_EPI13843 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2017 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: September 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Epilepsia (Copenhagen) |
PublicationTitleAlternate | Epilepsia |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2004; 21 2002; 58 1996; 17 2009; 86 1997; 42 1997; 41 2006; 16 2004; 25 1993; 43 2004; 23 2008; 39 2003; 13 2016; 126 1999; 40 1992; 31 1998; 65 2015; 7 1987; 37 2007; 28 1993; 14 2002; 48 1998; 19 2009; 73 2013; 54 2000; 12 1995; 45 2014; 35 1994; 15 1966; 89 1998; 7 2003; 126 1990; 175 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_27_1 Jackson GD (e_1_2_8_4_1) 1993; 14 Lee DH (e_1_2_8_21_1) 1998; 19 Grunewald RA (e_1_2_8_25_1) 1994; 15 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_23_1 Briellmann RS (e_1_2_8_32_1) 2004; 25 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_35_1 Duncan JS (e_1_2_8_15_1) 1996; 17 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Meiners LC (e_1_2_8_14_1) 1994; 15 e_1_2_8_30_1 |
References_xml | – volume: 35 start-page: 77 year: 2014 end-page: 83 article-title: 3T MRI quantification of hippocampal volume and signal in mesial temporal lobe epilepsy improves detection of hippocampal sclerosis publication-title: AJNR Am J Neuroradiol – volume: 48 start-page: 131 year: 2002 end-page: 142 article-title: Measurement of temporal lobe T2 relaxation times using a routine diagnostic MR imaging protocol in epilepsy publication-title: Epilepsy Res – volume: 54 start-page: 2166 year: 2013 end-page: 2173 article-title: Automated hippocampal segmentation in patients with epilepsy: available free online publication-title: Epilepsia – volume: 65 start-page: 656 year: 1998 end-page: 664 article-title: Regional changes in hippocampal T2 relaxation and volume: a quantitative magnetic resonance imaging study of hippocampal sclerosis publication-title: J Neurol Neurosurg Psychiatry – volume: 15 start-page: 1547 year: 1994 end-page: 1555 article-title: Temporal lobe epilepsy: the various MR appearances of histologically proven mesial temporal sclerosis publication-title: AJNR Am J Neuroradiol – volume: 28 start-page: 1095 year: 2007 end-page: 1098 article-title: T2 relaxometry of the hippocampus at 3T publication-title: AJNR Am J Neuroradiol – volume: 21 start-page: 707 year: 2004 end-page: 713 article-title: Voxel‐based relaxometry: a new approach for analysis of T2 relaxometry changes in epilepsy publication-title: NeuroImage – volume: 13 start-page: 228 year: 2003 end-page: 233 article-title: Quantification of hippocampal signal intensity in patients with mesial temporal lobe epilepsy publication-title: J Neuroimaging – volume: 41 start-page: 41 year: 1997 end-page: 51 article-title: The spectrum of hippocampal sclerosis: a quantitative magnetic resonance imaging study publication-title: Ann Neurol – volume: 14 start-page: 753 year: 1993 end-page: 762 article-title: Optimizing the diagnosis of hippocampal sclerosis using MR imaging publication-title: AJNR Am J Neuroradiol – volume: 43 start-page: 1793 year: 1993 end-page: 1799 article-title: Detection of hippocampal pathology in intractable partial epilepsy: increased sensitivity with quantitative magnetic resonance T2 relaxometry publication-title: Neurology – volume: 16 start-page: 260 year: 2006 end-page: 265 article-title: T2‐weighted and T2 relaxometry images in patients with medial temporal lobe epilepsy publication-title: J Neuroimaging – volume: 40 start-page: 1424 year: 1999 end-page: 1432 article-title: Combined measurements of hippocampal N‐acetyl‐aspartate and T2 relaxation time in the evaluation of mesial temporal lobe epilepsy: correlation with clinical severity and memory performances publication-title: Epilepsia – volume: 7 start-page: 304 year: 1998 end-page: 313 article-title: Contribution of T2 relaxation time mapping in the evaluation of cryptogenic temporal lobe epilepsy publication-title: NeuroImage – volume: 37 start-page: 405 year: 1987 end-page: 409 article-title: Seizure characteristics, pathology, and outcome after temporal lobectomy publication-title: Neurology – volume: 58 start-page: 265 year: 2002 end-page: 271 article-title: Hippocampal pathology in refractory temporal lobe epilepsy: T2‐weighted signal change reflects dentate gliosis publication-title: Neurology – volume: 23 start-page: 318 year: 2004 end-page: 324 article-title: Quantitative analysis of temporal lobe white matter T2 relaxation time in temporal lobe epilepsy publication-title: NeuroImage – volume: 7 start-page: 788 year: 2015 end-page: 791 article-title: T2 mapping outperforms normalised FLAIR in identifying hippocampal sclerosis publication-title: Neuroimage Clin – volume: 42 start-page: 756 year: 1997 end-page: 766 article-title: Quantitative neuropathology and quantitative magnetic resonance imaging of the hippocampus in temporal lobe epilepsy publication-title: Ann Neurol – volume: 25 start-page: 389 year: 2004 end-page: 394 article-title: Increased anterior temporal lobe T2 times in cases of hippocampal sclerosis: a multi‐echo T2 relaxometry study at 3 T publication-title: AJNR Am J Neuroradiol – volume: 15 start-page: 1149 year: 1994 end-page: 1156 article-title: MR detection of hippocampal disease in epilepsy: factors influencing T2 relaxation time publication-title: AJNR Am J Neuroradiol – volume: 89 start-page: 499 year: 1966 end-page: 530 article-title: Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes publication-title: Brain – volume: 175 start-page: 423 year: 1990 end-page: 429 article-title: Temporal lobe seizures: lateralization with MR volume measurements of the hippocampal formation publication-title: Radiology – volume: 45 start-page: 2233 year: 1995 end-page: 2240 article-title: Quantitative hippocampal MRI and intractable temporal lobe epilepsy publication-title: Neurology – volume: 17 start-page: 1805 year: 1996 end-page: 1810 article-title: Technique for measuring hippocampal T2 relaxation time publication-title: AJNR Am J Neuroradiol – volume: 12 start-page: 739 year: 2000 end-page: 746 article-title: T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI publication-title: NeuroImage – volume: 58 start-page: 257 year: 2002 end-page: 264 article-title: Time‐efficient T2 relaxometry of the entire hippocampus is feasible in temporal lobe epilepsy publication-title: Neurology – volume: 126 start-page: 1968 year: 2003 end-page: 1974 article-title: Abnormalities in hippocampi remote from the seizure focus: a T2 relaxometry study publication-title: Brain – volume: 19 start-page: 19 year: 1998 end-page: 27 article-title: MR in temporal lobe epilepsy: analysis with pathologic confirmation publication-title: AJNR Am J Neuroradiol – volume: 126 start-page: 1 year: 2016 end-page: 9 article-title: T2 relaxometry improves detection of non‐sclerotic epileptogenic hippocampus publication-title: Epilepsy Res – volume: 73 start-page: 834 year: 2009 end-page: 842 article-title: Seizure frequency and lateralization affect progression of atrophy in temporal lobe epilepsy publication-title: Neurology – volume: 39 start-page: 1151 year: 2008 end-page: 1161 article-title: Composite voxel‐based analysis of volume and T2 relaxometry in temporal lobe epilepsy publication-title: NeuroImage – volume: 86 start-page: 23 year: 2009 end-page: 31 article-title: Single‐subject voxel‐based relaxometry for clinical assessment of temporal lobe epilepsy publication-title: Epilepsy Res – volume: 31 start-page: 138 year: 1992 end-page: 146 article-title: Magnetic resonance image‐based hippocampal volumetry: correlation with outcome after temporal lobectomy publication-title: Ann Neurol – ident: e_1_2_8_2_1 doi: 10.1093/brain/89.3.499 – ident: e_1_2_8_31_1 doi: 10.1016/j.neuroimage.2004.06.009 – ident: e_1_2_8_35_1 doi: 10.1016/j.eplepsyres.2009.04.001 – ident: e_1_2_8_6_1 doi: 10.1212/WNL.43.9.1793 – ident: e_1_2_8_24_1 doi: 10.1016/j.nicl.2015.03.004 – ident: e_1_2_8_28_1 doi: 10.1093/brain/awg199 – ident: e_1_2_8_5_1 doi: 10.1136/jnnp.65.5.656 – ident: e_1_2_8_9_1 doi: 10.1002/ana.410410109 – ident: e_1_2_8_11_1 doi: 10.1148/radiology.175.2.2183282 – ident: e_1_2_8_19_1 doi: 10.1212/WNL.45.12.2233 – volume: 15 start-page: 1547 year: 1994 ident: e_1_2_8_14_1 article-title: Temporal lobe epilepsy: the various MR appearances of histologically proven mesial temporal sclerosis publication-title: AJNR Am J Neuroradiol – volume: 15 start-page: 1149 year: 1994 ident: e_1_2_8_25_1 article-title: MR detection of hippocampal disease in epilepsy: factors influencing T2 relaxation time publication-title: AJNR Am J Neuroradiol – ident: e_1_2_8_8_1 doi: 10.3174/ajnr.A3640 – ident: e_1_2_8_30_1 doi: 10.1212/WNL.0b013e3181b783dd – volume: 14 start-page: 753 year: 1993 ident: e_1_2_8_4_1 article-title: Optimizing the diagnosis of hippocampal sclerosis using MR imaging publication-title: AJNR Am J Neuroradiol – ident: e_1_2_8_23_1 doi: 10.1111/j.1552-6569.2006.00051.x – ident: e_1_2_8_26_1 doi: 10.1002/ana.410420512 – ident: e_1_2_8_10_1 doi: 10.1212/WNL.58.2.265 – ident: e_1_2_8_33_1 doi: 10.1016/j.neuroimage.2003.09.059 – volume: 17 start-page: 1805 year: 1996 ident: e_1_2_8_15_1 article-title: Technique for measuring hippocampal T2 relaxation time publication-title: AJNR Am J Neuroradiol – volume: 19 start-page: 19 year: 1998 ident: e_1_2_8_21_1 article-title: MR in temporal lobe epilepsy: analysis with pathologic confirmation publication-title: AJNR Am J Neuroradiol – ident: e_1_2_8_16_1 doi: 10.1016/S0920-1211(01)00325-4 – ident: e_1_2_8_27_1 doi: 10.1016/j.eplepsyres.2016.06.001 – ident: e_1_2_8_34_1 doi: 10.1016/j.neuroimage.2007.09.061 – ident: e_1_2_8_7_1 doi: 10.1006/nimg.2000.0724 – ident: e_1_2_8_17_1 doi: 10.1212/WNL.58.2.257 – ident: e_1_2_8_18_1 doi: 10.3174/ajnr.A0505 – ident: e_1_2_8_22_1 doi: 10.1111/j.1552-6569.2003.tb00183.x – ident: e_1_2_8_29_1 doi: 10.1111/j.1528-1157.1999.tb02015.x – ident: e_1_2_8_12_1 doi: 10.1002/ana.410310204 – ident: e_1_2_8_13_1 doi: 10.1111/epi.12408 – volume: 25 start-page: 389 year: 2004 ident: e_1_2_8_32_1 article-title: Increased anterior temporal lobe T2 times in cases of hippocampal sclerosis: a multi‐echo T2 relaxometry study at 3 T publication-title: AJNR Am J Neuroradiol – ident: e_1_2_8_3_1 doi: 10.1212/WNL.37.3.405 – ident: e_1_2_8_20_1 doi: 10.1006/nimg.1998.0331 |
SSID | ssj0007673 |
Score | 2.4319916 |
Snippet | Summary
Objective
Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and... Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal.... Summary Objective Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1645 |
SubjectTerms | Adolescent Adult Aged Automation Automation - methods Case-Control Studies Cerebrospinal fluid Contamination Epilepsy Epilepsy, Temporal Lobe - diagnostic imaging Epilepsy, Temporal Lobe - etiology Epilepsy, Temporal Lobe - pathology Epilepsy, Temporal Lobe - physiopathology Female Full‐Length Original Research Hippocampus Hippocampus - diagnostic imaging Hippocampus - pathology Hippocampus - physiopathology Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Middle Aged Sclerosis Segmentation T2 relaxometry Temporal lobe Temporal lobe epilepsy Young Adult |
Title | Automated T2 relaxometry of the hippocampus for temporal lobe epilepsy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.13843 https://www.ncbi.nlm.nih.gov/pubmed/28699215 https://www.proquest.com/docview/1935954304 https://www.proquest.com/docview/1918381221 https://pubmed.ncbi.nlm.nih.gov/PMC5599984 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SHEovbdNPt2lQSw-5eLElWZbIKYQsaaEllARyKBjZksmSjW2yNjT59RnJH80mLZTeDBoj2ZqneZJGTwCfy1hEJqUm5JbmIdeFDXMtVFhIxjjNMUgYn23xXRyd8q9nydkG7I1nYXp9iGnBzSHDj9cO4Dpf3QG5bRazmEnulD5drpYjRD9-S0elYthdjlmoEhkNqkIui2d6cz0WPSCYD_Mk7_JXH4Dmz-Dn2PQ-7-Ri1rX5rLi5p-r4n9_2HJ4OxJTs9560BRu2egGPvw1b7y9hvt-1NdJba8gJJe4IzK_60rZX16QuCbJIcr5oGgyMl023IsiEySB6tSQun4NgXUvbrK5fwen88OTgKBwuYQgLzhkLeWJKr-nDbCRLqhGzOOcqkRbxyEZaaqHTgqZRXAghkQ5pLaWRqXEFsWGKvYbNqq7sWyDI42USsVQJabiyUgr0IKa0KHVScl0GsDt2R1YMCuXuooxlNs5UsK2Z_y8BfJpMm16W409G22OfZgMyV1nsjyJzFvEAPk7FiCm3UaIrW3fOBgc6ZD40DuBN7wJTLVQKpZAnBZCuOcdk4PS610uqxbnX7Xbibkpivbu-7__e8Ozw-It_ePfvpu_hCXWMw6e_bcNme9XZD8iX2nwHHlF-vOPhcQv1jRGT |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD7MCerL_DmtTo3iw156aZM0TcGXobvc6TZE7mAvUtImZRfv2rLbwuZf70n6w12nIL4VckrS5nw5X5KTLwDvilAEOqba54ZmPle58TMlEj-XjHGaYZDQLtviWMxO-KfT6HQD3g9nYTp9iHHBzSLDjdcW4HZB-hrKTb2YhExydgtu2xu9rXL-x6-_xKNi0e8vh8xPIhn0ukI2j2d8dT0a3aCYNzMlrzNYF4Km9-Hb0Pgu8-T7pG2ySf7jN13H__26B7DVc1Oy1znTQ9gw5SO4c9Tvvj-G6V7bVMhwjSZzSuwpmMvq3DQXV6QqCBJJcraoa4yN53W7IkiGSa97tSQ2pYNgXUtTr66ewMl0f_5h5vf3MPg554z5PNKFk_VhJpAFVQhbnHYVyIx4YAIllVBxTuMgzIWQyIiUklLLWNuCULOEbcNmWZXmGRCk8jIKWJwIqXlipBToRCxRolBRwVXhwe7QH2nei5TbuzKW6TBZwbam7r948HY0rTtljj8Z7QydmvbgXKWhO43MWcA9eDMWI6zsXokqTdVaGxzrkPzQ0IOnnQ-MtVApkgSpkgfxmneMBlaye72kXJw56W6r75ZIrHfXdf7fG57ufzlwD8__3fQ13J3Njw7Tw4Pjzy_gHrUExGXD7cBmc9Gal0ifmuyVQ8lPiiQU2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEB88BbkXOfXurOdHTnzwpdImaZrgk6iLH6fsg4JvJdskuLC2xd2F87-_SbZbXPTAt8JMSMhkMr90Jr8AHLpUJCanJuaWDmKuSxsPtFBxKRnjdIBBwoRqiztx-cCvH7PHJTiZ34WZ8UN0P9y8Z4T92jt4Y9wbJ7fN8DhlkrMvsOKTfb6ei_J-tw3nok0vpyxWmUxaWiFfxtM1XQxG7xDm-0LJtwA2RKDeN1hroSM5ndl6HZZstQGrt21yfBN6p9NJjQDUGnJPib-k8rd-tpOXV1I7gjiPPA2bBkPXczMdE8SqpKWlGhFfcUFwuCPbjF-_w0Pv4v7sMm6fSYhLzhmLeWZcYN1hNpGOavQqPBU5BC48sYmWWui8pHmSlkJIBCxaS2lkbrwgNUyxH7Bc1ZXdAoJIW2YJy5WQhisrpUAbM6WF05nj2kVwNJ-vomw5xP1TFqNifpbAsRZhaiM46FSbGXHGR0o780kvWt8ZF2m4LMxZwiP43Ylx1ftUhq5sPfU6uBUhNqFpBD9nNup6oVIohUgmgnzBep2CZ9RelFTDp8Cs7enXlMR-j4Kd_z_w4qJ_FT62P6-6D6v9817x5-ru5hd8pR4ehFq1HVievEztLoKbyWAvLOJ_YH3zRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+T2+relaxometry+of+the+hippocampus+for+temporal+lobe+epilepsy&rft.jtitle=Epilepsia+%28Copenhagen%29&rft.au=Winston%2C+Gavin+P.&rft.au=Vos%2C+Sjoerd+B.&rft.au=Burdett%2C+Jane+L.&rft.au=Cardoso%2C+M.+Jorge&rft.date=2017-09-01&rft.issn=0013-9580&rft.eissn=1528-1167&rft.volume=58&rft.issue=9&rft.spage=1645&rft.epage=1652&rft_id=info:doi/10.1111%2Fepi.13843&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_epi_13843 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9580&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9580&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9580&client=summon |