Stable between‐subject statistical inference from unstable within‐subject functional connectivity estimates

Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are often noisy and many of the algorithms used are probabilistic, which in combination have been argued to limit studies exploring the neural bas...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 40; no. 4; pp. 1234 - 1243
Main Authors Vidaurre, Diego, Woolrich, Mark W., Winkler, Anderson M., Karapanagiotidis, Theodoros, Smallwood, Jonathan, Nichols, Thomas E.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are often noisy and many of the algorithms used are probabilistic, which in combination have been argued to limit studies exploring the neural basis of specific aspects of cognition. Focusing on static and dynamic functional connectivity estimations, we propose to leverage this variability to improve statistical efficiency in relating these estimations to behavior. To achieve this goal, we use a procedure based on permutation testing that provides a way of combining the results from many individual tests that refer to the same hypothesis. This is needed when testing a measure whose value is obtained from a noisy process, which can be repeated multiple times, referred to as replications. Focusing on functional connectivity, this noisy process can be: (a) computational, for example, when using an approximate inference algorithm for which different runs can produce different results or (b) observational, if we have the capacity to acquire data multiple times, and the different acquired data sets can be considered noisy examples of some underlying truth. In both cases, we are not interested in the individual replications but on the unobserved process generating each replication. In this note, we show how results can be combined instead of choosing just one of the estimated models. Using both simulations and real data, we show the benefits of this approach in practice.
AbstractList Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are often noisy and many of the algorithms used are probabilistic, which in combination have been argued to limit studies exploring the neural basis of specific aspects of cognition. Focusing on static and dynamic functional connectivity estimations, we propose to leverage this variability to improve statistical efficiency in relating these estimations to behavior. To achieve this goal, we use a procedure based on permutation testing that provides a way of combining the results from many individual tests that refer to the same hypothesis. This is needed when testing a measure whose value is obtained from a noisy process, which can be repeated multiple times, referred to as replications. Focusing on functional connectivity, this noisy process can be: (a) computational, for example, when using an approximate inference algorithm for which different runs can produce different results or (b) observational, if we have the capacity to acquire data multiple times, and the different acquired data sets can be considered noisy examples of some underlying truth. In both cases, we are not interested in the individual replications but on the unobserved process generating each replication. In this note, we show how results can be combined instead of choosing just one of the estimated models. Using both simulations and real data, we show the benefits of this approach in practice.
Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are often noisy and many of the algorithms used are probabilistic, which in combination have been argued to limit studies exploring the neural basis of specific aspects of cognition. Focusing on static and dynamic functional connectivity estimations, we propose to leverage this variability to improve statistical efficiency in relating these estimations to behavior. To achieve this goal, we use a procedure based on permutation testing that provides a way of combining the results from many individual tests that refer to the same hypothesis. This is needed when testing a measure whose value is obtained from a noisy process, which can be repeated multiple times, referred to as replications. Focusing on functional connectivity, this noisy process can be: (a) computational, for example, when using an approximate inference algorithm for which different runs can produce different results or (b) observational, if we have the capacity to acquire data multiple times, and the different acquired data sets can be considered noisy examples of some underlying truth. In both cases, we are not interested in the individual replications but on the unobserved process generating each replication. In this note, we show how results can be combined instead of choosing just one of the estimated models. Using both simulations and real data, we show the benefits of this approach in practice.Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are often noisy and many of the algorithms used are probabilistic, which in combination have been argued to limit studies exploring the neural basis of specific aspects of cognition. Focusing on static and dynamic functional connectivity estimations, we propose to leverage this variability to improve statistical efficiency in relating these estimations to behavior. To achieve this goal, we use a procedure based on permutation testing that provides a way of combining the results from many individual tests that refer to the same hypothesis. This is needed when testing a measure whose value is obtained from a noisy process, which can be repeated multiple times, referred to as replications. Focusing on functional connectivity, this noisy process can be: (a) computational, for example, when using an approximate inference algorithm for which different runs can produce different results or (b) observational, if we have the capacity to acquire data multiple times, and the different acquired data sets can be considered noisy examples of some underlying truth. In both cases, we are not interested in the individual replications but on the unobserved process generating each replication. In this note, we show how results can be combined instead of choosing just one of the estimated models. Using both simulations and real data, we show the benefits of this approach in practice.
Author Smallwood, Jonathan
Winkler, Anderson M.
Woolrich, Mark W.
Vidaurre, Diego
Karapanagiotidis, Theodoros
Nichols, Thomas E.
AuthorAffiliation 4 Department of Psychology University of York York UK
3 Department of Psychiatry Yale University School of Medicine New Haven Connecticut
1 Wellcome Trust Centre for Integrative Neuroimaging Oxford Centre for Human Brain Activity, University of Oxford Oxford UK
5 Big Data Institute University of Oxford Oxford UK
2 Emotion and Development Branch National Institute of Mental Health, National Institutes of Health Bethesda Maryland
AuthorAffiliation_xml – name: 5 Big Data Institute University of Oxford Oxford UK
– name: 1 Wellcome Trust Centre for Integrative Neuroimaging Oxford Centre for Human Brain Activity, University of Oxford Oxford UK
– name: 3 Department of Psychiatry Yale University School of Medicine New Haven Connecticut
– name: 4 Department of Psychology University of York York UK
– name: 2 Emotion and Development Branch National Institute of Mental Health, National Institutes of Health Bethesda Maryland
Author_xml – sequence: 1
  givenname: Diego
  orcidid: 0000-0002-9650-2229
  surname: Vidaurre
  fullname: Vidaurre, Diego
  email: diego.vidaurre@ohba.ox.ac.uk
  organization: Oxford Centre for Human Brain Activity, University of Oxford
– sequence: 2
  givenname: Mark W.
  surname: Woolrich
  fullname: Woolrich, Mark W.
  organization: Oxford Centre for Human Brain Activity, University of Oxford
– sequence: 3
  givenname: Anderson M.
  orcidid: 0000-0002-4169-9781
  surname: Winkler
  fullname: Winkler, Anderson M.
  organization: Yale University School of Medicine
– sequence: 4
  givenname: Theodoros
  surname: Karapanagiotidis
  fullname: Karapanagiotidis, Theodoros
  organization: University of York
– sequence: 5
  givenname: Jonathan
  surname: Smallwood
  fullname: Smallwood, Jonathan
  organization: University of York
– sequence: 6
  givenname: Thomas E.
  surname: Nichols
  fullname: Nichols, Thomas E.
  organization: University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30357995$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS1URH9gwQugSGxgkdbXjuN6g1QqoJVasQDWluPeMB4ldrGdjmbHI_CMPAlOZ4raClaOnO87OvLZJzs-eCTkJdBDoJQdLbrxkDVNw56QPaBK1hQU35m_W1GrRsIu2U9pSSmAoPCM7HLKhVRK7JHwJZtuwKrDvEL0v3_-SlO3RJurlE12KTtrhsr5HiN6i1Ufw1hNPm2slcsLd1_qJ2-zC744NnhfrtyNy-sKS9BoMqbn5GlvhoQvtucB-fbxw9fTs_ri86fz05OL2jYNZ7VBZtH0Qlz1HJlsumPWGVAWWm6lBSmOFW0s5S2lVKleclMICRY6KsAA5wfk3Sb3eupGvLLoczSDvo6lRlzrYJx--Me7hf4ebnTbKMaULAFvtgEx_JhKfz26ZHEYjMcwJc2ACaYUk6Kgrx-hyzDF8gYzJVumoGW0UK_uN_pb5W6LAhxtABtDShF7bd28QZgLukED1fPauqytb9cuxttHxl3ov9ht-soNuP4_qM_eX26MP6kxvXY
CitedBy_id crossref_primary_10_1016_j_neuroimage_2020_117713
crossref_primary_10_1371_journal_pcbi_1008580
crossref_primary_10_1162_imag_a_00267
crossref_primary_10_1016_j_pneurobio_2024_102570
crossref_primary_10_1093_brain_awab264
crossref_primary_10_1093_cercor_bhab189
crossref_primary_10_1162_netn_a_00331
crossref_primary_10_1002_hbm_25846
crossref_primary_10_7554_eLife_79581
Cites_doi 10.1016/j.neuroimage.2009.12.011
10.1038/s41467-018-05316-z
10.1109/5.18626
10.1016/j.neuroimage.2017.06.077
10.1098/rstb.2005.1634
10.1371/journal.pone.0097176
10.1073/pnas.0905267106
10.1016/j.neuroimage.2015.05.092
10.1002/9780470689516
10.1073/pnas.1705120114
10.1016/S0893-6080(00)00026-5
10.1016/j.neuroimage.2013.05.039
10.1038/nn.4125
10.1016/j.neuroimage.2015.11.047
10.1111/j.2517-6161.1995.tb02031.x
10.1002/hbm.1058
10.1002/hbm.23115
10.1016/j.neuroimage.2017.06.067
10.1016/j.neuroimage.2011.10.018
10.1191/0962280203sm341ra
10.1080/00223980.1972.9924813
10.1016/j.neuroimage.2004.03.027
ContentType Journal Article
Copyright 2018 The Authors. published by Wiley Periodicals, Inc.
2018 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2018 The Authors. published by Wiley Periodicals, Inc.
– notice: 2018 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
– notice: 2019 Wiley Periodicals, Inc.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.24442
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Statistics
DocumentTitleAlternate Vidaurre et al
EISSN 1097-0193
EndPage 1243
ExternalDocumentID PMC6492297
30357995
10_1002_hbm_24442
HBM24442
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  funderid: 098369/Z/12/Z106183/Z/14/Z203139/Z/16/Z
– fundername: Wellcome Trust
  funderid: 106183/Z/14/Z; 100309/Z/12/Z; 203139/Z/16/Z
– fundername: MRC UK MEG Partnership Grant
  funderid: MR/K005464/1
– fundername: H2020 European Research Council
  funderid: WANDERINGMINDS ‐ 646927
– fundername: Medical Research Council
  funderid: MR/K005464/1
– fundername: MRC UK MEG Partnership Grant
  grantid: MR/K005464/1
– fundername: Wellcome Trust
– fundername: Wellcome Trust
  grantid: 203139/Z/16/Z
– fundername: Medical Research Council
  grantid: MR/K005464/1
– fundername: Wellcome Trust
  grantid: 098369/Z/12/Z106183/Z/14/Z203139/Z/16/Z
– fundername: Wellcome Trust
  grantid: 106183/Z/14/Z
– fundername: H2020 European Research Council
  grantid: WANDERINGMINDS - 646927
– fundername: Wellcome Trust
  grantid: 100309/Z/12/Z
– fundername: ;
  grantid: WANDERINGMINDS ‐ 646927
– fundername: ;
  grantid: 098369/Z/12/Z106183/Z/14/Z203139/Z/16/Z
– fundername: ;
  grantid: MR/K005464/1
– fundername: ;
  grantid: 106183/Z/14/Z; 100309/Z/12/Z; 203139/Z/16/Z
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4432-ae2ceaf55df3e274b82ba19c163c7c1758904c03600099f73ab8271c1b051a133
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 14:35:37 EDT 2025
Thu Jul 10 22:12:32 EDT 2025
Sat Jul 26 02:24:05 EDT 2025
Thu Apr 03 06:58:50 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Tue Jul 01 01:10:52 EDT 2025
Wed Jan 22 16:30:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords multiple replications
dynamic functional connectivity
functional connectivity
hidden Markov model
hypothesis testing
permutation testing
statistical testing
test combination
Language English
License Attribution
2018 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4432-ae2ceaf55df3e274b82ba19c163c7c1758904c03600099f73ab8271c1b051a133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information H2020 European Research Council, Grant/Award Number: WANDERINGMINDS ‐ 646927; Medical Research Council, Grant/Award Number: MR/K005464/1; Wellcome Trust, Grant/Award Number: 098369/Z/12/Z106183/Z/14/Z203139/Z/16/Z; Wellcome Trust, Grant/Award Numbers: 106183/Z/14/Z, 100309/Z/12/Z, 203139/Z/16/Z; MRC UK MEG Partnership Grant, Grant/Award Number: MR/K005464/1
ORCID 0000-0002-9650-2229
0000-0002-4169-9781
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24442
PMID 30357995
PQID 2176291620
PQPubID 996345
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6492297
proquest_miscellaneous_2125299275
proquest_journals_2176291620
pubmed_primary_30357995
crossref_citationtrail_10_1002_hbm_24442
crossref_primary_10_1002_hbm_24442
wiley_primary_10_1002_hbm_24442_HBM24442
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2019
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017a; 114
2017b; 180
2004; 22
2018; 9
2002; 15
1989; 77
2005; 360
2015; 18
2010
2000; 13
1995; 57
2015; 123
1932
2013; 80
1972; 80
2016; 126
2012; 59
2014; 9
2017; 158
2016; 37
2010; 50
2003; 12
2009; 106
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_24_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_10_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_22_1
e_1_2_8_12_1
e_1_2_8_23_1
Fisher F. A. (e_1_2_8_6_1) 1932
References_xml – volume: 50
  start-page: 81
  year: 2010
  end-page: 98
  article-title: Time–frequency dynamics of resting‐state brain connectivity measured with fMRI
  publication-title: NeuroImage
– volume: 158
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Varieties of semantic cognition revealed through simultaneous decomposition of intrinsic brain connectivity and behaviour
  publication-title: NeuroImage
– volume: 37
  start-page: 1486
  year: 2016
  end-page: 1511
  article-title: Non‐parametric combination and related permutation tests for neuroimaging
  publication-title: Human Brain Mapping
– year: 1932
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 15
  start-page: 1
  year: 2002
  end-page: 25
  article-title: Nonparametric permutation tests for functional neuroimaging: A primer with examples
  publication-title: Human Brain Mapping
– volume: 114
  start-page: 12827
  year: 2017a
  end-page: 12832
  article-title: Brain networks are hierarchically organised in time
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 22
  start-page: 1241
  year: 2004
  end-page: 1222
  article-title: Validating the independent components of neuroimaging time series via clustering and visualization
  publication-title: NeuroImage
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  article-title: Investigations into resting‐state connectivity using independent component analysis
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 126
  start-page: 81
  year: 2016
  end-page: 95
  article-title: Spectrally resolved fast transient brain states in electrophysiological data
  publication-title: NeuroImage
– volume: 9
  start-page: 2987
  year: 2018
  article-title: Spontaneous cortical activity transiently organises into frequency specific phase‐coupling networks
  publication-title: Nature Communications
– volume: 123
  start-page: 253
  year: 2015
  end-page: 268
  article-title: Multi‐level block permutation
  publication-title: NeuroImage
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  article-title: Independent component analysis: Algorithms and applications
  publication-title: Neural Networks
– volume: 12
  start-page: 419
  year: 2003
  end-page: 446
  article-title: Controlling the familywise error rate in functional neuroimaging: A comparative review
  publication-title: Statistical Methods in Medical Research
– volume: 18
  start-page: 1565
  year: 2015
  end-page: 1567
  article-title: A positive‐negative mode of population covariation links brain connectivity, demographics and behaviour
  publication-title: Nature Neuroscience
– volume: 80
  start-page: 144
  year: 2013
  end-page: 168
  article-title: Resting‐state fMRI in the Human Connectome Project
  publication-title: NeuroImage
– volume: 180
  start-page: 646
  year: 2017b
  end-page: 656
  article-title: Discovering dynamic brain networks from big data in rest and task
  publication-title: NeuroImage
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: A practical and powerful approach for multiple testing
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 9
  start-page: e97176
  year: 2014
  article-title: A correspondence between individual differences in the Brain's intrinsic functional architecture and the content and form of self‐generated thoughts
  publication-title: PLoS One
– year: 2010
– volume: 80
  start-page: 351
  year: 1972
  end-page: 363
  article-title: An additive method for combining probability values from independent experiments
  publication-title: The Journal of Psychology
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proceedings of the IEEE
– ident: e_1_2_8_4_1
  doi: 10.1016/j.neuroimage.2009.12.011
– ident: e_1_2_8_22_1
  doi: 10.1038/s41467-018-05316-z
– ident: e_1_2_8_14_1
  doi: 10.1109/5.18626
– ident: e_1_2_8_21_1
  doi: 10.1016/j.neuroimage.2017.06.077
– ident: e_1_2_8_2_1
  doi: 10.1098/rstb.2005.1634
– ident: e_1_2_8_7_1
  doi: 10.1371/journal.pone.0097176
– ident: e_1_2_8_16_1
  doi: 10.1073/pnas.0905267106
– ident: e_1_2_8_23_1
  doi: 10.1016/j.neuroimage.2015.05.092
– ident: e_1_2_8_12_1
  doi: 10.1002/9780470689516
– ident: e_1_2_8_20_1
  doi: 10.1073/pnas.1705120114
– ident: e_1_2_8_8_1
  doi: 10.1016/S0893-6080(00)00026-5
– volume-title: Statistical methods for research workers
  year: 1932
  ident: e_1_2_8_6_1
– ident: e_1_2_8_15_1
  doi: 10.1016/j.neuroimage.2013.05.039
– ident: e_1_2_8_17_1
  doi: 10.1038/nn.4125
– ident: e_1_2_8_19_1
  doi: 10.1016/j.neuroimage.2015.11.047
– ident: e_1_2_8_3_1
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_8_11_1
  doi: 10.1002/hbm.1058
– ident: e_1_2_8_24_1
  doi: 10.1002/hbm.23115
– ident: e_1_2_8_18_1
  doi: 10.1016/j.neuroimage.2017.06.067
– ident: e_1_2_8_13_1
  doi: 10.1016/j.neuroimage.2011.10.018
– ident: e_1_2_8_10_1
  doi: 10.1191/0962280203sm341ra
– ident: e_1_2_8_5_1
  doi: 10.1080/00223980.1972.9924813
– ident: e_1_2_8_9_1
  doi: 10.1016/j.neuroimage.2004.03.027
SSID ssj0011501
Score 2.356305
Snippet Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1234
SubjectTerms Algorithms
Brain - physiology
Cognition
Cognition - physiology
Computer applications
Computer Simulation
Connectome - methods
Data acquisition
dynamic functional connectivity
functional connectivity
hidden Markov model
Humans
hypothesis testing
Image Processing, Computer-Assisted - methods
multiple replications
Neural Pathways - physiology
permutation testing
Permutations
Statistical analysis
Statistical inference
statistical testing
Statistics
test combination
Title Stable between‐subject statistical inference from unstable within‐subject functional connectivity estimates
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24442
https://www.ncbi.nlm.nih.gov/pubmed/30357995
https://www.proquest.com/docview/2176291620
https://www.proquest.com/docview/2125299275
https://pubmed.ncbi.nlm.nih.gov/PMC6492297
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5RDqiXlkJ_lgJyUVX1ksVxnE0iThSBVkhboapIHCpFtuOIVdlsxW4OcOoj8Ix9ks7YSWCBSqi3SBknsTPj-WY8_gzwEb2IjossCRLDy0AqywOVWh0oG8lSaRkpQyu6o6-D4ak8PovPlmCv3Qvj-SG6hBtZhpuvycCVnu3ekoae60kffZOk-ZdqtQgQfeuoowjouGALXWyQ4Qzcsgpxsdu1XPRFDwDmwzrJu_jVOaCjl_Cj_XRfd_KzX89131zfY3X8z76twosGmLJ9r0mvYMlWa7C-X2FQPrlin5grFXU5-DVYGTUr8uswRbSqLyxr6r3-_L6Z1ZpyO4y2KjkWaHzquN1WyGg7C6sJk1IrygKP7zYiN-uzk8xQCY7xh1sw4gKZECx-DadHh98PhkFziENgpIwE_nRhrCrjuCgjiyGwToVWYWYQB5rEIHhJMy4N-lEHVsskUiiRhCbUOF0ojKDfwHI1rew7YDy1ZRiWXPMUg0pbpLrQoS3ogsdW8B58bn9nbhqGczpo4yL33Mwix3HN3bj2YKcT_eVpPR4T2mx1Im8se5ZjCDcQiKnpdR-622iTtNCiKjutSUbE6OZFEvfgrVeh7i0IGWIi4etBsqBcnQDxfS_eqcbnjvd7IDMhsgS76XTn3x-eD7-M3MXG00Xfw3PEgpkvr9uE5fllbbcQb831NjwT8mTbmddfVRotPg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRQIu_LT8LBQwCBCXbB3H2SQHDoVSbWm3B9RKvaW246grulnEboTKiUfgQXgVXoInYcZOQpeCxKUHbpEySRx7PPPNePwZ4Cl6ER0XWRIkhpeBVJYHKrU6UDaSpdIyUoZWdEd7g-GBfHsYHy7Bt3YvjOeH6BJuNDOcvaYJTgnp9V-socd60kfnJEVTUrljTz9hwDZ7ub2Jo_tMiK03-6-HQXOmQGCkjAS2QRiryjguyshiRKZToVWYGYQlJjHoS9OMS4Nm3WGnMokUSiShCTVqrwop_YkG_xKdIE5M_ZvvOrIqglYuvEOnHmRo81seIy7Wu6Yuer9zkPZ8ZeZZxOxc3tZ1-N52lq90ed-v57pvPv_GI_m_9OYNuNZgb7bhJ8tNWLLVCqxuVGo-nZyy58xVw7plhhW4PGqKDlZhioBcn1jWlLT9-PJ1VmtKXzHajeWIrvGt43bnJKMdO6wm2E1PUaJ7fPYhQhI-AcsMVRkZf34HI7qTCSH_W3BwIb1wG5araWXvAuOpLcOw5JqnGDfbItWFDm1BFzy2gvfgRas_uWlI3OkskZPc00-LHMcxd-PYgyed6AfPXPInobVWCfPGeM1yjFIHAsMG-tzj7jaaHVpLUpWd1iQjYkQyIol7cMfrbPcVREUx8Qz2IFnQ5k6AKM0X71TjY0dtPpCZEFmCv-mU9e8Nz4evRu7i3r-LPoIrw_3Rbr67vbdzH64i9M18NeEaLM8_1vYBwsu5fuhmNYOji1b8n5btiCc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB4hkFAvVYGWpqSwVG3FxWW9Xsf2gQM_jUJpEIcicXN312sRiTgRIULceIS-B2_FkzCz_ikRReqFmyWP43VmZ-ebn_0W4DN6ER1mSeRFhueeVJZ7KrbaUzaQudIyUIYquv3jTu9U_jgLz-bgrt4LU_JDNAk3sgy3XpOBj7N8-y9p6LkefkPfJEXVUXlkb64xXpvsHB6gcr8I0f3-a7_nVUcKeEbKQOAQhLEqD8MsDywGZDoWWvmJQVRiIoOuNE64NLiqO-iUR4FCicg3vsbJq3zKfuJ6v0DFReofE_KkKVkgsnLRHfp0L8Elv6Yx4mK7Geqs83uCaJ82Zj4GzM7jdd_A6wqqst1ybi3BnC2WYWW3wDB9eMO-Mtc86rLyy7DYr2r0KzBC_KovLKs6wO5v_0ymmrI9jDYvOV5o_NVBvdGQ0QYXNiWUSk9RXnjw-CFyvGW-khlqyjHlcReM2EGGBJTfwumL6OAdzBejwr4HxmOb-37ONY8xzLRZrDPt24wueGgFb8FW_X-npuI8p6M3LtKSrVmkqJrUqaYFnxrRcUn08S-hdq20tLL1SYpBXUcgyqbXbTa30Uqp9KIKO5qSjAjR8YsobMFqqePmLQgiQqLla0E0o_1GgBjAZ-8Ug3PHBN6RiRBJhJ_p5snzA097e3138eH_RTdg8eSgm_48PD5ag1cIFJOy964N81eXU_sRwdiVXndGwOD3S1vdA0ewR2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+between%E2%80%90subject+statistical+inference+from+unstable+within%E2%80%90subject+functional+connectivity+estimates&rft.jtitle=Human+brain+mapping&rft.au=Vidaurre%2C+Diego&rft.au=Woolrich%2C+Mark+W&rft.au=Winkler%2C+Anderson+M&rft.au=Karapanagiotidis%2C+Theodoros&rft.date=2019-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=40&rft.issue=4&rft.spage=1234&rft.epage=1243&rft_id=info:doi/10.1002%2Fhbm.24442&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon