Stable between‐subject statistical inference from unstable within‐subject functional connectivity estimates
Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are often noisy and many of the algorithms used are probabilistic, which in combination have been argued to limit studies exploring the neural bas...
Saved in:
Published in | Human brain mapping Vol. 40; no. 4; pp. 1234 - 1243 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are often noisy and many of the algorithms used are probabilistic, which in combination have been argued to limit studies exploring the neural basis of specific aspects of cognition. Focusing on static and dynamic functional connectivity estimations, we propose to leverage this variability to improve statistical efficiency in relating these estimations to behavior. To achieve this goal, we use a procedure based on permutation testing that provides a way of combining the results from many individual tests that refer to the same hypothesis. This is needed when testing a measure whose value is obtained from a noisy process, which can be repeated multiple times, referred to as replications. Focusing on functional connectivity, this noisy process can be: (a) computational, for example, when using an approximate inference algorithm for which different runs can produce different results or (b) observational, if we have the capacity to acquire data multiple times, and the different acquired data sets can be considered noisy examples of some underlying truth. In both cases, we are not interested in the individual replications but on the unobserved process generating each replication. In this note, we show how results can be combined instead of choosing just one of the estimated models. Using both simulations and real data, we show the benefits of this approach in practice. |
---|---|
AbstractList | Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are often noisy and many of the algorithms used are probabilistic, which in combination have been argued to limit studies exploring the neural basis of specific aspects of cognition. Focusing on static and dynamic functional connectivity estimations, we propose to leverage this variability to improve statistical efficiency in relating these estimations to behavior. To achieve this goal, we use a procedure based on permutation testing that provides a way of combining the results from many individual tests that refer to the same hypothesis. This is needed when testing a measure whose value is obtained from a noisy process, which can be repeated multiple times, referred to as replications. Focusing on functional connectivity, this noisy process can be: (a) computational, for example, when using an approximate inference algorithm for which different runs can produce different results or (b) observational, if we have the capacity to acquire data multiple times, and the different acquired data sets can be considered noisy examples of some underlying truth. In both cases, we are not interested in the individual replications but on the unobserved process generating each replication. In this note, we show how results can be combined instead of choosing just one of the estimated models. Using both simulations and real data, we show the benefits of this approach in practice. Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are often noisy and many of the algorithms used are probabilistic, which in combination have been argued to limit studies exploring the neural basis of specific aspects of cognition. Focusing on static and dynamic functional connectivity estimations, we propose to leverage this variability to improve statistical efficiency in relating these estimations to behavior. To achieve this goal, we use a procedure based on permutation testing that provides a way of combining the results from many individual tests that refer to the same hypothesis. This is needed when testing a measure whose value is obtained from a noisy process, which can be repeated multiple times, referred to as replications. Focusing on functional connectivity, this noisy process can be: (a) computational, for example, when using an approximate inference algorithm for which different runs can produce different results or (b) observational, if we have the capacity to acquire data multiple times, and the different acquired data sets can be considered noisy examples of some underlying truth. In both cases, we are not interested in the individual replications but on the unobserved process generating each replication. In this note, we show how results can be combined instead of choosing just one of the estimated models. Using both simulations and real data, we show the benefits of this approach in practice.Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are often noisy and many of the algorithms used are probabilistic, which in combination have been argued to limit studies exploring the neural basis of specific aspects of cognition. Focusing on static and dynamic functional connectivity estimations, we propose to leverage this variability to improve statistical efficiency in relating these estimations to behavior. To achieve this goal, we use a procedure based on permutation testing that provides a way of combining the results from many individual tests that refer to the same hypothesis. This is needed when testing a measure whose value is obtained from a noisy process, which can be repeated multiple times, referred to as replications. Focusing on functional connectivity, this noisy process can be: (a) computational, for example, when using an approximate inference algorithm for which different runs can produce different results or (b) observational, if we have the capacity to acquire data multiple times, and the different acquired data sets can be considered noisy examples of some underlying truth. In both cases, we are not interested in the individual replications but on the unobserved process generating each replication. In this note, we show how results can be combined instead of choosing just one of the estimated models. Using both simulations and real data, we show the benefits of this approach in practice. |
Author | Smallwood, Jonathan Winkler, Anderson M. Woolrich, Mark W. Vidaurre, Diego Karapanagiotidis, Theodoros Nichols, Thomas E. |
AuthorAffiliation | 4 Department of Psychology University of York York UK 3 Department of Psychiatry Yale University School of Medicine New Haven Connecticut 1 Wellcome Trust Centre for Integrative Neuroimaging Oxford Centre for Human Brain Activity, University of Oxford Oxford UK 5 Big Data Institute University of Oxford Oxford UK 2 Emotion and Development Branch National Institute of Mental Health, National Institutes of Health Bethesda Maryland |
AuthorAffiliation_xml | – name: 5 Big Data Institute University of Oxford Oxford UK – name: 1 Wellcome Trust Centre for Integrative Neuroimaging Oxford Centre for Human Brain Activity, University of Oxford Oxford UK – name: 3 Department of Psychiatry Yale University School of Medicine New Haven Connecticut – name: 4 Department of Psychology University of York York UK – name: 2 Emotion and Development Branch National Institute of Mental Health, National Institutes of Health Bethesda Maryland |
Author_xml | – sequence: 1 givenname: Diego orcidid: 0000-0002-9650-2229 surname: Vidaurre fullname: Vidaurre, Diego email: diego.vidaurre@ohba.ox.ac.uk organization: Oxford Centre for Human Brain Activity, University of Oxford – sequence: 2 givenname: Mark W. surname: Woolrich fullname: Woolrich, Mark W. organization: Oxford Centre for Human Brain Activity, University of Oxford – sequence: 3 givenname: Anderson M. orcidid: 0000-0002-4169-9781 surname: Winkler fullname: Winkler, Anderson M. organization: Yale University School of Medicine – sequence: 4 givenname: Theodoros surname: Karapanagiotidis fullname: Karapanagiotidis, Theodoros organization: University of York – sequence: 5 givenname: Jonathan surname: Smallwood fullname: Smallwood, Jonathan organization: University of York – sequence: 6 givenname: Thomas E. surname: Nichols fullname: Nichols, Thomas E. organization: University of Oxford |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30357995$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAUhS1URH9gwQugSGxgkdbXjuN6g1QqoJVasQDWluPeMB4ldrGdjmbHI_CMPAlOZ4raClaOnO87OvLZJzs-eCTkJdBDoJQdLbrxkDVNw56QPaBK1hQU35m_W1GrRsIu2U9pSSmAoPCM7HLKhVRK7JHwJZtuwKrDvEL0v3_-SlO3RJurlE12KTtrhsr5HiN6i1Ufw1hNPm2slcsLd1_qJ2-zC744NnhfrtyNy-sKS9BoMqbn5GlvhoQvtucB-fbxw9fTs_ri86fz05OL2jYNZ7VBZtH0Qlz1HJlsumPWGVAWWm6lBSmOFW0s5S2lVKleclMICRY6KsAA5wfk3Sb3eupGvLLoczSDvo6lRlzrYJx--Me7hf4ebnTbKMaULAFvtgEx_JhKfz26ZHEYjMcwJc2ACaYUk6Kgrx-hyzDF8gYzJVumoGW0UK_uN_pb5W6LAhxtABtDShF7bd28QZgLukED1fPauqytb9cuxttHxl3ov9ht-soNuP4_qM_eX26MP6kxvXY |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2020_117713 crossref_primary_10_1371_journal_pcbi_1008580 crossref_primary_10_1162_imag_a_00267 crossref_primary_10_1016_j_pneurobio_2024_102570 crossref_primary_10_1093_brain_awab264 crossref_primary_10_1093_cercor_bhab189 crossref_primary_10_1162_netn_a_00331 crossref_primary_10_1002_hbm_25846 crossref_primary_10_7554_eLife_79581 |
Cites_doi | 10.1016/j.neuroimage.2009.12.011 10.1038/s41467-018-05316-z 10.1109/5.18626 10.1016/j.neuroimage.2017.06.077 10.1098/rstb.2005.1634 10.1371/journal.pone.0097176 10.1073/pnas.0905267106 10.1016/j.neuroimage.2015.05.092 10.1002/9780470689516 10.1073/pnas.1705120114 10.1016/S0893-6080(00)00026-5 10.1016/j.neuroimage.2013.05.039 10.1038/nn.4125 10.1016/j.neuroimage.2015.11.047 10.1111/j.2517-6161.1995.tb02031.x 10.1002/hbm.1058 10.1002/hbm.23115 10.1016/j.neuroimage.2017.06.067 10.1016/j.neuroimage.2011.10.018 10.1191/0962280203sm341ra 10.1080/00223980.1972.9924813 10.1016/j.neuroimage.2004.03.027 |
ContentType | Journal Article |
Copyright | 2018 The Authors. published by Wiley Periodicals, Inc. 2018 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 The Authors. published by Wiley Periodicals, Inc. – notice: 2018 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.24442 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology Statistics |
DocumentTitleAlternate | Vidaurre et al |
EISSN | 1097-0193 |
EndPage | 1243 |
ExternalDocumentID | PMC6492297 30357995 10_1002_hbm_24442 HBM24442 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust funderid: 098369/Z/12/Z106183/Z/14/Z203139/Z/16/Z – fundername: Wellcome Trust funderid: 106183/Z/14/Z; 100309/Z/12/Z; 203139/Z/16/Z – fundername: MRC UK MEG Partnership Grant funderid: MR/K005464/1 – fundername: H2020 European Research Council funderid: WANDERINGMINDS ‐ 646927 – fundername: Medical Research Council funderid: MR/K005464/1 – fundername: MRC UK MEG Partnership Grant grantid: MR/K005464/1 – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 203139/Z/16/Z – fundername: Medical Research Council grantid: MR/K005464/1 – fundername: Wellcome Trust grantid: 098369/Z/12/Z106183/Z/14/Z203139/Z/16/Z – fundername: Wellcome Trust grantid: 106183/Z/14/Z – fundername: H2020 European Research Council grantid: WANDERINGMINDS - 646927 – fundername: Wellcome Trust grantid: 100309/Z/12/Z – fundername: ; grantid: WANDERINGMINDS ‐ 646927 – fundername: ; grantid: 098369/Z/12/Z106183/Z/14/Z203139/Z/16/Z – fundername: ; grantid: MR/K005464/1 – fundername: ; grantid: 106183/Z/14/Z; 100309/Z/12/Z; 203139/Z/16/Z |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4432-ae2ceaf55df3e274b82ba19c163c7c1758904c03600099f73ab8271c1b051a133 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 14:35:37 EDT 2025 Thu Jul 10 22:12:32 EDT 2025 Sat Jul 26 02:24:05 EDT 2025 Thu Apr 03 06:58:50 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Tue Jul 01 01:10:52 EDT 2025 Wed Jan 22 16:30:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | multiple replications dynamic functional connectivity functional connectivity hidden Markov model hypothesis testing permutation testing statistical testing test combination |
Language | English |
License | Attribution 2018 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4432-ae2ceaf55df3e274b82ba19c163c7c1758904c03600099f73ab8271c1b051a133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information H2020 European Research Council, Grant/Award Number: WANDERINGMINDS ‐ 646927; Medical Research Council, Grant/Award Number: MR/K005464/1; Wellcome Trust, Grant/Award Number: 098369/Z/12/Z106183/Z/14/Z203139/Z/16/Z; Wellcome Trust, Grant/Award Numbers: 106183/Z/14/Z, 100309/Z/12/Z, 203139/Z/16/Z; MRC UK MEG Partnership Grant, Grant/Award Number: MR/K005464/1 |
ORCID | 0000-0002-9650-2229 0000-0002-4169-9781 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24442 |
PMID | 30357995 |
PQID | 2176291620 |
PQPubID | 996345 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6492297 proquest_miscellaneous_2125299275 proquest_journals_2176291620 pubmed_primary_30357995 crossref_citationtrail_10_1002_hbm_24442 crossref_primary_10_1002_hbm_24442 wiley_primary_10_1002_hbm_24442_HBM24442 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2019 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017a; 114 2017b; 180 2004; 22 2018; 9 2002; 15 1989; 77 2005; 360 2015; 18 2010 2000; 13 1995; 57 2015; 123 1932 2013; 80 1972; 80 2016; 126 2012; 59 2014; 9 2017; 158 2016; 37 2010; 50 2003; 12 2009; 106 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_24_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_10_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_22_1 e_1_2_8_12_1 e_1_2_8_23_1 Fisher F. A. (e_1_2_8_6_1) 1932 |
References_xml | – volume: 50 start-page: 81 year: 2010 end-page: 98 article-title: Time–frequency dynamics of resting‐state brain connectivity measured with fMRI publication-title: NeuroImage – volume: 158 start-page: 1 year: 2017 end-page: 11 article-title: Varieties of semantic cognition revealed through simultaneous decomposition of intrinsic brain connectivity and behaviour publication-title: NeuroImage – volume: 37 start-page: 1486 year: 2016 end-page: 1511 article-title: Non‐parametric combination and related permutation tests for neuroimaging publication-title: Human Brain Mapping – year: 1932 – volume: 59 start-page: 2142 year: 2012 end-page: 2154 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage – volume: 106 start-page: 13040 year: 2009 end-page: 13045 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 15 start-page: 1 year: 2002 end-page: 25 article-title: Nonparametric permutation tests for functional neuroimaging: A primer with examples publication-title: Human Brain Mapping – volume: 114 start-page: 12827 year: 2017a end-page: 12832 article-title: Brain networks are hierarchically organised in time publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 22 start-page: 1241 year: 2004 end-page: 1222 article-title: Validating the independent components of neuroimaging time series via clustering and visualization publication-title: NeuroImage – volume: 360 start-page: 1001 year: 2005 end-page: 1013 article-title: Investigations into resting‐state connectivity using independent component analysis publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 126 start-page: 81 year: 2016 end-page: 95 article-title: Spectrally resolved fast transient brain states in electrophysiological data publication-title: NeuroImage – volume: 9 start-page: 2987 year: 2018 article-title: Spontaneous cortical activity transiently organises into frequency specific phase‐coupling networks publication-title: Nature Communications – volume: 123 start-page: 253 year: 2015 end-page: 268 article-title: Multi‐level block permutation publication-title: NeuroImage – volume: 13 start-page: 411 year: 2000 end-page: 430 article-title: Independent component analysis: Algorithms and applications publication-title: Neural Networks – volume: 12 start-page: 419 year: 2003 end-page: 446 article-title: Controlling the familywise error rate in functional neuroimaging: A comparative review publication-title: Statistical Methods in Medical Research – volume: 18 start-page: 1565 year: 2015 end-page: 1567 article-title: A positive‐negative mode of population covariation links brain connectivity, demographics and behaviour publication-title: Nature Neuroscience – volume: 80 start-page: 144 year: 2013 end-page: 168 article-title: Resting‐state fMRI in the Human Connectome Project publication-title: NeuroImage – volume: 180 start-page: 646 year: 2017b end-page: 656 article-title: Discovering dynamic brain networks from big data in rest and task publication-title: NeuroImage – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: A practical and powerful approach for multiple testing publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 9 start-page: e97176 year: 2014 article-title: A correspondence between individual differences in the Brain's intrinsic functional architecture and the content and form of self‐generated thoughts publication-title: PLoS One – year: 2010 – volume: 80 start-page: 351 year: 1972 end-page: 363 article-title: An additive method for combining probability values from independent experiments publication-title: The Journal of Psychology – volume: 77 start-page: 257 year: 1989 end-page: 286 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proceedings of the IEEE – ident: e_1_2_8_4_1 doi: 10.1016/j.neuroimage.2009.12.011 – ident: e_1_2_8_22_1 doi: 10.1038/s41467-018-05316-z – ident: e_1_2_8_14_1 doi: 10.1109/5.18626 – ident: e_1_2_8_21_1 doi: 10.1016/j.neuroimage.2017.06.077 – ident: e_1_2_8_2_1 doi: 10.1098/rstb.2005.1634 – ident: e_1_2_8_7_1 doi: 10.1371/journal.pone.0097176 – ident: e_1_2_8_16_1 doi: 10.1073/pnas.0905267106 – ident: e_1_2_8_23_1 doi: 10.1016/j.neuroimage.2015.05.092 – ident: e_1_2_8_12_1 doi: 10.1002/9780470689516 – ident: e_1_2_8_20_1 doi: 10.1073/pnas.1705120114 – ident: e_1_2_8_8_1 doi: 10.1016/S0893-6080(00)00026-5 – volume-title: Statistical methods for research workers year: 1932 ident: e_1_2_8_6_1 – ident: e_1_2_8_15_1 doi: 10.1016/j.neuroimage.2013.05.039 – ident: e_1_2_8_17_1 doi: 10.1038/nn.4125 – ident: e_1_2_8_19_1 doi: 10.1016/j.neuroimage.2015.11.047 – ident: e_1_2_8_3_1 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_8_11_1 doi: 10.1002/hbm.1058 – ident: e_1_2_8_24_1 doi: 10.1002/hbm.23115 – ident: e_1_2_8_18_1 doi: 10.1016/j.neuroimage.2017.06.067 – ident: e_1_2_8_13_1 doi: 10.1016/j.neuroimage.2011.10.018 – ident: e_1_2_8_10_1 doi: 10.1191/0962280203sm341ra – ident: e_1_2_8_5_1 doi: 10.1080/00223980.1972.9924813 – ident: e_1_2_8_9_1 doi: 10.1016/j.neuroimage.2004.03.027 |
SSID | ssj0011501 |
Score | 2.356305 |
Snippet | Spatial or temporal aspects of neural organization are known to be important indices of how cognition is organized. However, measurements and estimations are... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1234 |
SubjectTerms | Algorithms Brain - physiology Cognition Cognition - physiology Computer applications Computer Simulation Connectome - methods Data acquisition dynamic functional connectivity functional connectivity hidden Markov model Humans hypothesis testing Image Processing, Computer-Assisted - methods multiple replications Neural Pathways - physiology permutation testing Permutations Statistical analysis Statistical inference statistical testing Statistics test combination |
Title | Stable between‐subject statistical inference from unstable within‐subject functional connectivity estimates |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24442 https://www.ncbi.nlm.nih.gov/pubmed/30357995 https://www.proquest.com/docview/2176291620 https://www.proquest.com/docview/2125299275 https://pubmed.ncbi.nlm.nih.gov/PMC6492297 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB5RDqiXlkJ_lgJyUVX1ksVxnE0iThSBVkhboapIHCpFtuOIVdlsxW4OcOoj8Ix9ks7YSWCBSqi3SBknsTPj-WY8_gzwEb2IjossCRLDy0AqywOVWh0oG8lSaRkpQyu6o6-D4ak8PovPlmCv3Qvj-SG6hBtZhpuvycCVnu3ekoae60kffZOk-ZdqtQgQfeuoowjouGALXWyQ4Qzcsgpxsdu1XPRFDwDmwzrJu_jVOaCjl_Cj_XRfd_KzX89131zfY3X8z76twosGmLJ9r0mvYMlWa7C-X2FQPrlin5grFXU5-DVYGTUr8uswRbSqLyxr6r3-_L6Z1ZpyO4y2KjkWaHzquN1WyGg7C6sJk1IrygKP7zYiN-uzk8xQCY7xh1sw4gKZECx-DadHh98PhkFziENgpIwE_nRhrCrjuCgjiyGwToVWYWYQB5rEIHhJMy4N-lEHVsskUiiRhCbUOF0ojKDfwHI1rew7YDy1ZRiWXPMUg0pbpLrQoS3ogsdW8B58bn9nbhqGczpo4yL33Mwix3HN3bj2YKcT_eVpPR4T2mx1Im8se5ZjCDcQiKnpdR-622iTtNCiKjutSUbE6OZFEvfgrVeh7i0IGWIi4etBsqBcnQDxfS_eqcbnjvd7IDMhsgS76XTn3x-eD7-M3MXG00Xfw3PEgpkvr9uE5fllbbcQb831NjwT8mTbmddfVRotPg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRQIu_LT8LBQwCBCXbB3H2SQHDoVSbWm3B9RKvaW246grulnEboTKiUfgQXgVXoInYcZOQpeCxKUHbpEySRx7PPPNePwZ4Cl6ER0XWRIkhpeBVJYHKrU6UDaSpdIyUoZWdEd7g-GBfHsYHy7Bt3YvjOeH6BJuNDOcvaYJTgnp9V-socd60kfnJEVTUrljTz9hwDZ7ub2Jo_tMiK03-6-HQXOmQGCkjAS2QRiryjguyshiRKZToVWYGYQlJjHoS9OMS4Nm3WGnMokUSiShCTVqrwop_YkG_xKdIE5M_ZvvOrIqglYuvEOnHmRo81seIy7Wu6Yuer9zkPZ8ZeZZxOxc3tZ1-N52lq90ed-v57pvPv_GI_m_9OYNuNZgb7bhJ8tNWLLVCqxuVGo-nZyy58xVw7plhhW4PGqKDlZhioBcn1jWlLT9-PJ1VmtKXzHajeWIrvGt43bnJKMdO6wm2E1PUaJ7fPYhQhI-AcsMVRkZf34HI7qTCSH_W3BwIb1wG5araWXvAuOpLcOw5JqnGDfbItWFDm1BFzy2gvfgRas_uWlI3OkskZPc00-LHMcxd-PYgyed6AfPXPInobVWCfPGeM1yjFIHAsMG-tzj7jaaHVpLUpWd1iQjYkQyIol7cMfrbPcVREUx8Qz2IFnQ5k6AKM0X71TjY0dtPpCZEFmCv-mU9e8Nz4evRu7i3r-LPoIrw_3Rbr67vbdzH64i9M18NeEaLM8_1vYBwsu5fuhmNYOji1b8n5btiCc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTttAEB4hkFAvVYGWpqSwVG3FxWW9Xsf2gQM_jUJpEIcicXN312sRiTgRIULceIS-B2_FkzCz_ikRReqFmyWP43VmZ-ebn_0W4DN6ER1mSeRFhueeVJZ7KrbaUzaQudIyUIYquv3jTu9U_jgLz-bgrt4LU_JDNAk3sgy3XpOBj7N8-y9p6LkefkPfJEXVUXlkb64xXpvsHB6gcr8I0f3-a7_nVUcKeEbKQOAQhLEqD8MsDywGZDoWWvmJQVRiIoOuNE64NLiqO-iUR4FCicg3vsbJq3zKfuJ6v0DFReofE_KkKVkgsnLRHfp0L8Elv6Yx4mK7Geqs83uCaJ82Zj4GzM7jdd_A6wqqst1ybi3BnC2WYWW3wDB9eMO-Mtc86rLyy7DYr2r0KzBC_KovLKs6wO5v_0ymmrI9jDYvOV5o_NVBvdGQ0QYXNiWUSk9RXnjw-CFyvGW-khlqyjHlcReM2EGGBJTfwumL6OAdzBejwr4HxmOb-37ONY8xzLRZrDPt24wueGgFb8FW_X-npuI8p6M3LtKSrVmkqJrUqaYFnxrRcUn08S-hdq20tLL1SYpBXUcgyqbXbTa30Uqp9KIKO5qSjAjR8YsobMFqqePmLQgiQqLla0E0o_1GgBjAZ-8Ug3PHBN6RiRBJhJ_p5snzA097e3138eH_RTdg8eSgm_48PD5ag1cIFJOy964N81eXU_sRwdiVXndGwOD3S1vdA0ewR2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+between%E2%80%90subject+statistical+inference+from+unstable+within%E2%80%90subject+functional+connectivity+estimates&rft.jtitle=Human+brain+mapping&rft.au=Vidaurre%2C+Diego&rft.au=Woolrich%2C+Mark+W&rft.au=Winkler%2C+Anderson+M&rft.au=Karapanagiotidis%2C+Theodoros&rft.date=2019-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=40&rft.issue=4&rft.spage=1234&rft.epage=1243&rft_id=info:doi/10.1002%2Fhbm.24442&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |