Functional response of the soil microbial community to biochar applications

Biochar has the potential to mitigate the impacts of climate change and soil degradation by simultaneously sequestering C in soil and improving soil quality. However, the mechanism of biochar's effect on soil microbial communities remains unclear. Therefore, we conducted a global meta‐analysis,...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology. Bioenergy Vol. 13; no. 1; pp. 269 - 281
Main Authors Xu, Wenhuan, Whitman, William B., Gundale, Michael J., Chien, Chuan‐Chi, Chiu, Chih‐Yu
Format Journal Article
LanguageEnglish
Published Oxford John Wiley & Sons, Inc 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biochar has the potential to mitigate the impacts of climate change and soil degradation by simultaneously sequestering C in soil and improving soil quality. However, the mechanism of biochar's effect on soil microbial communities remains unclear. Therefore, we conducted a global meta‐analysis, where we collected 2,110 paired observations from 107 published papers and used structural equation modeling (SEM) to analyze the effects of biochar on microbial community structure and function. Our result indicated that arbuscular mycorrhizal fungal abundance, microbial biomass C, and functional richness increased with biochar addition regardless of loads, time since application, and experiment types. Results from mixed linear model analysis suggested that soil respiration and actinomycetes (ACT) abundance decreased with biochar application. With the increase of soil pH, the effect of biochar on fungal abundance and C metabolic ability was lessened. Higher biochar pH associated with higher pyrolysis temperatures reduced the abundance of bacteria, fungi, ACT, and soil microbes feeding on miscellaneous C from Biolog Eco‐plate experiments. SEM that examined the effect of biochar properties, load, and soil properties on microbial community indicated that fungal abundance was the dominant factor affecting the response of the bacterial abundance to biochar. The response of bacterial abundance to biochar addition was soil dependent, whereas fungi abundance was mostly related to biochar load and pyrolysis temperature. Based on soil conditions, controlling biochar load and production conditions would be a direct way to regulate the effect of biochar application on soil microbial function and increase the capacity to sequester C. Biochar management is a potential approach to mitigate climate warming and soil degradation. However, the mechanisms biochar regulates soil microbial function is still unclear, and many studies have yielded contradictory results. We compiled and analyzed data from 107 published studies, and found that biochar increased microbial growth and functional richness, especially when applied to acidic soils. Soil fungi were directly affected by biochar, whereas bacteria were sensitive to changes in soil properties upon biochar addition. This improved understanding will allow land managers to better use biochar as a tool to improve soil quality and mitigate climate warming.
AbstractList Abstract Biochar has the potential to mitigate the impacts of climate change and soil degradation by simultaneously sequestering C in soil and improving soil quality. However, the mechanism of biochar's effect on soil microbial communities remains unclear. Therefore, we conducted a global meta‐analysis, where we collected 2,110 paired observations from 107 published papers and used structural equation modeling (SEM) to analyze the effects of biochar on microbial community structure and function. Our result indicated that arbuscular mycorrhizal fungal abundance, microbial biomass C, and functional richness increased with biochar addition regardless of loads, time since application, and experiment types. Results from mixed linear model analysis suggested that soil respiration and actinomycetes (ACT) abundance decreased with biochar application. With the increase of soil pH, the effect of biochar on fungal abundance and C metabolic ability was lessened. Higher biochar pH associated with higher pyrolysis temperatures reduced the abundance of bacteria, fungi, ACT, and soil microbes feeding on miscellaneous C from Biolog Eco‐plate experiments. SEM that examined the effect of biochar properties, load, and soil properties on microbial community indicated that fungal abundance was the dominant factor affecting the response of the bacterial abundance to biochar. The response of bacterial abundance to biochar addition was soil dependent, whereas fungi abundance was mostly related to biochar load and pyrolysis temperature. Based on soil conditions, controlling biochar load and production conditions would be a direct way to regulate the effect of biochar application on soil microbial function and increase the capacity to sequester C.
Biochar has the potential to mitigate the impacts of climate change and soil degradation by simultaneously sequestering C in soil and improving soil quality. However, the mechanism of biochar's effect on soil microbial communities remains unclear. Therefore, we conducted a global meta‐analysis, where we collected 2,110 paired observations from 107 published papers and used structural equation modeling (SEM) to analyze the effects of biochar on microbial community structure and function. Our result indicated that arbuscular mycorrhizal fungal abundance, microbial biomass C, and functional richness increased with biochar addition regardless of loads, time since application, and experiment types. Results from mixed linear model analysis suggested that soil respiration and actinomycetes (ACT) abundance decreased with biochar application. With the increase of soil pH, the effect of biochar on fungal abundance and C metabolic ability was lessened. Higher biochar pH associated with higher pyrolysis temperatures reduced the abundance of bacteria, fungi, ACT, and soil microbes feeding on miscellaneous C from Biolog Eco‐plate experiments. SEM that examined the effect of biochar properties, load, and soil properties on microbial community indicated that fungal abundance was the dominant factor affecting the response of the bacterial abundance to biochar. The response of bacterial abundance to biochar addition was soil dependent, whereas fungi abundance was mostly related to biochar load and pyrolysis temperature. Based on soil conditions, controlling biochar load and production conditions would be a direct way to regulate the effect of biochar application on soil microbial function and increase the capacity to sequester C. Biochar management is a potential approach to mitigate climate warming and soil degradation. However, the mechanisms biochar regulates soil microbial function is still unclear, and many studies have yielded contradictory results. We compiled and analyzed data from 107 published studies, and found that biochar increased microbial growth and functional richness, especially when applied to acidic soils. Soil fungi were directly affected by biochar, whereas bacteria were sensitive to changes in soil properties upon biochar addition. This improved understanding will allow land managers to better use biochar as a tool to improve soil quality and mitigate climate warming.
Biochar has the potential to mitigate the impacts of climate change and soil degradation by simultaneously sequestering C in soil and improving soil quality. However, the mechanism of biochar's effect on soil microbial communities remains unclear. Therefore, we conducted a global meta-analysis, where we collected 2,110 paired observations from 107 published papers and used structural equation modeling (SEM) to analyze the effects of biochar on microbial community structure and function. Our result indicated that arbuscular mycorrhizal fungal abundance, microbial biomass C, and functional richness increased with biochar addition regardless of loads, time since application, and experiment types. Results from mixed linear model analysis suggested that soil respiration and actinomycetes (ACT) abundance decreased with biochar application. With the increase of soil pH, the effect of biochar on fungal abundance and C metabolic ability was lessened. Higher biochar pH associated with higher pyrolysis temperatures reduced the abundance of bacteria, fungi, ACT, and soil microbes feeding on miscellaneous C from Biolog Eco-plate experiments. SEM that examined the effect of biochar properties, load, and soil properties on microbial community indicated that fungal abundance was the dominant factor affecting the response of the bacterial abundance to biochar. The response of bacterial abundance to biochar addition was soil dependent, whereas fungi abundance was mostly related to biochar load and pyrolysis temperature. Based on soil conditions, controlling biochar load and production conditions would be a direct way to regulate the effect of biochar application on soil microbial function and increase the capacity to sequester C.
Author Chien, Chuan‐Chi
Gundale, Michael J.
Xu, Wenhuan
Whitman, William B.
Chiu, Chih‐Yu
Author_xml – sequence: 1
  givenname: Wenhuan
  orcidid: 0000-0002-3302-8531
  surname: Xu
  fullname: Xu, Wenhuan
  organization: Academia Sinica
– sequence: 2
  givenname: William B.
  surname: Whitman
  fullname: Whitman, William B.
  organization: University of Georgia
– sequence: 3
  givenname: Michael J.
  surname: Gundale
  fullname: Gundale, Michael J.
  organization: Swedish University of Agricultural Sciences
– sequence: 4
  givenname: Chuan‐Chi
  surname: Chien
  fullname: Chien, Chuan‐Chi
  organization: Industrial Technology Research Institute
– sequence: 5
  givenname: Chih‐Yu
  orcidid: 0000-0002-6842-1253
  surname: Chiu
  fullname: Chiu, Chih‐Yu
  email: bochiu@sinica.edu.tw
  organization: Academia Sinica
BackLink https://res.slu.se/id/publ/109249$$DView record from Swedish Publication Index
BookMark eNp9kFFLwzAUhYNMcE5f_AUF34TO3DRN2kc33BQHvuhzSNLUZbRNTVrG_r2tVR-9L_fC_c6Bcy7RrHGNQegG8BKGuf_QSi2BcJ6coTnwlMfAMZ_93ixPLtBlCAeMWcogn6OXTd_ozrpGVpE3oXVNMJEro25vouBsFdVWe6fs8NaurvvGdqeoc5GyTu-lj2TbVlbL0SFcofNSVsFc_-wFet88vq2f4t3r9nn9sIs1pUkSU5xnrJAZTRPCmGY6hYIUmBvJM5VyDYQQYwrOSZFrTo3SUvOEAi6BlDQnyQItJ99wNG2vROttLf1JOGlFqHol_bhEMAJwTmg-CG4nQevdZ29CJw6u90PkIAhlWZoBpDBQdxM1BA7Bm_LPGLAY2xVju-K73QGGCT7aypz-IcV2vVpNmi9KFX6o
CitedBy_id crossref_primary_10_3389_fpls_2024_1359911
crossref_primary_10_1111_gcbb_13087
crossref_primary_10_3389_fpls_2023_1278122
crossref_primary_10_1016_j_apsoil_2023_104875
crossref_primary_10_1111_rec_13518
crossref_primary_10_1016_j_fuel_2023_127701
crossref_primary_10_3390_agronomy13092203
crossref_primary_10_3389_fmicb_2021_789235
crossref_primary_10_1007_s11356_022_20489_3
crossref_primary_10_1111_gcbb_12995
crossref_primary_10_3390_microorganisms12030510
crossref_primary_10_2139_ssrn_3981407
crossref_primary_10_1016_j_chemosphere_2021_133000
crossref_primary_10_3390_horticulturae9091023
crossref_primary_10_1111_gcbb_13110
crossref_primary_10_34133_2022_9857374
crossref_primary_10_1016_j_apsoil_2024_105411
crossref_primary_10_1016_j_scitotenv_2021_148433
crossref_primary_10_1016_j_agee_2021_107784
crossref_primary_10_1016_j_still_2022_105442
crossref_primary_10_3390_agriculture14010037
crossref_primary_10_1016_j_jhazmat_2021_126947
crossref_primary_10_1016_j_jclepro_2021_128595
crossref_primary_10_1016_j_scitotenv_2022_158562
crossref_primary_10_1007_s42773_024_00319_0
crossref_primary_10_1111_gcbb_12864
crossref_primary_10_1016_j_envpol_2023_121723
crossref_primary_10_1002_ldr_5029
crossref_primary_10_1038_s41598_024_52425_5
crossref_primary_10_1093_hr_uhac108
crossref_primary_10_1515_biol_2022_0807
crossref_primary_10_1007_s44246_022_00003_7
crossref_primary_10_3389_fmicb_2022_1065313
crossref_primary_10_1016_j_geoderma_2022_116176
crossref_primary_10_1111_gcbb_12978
crossref_primary_10_1007_s42773_023_00291_1
crossref_primary_10_1111_gcbb_12933
crossref_primary_10_3389_fenvs_2023_1059449
crossref_primary_10_1016_j_scitotenv_2023_164656
crossref_primary_10_3390_su16125004
crossref_primary_10_3390_agronomy12112661
crossref_primary_10_1016_j_apsoil_2021_104364
crossref_primary_10_1016_j_scitotenv_2024_172509
crossref_primary_10_1016_j_envres_2023_115548
crossref_primary_10_3389_fmicb_2022_1023444
crossref_primary_10_1016_j_chemosphere_2022_137025
crossref_primary_10_1016_j_agwat_2023_108265
crossref_primary_10_1007_s42773_023_00255_5
crossref_primary_10_1016_j_chemosphere_2022_137101
crossref_primary_10_1016_j_jclepro_2023_139066
crossref_primary_10_1016_j_scitotenv_2022_158060
crossref_primary_10_1016_j_scitotenv_2023_169618
crossref_primary_10_1016_j_jhazmat_2021_128060
crossref_primary_10_1016_j_jhazmat_2024_133502
crossref_primary_10_1007_s11104_024_06556_3
crossref_primary_10_1021_acs_chemrev_2c00399
Cites_doi 10.1016/j.soilbio.2013.09.015
10.1371/journal.pone.0124891
10.1021/bi900503k
10.1073/pnas.95.12.6578
10.1111/geb.12488
10.1016/j.sjbs.2018.11.005
10.1038/nature13809
10.1038/nature13604
10.1016/j.ecoenv.2017.06.075
10.1016/j.agee.2017.01.006
10.1016/j.apsoil.2010.04.011
10.1038/s41467-017-01123-0
10.1111/ejss.12100
10.1111/gcb.14567
10.1016/j.soilbio.2011.04.022
10.1016/j.apsoil.2017.06.008
10.1017/CBO9780511617799
10.1016/j.apsoil.2014.12.005
10.1094/PDIS-10-10-0741
10.18637/jss.v048.i02
10.1007/s11356-014-3467-6
10.1007/s00253-010-3004-6
10.1016/j.apsoil.2010.03.005
10.1016/j.biortech.2011.11.084
10.1111/gcbb.12371
10.1890/05-0822
10.1111/ejss.12064
10.1007/s11356-015-4885-9
10.1016/j.apsoil.2017.04.024
10.2136/sssaj2000.6451659x
10.1016/j.soilbio.2018.09.001
10.1016/j.ejsobi.2015.12.008
10.1007/s11274-013-1528-5
10.1038/srep36101
10.1007/s00374-014-0968-x
10.1016/j.catena.2014.05.020
10.1016/j.heliyon.2019.e02051
10.1016/S0038-0717(02)00251-1
10.1111/gcb.13178
10.1007/978-3-319-19168-3
10.1038/s41396-018-0096-y
10.1038/nclimate3276
10.1016/j.soilbio.2011.02.005
10.1016/j.scitotenv.2015.11.054
10.1016/j.scitotenv.2016.03.010
10.1016/0038-0717(94)90131-7
10.1016/j.soilbio.2017.09.015
10.1046/j.1469-8137.2002.00397.x
10.1016/j.orggeochem.2015.06.005
10.1016/j.soilbio.2011.07.020
10.1111/gcb.14415
10.1016/j.micpath.2017.09.036
10.5038/1827-806X.42.1.9
10.15376/biores.14.4.7852-7868
10.1016/0038-0717(78)90099-8
10.1002/jpln.201200652
10.1080/01448765.2017.1388847
10.1371/journal.ppat.1006149
10.1016/j.scitotenv.2014.02.103
10.1038/nature21417
10.1016/j.eja.2014.09.006
10.1007/s00374-015-1047-7
10.4141/cjss-2014-010
10.1111/gcb.13871
10.15244/pjoes/81688
10.1038/442624a
10.1111/gcb.15036
10.1016/j.biortech.2017.07.060
10.1111/gcbb.12265
10.1111/gcbb.12037
10.1016/j.chemosphere.2017.01.148
10.1016/j.biortech.2012.12.165
10.1016/j.soilbio.2014.11.017
10.1016/j.soilbio.2009.03.016
10.1016/j.chemosphere.2011.08.031
10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
10.3389/fenvs.2019.00110
10.1111/sum.12460
10.1038/srep03687
10.1007/s11104-007-9391-5
10.1016/j.scitotenv.2018.06.231
10.1002/jpln.201300154
10.1186/s40168-019-0693-7
10.1016/j.jhazmat.2014.06.074
10.1016/j.apsoil.2010.09.002
10.1111/j.1365-2389.2011.01377.x
10.1016/j.scitotenv.2017.08.166
ContentType Journal Article
Copyright 2020 The Authors. Published by John Wiley & Sons Ltd
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. Published by John Wiley & Sons Ltd
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID 24P
WIN
AAYXX
CITATION
3V.
7SN
7ST
7U6
7XB
8FE
8FG
8FH
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
GNUQQ
GUQSH
HCIFZ
KB.
LK8
M2O
M7P
MBDVC
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1111/gcbb.12773
DatabaseName Wiley Online Library Open Access
Wiley Free Archive
CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Materials Science Database
Biological Sciences
ProQuest research library
Biological Science Database
Research Library (Corporate)
Materials Science Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
Sustainability Science Abstracts
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1757-1707
EndPage 281
ExternalDocumentID oai_slubar_slu_se_109249
10_1111_gcbb_12773
GCBB12773
Genre article
GrantInformation_xml – fundername: Academia Sinica
  funderid: AS‐ITRI‐109‐01
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8G5
8UM
930
A03
AAEVG
AAHBH
AAHHS
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABJCF
ABPVW
ABUWG
ACBWZ
ACCFJ
ACIWK
ACPRK
ACSCC
ACXQS
ADBBV
ADIZJ
ADKYN
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
AZQEC
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CAG
CCPQU
COF
D-E
D-F
D1I
DPXWK
DR2
DU5
DWQXO
EBD
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IGS
IHR
J0M
KB.
KQ8
L8X
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M2O
M7P
MK4
M~E
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2X
P4D
PDBOC
PIMPY
PQQKQ
PROAC
Q.N
Q11
QB0
R.K
ROL
RWI
RX1
SUPJJ
TEORI
TUS
UB1
W8V
W99
WIH
WIN
WNSPC
WQJ
WRC
XG1
XV2
~IA
~WT
AAYXX
CITATION
ITC
3V.
7SN
7ST
7U6
7XB
8FK
C1K
MBDVC
PQEST
PQUKI
Q9U
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c4433-40986da8453266c6c51d2d07ea78b57c1222eed772d9c74ebcac73410f12f4923
IEDL.DBID DR2
ISSN 1757-1693
1757-1707
IngestDate Tue Oct 01 22:42:48 EDT 2024
Wed Sep 25 01:22:11 EDT 2024
Thu Sep 26 17:19:30 EDT 2024
Sat Aug 24 01:06:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4433-40986da8453266c6c51d2d07ea78b57c1222eed772d9c74ebcac73410f12f4923
ORCID 0000-0002-6842-1253
0000-0002-3302-8531
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcbb.12773
PQID 2468581151
PQPubID 866396
PageCount 13
ParticipantIDs swepub_primary_oai_slubar_slu_se_109249
proquest_journals_2468581151
crossref_primary_10_1111_gcbb_12773
wiley_primary_10_1111_gcbb_12773_GCBB12773
PublicationCentury 2000
PublicationDate January 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global change biology. Bioenergy
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 119
2015; 34
2017; 7
2017; 8
2007; 300
2009; 41
2002; 154
2013; 64
2011; 62
2018; 126
2018; 643
2019; 14
2014; 68
2016; 72
1994; 26
2016; 543
2017; 111
2014; 177
2013; 5
1999; 80
2017; 9
2017; 115
2009; 48
2014; 65
2017; 239
2015; 89
2014; 4
2015; 81
2013; 13
2015; 256
2019; 26
2018; 610
2019; 25
2017; 34
2015; 87
2019; 28
2016; 40
2016; 556
2014; 121
2018; 34
1998; 95
2014; 50
2014; 94
2017; 246
2006; 442
2019; 7
2014; 513
2015; 19
2019; 5
1978; 10
2015; 52
2013; 42
2015; 10
2000; 64
2003; 35
2008
2006
2017; 174
2003
2017; 117–118
2016; 16
2012; 107
2014; 279
2018; 24
2006; 113
2010; 45
2016; 6
2010; 46
2015; 62
2006; 87
2011; 95
2015; 22
2017; 13
2014; 482–483
2011; 85
2020; 26
2017
2011; 43
2015; 517
2016
2011; 89
2013; 131
2012; 48
2014; 30
2018; 12
2017; 144
2017; 543
2016; 8
2016; 25
2016; 23
2016; 22
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
Ambihai S. (e_1_2_8_7_1) 2013; 13
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_91_1
e_1_2_8_95_1
Hamid A. A. (e_1_2_8_40_1) 2015; 19
e_1_2_8_99_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_48_1
Lu H. (e_1_2_8_57_1) 2015; 256
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_82_1
e_1_2_8_18_1
Ackerman F. (e_1_2_8_2_1) 2008
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
Xu W. (e_1_2_8_90_1) 2015; 34
e_1_2_8_98_1
Zhang Y. (e_1_2_8_94_1) 2016; 40
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
Muhammad N. (e_1_2_8_66_1) 2016; 16
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Cohen J. (e_1_2_8_25_1) 2003
e_1_2_8_70_1
Xu W. (e_1_2_8_88_1) 2016; 40
e_1_2_8_97_1
Lehmann J. (e_1_2_8_53_1) 2006; 113
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Galazka A. (e_1_2_8_35_1) 2019; 14
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – volume: 126
  start-page: 159
  year: 2018
  end-page: 167
  article-title: Soil fungal taxonomic and functional community composition as affected by biochar properties
  publication-title: Soil Biology and Biochemistry
– volume: 543
  start-page: 513
  year: 2017
  end-page: 518
  article-title: Root microbiota drive direct integration of phosphate stress and immunity
  publication-title: Nature
– volume: 7
  start-page: 371
  year: 2017
  end-page: 376
  article-title: Biochar built soil carbon over a decade by stabilizing rhizodeposits
  publication-title: Nature Climate Change
– volume: 30
  start-page: 1085
  year: 2014
  end-page: 1092
  article-title: Bacterial and fungal taxon changes in soil microbial community composition induced by short‐term biochar amendment in red oxidized loam soil
  publication-title: World Journal of Microbiology Biotechnology
– volume: 64
  start-page: 379
  year: 2013
  end-page: 390
  article-title: Interactions between biochar stability and soil organisms: Review and research needs
  publication-title: European Journal of Soil Science
– volume: 5
  start-page: 202
  year: 2013
  end-page: 214
  article-title: Biochar and its effects on plant productivity and nutrient cycling: A meta‐analysis
  publication-title: GCB Bioenergy
– volume: 7
  start-page: 110
  year: 2019
  article-title: The long‐term effect of biochar on soil microbial abundance, activity and community structure is overwritten by land management
  publication-title: Frontiers in Environmental Science
– volume: 154
  start-page: 275
  year: 2002
  end-page: 304
  article-title: Coevolution of roots and mycorrhizas of land plants
  publication-title: New Phytologist
– volume: 556
  start-page: 89
  year: 2016
  end-page: 97
  article-title: Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil
  publication-title: Science of the Total Environment
– volume: 24
  start-page: 5243
  year: 2018
  end-page: 5258
  article-title: Canopy structure and topography jointly constrain the microclimate of human modified tropical landscapes
  publication-title: Global Change Biology
– volume: 52
  start-page: 1
  year: 2015
  end-page: 14
  article-title: Controls and dynamics of biochar decomposition and soil microbial abundance, composition, and carbon use efficiency during long‐term biochar‐amended soil incubations
  publication-title: Biology and Fertility of Soils
– volume: 45
  start-page: 112
  year: 2010
  end-page: 120
  article-title: Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia
  publication-title: Applied Soil Ecology
– volume: 89
  start-page: 10
  year: 2015
  end-page: 17
  article-title: Short‐term mesofauna responses to soil additions of corn stover biochar and the role of microbial biomass
  publication-title: Applied Soil Ecology
– volume: 9
  start-page: 591
  year: 2017
  end-page: 612
  article-title: Biochar alters the soil microbiome and soil function: Results of next‐generation amplicon sequencing across Europe
  publication-title: GCB Bioenergy
– volume: 16
  start-page: 137
  year: 2016
  end-page: 153
  article-title: Addition impact of biochar from different feed stocks on microbial community and available concentrations of elements in a Psammaquent and a Plinthudult
  publication-title: Journal of Soil Science and Plant Nutrition
– volume: 113
  year: 2006
  article-title: Bio‐char soil management on highly weathered soils in the humid tropics
  publication-title: Biological Approaches to Sustainable Soil Systems
– volume: 46
  start-page: 450
  year: 2010
  end-page: 456
  article-title: Influences of non‐herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth‐chamber and field experiments
  publication-title: Applied Soil Ecology
– volume: 5
  year: 2019
  article-title: Biochar and hydrochar from waste biomass promote the growth and enzyme activity of soil‐resident ligninolytic fungi
  publication-title: Heliyon
– volume: 40
  start-page: 1
  year: 2016
  end-page: 8
  article-title: Effects of different fertilizers regimes on the functional diversity of soil microbes under poplar plantation
  publication-title: Journal of Nanjing Forestry University (Natural Sciences Edition)
– year: 2008
– volume: 121
  start-page: 214
  year: 2014
  end-page: 221
  article-title: Effect of biochar on carbon fractions and enzyme activity of red soil
  publication-title: Catena
– volume: 43
  start-page: 1169
  year: 2011
  end-page: 1179
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar‐amended soils
  publication-title: Soil Biology Biochemistry
– volume: 610
  start-page: 951
  year: 2018
  end-page: 960
  article-title: Biochar‐induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation
  publication-title: Science of the Total Environment
– volume: 68
  start-page: 20
  year: 2014
  end-page: 30
  article-title: Predicting the effects of biochar on volatile petroleum hydrocarbon biodegradation and emanation from soil: A bacterial community finger‐print analysis inferred modelling approach
  publication-title: Soil Biology and Biochemistry
– volume: 81
  start-page: 244
  year: 2015
  end-page: 254
  article-title: Shifts in microbial community and water‐extractable organic matter composition with biochar amendment in a temperate forest soil
  publication-title: Soil Biology and Biochemistry
– volume: 34
  start-page: 1791
  year: 2015
  end-page: 1797
  article-title: Response of carbon metabolism by soil microbes to different fertilization regimes in a poplar plantation in coastal area of northern Jiangsu, China
  publication-title: Chinese Journal of Ecology
– volume: 8
  start-page: 392
  year: 2016
  end-page: 406
  article-title: Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta‐analysis
  publication-title: GCB Bioenergy
– volume: 246
  start-page: 224
  year: 2017
  end-page: 233
  article-title: Recent developments of post‐modification of biochar for electrochemical energy storage
  publication-title: Bioresource Technology
– volume: 23
  start-page: 995
  year: 2016
  end-page: 1006
  article-title: Biochar increased water holding capacity but accelerated organic carbon leaching from a sloping farmland soil in China
  publication-title: Environmental Science and Pollution Research
– volume: 65
  start-page: 40
  year: 2014
  end-page: 51
  article-title: Soil microbial communities responded to biochar application in temperate soils and slowly metabolized C‐labelled biochar as revealed by 13C PLFA analyses: Results from a short‐term incubation and pot experiment
  publication-title: European Journal of Soil Science
– volume: 177
  start-page: 59
  year: 2014
  end-page: 67
  article-title: Hydrochar amendment promotes microbial immobilization of mineral nitrogen
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 48
  start-page: 9242
  year: 2009
  end-page: 9249
  article-title: Conformation of the phosphate D‐alanine zwitterion in bacterial teichoic acid from nuclear magnetic resonance spectroscopy
  publication-title: Biochemistry
– volume: 64
  start-page: 1659
  year: 2000
  end-page: 1668
  article-title: Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities
  publication-title: Soil Science Society of America Journal
– volume: 48
  start-page: 1
  year: 2012
  end-page: 36
  article-title: Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA)
  publication-title: Journal of Statistical Software
– volume: 62
  start-page: 65
  year: 2015
  end-page: 78
  article-title: Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two‐year field experiment
  publication-title: European Journal of Agronomy
– year: 2016
– volume: 4
  start-page: 3687
  year: 2014
  article-title: Long‐term influence of biochar on native organic carbon mineralisation in a low‐carbon clayey soil
  publication-title: Scientific Reports
– volume: 41
  start-page: 1301
  year: 2009
  end-page: 1310
  article-title: Effect of biochar amendment on soil carbon balance and soil microbial activity
  publication-title: Soil Biology and Biochemistry
– volume: 40
  start-page: 14
  year: 2016
  end-page: 20
  article-title: Effect of biochar on soil microbial biomass and the diversity of carbon source metabolism in poplar plantation
  publication-title: Journal of Nanjing Forestry University (Natural Sciences Edition)
– volume: 12
  start-page: 1817
  year: 2018
  end-page: 1825
  article-title: Global negative effects of nitrogen deposition on soil microbes
  publication-title: The ISME Journal
– volume: 14
  start-page: 7852
  year: 2019
  end-page: 7868
  article-title: The impact of biochar doses on soil quality and microbial functional diversity
  publication-title: BioResources
– volume: 144
  start-page: 578
  year: 2017
  end-page: 584
  article-title: Microbial functional diversity responses to 2 years since biochar application in silt‐loam soils on the Loess Plateau
  publication-title: Ecotoxicology and Environmental Safety
– volume: 6
  year: 2016
  article-title: Sensitive responders among bacterial and fungal microbiome to pyrogenic organic matter (biochar) addition differed greatly between rhizosphere and bulk soils
  publication-title: Scientific Reports
– volume: 10
  start-page: 215
  year: 1978
  end-page: 221
  article-title: A physiological method for the quantitative measurement of microbial biomass in soils
  publication-title: Soil Biology and Biochemistry
– volume: 95
  start-page: 6578
  year: 1998
  end-page: 6583
  article-title: Prokaryotes: The unseen majority
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 111
  start-page: 458
  year: 2017
  end-page: 467
  article-title: Actinomycetes benefaction role in soil and plant health
  publication-title: Microbial Pathogenesis
– volume: 239
  start-page: 80
  year: 2017
  end-page: 89
  article-title: Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta‐analysis
  publication-title: Agriculture, Ecosystems Environment
– volume: 26
  start-page: 1101
  year: 1994
  end-page: 1108
  article-title: Functional diversity of microbial communities: A quantitative approach
  publication-title: Soil Biology and Biochemistry
– volume: 13
  start-page: 1345
  year: 2013
  end-page: 1350
  article-title: Improving soil productivity through charred biomass amendment to soil
  publication-title: American‐Eurasian Journal of Agricultural & Environmental Sciences
– volume: 300
  start-page: 9
  year: 2007
  end-page: 20
  article-title: Mycorrhizal responses to biochar in soil–Concepts and mechanisms
  publication-title: Plant and Soil
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  article-title: Biochar effects on soil biota – A review
  publication-title: Soil Biology and Biochemistry
– volume: 19
  start-page: 904
  year: 2015
  end-page: 910
  article-title: Identification and optimal growth conditions of actinomycetes isolated from mangrove environment
  publication-title: The Malaysian Journal of Analytical Sciences
– volume: 513
  start-page: 81
  year: 2014
  end-page: 84
  article-title: Temperature sensitivity of soil respiration rates enhanced by microbial community response
  publication-title: Nature
– volume: 43
  start-page: 2304
  year: 2011
  end-page: 2314
  article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH
  publication-title: Soil Biology and Biochemistry
– volume: 22
  start-page: 1315
  year: 2016
  end-page: 1324
  article-title: Soil carbon sequestration and biochar as negative emission technologies
  publication-title: Global Change Biology
– volume: 87
  start-page: 21
  year: 2015
  end-page: 24
  article-title: Biochar application reduces protein sorption in soil
  publication-title: Organic Geochemistry
– volume: 34
  start-page: 88
  year: 2017
  end-page: 106
  article-title: Amendment of a hardwood biochar with compost tea: Effects on plant growth, insect damage and the functional diversity of soil microbial communities
  publication-title: Biological Agriculture & Horticulture
– volume: 26
  start-page: 614
  year: 2019
  end-page: 624
  article-title: Arbuscular mycorrhizal fungi and biochar improves drought tolerance in chickpea
  publication-title: Saudi Journal of Biological Sciences
– volume: 42
  start-page: 77
  year: 2013
  end-page: 96
  article-title: A world review of fungi, yeasts, and slime molds in caves
  publication-title: International Journal of Speleology
– volume: 95
  start-page: 960
  year: 2011
  end-page: 966
  article-title: Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils
  publication-title: Plant Disease
– volume: 177
  start-page: 16
  year: 2014
  end-page: 25
  article-title: Effects of biochars produced from different feedstocks on soil properties and sunflower growth
  publication-title: Journal of Plant Nutrition and Soil Science
– volume: 26
  start-page: 3163
  year: 2020
  end-page: 3173
  article-title: Determinants of soil organic carbon sequestration and its contribution to ecosystem carbon sinks of planted forests
  publication-title: Global Change Biology
– volume: 174
  start-page: 593
  year: 2017
  end-page: 603
  article-title: Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils
  publication-title: Chemosphere
– volume: 50
  start-page: 1189
  year: 2014
  end-page: 1200
  article-title: Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil
  publication-title: Biology and Fertility of Soils
– volume: 8
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Organic coating on biochar explains its nutrient retention and stimulation of soil fertility
  publication-title: Nature Communications
– volume: 543
  start-page: 295
  year: 2016
  end-page: 306
  article-title: Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil
  publication-title: Science of the Total Environment
– volume: 45
  start-page: 238
  year: 2010
  end-page: 242
  article-title: Material derived from hydrothermal carbonization: Effects on plant growth and arbuscular mycorrhiza
  publication-title: Applied Soil Ecology
– volume: 115
  start-page: 433
  year: 2017
  end-page: 441
  article-title: Patterns and mechanisms of responses by soil microbial communities to nitrogen addition
  publication-title: Soil Biology and Biochemistry
– volume: 94
  start-page: 551
  year: 2014
  end-page: 562
  article-title: An evaluation of biochar pre‐conditioned with urea ammonium nitrate on maize ( L.) production and soil biochemical characteristics
  publication-title: Canadian Journal of Soil Science
– volume: 72
  start-page: 27
  year: 2016
  end-page: 34
  article-title: Effects of biochar on soil microbial community composition and activity in drip‐irrigated desert soil
  publication-title: European Journal of Soil Biology
– volume: 10
  year: 2015
  article-title: The effect of biochar and its interaction with the earthworm on soil microbial community structure in tropical soils
  publication-title: PLoS One
– volume: 279
  start-page: 244
  year: 2014
  end-page: 256
  article-title: Molecular characterization of biochars and their influence on microbiological properties of soil
  publication-title: Journal of Hazardous Materials
– volume: 35
  start-page: 167
  year: 2003
  end-page: 176
  article-title: Variations in microbial community composition through two soil depth profiles
  publication-title: Soil Biology and Biochemistry
– volume: 25
  start-page: 1482
  year: 2019
  end-page: 1492
  article-title: Plant diversity loss reduces soil respiration across terrestrial ecosystems
  publication-title: Global Change Biology
– volume: 517
  start-page: 365
  year: 2015
  end-page: 368
  article-title: Productivity limits and potentials of the principles of conservation agriculture
  publication-title: Nature
– volume: 643
  start-page: 926
  year: 2018
  end-page: 935
  article-title: Responses of soil microbial community structure changes and activities to biochar addition: A meta‐analysis
  publication-title: Science of the Total Environment
– year: 2003
– volume: 80
  start-page: 1150
  year: 1999
  end-page: 1156
  article-title: The meta‐analysis of response ratios in experimental ecology
  publication-title: Ecology
– volume: 85
  start-page: 1464
  year: 2011
  end-page: 1471
  article-title: Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes
  publication-title: Chemosphere
– volume: 89
  start-page: 917
  year: 2011
  end-page: 930
  article-title: Interactions between arbuscular mycorrhizal fungi and soil bacteria
  publication-title: Applied Microbiology and Biotechnology
– volume: 24
  start-page: e318
  year: 2018
  end-page: e334
  article-title: Offsetting global warming‐induced elevated greenhouse gas emissions from an arable soil by biochar application
  publication-title: Global Change Biology
– volume: 256
  year: 2015
  article-title: Effect of biochar in cadmium availability and soil biological activity in an anthrosol following acid rain deposition and aging
  publication-title: Water, Air, & Soil Pollution
– volume: 117–118
  start-page: 10
  year: 2017
  end-page: 15
  article-title: Long‐term biochar application influences soil microbial community and its potential roles in semiarid farmland
  publication-title: Applied Soil Ecology
– volume: 119
  start-page: 156
  year: 2017
  end-page: 170
  article-title: The role of biochar and biochar‐compost in improving soil quality and crop performance: A review
  publication-title: Applied Soil Ecology
– volume: 13
  year: 2017
  article-title: Environmental pH modulation by pathogenic fungi as a strategy to conquer the host
  publication-title: PLoS Pathogens
– volume: 7
  start-page: 77
  year: 2019
  article-title: Competitive interaction with keystone taxa induced negative priming under biochar amendments
  publication-title: Microbiome
– volume: 107
  start-page: 419
  year: 2012
  end-page: 428
  article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar
  publication-title: Bioresource Technology
– volume: 34
  start-page: 597
  year: 2018
  end-page: 605
  article-title: Responses of soil microbial biomass, diversity and metabolic activity to biochar applications in managed poplar plantations on reclaimed coastal saline soil
  publication-title: Soil Use and Management
– volume: 62
  start-page: 581
  year: 2011
  end-page: 589
  article-title: Application of biochar to soil and N O emissions: Potential effects of blending fast‐pyrolysis biochar with anaerobically digested slurry
  publication-title: European Journal of Soil Science
– volume: 28
  start-page: 103
  year: 2019
  end-page: 111
  article-title: Influence of biochar application on reduced acidification of sandy soil, increased cation exchange capacity, and the content of available forms of K, Mg, and P
  publication-title: Polish Journal of Environmental Studies
– volume: 131
  start-page: 374
  year: 2013
  end-page: 379
  article-title: Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes
  publication-title: Bioresource Technology
– volume: 482–483
  start-page: 1
  year: 2014
  end-page: 7
  article-title: Carbon dioxide emissions from semi‐arid soils amended with biochar alone or combined with mineral and organic fertilizers
  publication-title: Science of the Total Environment
– year: 2006
– volume: 442
  start-page: 624
  year: 2006
  end-page: 626
  article-title: Putting the carbon back: Black is the new green
  publication-title: Nature
– volume: 25
  start-page: 1387
  year: 2016
  end-page: 1396
  article-title: Effects of species diversity on fine root productivity in diverse ecosystems: A global meta‐analysis
  publication-title: Global Ecology and Biogeography
– volume: 87
  start-page: 504
  year: 2006
  end-page: 517
  article-title: A structural equation model to integrate changes in functional strategies during old‐field succession
  publication-title: Ecology
– year: 2017
– volume: 22
  start-page: 1444
  year: 2015
  end-page: 1456
  article-title: Olive mill waste biochar: A promising soil amendment for metal immobilization in contaminated soils
  publication-title: Environmental Science and Pollution Research International
– ident: e_1_2_8_62_1
  doi: 10.1016/j.soilbio.2013.09.015
– ident: e_1_2_8_69_1
  doi: 10.1371/journal.pone.0124891
– ident: e_1_2_8_36_1
  doi: 10.1021/bi900503k
– ident: e_1_2_8_87_1
  doi: 10.1073/pnas.95.12.6578
– ident: e_1_2_8_60_1
  doi: 10.1111/geb.12488
– ident: e_1_2_8_42_1
  doi: 10.1016/j.sjbs.2018.11.005
– ident: e_1_2_8_70_1
  doi: 10.1038/nature13809
– ident: e_1_2_8_50_1
  doi: 10.1038/nature13604
– ident: e_1_2_8_98_1
  doi: 10.1016/j.ecoenv.2017.06.075
– volume: 256
  year: 2015
  ident: e_1_2_8_57_1
  article-title: Effect of biochar in cadmium availability and soil biological activity in an anthrosol following acid rain deposition and aging
  publication-title: Water, Air, & Soil Pollution
  contributor:
    fullname: Lu H.
– ident: e_1_2_8_96_1
  doi: 10.1016/j.agee.2017.01.006
– ident: e_1_2_8_71_1
  doi: 10.1016/j.apsoil.2010.04.011
– ident: e_1_2_8_39_1
  doi: 10.1038/s41467-017-01123-0
– ident: e_1_2_8_85_1
  doi: 10.1111/ejss.12100
– volume: 34
  start-page: 1791
  year: 2015
  ident: e_1_2_8_90_1
  article-title: Response of carbon metabolism by soil microbes to different fertilization regimes in a poplar plantation in coastal area of northern Jiangsu, China
  publication-title: Chinese Journal of Ecology
  contributor:
    fullname: Xu W.
– volume: 113
  start-page: e530
  year: 2006
  ident: e_1_2_8_53_1
  article-title: Bio‐char soil management on highly weathered soils in the humid tropics
  publication-title: Biological Approaches to Sustainable Soil Systems
  contributor:
    fullname: Lehmann J.
– volume: 40
  start-page: 14
  year: 2016
  ident: e_1_2_8_88_1
  article-title: Effect of biochar on soil microbial biomass and the diversity of carbon source metabolism in poplar plantation
  publication-title: Journal of Nanjing Forestry University (Natural Sciences Edition)
  contributor:
    fullname: Xu W.
– ident: e_1_2_8_22_1
  doi: 10.1111/gcb.14567
– ident: e_1_2_8_52_1
  doi: 10.1016/j.soilbio.2011.04.022
– ident: e_1_2_8_4_1
  doi: 10.1016/j.apsoil.2017.06.008
– ident: e_1_2_8_38_1
  doi: 10.1017/CBO9780511617799
– ident: e_1_2_8_30_1
  doi: 10.1016/j.apsoil.2014.12.005
– volume-title: Applied multiple regression/correlation analysis for the behavioral sciences
  year: 2003
  ident: e_1_2_8_25_1
  contributor:
    fullname: Cohen J.
– ident: e_1_2_8_32_1
  doi: 10.1094/PDIS-10-10-0741
– ident: e_1_2_8_72_1
  doi: 10.18637/jss.v048.i02
– ident: e_1_2_8_44_1
  doi: 10.1007/s11356-014-3467-6
– ident: e_1_2_8_63_1
  doi: 10.1007/s00253-010-3004-6
– volume-title: What we'll pay if global warming continues unchecked
  year: 2008
  ident: e_1_2_8_2_1
  contributor:
    fullname: Ackerman F.
– ident: e_1_2_8_65_1
  doi: 10.1016/j.apsoil.2010.03.005
– ident: e_1_2_8_18_1
  doi: 10.1016/j.biortech.2011.11.084
– ident: e_1_2_8_47_1
  doi: 10.1111/gcbb.12371
– ident: e_1_2_8_80_1
  doi: 10.1890/05-0822
– ident: e_1_2_8_8_1
  doi: 10.1111/ejss.12064
– ident: e_1_2_8_55_1
  doi: 10.1007/s11356-015-4885-9
– volume: 13
  start-page: 1345
  year: 2013
  ident: e_1_2_8_7_1
  article-title: Improving soil productivity through charred biomass amendment to soil
  publication-title: American‐Eurasian Journal of Agricultural & Environmental Sciences
  contributor:
    fullname: Ambihai S.
– volume: 40
  start-page: 1
  year: 2016
  ident: e_1_2_8_94_1
  article-title: Effects of different fertilizers regimes on the functional diversity of soil microbes under poplar plantation
  publication-title: Journal of Nanjing Forestry University (Natural Sciences Edition)
  contributor:
    fullname: Zhang Y.
– ident: e_1_2_8_58_1
  doi: 10.1016/j.apsoil.2017.04.024
– ident: e_1_2_8_73_1
  doi: 10.2136/sssaj2000.6451659x
– ident: e_1_2_8_26_1
  doi: 10.1016/j.soilbio.2018.09.001
– ident: e_1_2_8_54_1
  doi: 10.1016/j.ejsobi.2015.12.008
– ident: e_1_2_8_45_1
  doi: 10.1007/s11274-013-1528-5
– ident: e_1_2_8_27_1
  doi: 10.1038/srep36101
– ident: e_1_2_8_11_1
  doi: 10.1007/s00374-014-0968-x
– ident: e_1_2_8_28_1
  doi: 10.1016/j.catena.2014.05.020
– ident: e_1_2_8_77_1
  doi: 10.1016/j.heliyon.2019.e02051
– ident: e_1_2_8_34_1
  doi: 10.1016/S0038-0717(02)00251-1
– ident: e_1_2_8_75_1
  doi: 10.1111/gcb.13178
– ident: e_1_2_8_68_1
  doi: 10.1007/978-3-319-19168-3
– ident: e_1_2_8_93_1
  doi: 10.1038/s41396-018-0096-y
– ident: e_1_2_8_86_1
  doi: 10.1038/nclimate3276
– ident: e_1_2_8_99_1
  doi: 10.1016/j.soilbio.2011.02.005
– ident: e_1_2_8_3_1
  doi: 10.1016/j.scitotenv.2015.11.054
– ident: e_1_2_8_78_1
  doi: 10.1016/j.scitotenv.2016.03.010
– ident: e_1_2_8_91_1
  doi: 10.1016/0038-0717(94)90131-7
– ident: e_1_2_8_97_1
  doi: 10.1016/j.soilbio.2017.09.015
– ident: e_1_2_8_16_1
  doi: 10.1046/j.1469-8137.2002.00397.x
– ident: e_1_2_8_51_1
  doi: 10.1016/j.orggeochem.2015.06.005
– ident: e_1_2_8_59_1
  doi: 10.1016/j.soilbio.2011.07.020
– ident: e_1_2_8_13_1
– ident: e_1_2_8_49_1
  doi: 10.1111/gcb.14415
– ident: e_1_2_8_14_1
  doi: 10.1016/j.micpath.2017.09.036
– ident: e_1_2_8_79_1
  doi: 10.5038/1827-806X.42.1.9
– volume: 14
  start-page: 7852
  year: 2019
  ident: e_1_2_8_35_1
  article-title: The impact of biochar doses on soil quality and microbial functional diversity
  publication-title: BioResources
  doi: 10.15376/biores.14.4.7852-7868
  contributor:
    fullname: Galazka A.
– ident: e_1_2_8_9_1
  doi: 10.1016/0038-0717(78)90099-8
– ident: e_1_2_8_5_1
  doi: 10.1002/jpln.201200652
– ident: e_1_2_8_31_1
  doi: 10.1080/01448765.2017.1388847
– ident: e_1_2_8_81_1
  doi: 10.1371/journal.ppat.1006149
– ident: e_1_2_8_33_1
  doi: 10.1016/j.scitotenv.2014.02.103
– ident: e_1_2_8_20_1
  doi: 10.1038/nature21417
– ident: e_1_2_8_67_1
  doi: 10.1016/j.eja.2014.09.006
– ident: e_1_2_8_48_1
  doi: 10.1007/s00374-015-1047-7
– ident: e_1_2_8_29_1
  doi: 10.4141/cjss-2014-010
– ident: e_1_2_8_10_1
  doi: 10.1111/gcb.13871
– ident: e_1_2_8_37_1
  doi: 10.15244/pjoes/81688
– ident: e_1_2_8_61_1
  doi: 10.1038/442624a
– ident: e_1_2_8_82_1
  doi: 10.1111/gcb.15036
– ident: e_1_2_8_23_1
  doi: 10.1016/j.biortech.2017.07.060
– ident: e_1_2_8_56_1
  doi: 10.1111/gcbb.12265
– ident: e_1_2_8_15_1
  doi: 10.1111/gcbb.12037
– ident: e_1_2_8_46_1
  doi: 10.1016/j.chemosphere.2017.01.148
– ident: e_1_2_8_6_1
  doi: 10.1016/j.biortech.2012.12.165
– ident: e_1_2_8_64_1
  doi: 10.1016/j.soilbio.2014.11.017
– ident: e_1_2_8_76_1
  doi: 10.1016/j.soilbio.2009.03.016
– ident: e_1_2_8_19_1
  doi: 10.1016/j.chemosphere.2011.08.031
– ident: e_1_2_8_43_1
  doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– ident: e_1_2_8_41_1
  doi: 10.3389/fenvs.2019.00110
– ident: e_1_2_8_89_1
  doi: 10.1111/sum.12460
– ident: e_1_2_8_74_1
  doi: 10.1038/srep03687
– ident: e_1_2_8_83_1
  doi: 10.1007/s11104-007-9391-5
– ident: e_1_2_8_92_1
  doi: 10.1016/j.scitotenv.2018.06.231
– ident: e_1_2_8_12_1
  doi: 10.1002/jpln.201300154
– ident: e_1_2_8_21_1
  doi: 10.1186/s40168-019-0693-7
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jhazmat.2014.06.074
– ident: e_1_2_8_84_1
  doi: 10.1016/j.apsoil.2010.09.002
– ident: e_1_2_8_17_1
  doi: 10.1111/j.1365-2389.2011.01377.x
– volume: 19
  start-page: 904
  year: 2015
  ident: e_1_2_8_40_1
  article-title: Identification and optimal growth conditions of actinomycetes isolated from mangrove environment
  publication-title: The Malaysian Journal of Analytical Sciences
  contributor:
    fullname: Hamid A. A.
– volume: 16
  start-page: 137
  year: 2016
  ident: e_1_2_8_66_1
  article-title: Addition impact of biochar from different feed stocks on microbial community and available concentrations of elements in a Psammaquent and a Plinthudult
  publication-title: Journal of Soil Science and Plant Nutrition
  contributor:
    fullname: Muhammad N.
– ident: e_1_2_8_95_1
  doi: 10.1016/j.scitotenv.2017.08.166
SSID ssj0065619
ssib009979516
ssib036249247
Score 2.491187
Snippet Biochar has the potential to mitigate the impacts of climate change and soil degradation by simultaneously sequestering C in soil and improving soil quality....
Abstract Biochar has the potential to mitigate the impacts of climate change and soil degradation by simultaneously sequestering C in soil and improving soil...
SourceID swepub
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 269
SubjectTerms Abundance
Actinomycetes
Arbuscular mycorrhizas
Bacteria
biochar
Biodegradation
Biolog
Biomass
C utilization
Charcoal
Climate change
Community structure
Environmental degradation
Environmental impact
Enzymes
functional diversity
Fungi
global meta‐analysis
Markvetenskap
Mathematical models
Meta-analysis
Metabolism
Microbial activity
Microbiomes
Microorganisms
Multivariate statistical analysis
pH effects
PLFA
Pyrolysis
Ratios
Respiration
Sequestering
Soil analysis
Soil bacteria
Soil chemistry
Soil conditions
Soil degradation
Soil improvement
soil microbial community
Soil microorganisms
Soil pH
Soil properties
Soil quality
Soil Science
Soil temperature
Soils
Structure-function relationships
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB58XPQgPjFaZUFBEGKbZJNNTmKLbVH0pNBbyD4iBW20iQf_vTObpK0XTwkEdmF2MvPN7Mw3AJex1EkW5pkbB1y7XEjfTXgQuDLuSYX4O89soPj0HI1f-cMknKzBuO2FobLK1iZaQ60LRTnyrs-JKR3xi9fNJGUBVNW9_fxyaX4U3bM2wzTWYdMjTjzqGR-OFpqVJCIJl0AIrTbHwGMRmiGosSNA0JcKl-hJGiJTqvl5U1Le4Joi-Ou6VvBozTH6F95a_zTchZ0GWLK7WhP2YM3M9mF7hW7wAB6H6MTq3B-b17WxhhU5QwzIymL6zj6mlpYJP6u6b6T6YVXB5LSg5iy2etl9CK_D-5fB2G2GKbiKk_AxjosjncU8RMAWqUiFnvZ1T5hMxDIUykOggP4SwbZOlOBUI6UEurhe7vk5sbgdwcasmJljYIkxxroxHRCZfphkUokcbQNNMzO-duCilVP6WXNmpG2sQdJMrTQd6LQiTJv_pkyXp-zAVS3WxRJEhF2-f8tsTo-0NHR7jufowLWV-z97paNBv2_fTv7f9RS2fCpasTmWDmxU829zhqijkudWoX4B42rSRg
  priority: 102
  providerName: ProQuest
Title Functional response of the soil microbial community to biochar applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcbb.12773
https://www.proquest.com/docview/2468581151/abstract/
https://res.slu.se/id/publ/109249
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD54edEH7-K8jICCIHSsXbq04Isbm6IoKgq-SGnSVIZzlbV70F_vOcm6TR8EfWkLLSnJSfJ95-TkC8BRIJMw9tPYCRo8cbiQnhPyRsORQV0q5N9pbBzF65vmxSO_fPKf5uC03Atj9SEmATcaGWa-pgEey3xmkL8oKWuuJwRJfZKSHjGi-ylWh6EI_Sn3wYmao68x8caQx5hTPxA-hUOKJGPtUkrzmRb9Ha1mKKiVFf3OaA0kdVfhuayMzUR5rY0KWVOfP3Qe_1vbNVgZc1V2ZjvXOszpwQYszygYbsJVF3HRhhPZ0KbbapalDGkly7Nen731jNITvlZ2K0rxwYqMyV5G-73Y7Pr5Fjx2Ow_tC2d8PoOjONkTXcOgmcQB95EDNlVT-W7iJXWhYxFIXygXuQdCMPL3JFSCU9qVEoia9dT1UhKG24aFQTbQO8BCrbVBxqRB-vx-GEslUpxu6IA07SUVOCztEL1bGY6odF-oaSLTNBXYL00UjYdiHnmcJPaR-LoVOLZmmxRB2tp5fyTjId2iXNOCPPaTCpwYY_zyr-i83WqZp92_fLwHSx5lxZggzj4sFMORPkBaU8gqzHv8Fq9B97wKi63Oze191YQIqqZj4_XqLvgCDfX1CQ
link.rule.ids 230,315,786,790,870,891,1382,11589,12792,21416,27957,27958,33408,33779,43635,43840,46087,46329,46511,46753,50849,50958,74392,74659
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60HtSD-MRq1QUFQYg2yaabnETFWrXtSaG3kH1ECrXRJh78985s0tfFUwKBLMzuzvfN7Ow3ABeh1FESpIkT-lw7XEjPibjvOzJsSoX8O01soNjrtzrv_GUQDKqEW16VVU59onXUOlOUI7_xOCmlI39xb7--HeoaRaerVQuNVVjjPkIn3RRvP83WUxSJKJjTH_TVHMONWUCGVMY2_kAEFQ6JklTypVTp86GkvHY9IfxlwFpgoaWy6DKptajU3oatik6yu3L-d2DFjHdhc0FkcA9e2whdZcaPTcqKWMOylCHzY3k2HLHPoRVjws-qvC1S_LIiY3KY0ZUstnjEvQ_v7ce3h45TtVBwFCeTY_QWtnQS8gBpWku1VOBqTzeFSUQoA6FcpAeIkkixdaQEp8ooJRDYmqnrpaTddgC1cTY2h8AiY4wFL-2ThH4QJVKJFD0C9TAznq7D-dRO8VeplBFPIwyyZmytWYfG1IRxtVvyeD63dbgszTr7Bclf56MfmUzoEeeGzsxxHutwZe3-z1jx08P9vX07-n_UM1jvvPW6cfe5_3oMGx6VrdgsSwNqxeTHnCDvKOSpXVx_avXRdA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB58gOhBfGJ9LigIQrRJNtnkJFat7yKi4C1kH5FCbbSpB_-9M5ttrRdPCQSyMDs7883ut98AHCRSp3lU5F4Scu1xIQMv5WHoyaQpFeLvIreF4kMnvn7ht6_Rq-M_VY5WOYqJNlDrUtEe-UnASSkd8Yt_UjhaxONF-_Tj06MOUnTS6tppTMOs4HGEHj7buuw8Po29K01FGv2CIYzcHIuPcXmGwMa2AcF8KjySKHFipsT7eVNSHvuBEOHf9DWBSWud0b8Q1-ao9hIsOnDJzmpvWIYp01-BhQnJwVW4a2Miq_f_2KDmxxpWFgxxIKvKbo-9d600E35W9d2R4Tcblkx2S7qgxSYPvNfgpX35fH7tuYYKnuI0AVjLJbHOEx4haItVrCJfB7opTC4SGQnlI1jAnImAW6dKcOJJKYFprln4QUFKbusw0y_7ZgNYaoyxqUyHJKgfpblUosD4QB3NTKAbsD-yU_ZR62Zko3qDrJlZazZge2TCzK2dKvud6QYc1mYd_4LEsKvel8wH9MgqQyfoOI8NOLJ2_2es7Oq81bJvm_-Pugdz6FnZ_U3nbgvmA-Kw2C2XbZgZDr7MDoKQodx13vUDEpDXFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+response+of+the+soil+microbial+community+to+biochar+applications&rft.jtitle=Global+change+biology.+Bioenergy&rft.au=Gundale%2C+Michael&rft.date=2021-01-01&rft.issn=1757-1707&rft.eissn=1757-1707&rft.volume=13&rft.spage=269&rft_id=info:doi/10.1111%2Fgcbb.12773&rft.externalDocID=oai_slubar_slu_se_109249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-1693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-1693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-1693&client=summon