Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem

Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an e...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 220; no. 4; pp. 1222 - 1235
Main Authors Jiang, Shengjing, Liu, Yongjun, Luo, Jiajia, Qin, Mingsen, Johnson, Nancy Collins, Öpik, Maarja, Vasar, Martti, Chai, Yuxing, Zhou, Xiaolong, Mao, Lin, Du, Guozhen, An, Lizhe, Feng, Huyuan
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.12.2018
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole-plant-community (mixed roots) and single-plant-species (Elymus nutans roots) scales were described using pyro-sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal-suppression treatment in the field (whole-plant-community scale) and a glasshouse inoculation experiment (single-plant-species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole-plant-community and E. nutans scales. N-induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P-limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability.
AbstractList Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole-plant-community (mixed roots) and single-plant-species (Elymus nutans roots) scales were described using pyro-sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal-suppression treatment in the field (whole-plant-community scale) and a glasshouse inoculation experiment (single-plant-species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole-plant-community and E. nutans scales. N-induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P-limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability.Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole-plant-community (mixed roots) and single-plant-species (Elymus nutans roots) scales were described using pyro-sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal-suppression treatment in the field (whole-plant-community scale) and a glasshouse inoculation experiment (single-plant-species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole-plant-community and E. nutans scales. N-induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P-limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability.
Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood.We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole‐plant‐community (mixed roots) and single‐plant‐species (Elymus nutans roots) scales were described using pyro‐sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal‐suppression treatment in the field (whole‐plant‐community scale) and a glasshouse inoculation experiment (single‐plant‐species scale).Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole‐plant‐community and E. nutans scales. N‐induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages.The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P‐limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability.
Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole-plant-community (mixed roots) and single-plant-species (Elymus nutans roots) scales were described using pyro-sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal-suppression treatment in the field (whole-plant-community scale) and a glasshouse inoculation experiment (single-plant-species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole-plant-community and E. nutans scales. N-induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P-limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability.
Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole-plant-community (mixed roots) and single-plant-species (Elymus nutans roots) scales were described using pyro-sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal-suppression treatment in the field (whole-plant-community scale) and a glasshouse inoculation experiment (single-plant-species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole-plant-community and E. nutans scales. N-induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P-limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability.
Summary Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole‐plant‐community (mixed roots) and single‐plant‐species (Elymus nutans roots) scales were described using pyro‐sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal‐suppression treatment in the field (whole‐plant‐community scale) and a glasshouse inoculation experiment (single‐plant‐species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole‐plant‐community and E. nutans scales. N‐induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P‐limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability.
Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal ( AM ) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole‐plant‐community (mixed roots) and single‐plant‐species ( Elymus nutans roots) scales were described using pyro‐sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal‐suppression treatment in the field (whole‐plant‐community scale) and a glasshouse inoculation experiment (single‐plant‐species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole‐plant‐community and E. nutans scales. N‐induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P‐limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability.
Author Jiajia Luo
Guozhen Du
Lin Mao
Martti Vasar
Lizhe An
Mingsen Qin
Maarja Öpik
Yuxing Chai
Shengjing Jiang
Yongjun Liu
Huyuan Feng
Nancy Collins Johnson
Xiaolong Zhou
Author_xml – sequence: 1
  givenname: Shengjing
  surname: Jiang
  fullname: Jiang, Shengjing
  organization: Lanzhou University
– sequence: 2
  givenname: Yongjun
  orcidid: 0000-0002-2909-1730
  surname: Liu
  fullname: Liu, Yongjun
  email: yjliu@lzu.edu.cn
  organization: Lanzhou University
– sequence: 3
  givenname: Jiajia
  surname: Luo
  fullname: Luo, Jiajia
  organization: Lanzhou University
– sequence: 4
  givenname: Mingsen
  surname: Qin
  fullname: Qin, Mingsen
  organization: Lanzhou University
– sequence: 5
  givenname: Nancy Collins
  surname: Johnson
  fullname: Johnson, Nancy Collins
  organization: Northern Arizona University
– sequence: 6
  givenname: Maarja
  orcidid: 0000-0001-8025-7460
  surname: Öpik
  fullname: Öpik, Maarja
  organization: University of Tartu
– sequence: 7
  givenname: Martti
  surname: Vasar
  fullname: Vasar, Martti
  organization: University of Tartu
– sequence: 8
  givenname: Yuxing
  surname: Chai
  fullname: Chai, Yuxing
  organization: Lanzhou University
– sequence: 9
  givenname: Xiaolong
  surname: Zhou
  fullname: Zhou, Xiaolong
  organization: Lanzhou University
– sequence: 10
  givenname: Lin
  surname: Mao
  fullname: Mao, Lin
  organization: Lanzhou University
– sequence: 11
  givenname: Guozhen
  surname: Du
  fullname: Du, Guozhen
  organization: Lanzhou University
– sequence: 12
  givenname: Lizhe
  surname: An
  fullname: An, Lizhe
  organization: Lanzhou University
– sequence: 13
  givenname: Huyuan
  surname: Feng
  fullname: Feng, Huyuan
  email: fenghy@lzu.edu.cn
  organization: Lanzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29600518$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u1DAUhS1URKeFBQ8AssQGFmltJ_HYy6r8FKkCFiCxixznZsaj2B78oyo8BY-Mw7RdVAK8uNfS_c6Rro9P0JHzDhB6TskZLefc7bdntKWUPUIr2nBZCVqvj9CKECYq3vDvx-gkxh0hRLacPUHHTHJCWipW6Nfb2SlrdMR-xCr0Oeo8qYDtrH0IW_NTTXjMblOa9tZmZ9KMYwpZpxwAKzcsY52Md8ZtsJr8UnHBgt-Aw-CC0VsLLuFNUINZLsYVXUH3xgG2oAZ_g0H7OMcE9il6PKopwrPbfoq-vX_39fKquv784ePlxXWlm6ZmVTsywSgZOCPj0I89b0bJgfO-7qlUkkrKW81I30rOBymJAqV0eaOeCakGua5P0euD7z74Hxli6qyJGqZJOfA5dowK2TIuGvp_lDDSCL6WoqCvHqA7n4MrixTDmgixrtcL9fKWyr2FodsHY1WYu7tYCvDmAOjgYwww3iOUdEvkXYm8-xN5Yc8fsNoktQSSgjLTvxQ3ZoL579bdpy9Xd4oXB8UuJh_uFbJ8ME4Fr38DgUfIIQ
CitedBy_id crossref_primary_10_1007_s42832_024_0248_0
crossref_primary_10_1007_s11104_022_05715_8
crossref_primary_10_1007_s11104_024_07106_7
crossref_primary_10_1111_nph_18555
crossref_primary_10_1002_rse2_382
crossref_primary_10_3389_fmicb_2022_994918
crossref_primary_10_1016_j_rhisph_2021_100384
crossref_primary_10_1016_j_soilbio_2025_109746
crossref_primary_10_1016_j_scitotenv_2020_143137
crossref_primary_10_3389_ffgc_2020_593243
crossref_primary_10_1016_j_jia_2024_07_033
crossref_primary_10_3390_plants14030456
crossref_primary_10_1007_s11104_021_05073_x
crossref_primary_10_1007_s11104_019_04253_0
crossref_primary_10_1016_j_apsoil_2021_104144
crossref_primary_10_1016_j_pedsph_2023_03_012
crossref_primary_10_3389_fpls_2019_00895
crossref_primary_10_1016_j_apsoil_2021_104261
crossref_primary_10_1111_gcb_17475
crossref_primary_10_1111_nph_15603
crossref_primary_10_1016_j_envexpbot_2022_104979
crossref_primary_10_1016_j_soilbio_2018_08_008
crossref_primary_10_3389_fmicb_2020_539669
crossref_primary_10_1016_j_still_2023_105660
crossref_primary_10_1007_s42832_023_0214_2
crossref_primary_10_3389_fevo_2023_1125749
crossref_primary_10_1111_1365_2745_13179
crossref_primary_10_1016_j_soilbio_2020_107790
crossref_primary_10_1016_j_agee_2024_108926
crossref_primary_10_1007_s00572_021_01036_3
crossref_primary_10_1016_j_apsoil_2021_104030
crossref_primary_10_7717_peerj_6962
crossref_primary_10_3390_biology10121329
crossref_primary_10_1007_s00572_019_00882_6
crossref_primary_10_1016_j_geoderma_2020_114273
crossref_primary_10_1002_ece3_11271
crossref_primary_10_1016_j_pedobi_2024_150934
crossref_primary_10_1007_s42832_020_0049_z
crossref_primary_10_1016_j_apsoil_2021_104323
crossref_primary_10_3389_fpls_2022_947279
crossref_primary_10_3389_fevo_2022_1056111
crossref_primary_10_1007_s11104_021_04848_6
crossref_primary_10_1038_s41559_019_0823_4
crossref_primary_10_3390_su15129437
crossref_primary_10_1111_nph_15493
crossref_primary_10_1007_s11104_023_06004_8
crossref_primary_10_1098_rspb_2020_0483
crossref_primary_10_3389_fbioe_2022_1033991
crossref_primary_10_3389_fmicb_2022_843010
crossref_primary_10_1111_jvs_13107
crossref_primary_10_1007_s00572_023_01126_4
crossref_primary_10_3390_agriculture11060470
crossref_primary_10_1016_j_ecolind_2021_108193
crossref_primary_10_1002_ece3_10368
crossref_primary_10_1016_j_ejsobi_2019_103094
crossref_primary_10_1007_s00572_021_01061_2
crossref_primary_10_1016_j_apsoil_2024_105449
crossref_primary_10_1016_j_soilbio_2020_107764
crossref_primary_10_1111_nph_19283
crossref_primary_10_1128_AEM_01523_21
crossref_primary_10_3390_f15010027
crossref_primary_10_1007_s11104_024_07083_x
crossref_primary_10_1021_acs_jafc_4c00073
crossref_primary_10_1016_j_apsoil_2021_104109
crossref_primary_10_1016_j_pedsph_2023_09_007
crossref_primary_10_1002_ldr_3773
crossref_primary_10_1007_s00374_019_01423_1
crossref_primary_10_1111_ele_13280
crossref_primary_10_1111_nph_18516
crossref_primary_10_3389_fpls_2022_1024874
crossref_primary_10_1016_j_envpol_2018_11_074
crossref_primary_10_1017_wsc_2019_50
crossref_primary_10_1111_nph_19432
crossref_primary_10_1016_j_jenvman_2024_120239
crossref_primary_10_1111_gcb_15369
crossref_primary_10_1111_jvs_13082
crossref_primary_10_1007_s11557_022_01799_9
crossref_primary_10_3390_ijerph20043689
crossref_primary_10_1111_nph_20304
crossref_primary_10_1002_fes3_542
crossref_primary_10_1016_j_soilbio_2022_108727
crossref_primary_10_1111_mec_15425
crossref_primary_10_1016_j_ejsobi_2023_103557
crossref_primary_10_3389_fpls_2021_707118
crossref_primary_10_1016_j_apsoil_2023_104908
crossref_primary_10_1007_s00374_020_01477_6
crossref_primary_10_1016_j_jia_2024_09_019
crossref_primary_10_3389_fpls_2019_01312
crossref_primary_10_1093_jpe_rtaa099
crossref_primary_10_1016_j_catena_2020_105025
crossref_primary_10_1111_1365_2435_13347
crossref_primary_10_1016_j_soilbio_2018_08_016
crossref_primary_10_1016_j_scitotenv_2024_170775
crossref_primary_10_1016_j_funeco_2023_101303
crossref_primary_10_1111_1462_2920_16040
crossref_primary_10_1016_j_rhisph_2022_100483
crossref_primary_10_1111_nph_19140
crossref_primary_10_1007_s11104_021_04962_5
crossref_primary_10_1016_j_soilbio_2022_108673
crossref_primary_10_1093_treephys_tpad064
crossref_primary_10_1002_ldr_4201
crossref_primary_10_3390_plants14010106
crossref_primary_10_1016_j_apsoil_2021_104245
crossref_primary_10_1016_j_funeco_2022_101222
crossref_primary_10_3389_fmicb_2025_1554644
crossref_primary_10_1007_s11104_024_06730_7
crossref_primary_10_1111_gcb_15311
crossref_primary_10_1007_s11104_022_05689_7
crossref_primary_10_1016_j_pedsph_2023_05_006
crossref_primary_10_1007_s13213_018_1375_6
crossref_primary_10_1111_gcb_15945
crossref_primary_10_1111_nph_17077
crossref_primary_10_1111_geb_12994
crossref_primary_10_1016_j_soilbio_2019_03_026
crossref_primary_10_1111_nph_19493
crossref_primary_10_1007_s11104_022_05753_2
crossref_primary_10_3389_fmicb_2021_737068
crossref_primary_10_1080_03650340_2020_1858477
crossref_primary_10_3389_fmicb_2022_895533
crossref_primary_10_1007_s00572_020_00944_0
crossref_primary_10_3389_fenvs_2021_701653
crossref_primary_10_1016_j_scitotenv_2023_167630
crossref_primary_10_3389_fpls_2023_1084218
crossref_primary_10_1016_j_scitotenv_2024_176919
crossref_primary_10_1111_nph_16789
crossref_primary_10_1007_s11104_020_04761_4
Cites_doi 10.1111/j.1461-0248.2009.01430.x
10.1111/gcb.12348
10.1111/j.1469-8137.1990.tb00476.x
10.1111/j.1469-8137.2012.04050.x
10.1111/j.1365-2486.2006.01279.x
10.1890/02-0413
10.1007/PL00009996
10.1038/23932
10.1093/bioinformatics/btn575
10.1111/jvs.12191
10.1111/nph.13288
10.1093/molbev/mst197
10.1111/1574-6941.12361
10.1038/nature06503
10.1890/0012-9658(1999)080[1187:MIPCSA]2.0.CO;2
10.1111/j.1461-0248.2011.01666.x
10.1016/S0269-7491(99)00091-3
10.1007/s11104-010-0688-4
10.1111/1462-2920.12623
10.1016/j.soilbio.2014.12.003
10.1111/j.1469-8137.2009.03110.x
10.1126/science.1210722
10.1016/j.soilbio.2012.05.007
10.1111/1365-2745.12249
10.1016/j.soilbio.2014.10.016
10.1002/ecs2.1256
10.1093/molbev/mst010
10.1111/j.1752-4571.2010.00145.x
10.1016/j.tree.2010.05.004
10.1111/nph.12765
10.1111/j.1469-8137.2010.03334.x
10.1038/ncomms12881
10.1111/j.1469-8137.2004.01202.x
10.1111/j.1469-8137.2006.01854.x
10.1890/07-1394.1
10.1016/j.soilbio.2015.07.007
10.1016/j.soilbio.2017.08.024
10.1126/science.1143082
10.3852/16-042
10.1111/j.1469-8137.2007.02041.x
10.1073/pnas.1005874107
10.1093/bioinformatics/btr381
10.1002/ece3.2207
10.1371/journal.pone.0041938
10.1093/aobpla/plv125
10.1111/nph.14196
10.1016/j.soilbio.2016.07.023
10.1016/S1002-0160(11)60193-8
10.1073/pnas.1710455114
10.1111/j.1461-0248.2009.01303.x
10.1016/j.funeco.2010.02.002
10.1186/1471-2105-10-421
10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
10.1093/bioinformatics/btg412
10.1046/j.1365-2745.2001.00674.x
10.1111/j.1574-6941.2008.00447.x
10.1111/gcb.12618
10.1046/j.1469-8137.2002.00470.x
10.1016/j.soilbio.2015.12.012
10.1016/j.soilbio.2009.11.034
10.1029/2006JD007990
10.1007/BF00328420
10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2
10.1128/aem.58.1.291-295.1992
10.1111/nph.13172
10.1111/j.1399-3054.1983.tb02783.x
10.1890/02-0775
10.1111/j.1365-294X.2010.04969.x
10.1111/1365-2435.12668
10.1111/j.1461-0248.2007.01139.x
10.1007/s10886-012-0134-6
10.1890/06-1772.1
10.1111/j.1574-6941.2008.00531.x
10.1007/s10021-010-9347-0
10.1890/1051-0761(2000)010[0484:SIAMCA]2.0.CO;2
10.1038/ismej.2016.46
10.1073/pnas.0408648102
10.1111/j.1469-8137.2004.01159.x
10.1126/science.1094678
10.1016/j.soilbio.2009.07.026
10.2307/1942106
10.1371/journal.pone.0027825
10.1146/annurev-arplant-042110-103846
10.1046/j.1469-8137.2002.00364.x
ContentType Journal Article
Copyright 2018 New Phytologist Trust
2018 The Authors. New Phytologist © 2018 New Phytologist Trust
2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Copyright © 2018 New Phytologist Trust
Copyright_xml – notice: 2018 New Phytologist Trust
– notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust
– notice: 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
– notice: Copyright © 2018 New Phytologist Trust
DBID AAYXX
CITATION
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.15112
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed


CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1235
ExternalDocumentID 29600518
10_1111_nph_15112
NPH15112
90026186
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Regional Development Fund
– fundername: State Key Laboratory of Frozen Soil Engineering
  funderid: SKLFSE201602
– fundername: China Postdoctoral Science Foundation
  funderid: 2016M602891
– fundername: Fundamental Research Funds for the Central Universities in China
  funderid: lzujbky‐2016‐84; lzujbky‐2017‐50
– fundername: National Natural Science Foundation of China
  funderid: 41430749; 31570512; 31670433; 31600424
– fundername: Estonian Research Council
  funderid: IUT20‐28
– fundername: National Natural Science Foundation of China
  grantid: 31670433
– fundername: China Postdoctoral Science Foundation
  grantid: 2016M602891
– fundername: Fundamental Research Funds for the Central Universities in China
  grantid: lzujbky-2016-84
– fundername: National Natural Science Foundation of China
  grantid: 31600424
– fundername: Fundamental Research Funds for the Central Universities in China
  grantid: lzujbky-2017-50
– fundername: National Natural Science Foundation of China
  grantid: 41430749
– fundername: National Natural Science Foundation of China
  grantid: 31570512
– fundername: State Key Laboratory of Frozen Soil Engineering
  grantid: SKLFSE201602
– fundername: Estonian Research Council
  grantid: IUT20-28
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
.Y3
24P
31~
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FIJ
GTFYD
HF~
HGD
HQ2
HTVGU
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
ZCG
AAYXX
ABGDZ
ADXHL
CITATION
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4432-5f28210d620fdbfb64f96e66b3b19a919165c20b5966d990aeaac151b289ad973
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:31:57 EDT 2025
Fri Jul 11 16:01:39 EDT 2025
Fri Jul 25 12:12:43 EDT 2025
Mon Mar 03 18:06:48 EST 2025
Tue Jul 01 03:09:28 EDT 2025
Thu Apr 24 22:59:52 EDT 2025
Wed Jan 22 17:02:16 EST 2025
Thu Jul 03 22:16:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Tibetan Plateau
growth response
fertilization
fungal community
mycorrhiza
alpine meadow ecosystem
nitrogen deposition
plant-microbe interaction
Language English
License 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4432-5f28210d620fdbfb64f96e66b3b19a919165c20b5966d990aeaac151b289ad973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2909-1730
0000-0001-8025-7460
OpenAccessLink https://nph.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.15112
PMID 29600518
PQID 2130887378
PQPubID 2026848
PageCount 14
ParticipantIDs proquest_miscellaneous_2189526841
proquest_miscellaneous_2020486798
proquest_journals_2130887378
pubmed_primary_29600518
crossref_primary_10_1111_nph_15112
crossref_citationtrail_10_1111_nph_15112
wiley_primary_10_1111_nph_15112_NPH15112
jstor_primary_90026186
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181201
December 2018
2018-12-00
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 20181201
  day: 1
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2018
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2004; 164
2004; 20
2009; 41
2010; 13
2010; 107
2002; 154
2016; 108
2011; 62
2002; 155
2016; 101
2010; 188
2010; 185
2016; 30
2014; 25
1992; 58
2015; 80
2006; 172
2011; 14
1998; 396
2007; 77
1999; 80
2017; 114
1983; 57
2017; 115
1993; 3
2012; 53
1997; 7
2014; 20
2013; 19
2009; 12
2015; 89
2010; 25
2009; 10
2015; 81
2005; 102
2000; 10
2007; 174
2011; 20
2008; 65
2002; 90
2008; 64
2010; 3
2011; 27
2003; 84
2012; 22
2014; 203
2001; 10
2004; 85
2009; 25
2011; 333
2015; 17
2004; 303
2016; 10
2016; 95
1994
2008; 11
2012; 38
1999; 100
2015; 205
2011; 6
2017; 213
2015; 7
2007; 13
2014; 89
2012; 194
2007; 112
2016; 6
2016; 7
2010; 42
2007; 316
1990; 115
2013; 30
2008; 89
2016
2015
1995; 103
2012; 7
2008; 451
2011; 342
2014; 102
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Brundrett M (e_1_2_7_6_1) 1994
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 3
  start-page: 267
  year: 2010
  end-page: 273
  article-title: Nutritional ecology of arbuscular mycorrhizal fungi
  publication-title: Fungal Ecology
– volume: 6
  start-page: 4332
  year: 2016
  end-page: 4346
  article-title: Plant–fungus competition for nitrogen erases mycorrhizal growth benefits of under limited nitrogen supply
  publication-title: Ecology and Evolution
– volume: 164
  start-page: 347
  year: 2004
  end-page: 355
  article-title: A meta‐analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO in field studies
  publication-title: New Phytologist
– volume: 102
  start-page: 1072
  year: 2014
  end-page: 1082
  article-title: The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability
  publication-title: Journal of Ecology
– volume: 213
  start-page: 874
  year: 2017
  end-page: 885
  article-title: Long‐term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley ( ) mycorrhizal carbon and phosphorus exchange
  publication-title: New Phytologist
– volume: 7
  start-page: 12881
  year: 2016
  article-title: Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments
  publication-title: Nature Communications
– volume: 20
  start-page: 289
  year: 2004
  end-page: 290
  article-title: APE: analyses of phylogenetics and evolution in R language
  publication-title: Bioinformatics
– volume: 77
  start-page: 527
  year: 2007
  end-page: 544
  article-title: Mycorrhizal community dynamics following nitrogen fertilization: a cross‐site test in five grasslands
  publication-title: Ecological Monographs
– volume: 172
  start-page: 554
  year: 2006
  end-page: 562
  article-title: Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system
  publication-title: New Phytologist
– volume: 38
  start-page: 651
  year: 2012
  end-page: 664
  article-title: Mycorrhiza‐induced resistance and priming of plant defenses
  publication-title: Journal of Chemical Ecology
– volume: 164
  start-page: 493
  year: 2004
  end-page: 504
  article-title: Relationships among arbuscular mycorrhizal fungi, vascular plants and environmental conditions in oak savannas
  publication-title: New Phytologist
– volume: 154
  start-page: 209
  year: 2002
  end-page: 218
  article-title: Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland
  publication-title: New Phytologist
– volume: 3
  start-page: 547
  year: 2010
  end-page: 560
  article-title: Evolutionary ecology of mycorrhizal functional diversity in agricultural systems
  publication-title: Evolutionary Applications
– volume: 13
  start-page: 394
  year: 2010
  end-page: 407
  article-title: A meta‐analysis of context‐dependency in plant response to inoculation with mycorrhizal fungi
  publication-title: Ecology Letters
– volume: 10
  start-page: 2341
  year: 2016
  end-page: 2351
  article-title: Community assembly and coexistence in communities of arbuscular mycorrhizal fungi
  publication-title: ISME Journal
– volume: 10
  start-page: 421
  year: 2009
  article-title: BLAST+: architecture and applications
  publication-title: BMC Bioinformatics
– volume: 27
  start-page: 2194
  year: 2011
  end-page: 2200
  article-title: UCHIME improves sensitivity and speed of chimera detection
  publication-title: Bioinformatics
– year: 1994
– volume: 81
  start-page: 323
  year: 2015
  end-page: 328
  article-title: Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation
  publication-title: Soil Biology and Biochemistry
– volume: 107
  start-page: 13754
  year: 2010
  end-page: 13759
  article-title: Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 115
  start-page: 495
  year: 1990
  end-page: 501
  article-title: A new method which gives an objective measure of colonization of roots by vesicular‐arbuscular mycorrhizal fungi
  publication-title: New Phytologist
– volume: 25
  start-page: 1133
  year: 2014
  end-page: 1140
  article-title: Plant and arbuscular mycorrhizal fungal (AMF) communities – which drives which?
  publication-title: Journal of Vegetation Science
– volume: 89
  start-page: 196
  year: 2015
  end-page: 205
  article-title: Phylogenetic structure of arbuscular mycorrhizal community shifts in response to increasing soil fertility
  publication-title: Soil Biology and Biochemistry
– volume: 203
  start-page: 233
  year: 2014
  end-page: 244
  article-title: Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass
  publication-title: New Phytologist
– volume: 188
  start-page: 223
  year: 2010
  end-page: 241
  article-title: The online database Maarj reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota)
  publication-title: New Phytologist
– volume: 53
  start-page: 78
  year: 2012
  end-page: 81
  article-title: Arbuscular mycorrhizal modulation of diazotrophic and denitrifying microbial communities in the (mycor)rhizosphere of
  publication-title: Soil Biology and Biochemistry
– volume: 303
  start-page: 1876
  year: 2004
  end-page: 1879
  article-title: Impact of nitrogen deposition on the species richness of grasslands
  publication-title: Science
– volume: 205
  start-page: 1473
  year: 2015
  end-page: 1484
  article-title: Mycorrhizal phenotypes and the Law of the Minimum
  publication-title: New Phytologist
– volume: 30
  start-page: 1086
  year: 2016
  end-page: 1098
  article-title: The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems
  publication-title: Functional Ecology
– volume: 13
  start-page: 78
  year: 2007
  end-page: 88
  article-title: Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage
  publication-title: Global Change Biology
– volume: 112
  start-page: D22S05
  year: 2007
  article-title: Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data
  publication-title: Journal of Geophysical Research
– volume: 42
  start-page: 473
  year: 2010
  end-page: 483
  article-title: The bacterial community of tomato rhizosphere is modified by inoculation with arbuscular mycorrhizal fungi but unaffected by soil enrichment with mycorrhizal root exudates or inoculation with
  publication-title: Soil Biology and Biochemistry
– volume: 13
  start-page: 683
  year: 2010
  end-page: 695
  article-title: Simulated nitrogen deposition causes a decline of intra‐ and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in northern hardwood forests
  publication-title: Ecosystems
– volume: 194
  start-page: 523
  year: 2012
  end-page: 535
  article-title: Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem
  publication-title: New Phytologist
– volume: 25
  start-page: 126
  year: 2009
  end-page: 127
  article-title: TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi‐core desktops
  publication-title: Bioinformatics
– volume: 57
  start-page: 543
  year: 1983
  end-page: 548
  article-title: Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: the effect of phosphorus on host plant–endophyte interactions
  publication-title: Physiologia Plantarum
– volume: 62
  start-page: 227
  year: 2011
  end-page: 250
  article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales
  publication-title: Annual Review of Plant Biology
– volume: 108
  start-page: 1028
  year: 2016
  end-page: 1046
  article-title: A phylum‐level phylogenetic classification of zygomycete fungi based on genome‐scale data
  publication-title: Mycologia
– volume: 89
  start-page: 2868
  year: 2008
  end-page: 2878
  article-title: Plant winners and losers during grassland N‐eutrophication differ in biomass allocation and mycorrhizas
  publication-title: Ecology
– volume: 103
  start-page: 17
  year: 1995
  end-page: 23
  article-title: External hyphal production of vesicular‐arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities
  publication-title: Oecologia
– volume: 89
  start-page: 594
  year: 2014
  end-page: 605
  article-title: Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow
  publication-title: FEMS Microbiology Ecology
– year: 2015
– volume: 3
  start-page: 749
  year: 1993
  end-page: 757
  article-title: Can fertilization of soil select less mutualistic mycorrhizae?
  publication-title: Ecological Applications
– volume: 333
  start-page: 828
  year: 2011
  end-page: 829
  article-title: The plant‐fungal marketplace
  publication-title: Science
– volume: 185
  start-page: 631
  year: 2010
  end-page: 647
  article-title: Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales
  publication-title: New Phytologist
– volume: 64
  start-page: 78
  year: 2008
  end-page: 89
  article-title: Rhizosphere bacterial community composition responds to arbuscular mycorrhiza, but not to reductions in microbial activity induced by foliar cutting
  publication-title: FEMS Microbiology Ecology
– volume: 17
  start-page: 2709
  year: 2015
  end-page: 2720
  article-title: The composition of arbuscular mycorrhizal fungal communities in the roots of a ruderal forb is not related to the forest fragmentation process
  publication-title: Environmental Microbiology
– volume: 12
  start-page: 452
  year: 2009
  end-page: 461
  article-title: Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long‐term field experiments
  publication-title: Ecology Letters
– volume: 7
  start-page: e01256
  year: 2016
  article-title: Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism
  publication-title: Ecosphere
– volume: 19
  start-page: 3688
  year: 2013
  end-page: 3697
  article-title: Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems
  publication-title: Global Change Biology
– volume: 451
  start-page: 712
  year: 2008
  end-page: 715
  article-title: Loss of plant species after chronic low‐level nitrogen deposition to prairie grasslands
  publication-title: Nature
– volume: 30
  start-page: 2725
  year: 2013
  end-page: 2729
  article-title: MEGA6: molecular evolutionary genetics analysis version 6.0
  publication-title: Molecular Biology and Evolution
– volume: 84
  start-page: 2292
  year: 2003
  end-page: 2301
  article-title: Variation in plant response to native and exotic arbuscular mycorrhizal fungi
  publication-title: Ecology
– volume: 84
  start-page: 1895
  year: 2003
  end-page: 1908
  article-title: Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands
  publication-title: Ecology
– volume: 80
  start-page: 1187
  year: 1999
  end-page: 1195
  article-title: Mycorrhizal influence plant community structure and diversity in tallgrass prairie
  publication-title: Ecology
– volume: 65
  start-page: 339
  year: 2008
  end-page: 349
  article-title: Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi
  publication-title: FEMS Microbiology Ecology
– volume: 342
  start-page: 233
  year: 2011
  end-page: 247
  article-title: Effects of long‐term fertilization on AM fungal community structure and Glomalin‐related soil protein in the Loess Plateau of China
  publication-title: Plant and Soil
– volume: 95
  start-page: 135
  year: 2016
  end-page: 143
  article-title: Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China
  publication-title: Soil Biology and Biochemistry
– volume: 25
  start-page: 468
  year: 2010
  end-page: 478
  article-title: Rooting theories of plant community ecology in microbial interactions
  publication-title: Trends in Ecology and Evolution
– volume: 174
  start-page: 244
  year: 2007
  end-page: 250
  article-title: Functional traits in mycorrhizal ecology: their use for predicting the impact of arbuscular mycorrhizal fungal communities on plant growth and ecosystem functioning
  publication-title: New Phytologist
– volume: 41
  start-page: 2141
  year: 2009
  end-page: 2146
  article-title: Differential effect of arbuscular mycorrhizal fungal communities from ecosystems along management gradient on the growth of forest understorey plant species
  publication-title: Soil Biology and Biochemistry
– volume: 7
  start-page: 125
  year: 2015
  article-title: Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow
  publication-title: AoB Plants
– year: 2016
– volume: 20
  start-page: 3646
  year: 2014
  end-page: 3659
  article-title: Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest
  publication-title: Global Change Biology
– volume: 10
  start-page: 484
  year: 2000
  end-page: 496
  article-title: Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient
  publication-title: Ecological Applications
– volume: 396
  start-page: 69
  year: 1998
  end-page: 72
  article-title: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity
  publication-title: Nature
– volume: 30
  start-page: 772
  year: 2013
  end-page: 780
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Molecular Biology and Evolution
– volume: 7
  start-page: e41938
  year: 2012
  article-title: Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season
  publication-title: PLoS ONE
– volume: 20
  start-page: 799
  year: 2011
  end-page: 811
  article-title: Simulated nitrogen deposition affects community structure of arbuscular mycorrhizal fungi in northern hardwood forests
  publication-title: Molecular Ecology
– volume: 155
  start-page: 507
  year: 2002
  end-page: 515
  article-title: Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test
  publication-title: New Phytologist
– volume: 58
  start-page: 291
  year: 1992
  end-page: 295
  article-title: Specific amplification of 18S fungal ribosomal genes from vesicular‐arbuscular endomycorrhizal fungi colonizing roots
  publication-title: Applied and Environmental Microbiology
– volume: 85
  start-page: 1062
  year: 2004
  end-page: 1071
  article-title: Soil fungi alter interactions between the invader and north American natives
  publication-title: Ecology
– volume: 7
  start-page: 737
  year: 1997
  end-page: 750
  article-title: Human alteration of the global nitrogen cycle: sources and consequences
  publication-title: Ecological Applications
– volume: 115
  start-page: 233
  year: 2017
  end-page: 242
  article-title: Nitrogen deposition and precipitation induced phylogenetic clustering of arbuscular mycorrhizal fungal communities
  publication-title: Soil Biology and Biochemistry
– volume: 11
  start-page: 296
  year: 2008
  end-page: 310
  article-title: The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecology Letters
– volume: 80
  start-page: 283
  year: 2015
  end-page: 292
  article-title: Mycorrhizal effects on nutrient cycling, nutrient leaching and N O production in experimental grassland
  publication-title: Soil Biology & Biochemistry
– volume: 205
  start-page: 1406
  year: 2015
  end-page: 1423
  article-title: Mycorrhizal ecology and evolution: the past, the present, and the future
  publication-title: New Phytologist
– volume: 101
  start-page: 195
  year: 2016
  end-page: 206
  article-title: Response of microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows
  publication-title: Soil Biology and Biochemistry
– volume: 10
  start-page: 203
  year: 2001
  end-page: 207
  article-title: A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores
  publication-title: Mycorrhiza
– volume: 102
  start-page: 4387
  year: 2005
  end-page: 4392
  article-title: Functional‐ and abundance‐based mechanisms explain diversity loss due to N fertilization
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 22
  start-page: 79
  year: 2012
  end-page: 87
  article-title: Effects of arbuscular mycorrhizal fungi communities on soil quality and the growth of cucumber seedlings in a greenhouse soil of continuously planting cucumber
  publication-title: Pedosphere
– volume: 14
  start-page: 1001
  year: 2011
  end-page: 1009
  article-title: Belowground biodiversity effects of plant symbionts support aboveground productivity
  publication-title: Ecology Letters
– volume: 90
  start-page: 371
  year: 2002
  end-page: 384
  article-title: Selectivity and functional diversity in arbuscular mycorrhizas of co‐occurring fungi and plants from a temperate deciduous woodland
  publication-title: Journal of Ecology
– volume: 316
  start-page: 1746
  year: 2007
  end-page: 1748
  article-title: Influence of phylogeny on fungal community assembly and ecosystem functioning
  publication-title: Science
– volume: 100
  start-page: 179
  year: 1999
  end-page: 196
  article-title: Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems
  publication-title: Environmental Pollution
– volume: 114
  start-page: E9403
  year: 2017
  end-page: E9412
  article-title: Root‐associated fungal microbiota of nonmycorrhizal and its contribution to plant phosphorus nutrition
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 6
  start-page: e27825
  year: 2011
  article-title: Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds?
  publication-title: PLoS ONE
– ident: e_1_2_7_28_1
  doi: 10.1111/j.1461-0248.2009.01430.x
– ident: e_1_2_7_81_1
  doi: 10.1111/gcb.12348
– ident: e_1_2_7_50_1
  doi: 10.1111/j.1469-8137.1990.tb00476.x
– ident: e_1_2_7_46_1
  doi: 10.1111/j.1469-8137.2012.04050.x
– ident: e_1_2_7_71_1
  doi: 10.1111/j.1365-2486.2006.01279.x
– ident: e_1_2_7_39_1
  doi: 10.1890/02-0413
– ident: e_1_2_7_60_1
  doi: 10.1007/PL00009996
– ident: e_1_2_7_21_1
  doi: 10.1038/23932
– ident: e_1_2_7_52_1
  doi: 10.1093/bioinformatics/btn575
– ident: e_1_2_7_89_1
  doi: 10.1111/jvs.12191
– ident: e_1_2_7_22_1
  doi: 10.1111/nph.13288
– ident: e_1_2_7_68_1
  doi: 10.1093/molbev/mst197
– ident: e_1_2_7_87_1
  doi: 10.1111/1574-6941.12361
– ident: e_1_2_7_11_1
  doi: 10.1038/nature06503
– ident: e_1_2_7_19_1
  doi: 10.1890/0012-9658(1999)080[1187:MIPCSA]2.0.CO;2
– ident: e_1_2_7_80_1
  doi: 10.1111/j.1461-0248.2011.01666.x
– ident: e_1_2_7_64_1
  doi: 10.1016/S0269-7491(99)00091-3
– ident: e_1_2_7_84_1
  doi: 10.1007/s11104-010-0688-4
– ident: e_1_2_7_18_1
  doi: 10.1111/1462-2920.12623
– ident: e_1_2_7_42_1
  doi: 10.1016/j.soilbio.2014.12.003
– ident: e_1_2_7_32_1
  doi: 10.1111/j.1469-8137.2009.03110.x
– ident: e_1_2_7_61_1
  doi: 10.1126/science.1210722
– ident: e_1_2_7_76_1
  doi: 10.1016/j.soilbio.2012.05.007
– ident: e_1_2_7_86_1
  doi: 10.1111/1365-2745.12249
– ident: e_1_2_7_3_1
  doi: 10.1016/j.soilbio.2014.10.016
– ident: e_1_2_7_30_1
  doi: 10.1002/ecs2.1256
– ident: e_1_2_7_37_1
  doi: 10.1093/molbev/mst010
– ident: e_1_2_7_75_1
  doi: 10.1111/j.1752-4571.2010.00145.x
– ident: e_1_2_7_5_1
  doi: 10.1016/j.tree.2010.05.004
– ident: e_1_2_7_25_1
  doi: 10.1111/nph.12765
– ident: e_1_2_7_55_1
  doi: 10.1111/j.1469-8137.2010.03334.x
– ident: e_1_2_7_38_1
  doi: 10.1038/ncomms12881
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1469-8137.2004.01202.x
– ident: e_1_2_7_79_1
  doi: 10.1111/j.1469-8137.2006.01854.x
– ident: e_1_2_7_33_1
  doi: 10.1890/07-1394.1
– ident: e_1_2_7_45_1
  doi: 10.1016/j.soilbio.2015.07.007
– ident: e_1_2_7_10_1
  doi: 10.1016/j.soilbio.2017.08.024
– ident: e_1_2_7_54_1
– ident: e_1_2_7_49_1
  doi: 10.1126/science.1143082
– ident: e_1_2_7_65_1
  doi: 10.3852/16-042
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1469-8137.2007.02041.x
– ident: e_1_2_7_26_1
  doi: 10.1073/pnas.1005874107
– ident: e_1_2_7_15_1
  doi: 10.1093/bioinformatics/btr381
– volume-title: Practical methods in mycorrhiza research
  year: 1994
  ident: e_1_2_7_6_1
– ident: e_1_2_7_57_1
– ident: e_1_2_7_58_1
  doi: 10.1002/ece3.2207
– ident: e_1_2_7_12_1
  doi: 10.1371/journal.pone.0041938
– ident: e_1_2_7_85_1
  doi: 10.1093/aobpla/plv125
– ident: e_1_2_7_82_1
  doi: 10.1111/nph.14196
– ident: e_1_2_7_48_1
  doi: 10.1016/j.soilbio.2016.07.023
– ident: e_1_2_7_43_1
  doi: 10.1016/S1002-0160(11)60193-8
– ident: e_1_2_7_2_1
  doi: 10.1073/pnas.1710455114
– ident: e_1_2_7_29_1
– ident: e_1_2_7_83_1
  doi: 10.1111/j.1461-0248.2009.01303.x
– ident: e_1_2_7_27_1
  doi: 10.1016/j.funeco.2010.02.002
– ident: e_1_2_7_8_1
  doi: 10.1186/1471-2105-10-421
– ident: e_1_2_7_78_1
  doi: 10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2
– ident: e_1_2_7_56_1
  doi: 10.1093/bioinformatics/btg412
– ident: e_1_2_7_24_1
  doi: 10.1046/j.1365-2745.2001.00674.x
– ident: e_1_2_7_77_1
  doi: 10.1111/j.1574-6941.2008.00447.x
– ident: e_1_2_7_9_1
  doi: 10.1111/gcb.12618
– ident: e_1_2_7_70_1
  doi: 10.1046/j.1469-8137.2002.00470.x
– ident: e_1_2_7_88_1
  doi: 10.1016/j.soilbio.2015.12.012
– ident: e_1_2_7_44_1
  doi: 10.1016/j.soilbio.2009.11.034
– ident: e_1_2_7_47_1
  doi: 10.1029/2006JD007990
– ident: e_1_2_7_51_1
  doi: 10.1007/BF00328420
– ident: e_1_2_7_34_1
  doi: 10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2
– ident: e_1_2_7_62_1
  doi: 10.1128/aem.58.1.291-295.1992
– ident: e_1_2_7_35_1
  doi: 10.1111/nph.13172
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1399-3054.1983.tb02783.x
– ident: e_1_2_7_7_1
  doi: 10.1890/02-0775
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1365-294X.2010.04969.x
– ident: e_1_2_7_59_1
  doi: 10.1111/1365-2435.12668
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1461-0248.2007.01139.x
– ident: e_1_2_7_36_1
  doi: 10.1007/s10886-012-0134-6
– ident: e_1_2_7_17_1
  doi: 10.1890/06-1772.1
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1574-6941.2008.00531.x
– ident: e_1_2_7_14_1
  doi: 10.1007/s10021-010-9347-0
– ident: e_1_2_7_16_1
  doi: 10.1890/1051-0761(2000)010[0484:SIAMCA]2.0.CO;2
– ident: e_1_2_7_73_1
  doi: 10.1038/ismej.2016.46
– ident: e_1_2_7_67_1
  doi: 10.1073/pnas.0408648102
– ident: e_1_2_7_69_1
  doi: 10.1111/j.1469-8137.2004.01159.x
– ident: e_1_2_7_66_1
  doi: 10.1126/science.1094678
– ident: e_1_2_7_72_1
  doi: 10.1016/j.soilbio.2009.07.026
– ident: e_1_2_7_31_1
  doi: 10.2307/1942106
– ident: e_1_2_7_74_1
  doi: 10.1371/journal.pone.0027825
– ident: e_1_2_7_63_1
  doi: 10.1146/annurev-arplant-042110-103846
– ident: e_1_2_7_53_1
  doi: 10.1046/j.1469-8137.2002.00364.x
SSID ssj0009562
Score 2.608189
Snippet Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM)...
Summary Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal...
Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal ( AM )...
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1222
SubjectTerms Abundance
alpine meadow ecosystem
alpine meadows
Arbuscular mycorrhizas
Availability
Community composition
Community structure
Composition
Dynamics
Ecosystems
Elymus nutans
Enrichment
fertilization
fungal communities
fungal community
Fungi
greenhouses
growth response
Herbivores
Inoculation
Meadows
mycorrhiza
mycorrhizal fungi
Nitrogen
nitrogen deposition
Nitrogen enrichment
Parasitism
Phosphorus
Plant communities
Plant species
plant–microbe interaction
Roots
Soil
Species richness
Structure-function relationships
Sustainability
Sustainable ecosystems
Tibetan Plateau
vesicular arbuscular mycorrhizae
Title Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem
URI https://www.jstor.org/stable/90026186
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.15112
https://www.ncbi.nlm.nih.gov/pubmed/29600518
https://www.proquest.com/docview/2130887378
https://www.proquest.com/docview/2020486798
https://www.proquest.com/docview/2189526841
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC6WxYMX36vRVVrxsJcMSafTSfDkaxkEFxEX5iCE6kecwd1kmAcy-yv8yVZ3J2FXVhEvIZBq6HS-6vqqU_01wMukFFjZPI85bzAWRqgYm0zFKSqFZY659se9fTyR01PxYZbP9uDVsBcm6EOMC27OM_x87Rwc1fqSk7fL-SR1dIHmX1er5QjRZ35JcFfyQYFZCjnrVYVcFc_Y8kosCuWI1xHNq7zVB57j2_B16HKoN_k-2W7URF_8pub4n-90B271hJS9Dgi6C3u2vQc33nREGnf34ee7cGL9mnUNQ_oCoW6Vne8oa13NFxfUlEIjhRmmw1aTzY4FTdrtyjJsjXus-1VfhmeduzIyW3UEXUboXei5W6Fk31a--mzDFi21I9MlvQ47Jwx2PxglyUFz-gGcHr__8nYa94c4xFqIjBLdhpK6NDGSJ41RjZKiqaSVUmUqrbCidFESHhKVU95lKDSiRdQ0BooyQTRVkR3Aftu19hEwYrbSNMZmiTEiLyrkVmcFcqOkLkwpIjgaPmete4Vzd9DGWT1kOjS-tR_fCF6Mpssg63Gd0YHHxGhR-Yy1lBEcDiCpe5df15zYAM3YWVFG8Hx8TM7q_sBga7st2bityE7i8G82aVl5DZ40gocBgGMHOOWbNItS6yMPoz_3vT75NPU3j__d9AncJDpYhmKdQ9gnsNinRLk26pn3rV9MGymG
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VggSX8iwNFOoiDr1klTiOk0hceFVb2q4QaqW9oMivsCvaZLXdFdr-Cn4yYzuJWlQQ4hJFylhynG_s-ZzxNwCvo5yJwqRpSGklQqaZDEWVyDAWUoo8Faly5d6OR3x4yj6N0_EavOnOwnh9iH7DzXqGm6-tg9sN6SteXs8mg9jGC7fgtq3o7QjVF3pFcpfTToOZMz5udYVsHk_f9Npq5BMSbwo1r0eubunZvw9fu077jJPvg-VCDtTlb3qO__tWD2CjjUnJWw-ih7Bm6kdw512DcePqMfz84IvWX5CmIgI_gk9dJecrJK7zyfQSm-LqiCsNUf60yWJFvCztcm6IqLV9rNqNXyLOGnslaDZvEL0EATxVE7tJSb7NXQLagkxrbIemM3wfco4wbH4Q5MledvoJnO5_PHk_DNs6DqFiLEGuWyGviyPNaVRpWUnOqoIbzmUi40IUyBg5QiKSKVIvjaujMEIoHAOJZFDoIks2Yb1uarMFBINbrittkkhrlmaFoEYlmaBacpXpnAWw133PUrUi57bWxlnZkR0c39KNbwCvetOZV_a4yWjTgaK3KBxpzXkA2x1KytbrL0qKAQFO2kmWB7DbP0Z_tT9hRG2aJdrY08hW5fBvNnFeOBmeOICnHoF9ByhSTpxIsfWew9Gf-16OPg_dzbN_N92Bu8OT46Py6GB0-BzuYXSY-9ydbVhH4JgXGIEt5EvnaL8AvwUtoQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UKuKL99po1VF86EuWXCaTBJ_UdVlvSxEL-yCEuXaXtsmy3UW2v8Kf7JmZJLRSRXwJgZyByeQ7c843OfMNwKuooLzUWRYmieEhVVSE3KQijLkQvMh4Jt1xb18mbHxIP06z6Ra87vbCeH2IfsHNeoabr62DL5S54OT1YjaIbbpwDa5TFhUW0sOvyQXFXZZ0EsyMsmkrK2TLePqml4KRr0e8KtO8nLi6yDO6A9-7PvuCk-PBeiUG8vw3Ocf_fKm7cLvNSMkbD6F7sKXr-3DjbYNZ4-YB_Bz6I-vPSGMIx0_gC1fJ6QZp63I2P8emGBsxzhDp95qsNsSL0q6XmvBa2ceyXfYl_KSxV4JmywaxSxC-czmzS5TkaOnKz1ZkXmM7NF3g65BTBGHzgyBL9qLTD-Fw9P7bu3HYnuIQSkpTZLoGWV0cKZZERgkjGDUl04yJVMQlL5EvMgREJDIkXgpjI9ecSxwDgVSQqzJPd2C7bmq9CwRTW6aM0mmkFM3ykidapjlPlGAyVwUNYL_7nJVsJc7tSRsnVUd1cHwrN74BvOxNF17X4yqjHYeJ3qJ0lLVgAex1IKlanz-rEkwHcMpO8yKAF_1j9Fb7C4bXulmjjd2LbDUO_2YTF6UT4YkDeOQB2HcgQcKJ0yi23ncw-nPfq8nB2N08_nfT53DzYDiqPn-YfHoCtzA1LHzhzh5sI270U0y_VuKZc7NfOkwsWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+arbuscular+mycorrhizal+fungal+community+structure+and+functioning+along+a+nitrogen+enrichment+gradient+in+an+alpine+meadow+ecosystem&rft.jtitle=The+New+phytologist&rft.au=Jiang%2C+Shengjing&rft.au=Liu%2C+Yongjun&rft.au=Luo%2C+Jiajia&rft.au=Qin%2C+Mingsen&rft.date=2018-12-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=220&rft.issue=4&rft.spage=1222&rft_id=info:doi/10.1111%2Fnph.15112&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon