Axial length targets for myopia control
Purpose Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of norma...
Saved in:
Published in | Ophthalmic & physiological optics Vol. 41; no. 3; pp. 523 - 531 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.05.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control.
Methods
Axial elongation data were taken from the 3‐year randomised clinical trial of a myopia control dual‐focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts—myopic and emmetropic for each model—were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models.
Results
The untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3‐year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models—similar to the mean 3‐year elongation in MiSight‐treated myopes (0.30 mm).
Conclusions
The 3‐year elongation in MiSight‐treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes. |
---|---|
AbstractList | Purpose
Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control.
Methods
Axial elongation data were taken from the 3‐year randomised clinical trial of a myopia control dual‐focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts—myopic and emmetropic for each model—were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models.
Results
The untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3‐year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models—similar to the mean 3‐year elongation in MiSight‐treated myopes (0.30 mm).
Conclusions
The 3‐year elongation in MiSight‐treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes. Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control. Axial elongation data were taken from the 3-year randomised clinical trial of a myopia control dual-focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts-myopic and emmetropic for each model-were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models. The untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3-year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models-similar to the mean 3-year elongation in MiSight-treated myopes (0.30 mm). The 3-year elongation in MiSight-treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes. PurposeBoth emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control.MethodsAxial elongation data were taken from the 3‐year randomised clinical trial of a myopia control dual‐focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts—myopic and emmetropic for each model—were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models.ResultsThe untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3‐year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models—similar to the mean 3‐year elongation in MiSight‐treated myopes (0.30 mm).ConclusionsThe 3‐year elongation in MiSight‐treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes. Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control.PURPOSEBoth emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control.Axial elongation data were taken from the 3-year randomised clinical trial of a myopia control dual-focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts-myopic and emmetropic for each model-were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models.METHODSAxial elongation data were taken from the 3-year randomised clinical trial of a myopia control dual-focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts-myopic and emmetropic for each model-were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models.The untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3-year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models-similar to the mean 3-year elongation in MiSight-treated myopes (0.30 mm).RESULTSThe untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3-year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models-similar to the mean 3-year elongation in MiSight-treated myopes (0.30 mm).The 3-year elongation in MiSight-treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes.CONCLUSIONSThe 3-year elongation in MiSight-treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes. |
Author | Arumugam, Baskar Chamberlain, Paul Lazon de la Jara, Percy Bullimore, Mark A |
AuthorAffiliation | 2 College of Optometry University of Houston Houston USA 1 CooperVision Inc. Pleasanton USA |
AuthorAffiliation_xml | – name: 2 College of Optometry University of Houston Houston USA – name: 1 CooperVision Inc. Pleasanton USA |
Author_xml | – sequence: 1 givenname: Paul surname: Chamberlain fullname: Chamberlain, Paul email: PChamberlain@coopervision.com organization: CooperVision Inc – sequence: 2 givenname: Percy surname: Lazon de la Jara fullname: Lazon de la Jara, Percy organization: CooperVision Inc – sequence: 3 givenname: Baskar surname: Arumugam fullname: Arumugam, Baskar organization: CooperVision Inc – sequence: 4 givenname: Mark A orcidid: 0000-0002-6315-3720 surname: Bullimore fullname: Bullimore, Mark A organization: University of Houston |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33951213$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9LAzEQxYMo2lYPfgFZ8KAeqpkk2929CKX4D4R60HNIs7NtJN3UZKv225u2WlTQXCaQ37zMvNcm27WrkZBDoOcQz4WbuXNgObAt0gKRpV3gwLdJi7J4TwXN90g7hGdKaZZl-S7Z47xIgQFvkZP-u1E2sViPm0nSKD_GJiSV88l04WZGJdrVjXd2n-xUygY8-Kwd8nR99Ti47d4Pb-4G_fuuFoKzLmYjripdghBQFkrkheICFAXKUWSCY94DHPVGvQpKhYLllBaZEJppzkqByDvkcq07m4-mWGqMvysrZ95MlV9Ip4z8-VKbiRy7V5mzNKqJKHD6KeDdyxxDI6cmaLRW1ejmQUaM9SBNCxbR41_os5v7Oq63olJW5NHHDjn6PtFmlC8PI3C2BrR3IXisNghQucxHxnzkKp_IXvxitWlUY5YmK2P_63gzFhd_S8vhw3Dd8QEu7Z-H |
CitedBy_id | crossref_primary_10_1111_opo_13401 crossref_primary_10_3390_life14010118 crossref_primary_10_12968_opti_2023_267_6901_21 crossref_primary_10_1186_s12886_024_03666_5 crossref_primary_10_1111_opo_13240 crossref_primary_10_1111_opo_13120 crossref_primary_10_1111_opo_12873 crossref_primary_10_1111_opo_12872 crossref_primary_10_2147_OPTH_S370041 crossref_primary_10_1136_bmjophth_2024_001790 crossref_primary_10_1371_journal_pone_0317756 crossref_primary_10_1136_bmjopen_2023_075115 crossref_primary_10_3390_jcm11206200 crossref_primary_10_1364_BOE_501889 crossref_primary_10_3390_jcm11133642 crossref_primary_10_3389_fmed_2024_1416286 crossref_primary_10_18502_jovr_v18i4_14544 crossref_primary_10_1016_j_clae_2023_101875 crossref_primary_10_1111_opo_13159 crossref_primary_10_3389_fopht_2024_1540410 crossref_primary_10_1016_j_ajo_2024_02_027 crossref_primary_10_2139_ssrn_3989851 crossref_primary_10_1186_s12889_025_22003_z crossref_primary_10_1111_opo_12820 crossref_primary_10_1111_opo_13232 crossref_primary_10_3390_genes13060942 crossref_primary_10_1097_OPX_0000000000001978 crossref_primary_10_3233_THC_240761 crossref_primary_10_1055_a_2117_9335 crossref_primary_10_1097_OPX_0000000000001970 crossref_primary_10_1136_bjo_2021_321005 crossref_primary_10_1097_jnr_0000000000000517 crossref_primary_10_1007_s40123_024_01048_0 crossref_primary_10_1007_s00417_022_05901_5 crossref_primary_10_1016_j_visres_2023_108272 crossref_primary_10_1111_opo_13381 crossref_primary_10_1186_s12886_024_03337_5 crossref_primary_10_1111_opo_13185 crossref_primary_10_1111_opo_13024 crossref_primary_10_1111_opo_13420 crossref_primary_10_1136_bmjopen_2024_084891 crossref_primary_10_3389_fcell_2023_1160897 crossref_primary_10_3390_metabo12121220 crossref_primary_10_3390_ijerph20010875 crossref_primary_10_33920_med_10_2312_05 crossref_primary_10_1136_bmjophth_2024_001921 crossref_primary_10_3389_fnins_2022_1106904 crossref_primary_10_1097_OPX_0000000000002176 crossref_primary_10_1111_aos_15746 crossref_primary_10_3390_biom13091328 crossref_primary_10_1136_bjo_2023_324508 crossref_primary_10_1111_opo_13098 crossref_primary_10_1080_08164622_2024_2410879 crossref_primary_10_1016_j_clae_2023_102066 crossref_primary_10_1111_opo_13332 crossref_primary_10_1016_j_ajo_2024_08_020 crossref_primary_10_3390_jcm13226754 crossref_primary_10_1155_2024_4981095 crossref_primary_10_1038_s41598_022_08907_5 crossref_primary_10_1097_OPX_0000000000002167 crossref_primary_10_1186_s40662_023_00345_2 |
Cites_doi | 10.1097/00006324-200401000-00007 10.1167/iovs.02-0816 10.1097/00006324-199802000-00017 10.1167/iovs.02-0526 10.1167/iovs.18-25955 10.1016/j.ophtha.2008.10.020 10.1111/opo.12305 10.1167/iovs.11-7899 10.1167/iovs.18-25958 10.1001/archophthalmol.2012.1449 10.1111/j.1755-3768.1987.tb07024.x 10.1097/OPX.0000000000001410 10.1097/01.OPX.0000145020.33250.C0 10.1111/opo.12457 10.1016/j.ophtha.2012.01.017 10.1097/00006324-200209000-00012 10.1016/j.optom.2019.12.008 10.1001/archopht.123.7.977 10.1001/jamaophthalmol.2017.6638 10.1167/iovs.11-7684 10.1111/aos.13603 10.1167/iovs.10-6100 10.1038/nm0895-761 10.1111/opo.12686 10.1167/iovs.08-2067 10.1097/OPX.0000000000001367 10.1167/iovs.13-12403 10.1167/iovs.04-0565 10.1001/jama.2020.10834 10.1111/opo.12459 10.1016/j.ophtha.2006.05.062 10.1097/ICL.0000000000000505 10.1016/j.jaapos.2015.04.006 10.1167/iovs.61.4.49 10.1001/jamaophthalmol.2013.7623 10.1167/iovs.19-27289 10.1016/j.ophtha.2011.07.031 10.1001/archopht.122.12.1760 10.1097/OPX.0b013e3182640996 10.1016/S0161-6420(03)00564-5 10.1001/jamaophthalmol.2016.4009 10.1167/iovs.04-0945 10.1097/OPX.0b013e3182418213 10.1167/iovs.06-0562 10.1016/S0161-6420(01)01024-7 10.1097/00006324-199409000-00005 10.1167/iovs.04-1040 10.1167/iovs.09-3431 10.1167/iovs.18-26247 10.1093/oxfordjournals.aje.a116735 10.1016/j.preteyeres.2020.100923 10.1097/00006324-199309000-00012 10.1097/OPX.0000000000001296 10.1007/BF00161240 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of College of Optometrists. 2021 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of College of Optometrists. – notice: 2021 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7T5 7TK H94 7X8 5PM |
DOI | 10.1111/opo.12812 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Immunology Abstracts Neurosciences Abstracts Animal Behavior Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
DocumentTitleAlternate | Axial elongation in myopia and emmetropia |
EISSN | 1475-1313 |
EndPage | 531 |
ExternalDocumentID | PMC8252804 33951213 10_1111_opo_12812 OPO12812 |
Genre | article Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CooperVision |
GroupedDBID | --- --K .3N .GA .Y3 05W 0R~ 10A 123 1B1 1OB 1OC 1~5 24P 29N 31~ 33P 36B 3SF 4.4 4G. 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5HH 5LA 5VS 66C 7-5 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEDT AAESR AAEVG AAHHS AAHQN AAIPD AALRI AAMNL AANHP AANLZ AAONW AAQFI AAQXK AASGY AAXRX AAXUO AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABMAC ABPVW ABQWH ABWVN ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACNCT ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADMUD ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EAD EAP EBC EBD EBS EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FDB FEDTE FGOYB FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M41 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NQ- O66 O9- OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K R2- RIWAO RJQFR ROL RPZ RX1 SAMSI SEW SSZ SUPJJ SV3 TEORI TUS UB1 UHS V8K W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR XG1 YFH YUY ZZTAW ~IA ~WT AAYXX ACVFH ADCNI AEUPX AEYWJ AFPUW AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QG 7T5 7TK H94 7X8 5PM |
ID | FETCH-LOGICAL-c4432-e7b3afcd1441d9a489a341a0103e4743e861eb6b6f1dae428009744c2c32d4ee3 |
IEDL.DBID | DR2 |
ISSN | 0275-5408 1475-1313 |
IngestDate | Thu Aug 21 18:20:00 EDT 2025 Fri Jul 11 11:11:28 EDT 2025 Wed Aug 13 05:45:13 EDT 2025 Mon Jul 21 06:00:28 EDT 2025 Thu Apr 24 22:57:00 EDT 2025 Tue Jul 01 02:18:59 EDT 2025 Wed Jan 22 16:30:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | myopia axial length children myopia control contact lenses |
Language | English |
License | Attribution-NonCommercial 2021 The Authors. Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4432-e7b3afcd1441d9a489a341a0103e4743e861eb6b6f1dae428009744c2c32d4ee3 |
Notes | Presented in part at the 16th Biennial International Myopia Conference (IMC) in Birmingham, September 2017. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0002-6315-3720 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fopo.12812 |
PMID | 33951213 |
PQID | 2522529831 |
PQPubID | 2045120 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8252804 proquest_miscellaneous_2522615592 proquest_journals_2522529831 pubmed_primary_33951213 crossref_primary_10_1111_opo_12812 crossref_citationtrail_10_1111_opo_12812 wiley_primary_10_1111_opo_12812_OPO12812 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London – name: Hoboken |
PublicationTitle | Ophthalmic & physiological optics |
PublicationTitleAlternate | Ophthalmic Physiol Opt |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2004; 122 1992; 80 2015; 19 2004; 81 2019; 96 2020; 40 1995; 36 2020; 61 2002; 79 2011; 52 2020; 324 2020; 13 2014; 132 2018; 44 1995; 1 2016; 36 2003; 110 2005; 46 2009; 116 2006; 113 2012; 130 1998; 39 2019; 60 1987; 65 2020; 97 2013; 54 2005; 123 1993; 70 2008; 49 2002; 43 2018; 136 2016; 134 2020; 27 1994; 35 2018; 96 2018; 95 2002; 109 2012; 89 1998; 75 1994; 71 1993; 137 2018; 38 2012; 119 2010; 51 2007; 48 2003; 44 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 Brennan N (e_1_2_7_14_1) 2018; 95 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Mutti DO (e_1_2_7_57_1) 1994; 35 Saw SM (e_1_2_7_47_1) 2002; 43 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 Rappon J (e_1_2_7_51_1) 2020; 97 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Chamberlain P (e_1_2_7_36_1) 2020; 97 e_1_2_7_6_1 Zadnik K (e_1_2_7_18_1) 1995; 36 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 Mutti DO (e_1_2_7_16_1) 1998; 39 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_59_1 e_1_2_7_38_1 34402539 - Ophthalmic Physiol Opt. 2021 Nov;41(6):1382-1383 34402540 - Ophthalmic Physiol Opt. 2021 Nov;41(6):1384 |
References_xml | – volume: 52 start-page: 4048 year: 2011 end-page: 4053 article-title: Refractive and corneal astigmatism in white school children in Northern Ireland publication-title: Invest Ophthalmol Vis Sci – volume: 65 start-page: 461 year: 1987 end-page: 468 article-title: A biometric investigation of late onset myopic eyes publication-title: Acta Ophthalmol (Copenh) – volume: 60 start-page: 4178 year: 2019 end-page: 4186 article-title: Emmetropia is maintained despite continued eye growth from 16 to 18 years of age publication-title: Invest Ophthalmol Vis Sci – volume: 81 start-page: 27 year: 2004 end-page: 34 article-title: Ocular component measurement using the Zeiss Iolmaster publication-title: Optom Vis Sci – volume: 75 start-page: 132 year: 1998 end-page: 145 article-title: Role of the cornea in emmetropia and myopia publication-title: Optom Vis Sci – volume: 46 start-page: 3074 year: 2005 end-page: 3080 article-title: Axial growth and changes in lenticular and corneal power during emmetropization in infants publication-title: Invest Ophthalmol Vis Sci – volume: 1 start-page: 761 year: 1995 end-page: 765 article-title: Spectacle lenses alter eye growth and the refractive status of young monkeys publication-title: Nat Med – volume: 36 start-page: 388 year: 2016 end-page: 394 article-title: Age of onset of myopia predicts risk of high myopia in later childhood in myopic Singapore children publication-title: Ophthalmic Physiol Opt – volume: 35 start-page: 515 year: 1994 end-page: 527 article-title: The effect of cycloplegia on measurement of the ocular components publication-title: Invest Ophthalmol Vis Sci – volume: 19 start-page: 426 year: 2015 end-page: 429 article-title: Therapeutic effect of atropine 1% in children with low myopia publication-title: J AAPOS – volume: 60 start-page: M132 year: 2019 end-page: M160 article-title: IMI ‐ Clinical myopia control trials and instrumentation report publication-title: Invest Ophthalmol Vis Sci – volume: 136 start-page: 303 year: 2018 article-title: Low‐dose atropine for myopia control: considering all the data publication-title: JAMA Ophthalmol – volume: 130 start-page: 1274 year: 2012 end-page: 1279 article-title: New cases of myopia in children publication-title: Arch Ophthalmol – volume: 132 start-page: 258 year: 2014 end-page: 264 article-title: Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: three‐year results of a randomized clinical trial publication-title: JAMA Ophthalmol – volume: 89 start-page: 251 year: 2012 end-page: 262 article-title: Corneal and crystalline lens dimensions before and after myopia onset publication-title: Optom Vis Sci – volume: 119 start-page: 1478 year: 2012 end-page: 1484 article-title: Annual changes in refractive errors and ocular components before and after the onset of myopia in Chinese children publication-title: Ophthalmology – volume: 40 start-page: 254 year: 2020 end-page: 270 article-title: Myopia control 2020: where are we and where are we heading? publication-title: Ophthalmic Physiol Opt – volume: 49 start-page: 4702 year: 2008 end-page: 4706 article-title: A randomized trial of the effect of soft contact lenses on myopia progression in children publication-title: Invest Ophthalmol Vis Sci – volume: 70 start-page: 750 year: 1993 end-page: 758 article-title: Initial cross‐sectional results from the Orinda longitudinal study of myopia publication-title: Optom Vis Sci – volume: 51 start-page: 1341 year: 2010 end-page: 1347 article-title: Ocular component growth curves among singaporean children with different refractive error status publication-title: Invest Ophthalmol Vis Sci – volume: 119 start-page: 347 year: 2012 end-page: 354 article-title: Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2) publication-title: Ophthalmology – volume: 95 start-page: 976 year: 2018 end-page: 985 article-title: Ocular component development during infancy and early childhood publication-title: Optom Vis Sci – volume: 43 start-page: 1408 year: 2002 end-page: 1413 article-title: Height and its relationship to refraction and biometry parameters in Singapore Chinese children publication-title: Invest Ophthalmol Vis Sci – volume: 61 year: 2020 article-title: The complications of myopia: a review and meta‐analysis publication-title: Invest Ophthalmol Vis Sci – volume: 109 start-page: 704 year: 2002 end-page: 711 article-title: Prevalence and progression of myopic retinopathy in an older population publication-title: Ophthalmology – volume: 44 start-page: 1492 year: 2003 end-page: 1500 article-title: A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children publication-title: Invest Ophthalmol Vis Sci – volume: 60 start-page: 3091 year: 2019 end-page: 3099 article-title: Axial growth and lens power loss at myopia onset in Singaporean children publication-title: Invest Ophthalmol Vis Sci – volume: 71 start-page: 573 year: 1994 end-page: 579 article-title: Role of the axial length/corneal radius ratio in determining the refractive state of the eye publication-title: Optom Vis Sci – volume: 110 start-page: 1484 year: 2003 end-page: 1490 article-title: Glaucoma in a rural population of Southern India: the Aravind comprehensive eye survey publication-title: Ophthalmology – volume: 137 start-page: 749 year: 1993 end-page: 757 article-title: Risk factors for idiopathic rhegmatogenous retinal detachment. The Eye Disease Case‐Control Study Group publication-title: Am J Epidemiol – volume: 48 start-page: 2510 year: 2007 end-page: 2519 article-title: Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia publication-title: Invest Ophthalmol Vis Sci – volume: 96 start-page: 463 year: 2019 end-page: 465 article-title: Myopia control: why each diopter matters publication-title: Optom Vis Sci – volume: 38 start-page: 215 year: 2018 end-page: 216 article-title: Conference report: the 16th International myopia conference publication-title: Ophthalmic Physiol Opt – volume: 116 start-page: 572 year: 2009 end-page: 579 article-title: Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine publication-title: Ophthalmology – volume: 38 start-page: 290 year: 2018 end-page: 297 article-title: Optical 'Dampening' of the refractive error to axial length ratio: implications for outcome measures in myopia control studies publication-title: Ophthalmic Physiol Opt – volume: 97 year: 2020 article-title: Myopia progression in children wearing dual‐focus contact lenses: 6‐year findings publication-title: Optom Vis Sci – volume: 44 start-page: 248 year: 2018 end-page: 259 article-title: Axial elongation in myopic children and its association with myopia progression in the correction of myopia evaluation trial publication-title: Eye Contact Lens – volume: 54 start-page: 7871 year: 2013 end-page: 7884 article-title: Myopia stabilization and associated factors among participants in the correction of myopia evaluation trial (COMET) publication-title: Invest Ophthalmol Vis Sci – volume: 134 start-page: 1355 year: 2016 end-page: 1363 article-title: Association of axial length with risk of uncorrectable visual impairment for europeans with myopia publication-title: JAMA Ophthalmol – volume: 60 start-page: M106 year: 2019 end-page: M131 article-title: IMI ‐ Interventions myopia Institute: interventions for controlling myopia onset and progression report publication-title: Invest Ophthalmol Vis Sci – volume: 81 start-page: 829 year: 2004 end-page: 834 article-title: Repeatability of Iolmaster biometry in children publication-title: Optom Vis Sci – volume: 52 start-page: 7949 year: 2011 end-page: 7953 article-title: Longitudinal changes of axial length and height are associated and concomitant in children publication-title: Invest Ophthalmol Vis Sci – volume: 96 start-page: 556 year: 2019 end-page: 567 article-title: A 3‐year randomized clinical trial of misight lenses for myopia control publication-title: Optom Vis Sci – volume: 79 start-page: 606 year: 2002 end-page: 613 article-title: Prevalence rates and epidemiological risk factors for astigmatism in Singapore school children publication-title: Optom Vis Sci – volume: 96 start-page: 301 year: 2018 end-page: 309 article-title: Axial length growth and the risk of developing myopia in European children publication-title: Acta Ophthalmol – volume: 122 start-page: 1760 year: 2004 end-page: 1766 article-title: A randomized trial of the effects of rigid contact lenses on myopia progression publication-title: Arch Ophthalmol – volume: 27 start-page: 100923 year: 2020 article-title: Efficacy in myopia control publication-title: Prog Retin Eye Res – volume: 46 start-page: 2317 year: 2005 end-page: 2327 article-title: Comparison of ocular component growth curves among refractive error groups in children publication-title: Invest Ophthalmol Vis Sci – volume: 113 start-page: 2285 year: 2006 end-page: 2291 article-title: Atropine for the treatment of childhood myopia publication-title: Ophthalmology – volume: 89 start-page: 1196 year: 2012 end-page: 1202 article-title: Myopia progression in Chinese children is slower in summer than in winter publication-title: Optom Vis Sci – volume: 324 start-page: 571 year: 2020 end-page: 580 article-title: Effect of high add power, medium add power, or single‐vision contact lenses on myopia progression in children: the blink randomized clinical trial publication-title: JAMA – volume: 80 start-page: 143 year: 1992 end-page: 155 article-title: Steady‐state accommodation and ocular biometry in late‐onset myopia publication-title: Doc Ophthalmol – volume: 44 start-page: 1479 year: 2003 end-page: 1485 article-title: Refractive errors, axial ocular dimensions, and age‐related cataracts: the Tanjong Pagar survey publication-title: Invest Ophthalmol Vis Sci – volume: 39 start-page: 120 year: 1998 end-page: 133 article-title: Optical and structural development of the crystalline lens in childhood publication-title: Invest Ophthalmol Vis Sci – volume: 52 start-page: 7937 year: 2011 end-page: 7942 article-title: Comparing methods to estimate the human lens power publication-title: Invest Ophthalmol Vis Sci – volume: 95 year: 2018 article-title: Influence of age and race on axial elongation in myopic children publication-title: Optom Vis Sci – volume: 36 start-page: 1581 year: 1995 end-page: 1587 article-title: Longitudinal evidence of crystalline lens thinning in children publication-title: Invest Ophthalmol Vis Sci – volume: 46 start-page: 51 year: 2005 end-page: 57 article-title: Incidence and progression of myopia in Singaporean school children publication-title: Invest Ophthalmol Vis Sci – volume: 13 start-page: 128 year: 2020 end-page: 136 article-title: Change in body height, axial length and refractive status over a four‐year period in Caucasian children and young adults publication-title: J Optom – volume: 97 year: 2020 article-title: A new method for determining an age‐independent axial length percentage reduction for myopia therapies publication-title: Optom Vis Sci – volume: 123 start-page: 977 year: 2005 end-page: 987 article-title: Relationship of age, sex, and ethnicity with myopia progression and axial elongation in the correction of myopia evaluation trial publication-title: Arch Ophthalmol – ident: e_1_2_7_62_1 doi: 10.1097/00006324-200401000-00007 – ident: e_1_2_7_32_1 doi: 10.1167/iovs.02-0816 – ident: e_1_2_7_2_1 doi: 10.1097/00006324-199802000-00017 – ident: e_1_2_7_24_1 doi: 10.1167/iovs.02-0526 – ident: e_1_2_7_19_1 doi: 10.1167/iovs.18-25955 – ident: e_1_2_7_54_1 doi: 10.1016/j.ophtha.2008.10.020 – ident: e_1_2_7_13_1 doi: 10.1111/opo.12305 – ident: e_1_2_7_4_1 doi: 10.1167/iovs.11-7899 – ident: e_1_2_7_28_1 doi: 10.1167/iovs.18-25958 – ident: e_1_2_7_37_1 doi: 10.1001/archophthalmol.2012.1449 – ident: e_1_2_7_45_1 doi: 10.1111/j.1755-3768.1987.tb07024.x – ident: e_1_2_7_35_1 doi: 10.1097/OPX.0000000000001410 – volume: 35 start-page: 515 year: 1994 ident: e_1_2_7_57_1 article-title: The effect of cycloplegia on measurement of the ocular components publication-title: Invest Ophthalmol Vis Sci – ident: e_1_2_7_61_1 doi: 10.1097/01.OPX.0000145020.33250.C0 – ident: e_1_2_7_5_1 doi: 10.1111/opo.12457 – ident: e_1_2_7_11_1 doi: 10.1016/j.ophtha.2012.01.017 – ident: e_1_2_7_58_1 doi: 10.1097/00006324-200209000-00012 – ident: e_1_2_7_49_1 doi: 10.1016/j.optom.2019.12.008 – ident: e_1_2_7_56_1 doi: 10.1001/archopht.123.7.977 – ident: e_1_2_7_30_1 doi: 10.1001/jamaophthalmol.2017.6638 – volume: 97 year: 2020 ident: e_1_2_7_36_1 article-title: Myopia progression in children wearing dual‐focus contact lenses: 6‐year findings publication-title: Optom Vis Sci – ident: e_1_2_7_48_1 doi: 10.1167/iovs.11-7684 – volume: 97 year: 2020 ident: e_1_2_7_51_1 article-title: A new method for determining an age‐independent axial length percentage reduction for myopia therapies publication-title: Optom Vis Sci – ident: e_1_2_7_6_1 doi: 10.1111/aos.13603 – volume: 43 start-page: 1408 year: 2002 ident: e_1_2_7_47_1 article-title: Height and its relationship to refraction and biometry parameters in Singapore Chinese children publication-title: Invest Ophthalmol Vis Sci – ident: e_1_2_7_59_1 doi: 10.1167/iovs.10-6100 – volume: 95 year: 2018 ident: e_1_2_7_14_1 article-title: Influence of age and race on axial elongation in myopic children publication-title: Optom Vis Sci – volume: 36 start-page: 1581 year: 1995 ident: e_1_2_7_18_1 article-title: Longitudinal evidence of crystalline lens thinning in children publication-title: Invest Ophthalmol Vis Sci – ident: e_1_2_7_55_1 doi: 10.1038/nm0895-761 – ident: e_1_2_7_29_1 doi: 10.1111/opo.12686 – ident: e_1_2_7_41_1 doi: 10.1167/iovs.08-2067 – volume: 39 start-page: 120 year: 1998 ident: e_1_2_7_16_1 article-title: Optical and structural development of the crystalline lens in childhood publication-title: Invest Ophthalmol Vis Sci – ident: e_1_2_7_20_1 doi: 10.1097/OPX.0000000000001367 – ident: e_1_2_7_15_1 doi: 10.1167/iovs.13-12403 – ident: e_1_2_7_40_1 doi: 10.1167/iovs.04-0565 – ident: e_1_2_7_42_1 doi: 10.1001/jama.2020.10834 – ident: e_1_2_7_50_1 doi: 10.1111/opo.12459 – ident: e_1_2_7_52_1 doi: 10.1016/j.ophtha.2006.05.062 – ident: e_1_2_7_43_1 doi: 10.1097/ICL.0000000000000505 – ident: e_1_2_7_53_1 doi: 10.1016/j.jaapos.2015.04.006 – ident: e_1_2_7_21_1 doi: 10.1167/iovs.61.4.49 – ident: e_1_2_7_34_1 doi: 10.1001/jamaophthalmol.2013.7623 – ident: e_1_2_7_44_1 doi: 10.1167/iovs.19-27289 – ident: e_1_2_7_31_1 doi: 10.1016/j.ophtha.2011.07.031 – ident: e_1_2_7_33_1 doi: 10.1001/archopht.122.12.1760 – ident: e_1_2_7_60_1 doi: 10.1097/OPX.0b013e3182640996 – ident: e_1_2_7_23_1 doi: 10.1016/S0161-6420(03)00564-5 – ident: e_1_2_7_26_1 doi: 10.1001/jamaophthalmol.2016.4009 – ident: e_1_2_7_8_1 doi: 10.1167/iovs.04-0945 – ident: e_1_2_7_17_1 doi: 10.1097/OPX.0b013e3182418213 – ident: e_1_2_7_9_1 doi: 10.1167/iovs.06-0562 – ident: e_1_2_7_22_1 doi: 10.1016/S0161-6420(01)01024-7 – ident: e_1_2_7_3_1 doi: 10.1097/00006324-199409000-00005 – ident: e_1_2_7_10_1 doi: 10.1167/iovs.04-1040 – ident: e_1_2_7_38_1 doi: 10.1167/iovs.09-3431 – ident: e_1_2_7_12_1 doi: 10.1167/iovs.18-26247 – ident: e_1_2_7_25_1 doi: 10.1093/oxfordjournals.aje.a116735 – ident: e_1_2_7_27_1 doi: 10.1016/j.preteyeres.2020.100923 – ident: e_1_2_7_39_1 doi: 10.1097/00006324-199309000-00012 – ident: e_1_2_7_7_1 doi: 10.1097/OPX.0000000000001296 – ident: e_1_2_7_46_1 doi: 10.1007/BF00161240 – reference: 34402539 - Ophthalmic Physiol Opt. 2021 Nov;41(6):1382-1383 – reference: 34402540 - Ophthalmic Physiol Opt. 2021 Nov;41(6):1384 |
SSID | ssj0007778 |
Score | 2.5444453 |
Snippet | Purpose
Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing... Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes,... PurposeBoth emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 523 |
SubjectTerms | Adolescent Age composition axial length Axial Length, Eye - diagnostic imaging Axial Length, Eye - physiopathology Child Children Clinical trials Contact lenses Disease Management Elongation Female Follow-Up Studies Humans Male Myopia Myopia - diagnosis Myopia - physiopathology myopia control Physiology Risk factors Time Factors |
Title | Axial length targets for myopia control |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fopo.12812 https://www.ncbi.nlm.nih.gov/pubmed/33951213 https://www.proquest.com/docview/2522529831 https://www.proquest.com/docview/2522615592 https://pubmed.ncbi.nlm.nih.gov/PMC8252804 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB48UHzxPtZjqSLoS5dtkl74tKsuInggCj4IJUlTFLVd3F1Qf72T9HDXA8S3QqZHjsl80_kyA7AbUk64UK7teiJEB6XJ7TDxmjaaB0ZiSf3QHBQ-O_dObtjprXs7BgflWZg8P0T1w01rhtmvtYJz0RtS8qybNXQYSO-_mqulAdHVZ-oo3893YeK7OvgfFFmFNIununPUFn0DmN95ksP41RigzhzclZ-e804eG4O-aMj3L1kd_9m3eZgtgKnVylfSAoypdBGmz4rQ-yJMGa6o7C3BXusVF62lS7D0762cSt6zEPxaz29Z94FbBf19GW46x9eHJ3ZRb8GWjFFiK19QnshY-1hxyFkQcrRxXFeCUAyRhgo8RwlPeIkTc4V-iz4EwpgkkpKYKUVXYCLNUrUGlusEnDnCQ7whGG8ywYMkSQKO0--oIJY12C9HPpJFMnJdE-MpKp0SHILIDEENdirRbp6B4yehzXL6okIJexFBbOmSMKBODbarZlQfHRPhqcoGuYwJzeIjVvPZrt5CKcJP4tAa-CProBLQqblHW9KHe5OiG_1uHB6G3TTT_PuHRxeXF-Zi_e-iGzBDNLPG0C43YaL_MlBbCI36og7jhF3WYbLVPmp36kYjPgBO7Qtu |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5E8XjxPtaziqAvXbZJeoEvIsp6rIoo-CIlSVNW1HZxd0H99U7SQ9cDxLdCpm0ymUm-yUxmALZDygkXyrVdT4RooDS4HSZew8btgZFYUj80F4Vb517zhp3curdDsFfehcnzQ1QHblozzHqtFVwfSH_S8qyT1bUfCBfgEV3R2xhUVx_Jo3w_X4eJ72r3f1DkFdJxPNWrg7vRN4j5PVLyM4I1W9DRFNyVnc8jTx7q_Z6oy7cveR3_O7ppmCywqbWfC9MMDKl0FsZahfd9FkZNuKjszsHO_gvKraWrsPTaVh5N3rUQ_1pPr1nnnltFBPw83BwdXh807aLkgi0Zo8RWvqA8kbE2s-KQsyDkuM1xXQxCMQQbKvAcJTzhJU7MFZou-h4IY5JISmKmFF2A4TRL1RJYrhNw5ggPIYdgvMEED5IkCThKgKOCWNZgt2R9JIt85LosxmNU2iXIgsiwoAZbFWknT8LxE9FqOX9RoYfdiCC8dEkYUKcGm1UzapB2i_BUZf2cxnhn8ROL-XRXf6EUEShxaA38AUGoCHR27sGW9L5tsnSj6Y3sYThMM8-_dzy6uLwwD8t_J92A8eZ16yw6Oz4_XYEJogNtTBTmKgz3nvtqDZFST6wbhXgHQngNQA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rS-QwEB9EUe6L77tbn71DOL902SZpm-InURf1blVEwQ8HJUlTdlHbxd0F9a93kj7c1RMOvxUyfWQemd90JhOAnYgKIqT2XT-QEQYoLeFGadBy0T0wkigaRnajcOcsOL5mpzf-zRTsVXthiv4Q9Q83Yxl2vTYG3k_SMSPP-3nTpIFw_Z1hQYsblT68fO0dFYbFMkxC32T_edlWyJTx1LdOOqN3CPN9oeQ4gLUeqL0Af6tvLwpPbpujoWyq5zdtHT85uUWYL5Gps1-o0hJM6WwZ5jpl7n0ZZm2xqBqswK_9R9Rax5zBMuw6RS35wEH069w_5f2ecMr691W4bh9dHRy75YELrmKMEleHkopUJSbISiLBeCTQyQlzFIRmCDU0DzwtAxmkXiI0Bi5mFwhjiihKEqY1_QrTWZ7p7-D4HhfMkwECDslEi0nB0zTlAuXvaZ6oBuxWnI9V2Y3cHIpxF1dRCbIgtixowM-atF-04PgX0UYlvri0wkFMEFz6JOLUa8CPehjtxyRFRKbzUUFjc7P4iG-FtOu3UIr4k3i0AeGEHtQEpjf35EjW69oe3Rh4I3sYTtOK-eMPj88vzu3F2v-TbsPcxWE7_nNy9nsdvhBTZWNLMDdgevgw0psIk4Zyy5rDCzGcC_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Axial+length+targets+for+myopia+control&rft.jtitle=Ophthalmic+%26+physiological+optics&rft.au=Chamberlain%2C+Paul&rft.au=Lazon+de+la+Jara%2C+Percy&rft.au=Arumugam%2C+Baskar&rft.au=Bullimore%2C+Mark+A&rft.date=2021-05-01&rft.issn=0275-5408&rft.eissn=1475-1313&rft.volume=41&rft.issue=3&rft.spage=523&rft.epage=531&rft_id=info:doi/10.1111%2Fopo.12812&rft.externalDBID=10.1111%252Fopo.12812&rft.externalDocID=OPO12812 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0275-5408&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0275-5408&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0275-5408&client=summon |