Automated T2 relaxometry of the hippocampus for temporal lobe epilepsy

Summary Objective Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentati...

Full description

Saved in:
Bibliographic Details
Published inEpilepsia (Copenhagen) Vol. 58; no. 9; pp. 1645 - 1652
Main Authors Winston, Gavin P., Vos, Sjoerd B., Burdett, Jane L., Cardoso, M. Jorge, Ourselin, Sebastien, Duncan, John S.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.09.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Objective Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentation for volumetry has been automated, T2 relaxometry currently involves subjective and time‐consuming manual delineation of regions of interest. In this work, we develop and validate an automated technique for hippocampal T2 relaxometry. Methods Fifty patients with unilateral or bilateral HS and 50 healthy controls underwent T1‐weighted and dual‐echo fast recovery fast spin echo scans. Hippocampi were automatically segmented using a multi‐atlas–based segmentation algorithm (STEPS) and a template database. Voxelwise T2 maps were determined using a monoexponential fit. The hippocampal segmentations were registered to the T2 maps and eroded to reduce partial volume effect. Voxels with T2 >170 msec excluded to minimize cerebrospinal fluid (CSF) contamination. Manual determination of T2 values was performed twice in each subject. Twenty controls underwent repeat scans to assess interscan reproducibility. Results Hippocampal T2 values were reliably determined using the automated method. There was a significant ipsilateral increase in T2 values in HS (p < 0.001), and a smaller but significant contralateral increase. The combination of hippocampal volumes and T2 values separated the groups well. There was a strong correlation between automated and manual methods for hippocampal T2 measurement (0.917 left, 0.896 right, both p < 0.001). Interscan reproducibility was superior for automated compared to manual measurements. Significance Automated hippocampal segmentation can be reliably extended to the determination of hippocampal T2 values, and a combination of hippocampal volumes and T2 values can separate subjects with HS from healthy controls. There is good agreement with manual measurements, and the technique is more reproducible on repeat scans than manual measurement. This protocol can be readily introduced into a clinical workflow for the assessment of patients with focal epilepsy.
AbstractList Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentation for volumetry has been automated, T2 relaxometry currently involves subjective and time-consuming manual delineation of regions of interest. In this work, we develop and validate an automated technique for hippocampal T2 relaxometry. Fifty patients with unilateral or bilateral HS and 50 healthy controls underwent T -weighted and dual-echo fast recovery fast spin echo scans. Hippocampi were automatically segmented using a multi-atlas-based segmentation algorithm (STEPS) and a template database. Voxelwise T2 maps were determined using a monoexponential fit. The hippocampal segmentations were registered to the T2 maps and eroded to reduce partial volume effect. Voxels with T2 >170 msec excluded to minimize cerebrospinal fluid (CSF) contamination. Manual determination of T2 values was performed twice in each subject. Twenty controls underwent repeat scans to assess interscan reproducibility. Hippocampal T2 values were reliably determined using the automated method. There was a significant ipsilateral increase in T2 values in HS (p < 0.001), and a smaller but significant contralateral increase. The combination of hippocampal volumes and T2 values separated the groups well. There was a strong correlation between automated and manual methods for hippocampal T2 measurement (0.917 left, 0.896 right, both p < 0.001). Interscan reproducibility was superior for automated compared to manual measurements. Automated hippocampal segmentation can be reliably extended to the determination of hippocampal T2 values, and a combination of hippocampal volumes and T2 values can separate subjects with HS from healthy controls. There is good agreement with manual measurements, and the technique is more reproducible on repeat scans than manual measurement. This protocol can be readily introduced into a clinical workflow for the assessment of patients with focal epilepsy.
Summary Objective Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentation for volumetry has been automated, T2 relaxometry currently involves subjective and time-consuming manual delineation of regions of interest. In this work, we develop and validate an automated technique for hippocampal T2 relaxometry. Methods Fifty patients with unilateral or bilateral HS and 50 healthy controls underwent T1-weighted and dual-echo fast recovery fast spin echo scans. Hippocampi were automatically segmented using a multi-atlas-based segmentation algorithm (STEPS) and a template database. Voxelwise T2 maps were determined using a monoexponential fit. The hippocampal segmentations were registered to the T2 maps and eroded to reduce partial volume effect. Voxels with T2 >170 msec excluded to minimize cerebrospinal fluid (CSF) contamination. Manual determination of T2 values was performed twice in each subject. Twenty controls underwent repeat scans to assess interscan reproducibility. Results Hippocampal T2 values were reliably determined using the automated method. There was a significant ipsilateral increase in T2 values in HS (p < 0.001), and a smaller but significant contralateral increase. The combination of hippocampal volumes and T2 values separated the groups well. There was a strong correlation between automated and manual methods for hippocampal T2 measurement (0.917 left, 0.896 right, both p < 0.001). Interscan reproducibility was superior for automated compared to manual measurements. Significance Automated hippocampal segmentation can be reliably extended to the determination of hippocampal T2 values, and a combination of hippocampal volumes and T2 values can separate subjects with HS from healthy controls. There is good agreement with manual measurements, and the technique is more reproducible on repeat scans than manual measurement. This protocol can be readily introduced into a clinical workflow for the assessment of patients with focal epilepsy.
Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentation for volumetry has been automated, T2 relaxometry currently involves subjective and time-consuming manual delineation of regions of interest. In this work, we develop and validate an automated technique for hippocampal T2 relaxometry.OBJECTIVEHippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentation for volumetry has been automated, T2 relaxometry currently involves subjective and time-consuming manual delineation of regions of interest. In this work, we develop and validate an automated technique for hippocampal T2 relaxometry.Fifty patients with unilateral or bilateral HS and 50 healthy controls underwent T1 -weighted and dual-echo fast recovery fast spin echo scans. Hippocampi were automatically segmented using a multi-atlas-based segmentation algorithm (STEPS) and a template database. Voxelwise T2 maps were determined using a monoexponential fit. The hippocampal segmentations were registered to the T2 maps and eroded to reduce partial volume effect. Voxels with T2 >170 msec excluded to minimize cerebrospinal fluid (CSF) contamination. Manual determination of T2 values was performed twice in each subject. Twenty controls underwent repeat scans to assess interscan reproducibility.METHODSFifty patients with unilateral or bilateral HS and 50 healthy controls underwent T1 -weighted and dual-echo fast recovery fast spin echo scans. Hippocampi were automatically segmented using a multi-atlas-based segmentation algorithm (STEPS) and a template database. Voxelwise T2 maps were determined using a monoexponential fit. The hippocampal segmentations were registered to the T2 maps and eroded to reduce partial volume effect. Voxels with T2 >170 msec excluded to minimize cerebrospinal fluid (CSF) contamination. Manual determination of T2 values was performed twice in each subject. Twenty controls underwent repeat scans to assess interscan reproducibility.Hippocampal T2 values were reliably determined using the automated method. There was a significant ipsilateral increase in T2 values in HS (p < 0.001), and a smaller but significant contralateral increase. The combination of hippocampal volumes and T2 values separated the groups well. There was a strong correlation between automated and manual methods for hippocampal T2 measurement (0.917 left, 0.896 right, both p < 0.001). Interscan reproducibility was superior for automated compared to manual measurements.RESULTSHippocampal T2 values were reliably determined using the automated method. There was a significant ipsilateral increase in T2 values in HS (p < 0.001), and a smaller but significant contralateral increase. The combination of hippocampal volumes and T2 values separated the groups well. There was a strong correlation between automated and manual methods for hippocampal T2 measurement (0.917 left, 0.896 right, both p < 0.001). Interscan reproducibility was superior for automated compared to manual measurements.Automated hippocampal segmentation can be reliably extended to the determination of hippocampal T2 values, and a combination of hippocampal volumes and T2 values can separate subjects with HS from healthy controls. There is good agreement with manual measurements, and the technique is more reproducible on repeat scans than manual measurement. This protocol can be readily introduced into a clinical workflow for the assessment of patients with focal epilepsy.SIGNIFICANCEAutomated hippocampal segmentation can be reliably extended to the determination of hippocampal T2 values, and a combination of hippocampal volumes and T2 values can separate subjects with HS from healthy controls. There is good agreement with manual measurements, and the technique is more reproducible on repeat scans than manual measurement. This protocol can be readily introduced into a clinical workflow for the assessment of patients with focal epilepsy.
Summary Objective Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal. These can be identified on quantitative imaging with hippocampal volumetry and T2 relaxometry. Although hippocampal segmentation for volumetry has been automated, T2 relaxometry currently involves subjective and time‐consuming manual delineation of regions of interest. In this work, we develop and validate an automated technique for hippocampal T2 relaxometry. Methods Fifty patients with unilateral or bilateral HS and 50 healthy controls underwent T1‐weighted and dual‐echo fast recovery fast spin echo scans. Hippocampi were automatically segmented using a multi‐atlas–based segmentation algorithm (STEPS) and a template database. Voxelwise T2 maps were determined using a monoexponential fit. The hippocampal segmentations were registered to the T2 maps and eroded to reduce partial volume effect. Voxels with T2 >170 msec excluded to minimize cerebrospinal fluid (CSF) contamination. Manual determination of T2 values was performed twice in each subject. Twenty controls underwent repeat scans to assess interscan reproducibility. Results Hippocampal T2 values were reliably determined using the automated method. There was a significant ipsilateral increase in T2 values in HS (p < 0.001), and a smaller but significant contralateral increase. The combination of hippocampal volumes and T2 values separated the groups well. There was a strong correlation between automated and manual methods for hippocampal T2 measurement (0.917 left, 0.896 right, both p < 0.001). Interscan reproducibility was superior for automated compared to manual measurements. Significance Automated hippocampal segmentation can be reliably extended to the determination of hippocampal T2 values, and a combination of hippocampal volumes and T2 values can separate subjects with HS from healthy controls. There is good agreement with manual measurements, and the technique is more reproducible on repeat scans than manual measurement. This protocol can be readily introduced into a clinical workflow for the assessment of patients with focal epilepsy.
Author Winston, Gavin P.
Cardoso, M. Jorge
Burdett, Jane L.
Vos, Sjoerd B.
Ourselin, Sebastien
Duncan, John S.
AuthorAffiliation 2 Epilepsy Society MRI Unit Chalfont St Peter United Kingdom
1 Department of Clinical and Experimental Epilepsy UCL Institute of Neurology London United Kingdom
3 Translational Imaging Group Centre for Medical Image Computing UCL London United Kingdom
AuthorAffiliation_xml – name: 2 Epilepsy Society MRI Unit Chalfont St Peter United Kingdom
– name: 1 Department of Clinical and Experimental Epilepsy UCL Institute of Neurology London United Kingdom
– name: 3 Translational Imaging Group Centre for Medical Image Computing UCL London United Kingdom
Author_xml – sequence: 1
  givenname: Gavin P.
  orcidid: 0000-0001-9395-1478
  surname: Winston
  fullname: Winston, Gavin P.
  email: g.winston@ucl.ac.uk
  organization: Epilepsy Society MRI Unit
– sequence: 2
  givenname: Sjoerd B.
  surname: Vos
  fullname: Vos, Sjoerd B.
  organization: UCL
– sequence: 3
  givenname: Jane L.
  surname: Burdett
  fullname: Burdett, Jane L.
  organization: Epilepsy Society MRI Unit
– sequence: 4
  givenname: M. Jorge
  surname: Cardoso
  fullname: Cardoso, M. Jorge
  organization: UCL
– sequence: 5
  givenname: Sebastien
  surname: Ourselin
  fullname: Ourselin, Sebastien
  organization: UCL
– sequence: 6
  givenname: John S.
  surname: Duncan
  fullname: Duncan, John S.
  organization: Epilepsy Society MRI Unit
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28699215$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP3DAQha0KVJZtD_0DlaVeyiHgsePEvlRaIShISPRAz5ZJJl2jJE5tB7r_Hm8XUIvU-jKH-eb5zbxDsjf6EQn5AOwY8jvByR2DUKV4QxYguSoAqnqPLBgDUWip2AE5jPGOMVZXtXhLDriqtOYgF-R8NSc_2IQtveE0YG9_-QFT2FDf0bRGunbT5Bs7THOknQ804TD5YHva-1uk-ecep7h5R_Y720d8_1SX5Pv52c3pRXF1_fXydHVVNGUpRFHKtmNM10IgUx23UkAFuuMSSobMKlvZuuE1g6aqVAW1tUq1qm63DWiFFkvyZac7zbcDtg2OKXsxU3CDDRvjrTN_d0a3Nj_8vZFSa50vtCSfnwSC_zljTGZwscG-tyP6ORrQoIQCziGjn16hd34OY14vU0JqWQq2Ffz4p6MXK88nzsDRDmiCjzFg94IAM9v4TD6i-R1fZk9esY1LNjm_Xcb1_5t4yEFs_i1tzr5d7iYeAcjHqlw
CitedBy_id crossref_primary_10_1002_acn3_50851
crossref_primary_10_3390_curroncol29040210
crossref_primary_10_1002_hipo_23572
crossref_primary_10_1055_s_0042_1760104
crossref_primary_10_1002_epi4_12679
crossref_primary_10_1002_nbm_4952
crossref_primary_10_1016_j_lfs_2021_119971
crossref_primary_10_1016_j_neurad_2018_02_007
crossref_primary_10_1111_epi_16416
crossref_primary_10_1111_epi_17861
crossref_primary_10_1186_s12880_020_00440_z
crossref_primary_10_1007_s00330_022_08707_5
crossref_primary_10_1016_j_yacr_2021_04_018
crossref_primary_10_1007_s00429_020_02172_w
crossref_primary_10_1016_j_nicl_2020_102231
crossref_primary_10_3174_ajnr_A6545
crossref_primary_10_1007_s00062_023_01308_9
crossref_primary_10_1097_WCO_0000000000000568
crossref_primary_10_3345_kjp_2019_00871
crossref_primary_10_1002_mrm_28309
crossref_primary_10_1097_WCO_0000000000000539
crossref_primary_10_1016_j_ejrad_2018_06_019
crossref_primary_10_1016_j_compmedimag_2023_102240
crossref_primary_10_1093_brain_awad284
crossref_primary_10_1016_j_yebeh_2019_106516
crossref_primary_10_1111_nyas_14431
crossref_primary_10_1088_1681_7575_adbcaf
crossref_primary_10_1111_epi_15612
crossref_primary_10_1212_WNL_0000000000012699
crossref_primary_10_17749_2077_8333_2019_11_3_208_232
crossref_primary_10_3389_fvets_2022_802272
crossref_primary_10_2214_AJR_20_23990
crossref_primary_10_3389_fneur_2021_801195
crossref_primary_10_1016_j_eplepsyres_2022_106971
crossref_primary_10_1016_j_nicl_2024_103647
crossref_primary_10_3390_diagnostics14242838
crossref_primary_10_1186_s12883_020_01680_w
crossref_primary_10_1007_s00330_020_07075_2
crossref_primary_10_1016_j_ebiom_2023_104460
crossref_primary_10_1093_braincomms_fcab284
crossref_primary_10_1007_s42399_024_01705_2
crossref_primary_10_1002_jmri_27184
crossref_primary_10_1016_j_eplepsyres_2021_106638
crossref_primary_10_1186_s41983_021_00347_8
crossref_primary_10_1007_s12022_024_09819_y
Cites_doi 10.1093/brain/89.3.499
10.1016/j.neuroimage.2004.06.009
10.1016/j.eplepsyres.2009.04.001
10.1212/WNL.43.9.1793
10.1016/j.nicl.2015.03.004
10.1093/brain/awg199
10.1136/jnnp.65.5.656
10.1002/ana.410410109
10.1148/radiology.175.2.2183282
10.1212/WNL.45.12.2233
10.3174/ajnr.A3640
10.1212/WNL.0b013e3181b783dd
10.1111/j.1552-6569.2006.00051.x
10.1002/ana.410420512
10.1212/WNL.58.2.265
10.1016/j.neuroimage.2003.09.059
10.1016/S0920-1211(01)00325-4
10.1016/j.eplepsyres.2016.06.001
10.1016/j.neuroimage.2007.09.061
10.1006/nimg.2000.0724
10.1212/WNL.58.2.257
10.3174/ajnr.A0505
10.1111/j.1552-6569.2003.tb00183.x
10.1111/j.1528-1157.1999.tb02015.x
10.1002/ana.410310204
10.1111/epi.12408
10.1212/WNL.37.3.405
10.1006/nimg.1998.0331
ContentType Journal Article
Copyright 2017 The Authors. published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
Copyright © 2017 International League Against Epilepsy
Copyright_xml – notice: 2017 The Authors. published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
– notice: 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
– notice: Copyright © 2017 International League Against Epilepsy
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1111/epi.13843
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
Neurosciences Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate G. P. Winston et al
EISSN 1528-1167
EndPage 1652
ExternalDocumentID PMC5599984
28699215
10_1111_epi_13843
EPI13843
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Institute for Health Research University College London Hospitals Biomedical Research Centre
  funderid: BW.mn.BRC10269
– fundername: Wellcome Trust Translational Award
  funderid: WT106882
– fundername: MRC Clinician Scientist Fellowship
  funderid: MR/M00841X/1
– fundername: Medical Research Council
  grantid: MR/M00841X/1
– fundername: Wellcome Trust
– fundername: National Institute for Health Research University College London Hospitals Biomedical Research Centre
  grantid: BW.mn.BRC10269
– fundername: Wellcome Trust Translational Award
  grantid: WT106882
– fundername: MRC Clinician Scientist Fellowship
  grantid: MR/M00841X/1
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29G
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAGKA
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FYBCS
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
V9Y
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c4433-45df009733e08f2a531619f25140e0a8a6a7c2701c668617aa88d87d8a6a1d393
IEDL.DBID DR2
ISSN 0013-9580
1528-1167
IngestDate Thu Aug 21 18:12:25 EDT 2025
Thu Jul 10 22:39:42 EDT 2025
Fri Jul 25 10:23:45 EDT 2025
Mon Jul 21 05:50:50 EDT 2025
Thu Apr 24 23:00:25 EDT 2025
Tue Jul 01 03:17:51 EDT 2025
Wed Jan 22 17:12:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Temporal lobe epilepsy
T2 relaxometry
Magnetic resonance imaging
Hippocampus
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4433-45df009733e08f2a531619f25140e0a8a6a7c2701c668617aa88d87d8a6a1d393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Joint first authors.
ORCID 0000-0001-9395-1478
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.13843
PMID 28699215
PQID 1935954304
PQPubID 1066359
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5599984
proquest_miscellaneous_1918381221
proquest_journals_1935954304
pubmed_primary_28699215
crossref_primary_10_1111_epi_13843
crossref_citationtrail_10_1111_epi_13843
wiley_primary_10_1111_epi_13843_EPI13843
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2017
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Epilepsia (Copenhagen)
PublicationTitleAlternate Epilepsia
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2004; 21
2002; 58
1996; 17
2009; 86
1997; 42
1997; 41
2006; 16
2004; 25
1993; 43
2004; 23
2008; 39
2003; 13
2016; 126
1999; 40
1992; 31
1998; 65
2015; 7
1987; 37
2007; 28
1993; 14
2002; 48
1998; 19
2009; 73
2013; 54
2000; 12
1995; 45
2014; 35
1994; 15
1966; 89
1998; 7
2003; 126
1990; 175
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_27_1
Jackson GD (e_1_2_8_4_1) 1993; 14
Lee DH (e_1_2_8_21_1) 1998; 19
Grunewald RA (e_1_2_8_25_1) 1994; 15
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_23_1
Briellmann RS (e_1_2_8_32_1) 2004; 25
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_35_1
Duncan JS (e_1_2_8_15_1) 1996; 17
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Meiners LC (e_1_2_8_14_1) 1994; 15
e_1_2_8_30_1
References_xml – volume: 35
  start-page: 77
  year: 2014
  end-page: 83
  article-title: 3T MRI quantification of hippocampal volume and signal in mesial temporal lobe epilepsy improves detection of hippocampal sclerosis
  publication-title: AJNR Am J Neuroradiol
– volume: 48
  start-page: 131
  year: 2002
  end-page: 142
  article-title: Measurement of temporal lobe T2 relaxation times using a routine diagnostic MR imaging protocol in epilepsy
  publication-title: Epilepsy Res
– volume: 54
  start-page: 2166
  year: 2013
  end-page: 2173
  article-title: Automated hippocampal segmentation in patients with epilepsy: available free online
  publication-title: Epilepsia
– volume: 65
  start-page: 656
  year: 1998
  end-page: 664
  article-title: Regional changes in hippocampal T2 relaxation and volume: a quantitative magnetic resonance imaging study of hippocampal sclerosis
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 15
  start-page: 1547
  year: 1994
  end-page: 1555
  article-title: Temporal lobe epilepsy: the various MR appearances of histologically proven mesial temporal sclerosis
  publication-title: AJNR Am J Neuroradiol
– volume: 28
  start-page: 1095
  year: 2007
  end-page: 1098
  article-title: T2 relaxometry of the hippocampus at 3T
  publication-title: AJNR Am J Neuroradiol
– volume: 21
  start-page: 707
  year: 2004
  end-page: 713
  article-title: Voxel‐based relaxometry: a new approach for analysis of T2 relaxometry changes in epilepsy
  publication-title: NeuroImage
– volume: 13
  start-page: 228
  year: 2003
  end-page: 233
  article-title: Quantification of hippocampal signal intensity in patients with mesial temporal lobe epilepsy
  publication-title: J Neuroimaging
– volume: 41
  start-page: 41
  year: 1997
  end-page: 51
  article-title: The spectrum of hippocampal sclerosis: a quantitative magnetic resonance imaging study
  publication-title: Ann Neurol
– volume: 14
  start-page: 753
  year: 1993
  end-page: 762
  article-title: Optimizing the diagnosis of hippocampal sclerosis using MR imaging
  publication-title: AJNR Am J Neuroradiol
– volume: 43
  start-page: 1793
  year: 1993
  end-page: 1799
  article-title: Detection of hippocampal pathology in intractable partial epilepsy: increased sensitivity with quantitative magnetic resonance T2 relaxometry
  publication-title: Neurology
– volume: 16
  start-page: 260
  year: 2006
  end-page: 265
  article-title: T2‐weighted and T2 relaxometry images in patients with medial temporal lobe epilepsy
  publication-title: J Neuroimaging
– volume: 40
  start-page: 1424
  year: 1999
  end-page: 1432
  article-title: Combined measurements of hippocampal N‐acetyl‐aspartate and T2 relaxation time in the evaluation of mesial temporal lobe epilepsy: correlation with clinical severity and memory performances
  publication-title: Epilepsia
– volume: 7
  start-page: 304
  year: 1998
  end-page: 313
  article-title: Contribution of T2 relaxation time mapping in the evaluation of cryptogenic temporal lobe epilepsy
  publication-title: NeuroImage
– volume: 37
  start-page: 405
  year: 1987
  end-page: 409
  article-title: Seizure characteristics, pathology, and outcome after temporal lobectomy
  publication-title: Neurology
– volume: 58
  start-page: 265
  year: 2002
  end-page: 271
  article-title: Hippocampal pathology in refractory temporal lobe epilepsy: T2‐weighted signal change reflects dentate gliosis
  publication-title: Neurology
– volume: 23
  start-page: 318
  year: 2004
  end-page: 324
  article-title: Quantitative analysis of temporal lobe white matter T2 relaxation time in temporal lobe epilepsy
  publication-title: NeuroImage
– volume: 7
  start-page: 788
  year: 2015
  end-page: 791
  article-title: T2 mapping outperforms normalised FLAIR in identifying hippocampal sclerosis
  publication-title: Neuroimage Clin
– volume: 42
  start-page: 756
  year: 1997
  end-page: 766
  article-title: Quantitative neuropathology and quantitative magnetic resonance imaging of the hippocampus in temporal lobe epilepsy
  publication-title: Ann Neurol
– volume: 25
  start-page: 389
  year: 2004
  end-page: 394
  article-title: Increased anterior temporal lobe T2 times in cases of hippocampal sclerosis: a multi‐echo T2 relaxometry study at 3 T
  publication-title: AJNR Am J Neuroradiol
– volume: 15
  start-page: 1149
  year: 1994
  end-page: 1156
  article-title: MR detection of hippocampal disease in epilepsy: factors influencing T2 relaxation time
  publication-title: AJNR Am J Neuroradiol
– volume: 89
  start-page: 499
  year: 1966
  end-page: 530
  article-title: Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes
  publication-title: Brain
– volume: 175
  start-page: 423
  year: 1990
  end-page: 429
  article-title: Temporal lobe seizures: lateralization with MR volume measurements of the hippocampal formation
  publication-title: Radiology
– volume: 45
  start-page: 2233
  year: 1995
  end-page: 2240
  article-title: Quantitative hippocampal MRI and intractable temporal lobe epilepsy
  publication-title: Neurology
– volume: 17
  start-page: 1805
  year: 1996
  end-page: 1810
  article-title: Technique for measuring hippocampal T2 relaxation time
  publication-title: AJNR Am J Neuroradiol
– volume: 12
  start-page: 739
  year: 2000
  end-page: 746
  article-title: T2 relaxometry can lateralize mesial temporal lobe epilepsy in patients with normal MRI
  publication-title: NeuroImage
– volume: 58
  start-page: 257
  year: 2002
  end-page: 264
  article-title: Time‐efficient T2 relaxometry of the entire hippocampus is feasible in temporal lobe epilepsy
  publication-title: Neurology
– volume: 126
  start-page: 1968
  year: 2003
  end-page: 1974
  article-title: Abnormalities in hippocampi remote from the seizure focus: a T2 relaxometry study
  publication-title: Brain
– volume: 19
  start-page: 19
  year: 1998
  end-page: 27
  article-title: MR in temporal lobe epilepsy: analysis with pathologic confirmation
  publication-title: AJNR Am J Neuroradiol
– volume: 126
  start-page: 1
  year: 2016
  end-page: 9
  article-title: T2 relaxometry improves detection of non‐sclerotic epileptogenic hippocampus
  publication-title: Epilepsy Res
– volume: 73
  start-page: 834
  year: 2009
  end-page: 842
  article-title: Seizure frequency and lateralization affect progression of atrophy in temporal lobe epilepsy
  publication-title: Neurology
– volume: 39
  start-page: 1151
  year: 2008
  end-page: 1161
  article-title: Composite voxel‐based analysis of volume and T2 relaxometry in temporal lobe epilepsy
  publication-title: NeuroImage
– volume: 86
  start-page: 23
  year: 2009
  end-page: 31
  article-title: Single‐subject voxel‐based relaxometry for clinical assessment of temporal lobe epilepsy
  publication-title: Epilepsy Res
– volume: 31
  start-page: 138
  year: 1992
  end-page: 146
  article-title: Magnetic resonance image‐based hippocampal volumetry: correlation with outcome after temporal lobectomy
  publication-title: Ann Neurol
– ident: e_1_2_8_2_1
  doi: 10.1093/brain/89.3.499
– ident: e_1_2_8_31_1
  doi: 10.1016/j.neuroimage.2004.06.009
– ident: e_1_2_8_35_1
  doi: 10.1016/j.eplepsyres.2009.04.001
– ident: e_1_2_8_6_1
  doi: 10.1212/WNL.43.9.1793
– ident: e_1_2_8_24_1
  doi: 10.1016/j.nicl.2015.03.004
– ident: e_1_2_8_28_1
  doi: 10.1093/brain/awg199
– ident: e_1_2_8_5_1
  doi: 10.1136/jnnp.65.5.656
– ident: e_1_2_8_9_1
  doi: 10.1002/ana.410410109
– ident: e_1_2_8_11_1
  doi: 10.1148/radiology.175.2.2183282
– ident: e_1_2_8_19_1
  doi: 10.1212/WNL.45.12.2233
– volume: 15
  start-page: 1547
  year: 1994
  ident: e_1_2_8_14_1
  article-title: Temporal lobe epilepsy: the various MR appearances of histologically proven mesial temporal sclerosis
  publication-title: AJNR Am J Neuroradiol
– volume: 15
  start-page: 1149
  year: 1994
  ident: e_1_2_8_25_1
  article-title: MR detection of hippocampal disease in epilepsy: factors influencing T2 relaxation time
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_8_8_1
  doi: 10.3174/ajnr.A3640
– ident: e_1_2_8_30_1
  doi: 10.1212/WNL.0b013e3181b783dd
– volume: 14
  start-page: 753
  year: 1993
  ident: e_1_2_8_4_1
  article-title: Optimizing the diagnosis of hippocampal sclerosis using MR imaging
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_8_23_1
  doi: 10.1111/j.1552-6569.2006.00051.x
– ident: e_1_2_8_26_1
  doi: 10.1002/ana.410420512
– ident: e_1_2_8_10_1
  doi: 10.1212/WNL.58.2.265
– ident: e_1_2_8_33_1
  doi: 10.1016/j.neuroimage.2003.09.059
– volume: 17
  start-page: 1805
  year: 1996
  ident: e_1_2_8_15_1
  article-title: Technique for measuring hippocampal T2 relaxation time
  publication-title: AJNR Am J Neuroradiol
– volume: 19
  start-page: 19
  year: 1998
  ident: e_1_2_8_21_1
  article-title: MR in temporal lobe epilepsy: analysis with pathologic confirmation
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_8_16_1
  doi: 10.1016/S0920-1211(01)00325-4
– ident: e_1_2_8_27_1
  doi: 10.1016/j.eplepsyres.2016.06.001
– ident: e_1_2_8_34_1
  doi: 10.1016/j.neuroimage.2007.09.061
– ident: e_1_2_8_7_1
  doi: 10.1006/nimg.2000.0724
– ident: e_1_2_8_17_1
  doi: 10.1212/WNL.58.2.257
– ident: e_1_2_8_18_1
  doi: 10.3174/ajnr.A0505
– ident: e_1_2_8_22_1
  doi: 10.1111/j.1552-6569.2003.tb00183.x
– ident: e_1_2_8_29_1
  doi: 10.1111/j.1528-1157.1999.tb02015.x
– ident: e_1_2_8_12_1
  doi: 10.1002/ana.410310204
– ident: e_1_2_8_13_1
  doi: 10.1111/epi.12408
– volume: 25
  start-page: 389
  year: 2004
  ident: e_1_2_8_32_1
  article-title: Increased anterior temporal lobe T2 times in cases of hippocampal sclerosis: a multi‐echo T2 relaxometry study at 3 T
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_8_3_1
  doi: 10.1212/WNL.37.3.405
– ident: e_1_2_8_20_1
  doi: 10.1006/nimg.1998.0331
SSID ssj0007673
Score 2.4319916
Snippet Summary Objective Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and...
Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and increased T2 signal....
Summary Objective Hippocampal sclerosis (HS), the most common cause of refractory temporal lobe epilepsy, is associated with hippocampal volume loss and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1645
SubjectTerms Adolescent
Adult
Aged
Automation
Automation - methods
Case-Control Studies
Cerebrospinal fluid
Contamination
Epilepsy
Epilepsy, Temporal Lobe - diagnostic imaging
Epilepsy, Temporal Lobe - etiology
Epilepsy, Temporal Lobe - pathology
Epilepsy, Temporal Lobe - physiopathology
Female
Full‐Length Original Research
Hippocampus
Hippocampus - diagnostic imaging
Hippocampus - pathology
Hippocampus - physiopathology
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Middle Aged
Sclerosis
Segmentation
T2 relaxometry
Temporal lobe
Temporal lobe epilepsy
Young Adult
Title Automated T2 relaxometry of the hippocampus for temporal lobe epilepsy
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.13843
https://www.ncbi.nlm.nih.gov/pubmed/28699215
https://www.proquest.com/docview/1935954304
https://www.proquest.com/docview/1918381221
https://pubmed.ncbi.nlm.nih.gov/PMC5599984
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEB3SHEovbdNPt2lQSw-5eLElWZbIKYQsaaEllARyKBjZksmSjW2yNjT59RnJH80mLZTeDBoj2ZqneZJGTwCfy1hEJqUm5JbmIdeFDXMtVFhIxjjNMUgYn23xXRyd8q9nydkG7I1nYXp9iGnBzSHDj9cO4Dpf3QG5bRazmEnulD5drpYjRD9-S0elYthdjlmoEhkNqkIui2d6cz0WPSCYD_Mk7_JXH4Dmz-Dn2PQ-7-Ri1rX5rLi5p-r4n9_2HJ4OxJTs9560BRu2egGPvw1b7y9hvt-1NdJba8gJJe4IzK_60rZX16QuCbJIcr5oGgyMl023IsiEySB6tSQun4NgXUvbrK5fwen88OTgKBwuYQgLzhkLeWJKr-nDbCRLqhGzOOcqkRbxyEZaaqHTgqZRXAghkQ5pLaWRqXEFsWGKvYbNqq7sWyDI42USsVQJabiyUgr0IKa0KHVScl0GsDt2R1YMCuXuooxlNs5UsK2Z_y8BfJpMm16W409G22OfZgMyV1nsjyJzFvEAPk7FiCm3UaIrW3fOBgc6ZD40DuBN7wJTLVQKpZAnBZCuOcdk4PS610uqxbnX7Xbibkpivbu-7__e8Ozw-It_ePfvpu_hCXWMw6e_bcNme9XZD8iX2nwHHlF-vOPhcQv1jRGT
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD7MCerL_DmtTo3iw156aZM0TcGXobvc6TZE7mAvUtImZRfv2rLbwuZf70n6w12nIL4VckrS5nw5X5KTLwDvilAEOqba54ZmPle58TMlEj-XjHGaYZDQLtviWMxO-KfT6HQD3g9nYTp9iHHBzSLDjdcW4HZB-hrKTb2YhExydgtu2xu9rXL-x6-_xKNi0e8vh8xPIhn0ukI2j2d8dT0a3aCYNzMlrzNYF4Km9-Hb0Pgu8-T7pG2ySf7jN13H__26B7DVc1Oy1znTQ9gw5SO4c9Tvvj-G6V7bVMhwjSZzSuwpmMvq3DQXV6QqCBJJcraoa4yN53W7IkiGSa97tSQ2pYNgXUtTr66ewMl0f_5h5vf3MPg554z5PNKFk_VhJpAFVQhbnHYVyIx4YAIllVBxTuMgzIWQyIiUklLLWNuCULOEbcNmWZXmGRCk8jIKWJwIqXlipBToRCxRolBRwVXhwe7QH2nei5TbuzKW6TBZwbam7r948HY0rTtljj8Z7QydmvbgXKWhO43MWcA9eDMWI6zsXokqTdVaGxzrkPzQ0IOnnQ-MtVApkgSpkgfxmneMBlaye72kXJw56W6r75ZIrHfXdf7fG57ufzlwD8__3fQ13J3Njw7Tw4Pjzy_gHrUExGXD7cBmc9Gal0ifmuyVQ8lPiiQU2A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS-QwEB88BbkXOfXurOdHTnzwpdImaZrgk6iLH6fsg4JvJdskuLC2xd2F87-_SbZbXPTAt8JMSMhkMr90Jr8AHLpUJCanJuaWDmKuSxsPtFBxKRnjdIBBwoRqiztx-cCvH7PHJTiZ34WZ8UN0P9y8Z4T92jt4Y9wbJ7fN8DhlkrMvsOKTfb6ei_J-tw3nok0vpyxWmUxaWiFfxtM1XQxG7xDm-0LJtwA2RKDeN1hroSM5ndl6HZZstQGrt21yfBN6p9NJjQDUGnJPib-k8rd-tpOXV1I7gjiPPA2bBkPXczMdE8SqpKWlGhFfcUFwuCPbjF-_w0Pv4v7sMm6fSYhLzhmLeWZcYN1hNpGOavQqPBU5BC48sYmWWui8pHmSlkJIBCxaS2lkbrwgNUyxH7Bc1ZXdAoJIW2YJy5WQhisrpUAbM6WF05nj2kVwNJ-vomw5xP1TFqNifpbAsRZhaiM46FSbGXHGR0o780kvWt8ZF2m4LMxZwiP43Ylx1ftUhq5sPfU6uBUhNqFpBD9nNup6oVIohUgmgnzBep2CZ9RelFTDp8Cs7enXlMR-j4Kd_z_w4qJ_FT62P6-6D6v9817x5-ru5hd8pR4ehFq1HVievEztLoKbyWAvLOJ_YH3zRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+T2+relaxometry+of+the+hippocampus+for+temporal+lobe+epilepsy&rft.jtitle=Epilepsia+%28Copenhagen%29&rft.au=Winston%2C+Gavin+P.&rft.au=Vos%2C+Sjoerd+B.&rft.au=Burdett%2C+Jane+L.&rft.au=Cardoso%2C+M.+Jorge&rft.date=2017-09-01&rft.issn=0013-9580&rft.eissn=1528-1167&rft.volume=58&rft.issue=9&rft.spage=1645&rft.epage=1652&rft_id=info:doi/10.1111%2Fepi.13843&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_epi_13843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9580&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9580&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9580&client=summon