Axial length targets for myopia control

Purpose Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of norma...

Full description

Saved in:
Bibliographic Details
Published inOphthalmic & physiological optics Vol. 41; no. 3; pp. 523 - 531
Main Authors Chamberlain, Paul, Lazon de la Jara, Percy, Arumugam, Baskar, Bullimore, Mark A
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.05.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control. Methods Axial elongation data were taken from the 3‐year randomised clinical trial of a myopia control dual‐focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts—myopic and emmetropic for each model—were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models. Results The untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3‐year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models—similar to the mean 3‐year elongation in MiSight‐treated myopes (0.30 mm). Conclusions The 3‐year elongation in MiSight‐treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes.
AbstractList Purpose Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control. Methods Axial elongation data were taken from the 3‐year randomised clinical trial of a myopia control dual‐focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts—myopic and emmetropic for each model—were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models. Results The untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3‐year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models—similar to the mean 3‐year elongation in MiSight‐treated myopes (0.30 mm). Conclusions The 3‐year elongation in MiSight‐treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes.
Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control. Axial elongation data were taken from the 3-year randomised clinical trial of a myopia control dual-focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts-myopic and emmetropic for each model-were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models. The untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3-year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models-similar to the mean 3-year elongation in MiSight-treated myopes (0.30 mm). The 3-year elongation in MiSight-treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes.
PurposeBoth emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control.MethodsAxial elongation data were taken from the 3‐year randomised clinical trial of a myopia control dual‐focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts—myopic and emmetropic for each model—were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models.ResultsThe untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3‐year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models—similar to the mean 3‐year elongation in MiSight‐treated myopes (0.30 mm).ConclusionsThe 3‐year elongation in MiSight‐treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes.
Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control.PURPOSEBoth emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control.Axial elongation data were taken from the 3-year randomised clinical trial of a myopia control dual-focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts-myopic and emmetropic for each model-were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models.METHODSAxial elongation data were taken from the 3-year randomised clinical trial of a myopia control dual-focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts-myopic and emmetropic for each model-were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models.The untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3-year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models-similar to the mean 3-year elongation in MiSight-treated myopes (0.30 mm).RESULTSThe untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3-year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models-similar to the mean 3-year elongation in MiSight-treated myopes (0.30 mm).The 3-year elongation in MiSight-treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes.CONCLUSIONSThe 3-year elongation in MiSight-treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes.
Author Arumugam, Baskar
Chamberlain, Paul
Lazon de la Jara, Percy
Bullimore, Mark A
AuthorAffiliation 2 College of Optometry University of Houston Houston USA
1 CooperVision Inc. Pleasanton USA
AuthorAffiliation_xml – name: 2 College of Optometry University of Houston Houston USA
– name: 1 CooperVision Inc. Pleasanton USA
Author_xml – sequence: 1
  givenname: Paul
  surname: Chamberlain
  fullname: Chamberlain, Paul
  email: PChamberlain@coopervision.com
  organization: CooperVision Inc
– sequence: 2
  givenname: Percy
  surname: Lazon de la Jara
  fullname: Lazon de la Jara, Percy
  organization: CooperVision Inc
– sequence: 3
  givenname: Baskar
  surname: Arumugam
  fullname: Arumugam, Baskar
  organization: CooperVision Inc
– sequence: 4
  givenname: Mark A
  orcidid: 0000-0002-6315-3720
  surname: Bullimore
  fullname: Bullimore, Mark A
  organization: University of Houston
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33951213$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9LAzEQxYMo2lYPfgFZ8KAeqpkk2929CKX4D4R60HNIs7NtJN3UZKv225u2WlTQXCaQ37zMvNcm27WrkZBDoOcQz4WbuXNgObAt0gKRpV3gwLdJi7J4TwXN90g7hGdKaZZl-S7Z47xIgQFvkZP-u1E2sViPm0nSKD_GJiSV88l04WZGJdrVjXd2n-xUygY8-Kwd8nR99Ti47d4Pb-4G_fuuFoKzLmYjripdghBQFkrkheICFAXKUWSCY94DHPVGvQpKhYLllBaZEJppzkqByDvkcq07m4-mWGqMvysrZ95MlV9Ip4z8-VKbiRy7V5mzNKqJKHD6KeDdyxxDI6cmaLRW1ejmQUaM9SBNCxbR41_os5v7Oq63olJW5NHHDjn6PtFmlC8PI3C2BrR3IXisNghQucxHxnzkKp_IXvxitWlUY5YmK2P_63gzFhd_S8vhw3Dd8QEu7Z-H
CitedBy_id crossref_primary_10_1111_opo_13401
crossref_primary_10_3390_life14010118
crossref_primary_10_12968_opti_2023_267_6901_21
crossref_primary_10_1186_s12886_024_03666_5
crossref_primary_10_1111_opo_13240
crossref_primary_10_1111_opo_13120
crossref_primary_10_1111_opo_12873
crossref_primary_10_1111_opo_12872
crossref_primary_10_2147_OPTH_S370041
crossref_primary_10_1136_bmjophth_2024_001790
crossref_primary_10_1371_journal_pone_0317756
crossref_primary_10_1136_bmjopen_2023_075115
crossref_primary_10_3390_jcm11206200
crossref_primary_10_1364_BOE_501889
crossref_primary_10_3390_jcm11133642
crossref_primary_10_3389_fmed_2024_1416286
crossref_primary_10_18502_jovr_v18i4_14544
crossref_primary_10_1016_j_clae_2023_101875
crossref_primary_10_1111_opo_13159
crossref_primary_10_3389_fopht_2024_1540410
crossref_primary_10_1016_j_ajo_2024_02_027
crossref_primary_10_2139_ssrn_3989851
crossref_primary_10_1186_s12889_025_22003_z
crossref_primary_10_1111_opo_12820
crossref_primary_10_1111_opo_13232
crossref_primary_10_3390_genes13060942
crossref_primary_10_1097_OPX_0000000000001978
crossref_primary_10_3233_THC_240761
crossref_primary_10_1055_a_2117_9335
crossref_primary_10_1097_OPX_0000000000001970
crossref_primary_10_1136_bjo_2021_321005
crossref_primary_10_1097_jnr_0000000000000517
crossref_primary_10_1007_s40123_024_01048_0
crossref_primary_10_1007_s00417_022_05901_5
crossref_primary_10_1016_j_visres_2023_108272
crossref_primary_10_1111_opo_13381
crossref_primary_10_1186_s12886_024_03337_5
crossref_primary_10_1111_opo_13185
crossref_primary_10_1111_opo_13024
crossref_primary_10_1111_opo_13420
crossref_primary_10_1136_bmjopen_2024_084891
crossref_primary_10_3389_fcell_2023_1160897
crossref_primary_10_3390_metabo12121220
crossref_primary_10_3390_ijerph20010875
crossref_primary_10_33920_med_10_2312_05
crossref_primary_10_1136_bmjophth_2024_001921
crossref_primary_10_3389_fnins_2022_1106904
crossref_primary_10_1097_OPX_0000000000002176
crossref_primary_10_1111_aos_15746
crossref_primary_10_3390_biom13091328
crossref_primary_10_1136_bjo_2023_324508
crossref_primary_10_1111_opo_13098
crossref_primary_10_1080_08164622_2024_2410879
crossref_primary_10_1016_j_clae_2023_102066
crossref_primary_10_1111_opo_13332
crossref_primary_10_1016_j_ajo_2024_08_020
crossref_primary_10_3390_jcm13226754
crossref_primary_10_1155_2024_4981095
crossref_primary_10_1038_s41598_022_08907_5
crossref_primary_10_1097_OPX_0000000000002167
crossref_primary_10_1186_s40662_023_00345_2
Cites_doi 10.1097/00006324-200401000-00007
10.1167/iovs.02-0816
10.1097/00006324-199802000-00017
10.1167/iovs.02-0526
10.1167/iovs.18-25955
10.1016/j.ophtha.2008.10.020
10.1111/opo.12305
10.1167/iovs.11-7899
10.1167/iovs.18-25958
10.1001/archophthalmol.2012.1449
10.1111/j.1755-3768.1987.tb07024.x
10.1097/OPX.0000000000001410
10.1097/01.OPX.0000145020.33250.C0
10.1111/opo.12457
10.1016/j.ophtha.2012.01.017
10.1097/00006324-200209000-00012
10.1016/j.optom.2019.12.008
10.1001/archopht.123.7.977
10.1001/jamaophthalmol.2017.6638
10.1167/iovs.11-7684
10.1111/aos.13603
10.1167/iovs.10-6100
10.1038/nm0895-761
10.1111/opo.12686
10.1167/iovs.08-2067
10.1097/OPX.0000000000001367
10.1167/iovs.13-12403
10.1167/iovs.04-0565
10.1001/jama.2020.10834
10.1111/opo.12459
10.1016/j.ophtha.2006.05.062
10.1097/ICL.0000000000000505
10.1016/j.jaapos.2015.04.006
10.1167/iovs.61.4.49
10.1001/jamaophthalmol.2013.7623
10.1167/iovs.19-27289
10.1016/j.ophtha.2011.07.031
10.1001/archopht.122.12.1760
10.1097/OPX.0b013e3182640996
10.1016/S0161-6420(03)00564-5
10.1001/jamaophthalmol.2016.4009
10.1167/iovs.04-0945
10.1097/OPX.0b013e3182418213
10.1167/iovs.06-0562
10.1016/S0161-6420(01)01024-7
10.1097/00006324-199409000-00005
10.1167/iovs.04-1040
10.1167/iovs.09-3431
10.1167/iovs.18-26247
10.1093/oxfordjournals.aje.a116735
10.1016/j.preteyeres.2020.100923
10.1097/00006324-199309000-00012
10.1097/OPX.0000000000001296
10.1007/BF00161240
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of College of Optometrists.
2021 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.
2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of College of Optometrists.
– notice: 2021 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7T5
7TK
H94
7X8
5PM
DOI 10.1111/opo.12812
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Neurosciences Abstracts
Animal Behavior Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE
AIDS and Cancer Research Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Axial elongation in myopia and emmetropia
EISSN 1475-1313
EndPage 531
ExternalDocumentID PMC8252804
33951213
10_1111_opo_12812
OPO12812
Genre article
Comparative Study
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CooperVision
GroupedDBID ---
--K
.3N
.GA
.Y3
05W
0R~
10A
123
1B1
1OB
1OC
1~5
24P
29N
31~
33P
36B
3SF
4.4
4G.
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
7-5
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEDT
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AALRI
AAMNL
AANHP
AANLZ
AAONW
AAQFI
AAQXK
AASGY
AAXRX
AAXUO
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABMAC
ABPVW
ABQWH
ABWVN
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADMUD
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FDB
FEDTE
FGOYB
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M41
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NQ-
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
R2-
RIWAO
RJQFR
ROL
RPZ
RX1
SAMSI
SEW
SSZ
SUPJJ
SV3
TEORI
TUS
UB1
UHS
V8K
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
YFH
YUY
ZZTAW
~IA
~WT
AAYXX
ACVFH
ADCNI
AEUPX
AEYWJ
AFPUW
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7T5
7TK
H94
7X8
5PM
ID FETCH-LOGICAL-c4432-e7b3afcd1441d9a489a341a0103e4743e861eb6b6f1dae428009744c2c32d4ee3
IEDL.DBID DR2
ISSN 0275-5408
1475-1313
IngestDate Thu Aug 21 18:20:00 EDT 2025
Fri Jul 11 11:11:28 EDT 2025
Wed Aug 13 05:45:13 EDT 2025
Mon Jul 21 06:00:28 EDT 2025
Thu Apr 24 22:57:00 EDT 2025
Tue Jul 01 02:18:59 EDT 2025
Wed Jan 22 16:30:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords myopia
axial length
children
myopia control
contact lenses
Language English
License Attribution-NonCommercial
2021 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4432-e7b3afcd1441d9a489a341a0103e4743e861eb6b6f1dae428009744c2c32d4ee3
Notes Presented in part at the 16th Biennial International Myopia Conference (IMC) in Birmingham, September 2017.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-6315-3720
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fopo.12812
PMID 33951213
PQID 2522529831
PQPubID 2045120
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8252804
proquest_miscellaneous_2522615592
proquest_journals_2522529831
pubmed_primary_33951213
crossref_primary_10_1111_opo_12812
crossref_citationtrail_10_1111_opo_12812
wiley_primary_10_1111_opo_12812_OPO12812
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: Hoboken
PublicationTitle Ophthalmic & physiological optics
PublicationTitleAlternate Ophthalmic Physiol Opt
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2004; 122
1992; 80
2015; 19
2004; 81
2019; 96
2020; 40
1995; 36
2020; 61
2002; 79
2011; 52
2020; 324
2020; 13
2014; 132
2018; 44
1995; 1
2016; 36
2003; 110
2005; 46
2009; 116
2006; 113
2012; 130
1998; 39
2019; 60
1987; 65
2020; 97
2013; 54
2005; 123
1993; 70
2008; 49
2002; 43
2018; 136
2016; 134
2020; 27
1994; 35
2018; 96
2018; 95
2002; 109
2012; 89
1998; 75
1994; 71
1993; 137
2018; 38
2012; 119
2010; 51
2007; 48
2003; 44
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
Brennan N (e_1_2_7_14_1) 2018; 95
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Mutti DO (e_1_2_7_57_1) 1994; 35
Saw SM (e_1_2_7_47_1) 2002; 43
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
Rappon J (e_1_2_7_51_1) 2020; 97
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
Chamberlain P (e_1_2_7_36_1) 2020; 97
e_1_2_7_6_1
Zadnik K (e_1_2_7_18_1) 1995; 36
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
Mutti DO (e_1_2_7_16_1) 1998; 39
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_59_1
e_1_2_7_38_1
34402539 - Ophthalmic Physiol Opt. 2021 Nov;41(6):1382-1383
34402540 - Ophthalmic Physiol Opt. 2021 Nov;41(6):1384
References_xml – volume: 52
  start-page: 4048
  year: 2011
  end-page: 4053
  article-title: Refractive and corneal astigmatism in white school children in Northern Ireland
  publication-title: Invest Ophthalmol Vis Sci
– volume: 65
  start-page: 461
  year: 1987
  end-page: 468
  article-title: A biometric investigation of late onset myopic eyes
  publication-title: Acta Ophthalmol (Copenh)
– volume: 60
  start-page: 4178
  year: 2019
  end-page: 4186
  article-title: Emmetropia is maintained despite continued eye growth from 16 to 18 years of age
  publication-title: Invest Ophthalmol Vis Sci
– volume: 81
  start-page: 27
  year: 2004
  end-page: 34
  article-title: Ocular component measurement using the Zeiss Iolmaster
  publication-title: Optom Vis Sci
– volume: 75
  start-page: 132
  year: 1998
  end-page: 145
  article-title: Role of the cornea in emmetropia and myopia
  publication-title: Optom Vis Sci
– volume: 46
  start-page: 3074
  year: 2005
  end-page: 3080
  article-title: Axial growth and changes in lenticular and corneal power during emmetropization in infants
  publication-title: Invest Ophthalmol Vis Sci
– volume: 1
  start-page: 761
  year: 1995
  end-page: 765
  article-title: Spectacle lenses alter eye growth and the refractive status of young monkeys
  publication-title: Nat Med
– volume: 36
  start-page: 388
  year: 2016
  end-page: 394
  article-title: Age of onset of myopia predicts risk of high myopia in later childhood in myopic Singapore children
  publication-title: Ophthalmic Physiol Opt
– volume: 35
  start-page: 515
  year: 1994
  end-page: 527
  article-title: The effect of cycloplegia on measurement of the ocular components
  publication-title: Invest Ophthalmol Vis Sci
– volume: 19
  start-page: 426
  year: 2015
  end-page: 429
  article-title: Therapeutic effect of atropine 1% in children with low myopia
  publication-title: J AAPOS
– volume: 60
  start-page: M132
  year: 2019
  end-page: M160
  article-title: IMI ‐ Clinical myopia control trials and instrumentation report
  publication-title: Invest Ophthalmol Vis Sci
– volume: 136
  start-page: 303
  year: 2018
  article-title: Low‐dose atropine for myopia control: considering all the data
  publication-title: JAMA Ophthalmol
– volume: 130
  start-page: 1274
  year: 2012
  end-page: 1279
  article-title: New cases of myopia in children
  publication-title: Arch Ophthalmol
– volume: 132
  start-page: 258
  year: 2014
  end-page: 264
  article-title: Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: three‐year results of a randomized clinical trial
  publication-title: JAMA Ophthalmol
– volume: 89
  start-page: 251
  year: 2012
  end-page: 262
  article-title: Corneal and crystalline lens dimensions before and after myopia onset
  publication-title: Optom Vis Sci
– volume: 119
  start-page: 1478
  year: 2012
  end-page: 1484
  article-title: Annual changes in refractive errors and ocular components before and after the onset of myopia in Chinese children
  publication-title: Ophthalmology
– volume: 40
  start-page: 254
  year: 2020
  end-page: 270
  article-title: Myopia control 2020: where are we and where are we heading?
  publication-title: Ophthalmic Physiol Opt
– volume: 49
  start-page: 4702
  year: 2008
  end-page: 4706
  article-title: A randomized trial of the effect of soft contact lenses on myopia progression in children
  publication-title: Invest Ophthalmol Vis Sci
– volume: 70
  start-page: 750
  year: 1993
  end-page: 758
  article-title: Initial cross‐sectional results from the Orinda longitudinal study of myopia
  publication-title: Optom Vis Sci
– volume: 51
  start-page: 1341
  year: 2010
  end-page: 1347
  article-title: Ocular component growth curves among singaporean children with different refractive error status
  publication-title: Invest Ophthalmol Vis Sci
– volume: 119
  start-page: 347
  year: 2012
  end-page: 354
  article-title: Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2)
  publication-title: Ophthalmology
– volume: 95
  start-page: 976
  year: 2018
  end-page: 985
  article-title: Ocular component development during infancy and early childhood
  publication-title: Optom Vis Sci
– volume: 43
  start-page: 1408
  year: 2002
  end-page: 1413
  article-title: Height and its relationship to refraction and biometry parameters in Singapore Chinese children
  publication-title: Invest Ophthalmol Vis Sci
– volume: 61
  year: 2020
  article-title: The complications of myopia: a review and meta‐analysis
  publication-title: Invest Ophthalmol Vis Sci
– volume: 109
  start-page: 704
  year: 2002
  end-page: 711
  article-title: Prevalence and progression of myopic retinopathy in an older population
  publication-title: Ophthalmology
– volume: 44
  start-page: 1492
  year: 2003
  end-page: 1500
  article-title: A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children
  publication-title: Invest Ophthalmol Vis Sci
– volume: 60
  start-page: 3091
  year: 2019
  end-page: 3099
  article-title: Axial growth and lens power loss at myopia onset in Singaporean children
  publication-title: Invest Ophthalmol Vis Sci
– volume: 71
  start-page: 573
  year: 1994
  end-page: 579
  article-title: Role of the axial length/corneal radius ratio in determining the refractive state of the eye
  publication-title: Optom Vis Sci
– volume: 110
  start-page: 1484
  year: 2003
  end-page: 1490
  article-title: Glaucoma in a rural population of Southern India: the Aravind comprehensive eye survey
  publication-title: Ophthalmology
– volume: 137
  start-page: 749
  year: 1993
  end-page: 757
  article-title: Risk factors for idiopathic rhegmatogenous retinal detachment. The Eye Disease Case‐Control Study Group
  publication-title: Am J Epidemiol
– volume: 48
  start-page: 2510
  year: 2007
  end-page: 2519
  article-title: Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia
  publication-title: Invest Ophthalmol Vis Sci
– volume: 96
  start-page: 463
  year: 2019
  end-page: 465
  article-title: Myopia control: why each diopter matters
  publication-title: Optom Vis Sci
– volume: 38
  start-page: 215
  year: 2018
  end-page: 216
  article-title: Conference report: the 16th International myopia conference
  publication-title: Ophthalmic Physiol Opt
– volume: 116
  start-page: 572
  year: 2009
  end-page: 579
  article-title: Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine
  publication-title: Ophthalmology
– volume: 38
  start-page: 290
  year: 2018
  end-page: 297
  article-title: Optical 'Dampening' of the refractive error to axial length ratio: implications for outcome measures in myopia control studies
  publication-title: Ophthalmic Physiol Opt
– volume: 97
  year: 2020
  article-title: Myopia progression in children wearing dual‐focus contact lenses: 6‐year findings
  publication-title: Optom Vis Sci
– volume: 44
  start-page: 248
  year: 2018
  end-page: 259
  article-title: Axial elongation in myopic children and its association with myopia progression in the correction of myopia evaluation trial
  publication-title: Eye Contact Lens
– volume: 54
  start-page: 7871
  year: 2013
  end-page: 7884
  article-title: Myopia stabilization and associated factors among participants in the correction of myopia evaluation trial (COMET)
  publication-title: Invest Ophthalmol Vis Sci
– volume: 134
  start-page: 1355
  year: 2016
  end-page: 1363
  article-title: Association of axial length with risk of uncorrectable visual impairment for europeans with myopia
  publication-title: JAMA Ophthalmol
– volume: 60
  start-page: M106
  year: 2019
  end-page: M131
  article-title: IMI ‐ Interventions myopia Institute: interventions for controlling myopia onset and progression report
  publication-title: Invest Ophthalmol Vis Sci
– volume: 81
  start-page: 829
  year: 2004
  end-page: 834
  article-title: Repeatability of Iolmaster biometry in children
  publication-title: Optom Vis Sci
– volume: 52
  start-page: 7949
  year: 2011
  end-page: 7953
  article-title: Longitudinal changes of axial length and height are associated and concomitant in children
  publication-title: Invest Ophthalmol Vis Sci
– volume: 96
  start-page: 556
  year: 2019
  end-page: 567
  article-title: A 3‐year randomized clinical trial of misight lenses for myopia control
  publication-title: Optom Vis Sci
– volume: 79
  start-page: 606
  year: 2002
  end-page: 613
  article-title: Prevalence rates and epidemiological risk factors for astigmatism in Singapore school children
  publication-title: Optom Vis Sci
– volume: 96
  start-page: 301
  year: 2018
  end-page: 309
  article-title: Axial length growth and the risk of developing myopia in European children
  publication-title: Acta Ophthalmol
– volume: 122
  start-page: 1760
  year: 2004
  end-page: 1766
  article-title: A randomized trial of the effects of rigid contact lenses on myopia progression
  publication-title: Arch Ophthalmol
– volume: 27
  start-page: 100923
  year: 2020
  article-title: Efficacy in myopia control
  publication-title: Prog Retin Eye Res
– volume: 46
  start-page: 2317
  year: 2005
  end-page: 2327
  article-title: Comparison of ocular component growth curves among refractive error groups in children
  publication-title: Invest Ophthalmol Vis Sci
– volume: 113
  start-page: 2285
  year: 2006
  end-page: 2291
  article-title: Atropine for the treatment of childhood myopia
  publication-title: Ophthalmology
– volume: 89
  start-page: 1196
  year: 2012
  end-page: 1202
  article-title: Myopia progression in Chinese children is slower in summer than in winter
  publication-title: Optom Vis Sci
– volume: 324
  start-page: 571
  year: 2020
  end-page: 580
  article-title: Effect of high add power, medium add power, or single‐vision contact lenses on myopia progression in children: the blink randomized clinical trial
  publication-title: JAMA
– volume: 80
  start-page: 143
  year: 1992
  end-page: 155
  article-title: Steady‐state accommodation and ocular biometry in late‐onset myopia
  publication-title: Doc Ophthalmol
– volume: 44
  start-page: 1479
  year: 2003
  end-page: 1485
  article-title: Refractive errors, axial ocular dimensions, and age‐related cataracts: the Tanjong Pagar survey
  publication-title: Invest Ophthalmol Vis Sci
– volume: 39
  start-page: 120
  year: 1998
  end-page: 133
  article-title: Optical and structural development of the crystalline lens in childhood
  publication-title: Invest Ophthalmol Vis Sci
– volume: 52
  start-page: 7937
  year: 2011
  end-page: 7942
  article-title: Comparing methods to estimate the human lens power
  publication-title: Invest Ophthalmol Vis Sci
– volume: 95
  year: 2018
  article-title: Influence of age and race on axial elongation in myopic children
  publication-title: Optom Vis Sci
– volume: 36
  start-page: 1581
  year: 1995
  end-page: 1587
  article-title: Longitudinal evidence of crystalline lens thinning in children
  publication-title: Invest Ophthalmol Vis Sci
– volume: 46
  start-page: 51
  year: 2005
  end-page: 57
  article-title: Incidence and progression of myopia in Singaporean school children
  publication-title: Invest Ophthalmol Vis Sci
– volume: 13
  start-page: 128
  year: 2020
  end-page: 136
  article-title: Change in body height, axial length and refractive status over a four‐year period in Caucasian children and young adults
  publication-title: J Optom
– volume: 97
  year: 2020
  article-title: A new method for determining an age‐independent axial length percentage reduction for myopia therapies
  publication-title: Optom Vis Sci
– volume: 123
  start-page: 977
  year: 2005
  end-page: 987
  article-title: Relationship of age, sex, and ethnicity with myopia progression and axial elongation in the correction of myopia evaluation trial
  publication-title: Arch Ophthalmol
– ident: e_1_2_7_62_1
  doi: 10.1097/00006324-200401000-00007
– ident: e_1_2_7_32_1
  doi: 10.1167/iovs.02-0816
– ident: e_1_2_7_2_1
  doi: 10.1097/00006324-199802000-00017
– ident: e_1_2_7_24_1
  doi: 10.1167/iovs.02-0526
– ident: e_1_2_7_19_1
  doi: 10.1167/iovs.18-25955
– ident: e_1_2_7_54_1
  doi: 10.1016/j.ophtha.2008.10.020
– ident: e_1_2_7_13_1
  doi: 10.1111/opo.12305
– ident: e_1_2_7_4_1
  doi: 10.1167/iovs.11-7899
– ident: e_1_2_7_28_1
  doi: 10.1167/iovs.18-25958
– ident: e_1_2_7_37_1
  doi: 10.1001/archophthalmol.2012.1449
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1755-3768.1987.tb07024.x
– ident: e_1_2_7_35_1
  doi: 10.1097/OPX.0000000000001410
– volume: 35
  start-page: 515
  year: 1994
  ident: e_1_2_7_57_1
  article-title: The effect of cycloplegia on measurement of the ocular components
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_7_61_1
  doi: 10.1097/01.OPX.0000145020.33250.C0
– ident: e_1_2_7_5_1
  doi: 10.1111/opo.12457
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ophtha.2012.01.017
– ident: e_1_2_7_58_1
  doi: 10.1097/00006324-200209000-00012
– ident: e_1_2_7_49_1
  doi: 10.1016/j.optom.2019.12.008
– ident: e_1_2_7_56_1
  doi: 10.1001/archopht.123.7.977
– ident: e_1_2_7_30_1
  doi: 10.1001/jamaophthalmol.2017.6638
– volume: 97
  year: 2020
  ident: e_1_2_7_36_1
  article-title: Myopia progression in children wearing dual‐focus contact lenses: 6‐year findings
  publication-title: Optom Vis Sci
– ident: e_1_2_7_48_1
  doi: 10.1167/iovs.11-7684
– volume: 97
  year: 2020
  ident: e_1_2_7_51_1
  article-title: A new method for determining an age‐independent axial length percentage reduction for myopia therapies
  publication-title: Optom Vis Sci
– ident: e_1_2_7_6_1
  doi: 10.1111/aos.13603
– volume: 43
  start-page: 1408
  year: 2002
  ident: e_1_2_7_47_1
  article-title: Height and its relationship to refraction and biometry parameters in Singapore Chinese children
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_7_59_1
  doi: 10.1167/iovs.10-6100
– volume: 95
  year: 2018
  ident: e_1_2_7_14_1
  article-title: Influence of age and race on axial elongation in myopic children
  publication-title: Optom Vis Sci
– volume: 36
  start-page: 1581
  year: 1995
  ident: e_1_2_7_18_1
  article-title: Longitudinal evidence of crystalline lens thinning in children
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_7_55_1
  doi: 10.1038/nm0895-761
– ident: e_1_2_7_29_1
  doi: 10.1111/opo.12686
– ident: e_1_2_7_41_1
  doi: 10.1167/iovs.08-2067
– volume: 39
  start-page: 120
  year: 1998
  ident: e_1_2_7_16_1
  article-title: Optical and structural development of the crystalline lens in childhood
  publication-title: Invest Ophthalmol Vis Sci
– ident: e_1_2_7_20_1
  doi: 10.1097/OPX.0000000000001367
– ident: e_1_2_7_15_1
  doi: 10.1167/iovs.13-12403
– ident: e_1_2_7_40_1
  doi: 10.1167/iovs.04-0565
– ident: e_1_2_7_42_1
  doi: 10.1001/jama.2020.10834
– ident: e_1_2_7_50_1
  doi: 10.1111/opo.12459
– ident: e_1_2_7_52_1
  doi: 10.1016/j.ophtha.2006.05.062
– ident: e_1_2_7_43_1
  doi: 10.1097/ICL.0000000000000505
– ident: e_1_2_7_53_1
  doi: 10.1016/j.jaapos.2015.04.006
– ident: e_1_2_7_21_1
  doi: 10.1167/iovs.61.4.49
– ident: e_1_2_7_34_1
  doi: 10.1001/jamaophthalmol.2013.7623
– ident: e_1_2_7_44_1
  doi: 10.1167/iovs.19-27289
– ident: e_1_2_7_31_1
  doi: 10.1016/j.ophtha.2011.07.031
– ident: e_1_2_7_33_1
  doi: 10.1001/archopht.122.12.1760
– ident: e_1_2_7_60_1
  doi: 10.1097/OPX.0b013e3182640996
– ident: e_1_2_7_23_1
  doi: 10.1016/S0161-6420(03)00564-5
– ident: e_1_2_7_26_1
  doi: 10.1001/jamaophthalmol.2016.4009
– ident: e_1_2_7_8_1
  doi: 10.1167/iovs.04-0945
– ident: e_1_2_7_17_1
  doi: 10.1097/OPX.0b013e3182418213
– ident: e_1_2_7_9_1
  doi: 10.1167/iovs.06-0562
– ident: e_1_2_7_22_1
  doi: 10.1016/S0161-6420(01)01024-7
– ident: e_1_2_7_3_1
  doi: 10.1097/00006324-199409000-00005
– ident: e_1_2_7_10_1
  doi: 10.1167/iovs.04-1040
– ident: e_1_2_7_38_1
  doi: 10.1167/iovs.09-3431
– ident: e_1_2_7_12_1
  doi: 10.1167/iovs.18-26247
– ident: e_1_2_7_25_1
  doi: 10.1093/oxfordjournals.aje.a116735
– ident: e_1_2_7_27_1
  doi: 10.1016/j.preteyeres.2020.100923
– ident: e_1_2_7_39_1
  doi: 10.1097/00006324-199309000-00012
– ident: e_1_2_7_7_1
  doi: 10.1097/OPX.0000000000001296
– ident: e_1_2_7_46_1
  doi: 10.1007/BF00161240
– reference: 34402539 - Ophthalmic Physiol Opt. 2021 Nov;41(6):1382-1383
– reference: 34402540 - Ophthalmic Physiol Opt. 2021 Nov;41(6):1384
SSID ssj0007778
Score 2.5444453
Snippet Purpose Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing...
Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes,...
PurposeBoth emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 523
SubjectTerms Adolescent
Age composition
axial length
Axial Length, Eye - diagnostic imaging
Axial Length, Eye - physiopathology
Child
Children
Clinical trials
Contact lenses
Disease Management
Elongation
Female
Follow-Up Studies
Humans
Male
Myopia
Myopia - diagnosis
Myopia - physiopathology
myopia control
Physiology
Risk factors
Time Factors
Title Axial length targets for myopia control
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fopo.12812
https://www.ncbi.nlm.nih.gov/pubmed/33951213
https://www.proquest.com/docview/2522529831
https://www.proquest.com/docview/2522615592
https://pubmed.ncbi.nlm.nih.gov/PMC8252804
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48UHzxPtZjqSLoS5dtkl74tKsuInggCj4IJUlTFLVd3F1Qf72T9HDXA8S3QqZHjsl80_kyA7AbUk64UK7teiJEB6XJ7TDxmjaaB0ZiSf3QHBQ-O_dObtjprXs7BgflWZg8P0T1w01rhtmvtYJz0RtS8qybNXQYSO-_mqulAdHVZ-oo3893YeK7OvgfFFmFNIununPUFn0DmN95ksP41RigzhzclZ-e804eG4O-aMj3L1kd_9m3eZgtgKnVylfSAoypdBGmz4rQ-yJMGa6o7C3BXusVF62lS7D0762cSt6zEPxaz29Z94FbBf19GW46x9eHJ3ZRb8GWjFFiK19QnshY-1hxyFkQcrRxXFeCUAyRhgo8RwlPeIkTc4V-iz4EwpgkkpKYKUVXYCLNUrUGlusEnDnCQ7whGG8ywYMkSQKO0--oIJY12C9HPpJFMnJdE-MpKp0SHILIDEENdirRbp6B4yehzXL6okIJexFBbOmSMKBODbarZlQfHRPhqcoGuYwJzeIjVvPZrt5CKcJP4tAa-CProBLQqblHW9KHe5OiG_1uHB6G3TTT_PuHRxeXF-Zi_e-iGzBDNLPG0C43YaL_MlBbCI36og7jhF3WYbLVPmp36kYjPgBO7Qtu
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5E8XjxPtaziqAvXbZJeoEvIsp6rIoo-CIlSVNW1HZxd0H99U7SQ9cDxLdCpm0ymUm-yUxmALZDygkXyrVdT4RooDS4HSZew8btgZFYUj80F4Vb517zhp3curdDsFfehcnzQ1QHblozzHqtFVwfSH_S8qyT1bUfCBfgEV3R2xhUVx_Jo3w_X4eJ72r3f1DkFdJxPNWrg7vRN4j5PVLyM4I1W9DRFNyVnc8jTx7q_Z6oy7cveR3_O7ppmCywqbWfC9MMDKl0FsZahfd9FkZNuKjszsHO_gvKraWrsPTaVh5N3rUQ_1pPr1nnnltFBPw83BwdXh807aLkgi0Zo8RWvqA8kbE2s-KQsyDkuM1xXQxCMQQbKvAcJTzhJU7MFZou-h4IY5JISmKmFF2A4TRL1RJYrhNw5ggPIYdgvMEED5IkCThKgKOCWNZgt2R9JIt85LosxmNU2iXIgsiwoAZbFWknT8LxE9FqOX9RoYfdiCC8dEkYUKcGm1UzapB2i_BUZf2cxnhn8ROL-XRXf6EUEShxaA38AUGoCHR27sGW9L5tsnSj6Y3sYThMM8-_dzy6uLwwD8t_J92A8eZ16yw6Oz4_XYEJogNtTBTmKgz3nvtqDZFST6wbhXgHQngNQA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS-QwEB9EUe6L77tbn71DOL902SZpm-InURf1blVEwQ8HJUlTdlHbxd0F9a93kj7c1RMOvxUyfWQemd90JhOAnYgKIqT2XT-QEQYoLeFGadBy0T0wkigaRnajcOcsOL5mpzf-zRTsVXthiv4Q9Q83Yxl2vTYG3k_SMSPP-3nTpIFw_Z1hQYsblT68fO0dFYbFMkxC32T_edlWyJTx1LdOOqN3CPN9oeQ4gLUeqL0Af6tvLwpPbpujoWyq5zdtHT85uUWYL5Gps1-o0hJM6WwZ5jpl7n0ZZm2xqBqswK_9R9Rax5zBMuw6RS35wEH069w_5f2ecMr691W4bh9dHRy75YELrmKMEleHkopUJSbISiLBeCTQyQlzFIRmCDU0DzwtAxmkXiI0Bi5mFwhjiihKEqY1_QrTWZ7p7-D4HhfMkwECDslEi0nB0zTlAuXvaZ6oBuxWnI9V2Y3cHIpxF1dRCbIgtixowM-atF-04PgX0UYlvri0wkFMEFz6JOLUa8CPehjtxyRFRKbzUUFjc7P4iG-FtOu3UIr4k3i0AeGEHtQEpjf35EjW69oe3Rh4I3sYTtOK-eMPj88vzu3F2v-TbsPcxWE7_nNy9nsdvhBTZWNLMDdgevgw0psIk4Zyy5rDCzGcC_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Axial+length+targets+for+myopia+control&rft.jtitle=Ophthalmic+%26+physiological+optics&rft.au=Chamberlain%2C+Paul&rft.au=Lazon+de+la+Jara%2C+Percy&rft.au=Arumugam%2C+Baskar&rft.au=Bullimore%2C+Mark+A&rft.date=2021-05-01&rft.issn=0275-5408&rft.eissn=1475-1313&rft.volume=41&rft.issue=3&rft.spage=523&rft.epage=531&rft_id=info:doi/10.1111%2Fopo.12812&rft.externalDBID=10.1111%252Fopo.12812&rft.externalDocID=OPO12812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0275-5408&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0275-5408&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0275-5408&client=summon