Avalanche criticality in individuals, fluid intelligence, and working memory
The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale‐free brain dynamics remains unclear. In this study, we investigated the whole‐brain avalanche activity and...
Saved in:
Published in | Human brain mapping Vol. 43; no. 8; pp. 2534 - 2553 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1065-9471 1097-0193 1097-0193 |
DOI | 10.1002/hbm.25802 |
Cover
Loading…
Abstract | The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale‐free brain dynamics remains unclear. In this study, we investigated the whole‐brain avalanche activity and its individual variability in the human resting‐state functional magnetic resonance imaging (fMRI) data. We showed that though the group‐level analysis was inaccurate because of individual variability, the subject wise scale‐free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure–function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order–disorder phase transitions in resting‐state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large‐scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality.
The scale‐free dynamics of avalanche for individuals was associated with intermediate synchronization and maximal synchronization entropy. This finding enabled us to not only examine previous conjectures on criticality in large‐scale brain networks, that is, the maximization of functional connectivity complexity and structure‐function coupling by criticality, but also to find the link between brain criticality and cognitive performance, for example, fluid intelligence and working memory. |
---|---|
AbstractList | The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale-free brain dynamics remains unclear. In this study, we investigated the whole-brain avalanche activity and its individual variability in the human resting-state functional magnetic resonance imaging (fMRI) data. We showed that though the group-level analysis was inaccurate because of individual variability, the subject wise scale-free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure-function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order-disorder phase transitions in resting-state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large-scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality. The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale‐free brain dynamics remains unclear. In this study, we investigated the whole‐brain avalanche activity and its individual variability in the human resting‐state functional magnetic resonance imaging (fMRI) data. We showed that though the group‐level analysis was inaccurate because of individual variability, the subject wise scale‐free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure–function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order–disorder phase transitions in resting‐state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large‐scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality. The scale‐free dynamics of avalanche for individuals was associated with intermediate synchronization and maximal synchronization entropy. This finding enabled us to not only examine previous conjectures on criticality in large‐scale brain networks, that is, the maximization of functional connectivity complexity and structure‐function coupling by criticality, but also to find the link between brain criticality and cognitive performance, for example, fluid intelligence and working memory. The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale-free brain dynamics remains unclear. In this study, we investigated the whole-brain avalanche activity and its individual variability in the human resting-state functional magnetic resonance imaging (fMRI) data. We showed that though the group-level analysis was inaccurate because of individual variability, the subject wise scale-free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure-function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order-disorder phase transitions in resting-state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large-scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality.The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale-free brain dynamics remains unclear. In this study, we investigated the whole-brain avalanche activity and its individual variability in the human resting-state functional magnetic resonance imaging (fMRI) data. We showed that though the group-level analysis was inaccurate because of individual variability, the subject wise scale-free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure-function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order-disorder phase transitions in resting-state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large-scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality. |
Author | Feng, Jianfeng Yu, Lianchun Xu, Longzhou |
AuthorAffiliation | 5 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province Lanzhou University Lanzhou China 6 The School of Nationalities' Educators Qinghai Normal University Xining China 1 School of Physical Science and Technology Lanzhou University Lanzhou China 3 Department of Computer Science University of Warwick Coventry UK 4 School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science Fudan University Shanghai China 2 Institute of Science and Technology for Brain Inspired Intelligence Fudan University Shanghai China |
AuthorAffiliation_xml | – name: 4 School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science Fudan University Shanghai China – name: 5 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province Lanzhou University Lanzhou China – name: 3 Department of Computer Science University of Warwick Coventry UK – name: 1 School of Physical Science and Technology Lanzhou University Lanzhou China – name: 2 Institute of Science and Technology for Brain Inspired Intelligence Fudan University Shanghai China – name: 6 The School of Nationalities' Educators Qinghai Normal University Xining China |
Author_xml | – sequence: 1 givenname: Longzhou orcidid: 0000-0002-4404-1336 surname: Xu fullname: Xu, Longzhou organization: Lanzhou University – sequence: 2 givenname: Jianfeng surname: Feng fullname: Feng, Jianfeng organization: Fudan University – sequence: 3 givenname: Lianchun surname: Yu fullname: Yu, Lianchun email: yulch@lzu.edu.cn organization: Qinghai Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35146831$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1LHDEUhoNY_Gov_AMy4E0LjuZjkpncCFZsLWzpTXsdMsmZ3Wgm0czMyv77Zt21VGkhkHDyvC_nnPcQ7YYYAKFjgs8JxvRi0fbnlDeY7qADgmVdYiLZ7voteCmrmuyjw2G4w5gQjske2mecVKJh5ADNrpba62AWUJjkRme0d-OqcCEf65bOTtoPZ0XnJ2dzaQTv3RyCgbNCB1s8xXTvwrzooY9p9R696zIOH7b3Efr15ebn9W05-_H12_XVrDRVxWjJQGhOBCetBdN2VcOpoZIyW1lhG415Z0htWkZqUktaUUqsBaxpnqaRoAU7Qpcb34ep7cEaCGPSXj0k1-u0UlE79fonuIWax6WSmNd5Kdng49YgxccJhlH1bjB5Nh0gToOigjZUSibrjJ6-Qe_ilEIeL1O8FhIL2WTq5O-O_rTysugMXGwAk-IwJOiUcaMeXVw36LwiWK2jVDlK9RxlVnx6o3gx_Re7dX9yHlb_B9Xt5-8bxW-KRK0Z |
CitedBy_id | crossref_primary_10_1007_s11071_023_08802_2 crossref_primary_10_1002_hbm_26164 crossref_primary_10_1103_PhysRevE_105_064412 crossref_primary_10_1007_s11571_023_10003_x crossref_primary_10_1177_24705470241311285 crossref_primary_10_1016_j_neunet_2024_107100 crossref_primary_10_1038_s41467_023_40056_9 crossref_primary_10_1007_s11571_022_09863_6 crossref_primary_10_1093_nsr_nwae080 crossref_primary_10_1103_PhysRevE_105_L052201 crossref_primary_10_7759_cureus_80719 |
Cites_doi | 10.1016/j.schres.2005.11.020 10.1523/JNEUROSCI.2523-11.2012 10.1523/JNEUROSCI.3474-14.2014 10.1103/PhysRevLett.122.208101 10.1007/978-3-642-51866-9 10.1017/S0140525X07001185 10.1016/j.neuroimage.2013.05.033 10.1038/nn.4361 10.1109/TMI.2010.2045126 10.1523/JNEUROSCI.5990-11.2012 10.1016/j.neuroimage.2013.05.057 10.1371/journal.pone.0191582 10.1088/1741-2 10.1002/mrm.26143 10.1038/nn1846 10.2478/s11600-013-0154-9 10.3389/fnsys.2014.00166 10.1098/rstb.2013.0526 10.1016/j.cobme.2017.09.008 10.1016/j.neuroimage.2017.02.036 10.1371/journal.pone.0080713 10.1371/journal.pone.0008982 10.1103/PhysRevE.88.062717 10.1038/s41598-020-69 10.1523/JNEUROSCI.2771-11.2012 10.1002/hbm.25404 10.1177/1073191112446655 10.1038/s41593-019-0371-x 10.1523/JNEUROSCI.3864-09.2009 10.1016/j.neuroimage.2013.04.127 10.1098/rsif.2015.1027 10.1523/JNEUROSCI.1516-13.2013 10.3389/fphys.2016.00250 10.3389/fphys.2012.00163 10.1016/j.neuroimage.2013.04.055 10.1016/0921-884X(96)95573-3 10.1063/1.4776495 10.1016/j.tics.2007.04.001 10.1038/s42003-020-0774-y 10.1016/j.nicl.2014.05.004 10.1016/j.neuroimage.2011.06.021 10.1523/JNEUROSCI.4637-10.2011 10.1162/jocn.2008.20055 10.1093/cercor/bhw157 10.1523/JNEUROSCI.2111-11.2011 10.1038/nrn2961 10.1073/pnas.1621147114 10.1097/WNP.0b013e3181fdf8d3 10.1523/JNEUROSCI.17-21-08528.1997 10.1038/s41398-021-01197-x 10.1073/pnas.0800537105 10.1103/PhysRevLett.73.951 10.1103/PhysRevE.97.062305 10.1016/j.neuroimage.2021.117760 10.1523/JNEUROSCI.3694-14.2015 10.3390/e22030339 10.1016/j.conb.2012.11.015 10.1007/s11682-018-0009-8 10.1098/rsif.2019.0262 10.3389/fnsys.2014.00108 10.1038/nn.4125 10.1016/j.pneurobio.2017.07.002 10.1016/S1364-6613(98)01259-5 10.1038/srep32328 10.1073/pnas.1216855110 10.1140/epjst/e2012-01575-5 10.1093/cercor/bhw070 10.1103/PhysRevLett.75.4071 10.1177/1073858412445487 10.1103/PhysRevLett.108.208102 10.1371/journal.pone.0068910 10.1016/j.biopsych.2011.03.028 10.1002/syn.10143 10.3389/fphys.2019.00113 10.3389/fnint.2012.00044 10.1073/pnas.0801268105 10.1073/pnas.2022288118 10.1007/s00213-005-0077-5 10.1038/s41398-021-01333-7 10.1103/PhysRevLett.123.038301 10.1093/cercor/bhu251 10.1038/s42005-019-0276-8 10.1016/j.neuroimage.2018.12.011 10.1523/JNEUROSCI.4286-12.2013 10.1016/j.neuroimage.2009.12.027 10.3758/BF03196323 10.3389/fphys.2016.00425 10.1063/1.4978998 10.1007/s10334-010-0197-8 10.3389/fnagi.2017.00378 10.3389/fphys.2012.00015 10.1137/070710111 10.1371/journal.pcbi.1002312 10.1038/srep02853 10.1016/j.neuroimage.2013.05.041 10.1523/JNEUROSCI.23-35-11167.2003 10.1523/ENEURO.0551-20.2021 10.1016/j.clinph.2013.08.033 10.1038/35065675 10.1073/pnas.91.11.5033 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Wiley Periodicals LLC. 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC. – notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7X7 7XB 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 FYUFA GHDGH K9. M0S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1002/hbm.25802 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Chemoreception Abstracts ProQuest Central (New) Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Xu et al |
EISSN | 1097-0193 |
EndPage | 2553 |
ExternalDocumentID | PMC9057106 35146831 10_1002_hbm_25802 HBM25802 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Shanghai Municipal Science and Technology Major Project funderid: 2018SHZDZX01 – fundername: 111 Project funderid: B18015 – fundername: Fundamental Research Funds for the Central Universities funderid: lzujbky‐2021‐62 – fundername: National Key R&D Program of China funderid: 2018YFC1312904; 2019YFA0709502 – fundername: National Natural Science Foundation of China funderid: 12047501 – fundername: Fundamental Research Funds for the Central Universities grantid: lzujbky-2021-62 – fundername: National Key R&D Program of China grantid: 2019YFA0709502 – fundername: 111 Project grantid: B18015 – fundername: Shanghai Municipal Science and Technology Major Project grantid: 2018SHZDZX01 – fundername: National Key R&D Program of China grantid: 2018YFC1312904 – fundername: National Natural Science Foundation of China grantid: 12047501 – fundername: National Key R&D Program of China grantid: 2018YFC1312904; 2019YFA0709502 – fundername: ; grantid: 12047501 – fundername: ; grantid: B18015 – fundername: ; grantid: lzujbky‐2021‐62 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ABUWG ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BENPR BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EMOBN F00 F01 F04 F5P FYUFA G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HMCUK HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ AAFWJ AANHP AAYXX ABEML ABJNI ACBWZ ACRPL ACSCC ACYXJ ADNMO AFPKN AGQPQ ASPBG AVWKF AZFZN BFHJK CITATION EJD FEDTE GAKWD HF~ HVGLF LW6 M6M PHGZM PHGZT RIWAO RJQFR SAMSI WXSBR CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7XB 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO FR3 K9. P64 PKEHL PQEST PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c4432-3e6a51651bdecbf4852c2923d4d6d8a05fc17cb31717924221dde0a206589ea63 |
IEDL.DBID | 7X7 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 14:13:00 EDT 2025 Fri Jul 11 02:05:42 EDT 2025 Tue Aug 26 09:31:38 EDT 2025 Wed Feb 19 02:25:36 EST 2025 Tue Jul 01 01:11:06 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Wed Jan 22 16:25:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | avalanche criticality large-scale brain network fluid intelligence phase transition resting-state fMRI working memory |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4432-3e6a51651bdecbf4852c2923d4d6d8a05fc17cb31717924221dde0a206589ea63 |
Notes | Funding information This study was funded by the Fundamental Research Funds for the Central Universities (Grant No. lzujbky‐2021‐62) and the National Natural Science Foundation of China (grant no. 12047501). J. F. is supported by the 111 Project (grant no. B18015), the National Key R&D Program of China (no.2018YFC1312904; no.2019YFA0709502), the Shanghai Municipal Science and Technology Major Project (grant no. 2018SHZDZX01), ZJLab, and Shanghai Center for Brain Science and Brain‐Inspired Technology. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding informationThis study was funded by the Fundamental Research Funds for the Central Universities (Grant No. lzujbky‐2021‐62) and the National Natural Science Foundation of China (grant no. 12047501). J. F. is supported by the 111 Project (grant no. B18015), the National Key R&D Program of China (no.2018YFC1312904; no.2019YFA0709502), the Shanghai Municipal Science and Technology Major Project (grant no. 2018SHZDZX01), ZJLab, and Shanghai Center for Brain Science and Brain‐Inspired Technology. |
ORCID | 0000-0002-4404-1336 |
OpenAccessLink | https://www.proquest.com/docview/2657690698?pq-origsite=%requestingapplication% |
PMID | 35146831 |
PQID | 2657690698 |
PQPubID | 996345 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9057106 proquest_miscellaneous_2628299397 proquest_journals_2657690698 pubmed_primary_35146831 crossref_citationtrail_10_1002_hbm_25802 crossref_primary_10_1002_hbm_25802 wiley_primary_10_1002_hbm_25802_HBM25802 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 1, 2022 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 1, 2022 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2015; 35 1995; 75 2021b; 11 2013; 3 2017; 3 2019; 10 2013; 23 2013; 61 2019; 16 2012; 19 2020; 14 2017; 150 2008; 105 2011; 12 2020; 10 2007; 30 2011; 58 2013; 8 2021a; 42 2017; 158 2017; 114 2012; 205 2019; 122 2017; 9 2019; 123 2010; 23 2005; 180 2014; 369 2001; 410 2010; 27 2009; 51 2014; 4 2020; 3 2019; 22 2010; 29 2017; 77 2021; 118 2003; 47 1997; 17 2013; 110 2011; 69 2007; 20 2014; 8 2010; 5 2014; 125 1994; 73 2021; 8 2013; 1510 2016; 19 2015; 18 2013; 88 2002; 9 2017; 27 2011; 31 2007; 10 2007; 11 2012; 32 2019; 188 2012; 108 2016; 13 2009; 29 1996; 99 2016; 6 2016; 7 2012; 3 2006; 83 2021; 11 2013; 33 1997; 283 2013; 80 1963 1998; 2 2020; 22 2012; 6 1994; 91 2016; 26 2018; 97 2014; 34 2012; 8 2010; 50 2003; 23 2018; 13 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 Cai J. X. (e_1_2_8_9_1) 1997; 283 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_50_1 |
References_xml | – volume: 31 start-page: 13786 issue: 39 year: 2011 end-page: 13795 article-title: Scale‐free properties of the functional magnetic resonance imaging signal during rest and task publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience – volume: 47 start-page: 101 issue: 2 year: 2003 end-page: 108 article-title: D1 dopamine receptors in the mouse prefrontal cortex: Immunocytochemical and cognitive neuropharmacological analyses publication-title: Synapse – volume: 9 start-page: 378 year: 2017 end-page: 378 article-title: Decreased complexity in Alzheimer's disease: Resting‐state fMRI evidence of brain entropy mapping publication-title: Frontiers in Aging Neuroscience – volume: 33 start-page: 7079 issue: 16 year: 2013 end-page: 7090 article-title: Neuronal avalanches in the resting MEG of the human brain publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience – volume: 125 start-page: 694 issue: 4 year: 2014 end-page: 702 article-title: Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task publication-title: Clinical Neurophysiology – volume: 50 start-page: 970 issue: 3 year: 2010 end-page: 983 article-title: Whole‐brain anatomical networks: Does the choice of nodes matter? publication-title: NeuroImage – volume: 3 start-page: 28 year: 2017 end-page: 36 article-title: Dynamics of large‐scale fMRI networks: Deconstruct brain activity to build better models of brain function publication-title: Current Opinion in Biomedical Engineering – volume: 12 start-page: 43 issue: 1 year: 2011 end-page: 56 article-title: Emerging concepts for the dynamical organization of resting‐state activity in the brain publication-title: Nature Reviews Neuroscience – volume: 6 start-page: 32,328 issue: 1 year: 2016 article-title: Functional brain networks related to individual differences in human intelligence at rest publication-title: Scientific Reports – volume: 114 start-page: 5295 issue: 20 year: 2017 end-page: 5299 article-title: Complexity and compositionality in fluid intelligence publication-title: Proceedings of the National Academy of Sciences – volume: 42 start-page: 2790 issue: 9 year: 2021a end-page: 2801 article-title: Brain dynamics: Synchronous peaks, functional connectivity, and its temporal variability publication-title: Human Brain Mapping – volume: 123 issue: 3 year: 2019 article-title: Hierarchical connectome modes and critical state jointly maximize human brain functional diversity publication-title: Physical Review Letters – volume: 3 year: 2012 article-title: Criticality in large‐scale brain fMRI dynamics unveiled by a novel point process analysis publication-title: Frontiers in Physiology – volume: 3 issue: 1 year: 2013 article-title: The increase of the functional entropy of the human brain with age publication-title: Scientific Reports – volume: 6 year: 2012 article-title: Self‐regulated dynamical criticality in human ECoG publication-title: Frontiers in Integrative Neuroscience – volume: 8 issue: 1 year: 2012 article-title: Failure of adaptive self‐organized criticality during epileptic seizure attacks publication-title: PLOS Computational Biology – volume: 26 start-page: 3508 issue: 8 year: 2016 end-page: 3526 article-title: The human Brainnetome atlas: A new brain atlas based on connectional architecture publication-title: Cerebral Cortex – volume: 180 start-page: 1 issue: 4 year: 2005 end-page: 10 article-title: A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory publication-title: Psychopharmacology – volume: 105 start-page: 6,829 issue: 19 year: 2008 end-page: 6833 article-title: Improving fluid intelligence with training on working memory publication-title: Proceedings of the National Academy of Sciences – volume: 32 start-page: 1,061 issue: 3 year: 2012 end-page: 1,1072 article-title: Maximal variability of phase synchrony in cortical networks with neuronal avalanches publication-title: The Journal of Neuroscience – volume: 158 start-page: 132 year: 2017 end-page: 152 article-title: Criticality in the brain: A synthesis of neurobiology, models and cognition publication-title: Progress in Neurobiology – volume: 80 start-page: 318 year: 2013 end-page: 329 article-title: Bottom up modeling of the connectome: Linking structure and function in the resting brain and their changes in aging publication-title: NeuroImage – volume: 77 start-page: 603 issue: 2 year: 2017 end-page: 612 article-title: Mapping immune cell infiltration using restricted diffusion MRI publication-title: Magnetic Resonance in Medicine – volume: 11 start-page: 70 issue: 1 year: 2021b article-title: Brain dynamics: The temporal variability of connectivity, and differences in schizophrenia and ADHD publication-title: Translational Psychiatry – publication-title: NeuroImage – volume: 29 start-page: 1626 issue: 9 year: 2010 end-page: 1635 article-title: Generalized q‐sampling imaging publication-title: IEEE Transactions on Medical Imaging – volume: 283 start-page: 183 issue: 1 year: 1997 article-title: Dose‐dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys publication-title: Journal of Pharmacology and Experimental Therapeutics – volume: 32 start-page: 9,817 issue: 29 year: 2012 end-page: 9,9823 article-title: Critical‐state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks publication-title: The Journal of Neuroscience – volume: 22 start-page: 339 issue: 3 year: 2020 article-title: The emergence of integrated information, complexity, and “consciousness” at criticality publication-title: Entropy – volume: 19 start-page: 354 issue: 3 year: 2012 end-page: 369 article-title: Development of abbreviated nine‐item forms of the Raven's standard progressive matrices test publication-title: Assessment – volume: 8 start-page: 166 year: 2014 end-page: 166 article-title: Self‐organized criticality as a fundamental property of neural systems publication-title: Frontiers in Systems Neuroscience – volume: 29 start-page: 15595 issue: 49 year: 2009 end-page: 15600 article-title: Neuronal avalanches imply maximum dynamic range in cortical networks at criticality publication-title: The Journal of Neuroscience – volume: 80 start-page: 62 year: 2013 end-page: 79 article-title: The WU‐Minn human connectome project: An overview publication-title: NeuroImage – volume: 99 start-page: 63 issue: 1 year: 1996 end-page: 68 article-title: Age increases brain complexity publication-title: Electroencephalography and Clinical Neurophysiology – volume: 1510 start-page: 4 issue: 1 year: 2013 end-page: 13 article-title: Brain complexity born out of criticality publication-title: AIP Conference Proceedings – volume: 122 issue: 20 year: 2019 article-title: Criticality between cortical states publication-title: Physical Review Letters – volume: 10 start-page: 12,145 issue: 1 year: 2020 article-title: Controlling a complex system near its critical point via temporal correlations publication-title: Scientific Reports – volume: 61 start-page: 1351 issue: 6 year: 2013 end-page: 1394 article-title: Fitting and goodness‐of‐fit test of non‐truncated and truncated power‐law distributions publication-title: Acta Geophysica – volume: 80 start-page: 105 year: 2013 end-page: 124 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: NeuroImage – volume: 91 start-page: 5,033 issue: 11 year: 1994 end-page: 5,5037 article-title: A measure for brain complexity: Relating functional segregation and integration in the nervous system publication-title: Proceedings of the National Academy of Sciences – volume: 108 issue: 20 year: 2012 article-title: Universal critical dynamics in high resolution neuronal avalanche data publication-title: Physical Review Letters – volume: 205 start-page: 259 issue: 1 year: 2012 end-page: 301 article-title: Neuronal avalanches and coherence potentials publication-title: The European Physical Journal Special Topics – volume: 34 start-page: 16611 issue: 50 year: 2014 end-page: 16620 article-title: Voltage imaging of waking mouse cortex reveals emergence of critical neuronal dynamics publication-title: The Journal of Neuroscience – volume: 150 start-page: 213 year: 2017 end-page: 229 article-title: The global signal in fMRI: Nuisance or information? publication-title: NeuroImage – volume: 410 start-page: 242 issue: 6825 year: 2001 end-page: 250 article-title: Crackling noise publication-title: Nature – volume: 7 year: 2016 article-title: Analysis of power laws, shape collapses, and neural complexity: New techniques and MATLAB support via the NCC toolbox publication-title: Frontiers in Physiology – volume: 13 issue: 2 year: 2018 article-title: Brain entropy and human intelligence: A resting‐state fMRI study publication-title: PloS One – volume: 23 start-page: 351 issue: 5 year: 2010 end-page: 366 article-title: A method for evaluating dynamic functional network connectivity and task‐modulation: Application to schizophrenia publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine – volume: 19 start-page: 1175 issue: 9 year: 2016 end-page: 1187 article-title: The human connectome project's neuroimaging approach publication-title: Nature Neuroscience – volume: 26 start-page: 322 issue: 1 year: 2016 end-page: 333 article-title: Resting‐state network complexity and magnitude are reduced in prematurely born infants publication-title: Cerebral Cortex (New York, N.Y.: 1991) – volume: 105 start-page: 7576 issue: 21 year: 2008 end-page: 7581 article-title: Neuronal avalanches organize as nested theta‐ and beta/gamma‐oscillations during development of cortical layer 2/3 publication-title: Proceedings of the National Academy of Sciences – volume: 8 issue: 7 year: 2013 article-title: BrainNet viewer: A network visualization tool for human brain connectomics publication-title: PloS One – volume: 23 start-page: 11167 issue: 35 year: 2003 end-page: 11177 article-title: Neuronal avalanches in neocortical circuits publication-title: The Journal of Neuroscience – volume: 20 start-page: 682 issue: 4 year: 2007 end-page: 693 article-title: Brain is to thought as stomach is to? ?”: Investigating the role of Rostrolateral prefrontal cortex in relational reasoning publication-title: Journal of Cognitive Neuroscience – volume: 30 start-page: 135 issue: 2 year: 2007 end-page: 154 article-title: The Parieto‐Frontal Integration Theory (P‐FIT) of intelligence: Converging neuroimaging evidence publication-title: Behavioral and Brain Sciences – volume: 22 start-page: 820 issue: 5 year: 2019 end-page: 827 article-title: Working memory revived in older adults by synchronizing rhythmic brain circuits publication-title: Nature Neuroscience – volume: 8 issue: 11 year: 2013 article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy publication-title: PloS One – volume: 3 year: 2012 article-title: Being critical of criticality in the brain publication-title: Frontiers in Physiology – volume: 88 issue: 6 year: 2013 article-title: Self‐organized criticality in single‐neuron excitability publication-title: Physical Review E – volume: 118 issue: 23 year: 2021 article-title: Segregation, integration, and balance of large‐scale resting brain networks configure different cognitive abilities publication-title: Proceedings of the National Academy of Sciences – volume: 11 start-page: 236 issue: 6 year: 2007 end-page: 242 article-title: Separating cognitive capacity from knowledge: A new hypothesis publication-title: Trends in Cognitive Sciences – volume: 16 issue: 5 year: 2019 article-title: Maximal flexibility in dynamic functional connectivity with critical dynamics revealed by fMRI data analysis and brain network modelling publication-title: Journal of Neural Engineering – volume: 110 start-page: 3585 issue: 9 year: 2013 end-page: 3590 article-title: Neuronal long‐range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 8 start-page: 108 year: 2014 end-page: 108 article-title: Spike avalanches in vivo suggest a driven, slightly subcritical brain state publication-title: Frontiers in Systems Neuroscience – volume: 58 start-page: 91 issue: 1 year: 2011 end-page: 99 article-title: NTU‐90: A high angular resolution brain atlas constructed by q‐space diffeomorphic reconstruction publication-title: NeuroImage – volume: 31 start-page: 55 issue: 1 year: 2011 end-page: 63 article-title: Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience – volume: 188 start-page: 228 year: 2019 end-page: 238 article-title: Relationship of critical dynamics, functional connectivity, and states of consciousness in large‐scale human brain networks publication-title: NeuroImage – volume: 5 start-page: e8982 issue: 2 year: 2010 end-page: e8982 article-title: Can power‐law scaling and neuronal avalanches arise from stochastic dynamics? publication-title: PloS One – volume: 14 start-page: 715 issue: 3 year: 2020 end-page: 727 article-title: Reconfigured functional network dynamics in adult moyamoya disease: A resting‐state fMRI study publication-title: Brain Imaging and Behavior – volume: 80 start-page: 169 year: 2013 end-page: 189 article-title: Function in the human connectome: Task‐fMRI and individual differences in behavior publication-title: NeuroImage – volume: 4 start-page: 779 year: 2014 end-page: 787 article-title: Disruption of structure–function coupling in the schizophrenia connectome publication-title: NeuroImage: Clinical – volume: 17 start-page: 8528 issue: 21 year: 1997 end-page: 8535 article-title: Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience – volume: 3 start-page: 13 issue: 1 year: 2020 article-title: Fingerprints of a second order critical line in developing neural networks publication-title: Communications Physics – volume: 23 start-page: 162 issue: 2 year: 2013 end-page: 171 article-title: Network attributes for segregation and integration in the human brain publication-title: Current Opinion in Neurobiology – volume: 16 issue: 158 year: 2019 article-title: The avalanche‐like behaviour of large‐scale haemodynamic activity from wakefulness to deep sleep publication-title: Journal of the Royal Society Interface – volume: 75 start-page: 4071 issue: 22 year: 1995 end-page: 4074 article-title: Self‐organized branching processes: Mean‐field theory for avalanches publication-title: Physical Review Letters – volume: 27 issue: 4 year: 2017 article-title: Avalanche and edge‐of‐chaos criticality do not necessarily co‐occur in neural networks publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science – volume: 10 start-page: 113 year: 2019 end-page: 113 article-title: Multi‐scale expressions of one optimal state regulated by dopamine in the prefrontal cortex publication-title: Frontiers in Physiology – volume: 27 start-page: 386 issue: 6 year: 2010 article-title: Aberrant neuronal avalanches in cortical tissue removed from juvenile epilepsy patients publication-title: Journal of Clinical Neurophysiology – volume: 2 start-page: 474 issue: 12 year: 1998 end-page: 484 article-title: Complexity and coherency: Integrating information in the brain publication-title: Trends in Cognitive Sciences – volume: 80 start-page: 125 year: 2013 end-page: 143 article-title: Advances in diffusion MRI acquisition and processing in the human connectome project publication-title: NeuroImage – volume: 33 start-page: 17363 issue: 44 year: 2013 end-page: 17372 article-title: Fading signatures of critical brain dynamics during sustained wakefulness in humans publication-title: The Journal of Neuroscience – volume: 19 start-page: 88 issue: 1 year: 2012 end-page: 100 article-title: The functional benefits of criticality in the cortex publication-title: The Neuroscientist – volume: 73 start-page: 951 issue: 7 year: 1994 end-page: 954 article-title: Generating surrogate data for time series with several simultaneously measured variables publication-title: Physical Review Letters – volume: 369 issue: 1653 year: 2014 article-title: Reconfigurable task‐dependent functional coupling modes cluster around a core functional architecture publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences – volume: 8 issue: 2 year: 2021 article-title: Is there sufficient evidence for criticality in cortical systems? publication-title: Eneuro – volume: 27 start-page: 2607 issue: 4 year: 2017 end-page: 2616 article-title: Multivariate associations of fluid intelligence and NAA publication-title: Cerebral Cortex – volume: 9 start-page: 637 issue: 4 year: 2002 end-page: 671 article-title: The role of prefrontal cortex in working‐memory capacity, executive attention, and general fluid intelligence: An individual‐differences perspective publication-title: Psychonomic Bulletin & Review – volume: 97 issue: 6 year: 2018 article-title: Hysteresis, neural avalanches, and critical behavior near a first‐order transition of a spiking neural network publication-title: Physical Review E – volume: 18 start-page: 1565 issue: 11 year: 2015 end-page: 1567 article-title: A positive–negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nature Neuroscience – volume: 10 start-page: 376 issue: 3 year: 2007 end-page: 384 article-title: Inverted‐U dopamine D1 receptor actions on prefrontal neurons engaged in working memory publication-title: Nature Neuroscience – volume: 51 start-page: 661 issue: 4 year: 2009 end-page: 703 article-title: Power‐law distributions in empirical data publication-title: SIAM Review – year: 1963 – volume: 7 start-page: 425 year: 2016 end-page: 425 article-title: Criticality maximizes complexity in neural tissue publication-title: Frontiers in Physiology – volume: 3 start-page: 52 issue: 1 year: 2020 article-title: Closer to critical resting‐state neural dynamics in individuals with higher fluid intelligence publication-title: Communications Biology – volume: 83 start-page: 155 issue: 2 year: 2006 end-page: 171 article-title: Decreased volume of left and total anterior insular lobule in schizophrenia publication-title: Schizophrenia Research – volume: 11 start-page: 215 issue: 1 year: 2021 article-title: Attractor cortical neurodynamics, schizophrenia, and depression publication-title: Translational Psychiatry – volume: 69 start-page: e113 issue: 12 year: 2011 end-page: e125 article-title: Inverted‐U shaped dopamine actions on human working memory and cognitive control publication-title: Biological Psychiatry – volume: 32 start-page: 3366 issue: 10 year: 2012 end-page: 3375 article-title: Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors publication-title: The Journal of Neuroscience – volume: 13 issue: 114 year: 2016 article-title: Large‐scale signatures of unconsciousness are consistent with a departure from critical dynamics publication-title: Journal of the Royal Society, Interface – volume: 35 start-page: 4626 issue: 11 year: 2015 end-page: 4634 article-title: Cascades and cognitive state: Focused attention incurs subcritical dynamics publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience – ident: e_1_2_8_48_1 doi: 10.1016/j.schres.2005.11.020 – ident: e_1_2_8_15_1 doi: 10.1523/JNEUROSCI.2523-11.2012 – ident: e_1_2_8_68_1 doi: 10.1523/JNEUROSCI.3474-14.2014 – ident: e_1_2_8_23_1 doi: 10.1103/PhysRevLett.122.208101 – ident: e_1_2_8_31_1 doi: 10.1007/978-3-642-51866-9 – ident: e_1_2_8_38_1 doi: 10.1017/S0140525X07001185 – ident: e_1_2_8_4_1 doi: 10.1016/j.neuroimage.2013.05.033 – ident: e_1_2_8_28_1 doi: 10.1038/nn.4361 – ident: e_1_2_8_96_1 doi: 10.1109/TMI.2010.2045126 – ident: e_1_2_8_57_1 doi: 10.1523/JNEUROSCI.5990-11.2012 – ident: e_1_2_8_78_1 doi: 10.1016/j.neuroimage.2013.05.057 – ident: e_1_2_8_66_1 doi: 10.1371/journal.pone.0191582 – ident: e_1_2_8_77_1 doi: 10.1088/1741-2 – ident: e_1_2_8_97_1 doi: 10.1002/mrm.26143 – ident: e_1_2_8_88_1 doi: 10.1038/nn1846 – ident: e_1_2_8_17_1 doi: 10.2478/s11600-013-0154-9 – ident: e_1_2_8_34_1 doi: 10.3389/fnsys.2014.00166 – ident: e_1_2_8_43_1 doi: 10.1098/rstb.2013.0526 – ident: e_1_2_8_42_1 doi: 10.1016/j.cobme.2017.09.008 – volume: 283 start-page: 183 issue: 1 year: 1997 ident: e_1_2_8_9_1 article-title: Dose‐dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys publication-title: Journal of Pharmacology and Experimental Therapeutics – ident: e_1_2_8_47_1 doi: 10.1016/j.neuroimage.2017.02.036 – ident: e_1_2_8_99_1 doi: 10.1371/journal.pone.0080713 – ident: e_1_2_8_86_1 doi: 10.1371/journal.pone.0008982 – ident: e_1_2_8_25_1 doi: 10.1103/PhysRevE.88.062717 – ident: e_1_2_8_10_1 doi: 10.1038/s41598-020-69 – ident: e_1_2_8_94_1 doi: 10.1523/JNEUROSCI.2771-11.2012 – ident: e_1_2_8_63_1 doi: 10.1002/hbm.25404 – ident: e_1_2_8_7_1 doi: 10.1177/1073191112446655 – ident: e_1_2_8_61_1 doi: 10.1038/s41593-019-0371-x – ident: e_1_2_8_71_1 doi: 10.1523/JNEUROSCI.3864-09.2009 – ident: e_1_2_8_29_1 doi: 10.1016/j.neuroimage.2013.04.127 – ident: e_1_2_8_82_1 doi: 10.1098/rsif.2015.1027 – ident: e_1_2_8_50_1 doi: 10.1523/JNEUROSCI.1516-13.2013 – ident: e_1_2_8_49_1 doi: 10.3389/fphys.2016.00250 – ident: e_1_2_8_5_1 doi: 10.3389/fphys.2012.00163 – ident: e_1_2_8_52_1 doi: 10.1016/j.neuroimage.2013.04.055 – ident: e_1_2_8_3_1 doi: 10.1016/0921-884X(96)95573-3 – ident: e_1_2_8_81_1 doi: 10.1063/1.4776495 – ident: e_1_2_8_30_1 doi: 10.1016/j.tics.2007.04.001 – ident: e_1_2_8_20_1 doi: 10.1038/s42003-020-0774-y – ident: e_1_2_8_13_1 doi: 10.1016/j.nicl.2014.05.004 – ident: e_1_2_8_98_1 doi: 10.1016/j.neuroimage.2011.06.021 – ident: e_1_2_8_72_1 doi: 10.1523/JNEUROSCI.4637-10.2011 – ident: e_1_2_8_92_1 doi: 10.1162/jocn.2008.20055 – ident: e_1_2_8_22_1 doi: 10.1093/cercor/bhw157 – ident: e_1_2_8_32_1 doi: 10.1523/JNEUROSCI.2111-11.2011 – ident: e_1_2_8_16_1 doi: 10.1038/nrn2961 – ident: e_1_2_8_19_1 doi: 10.1073/pnas.1621147114 – ident: e_1_2_8_35_1 doi: 10.1097/WNP.0b013e3181fdf8d3 – ident: e_1_2_8_100_1 doi: 10.1523/JNEUROSCI.17-21-08528.1997 – ident: e_1_2_8_64_1 doi: 10.1038/s41398-021-01197-x – ident: e_1_2_8_27_1 doi: 10.1073/pnas.0800537105 – ident: e_1_2_8_59_1 doi: 10.1103/PhysRevLett.73.951 – ident: e_1_2_8_67_1 doi: 10.1103/PhysRevE.97.062305 – ident: e_1_2_8_54_1 doi: 10.1016/j.neuroimage.2021.117760 – ident: e_1_2_8_21_1 doi: 10.1523/JNEUROSCI.3694-14.2015 – ident: e_1_2_8_58_1 doi: 10.3390/e22030339 – ident: e_1_2_8_79_1 doi: 10.1016/j.conb.2012.11.015 – ident: e_1_2_8_45_1 doi: 10.1007/s11682-018-0009-8 – ident: e_1_2_8_8_1 doi: 10.1098/rsif.2019.0262 – ident: e_1_2_8_60_1 doi: 10.3389/fnsys.2014.00108 – ident: e_1_2_8_74_1 doi: 10.1038/nn.4125 – ident: e_1_2_8_12_1 doi: 10.1016/j.pneurobio.2017.07.002 – ident: e_1_2_8_84_1 doi: 10.1016/S1364-6613(98)01259-5 – ident: e_1_2_8_33_1 doi: 10.1038/srep32328 – ident: e_1_2_8_55_1 doi: 10.1073/pnas.1216855110 – ident: e_1_2_8_56_1 doi: 10.1140/epjst/e2012-01575-5 – ident: e_1_2_8_53_1 doi: 10.1093/cercor/bhw070 – ident: e_1_2_8_102_1 doi: 10.1103/PhysRevLett.75.4071 – ident: e_1_2_8_70_1 doi: 10.1177/1073858412445487 – ident: e_1_2_8_24_1 doi: 10.1103/PhysRevLett.108.208102 – ident: e_1_2_8_93_1 doi: 10.1371/journal.pone.0068910 – ident: e_1_2_8_14_1 doi: 10.1016/j.biopsych.2011.03.028 – ident: e_1_2_8_46_1 doi: 10.1002/syn.10143 – ident: e_1_2_8_36_1 doi: 10.3389/fphys.2019.00113 – ident: e_1_2_8_76_1 doi: 10.3389/fnint.2012.00044 – ident: e_1_2_8_37_1 doi: 10.1073/pnas.0801268105 – ident: e_1_2_8_91_1 doi: 10.1073/pnas.2022288118 – ident: e_1_2_8_26_1 doi: 10.1007/s00213-005-0077-5 – ident: e_1_2_8_62_1 doi: 10.1038/s41398-021-01333-7 – ident: e_1_2_8_90_1 doi: 10.1103/PhysRevLett.123.038301 – ident: e_1_2_8_75_1 doi: 10.1093/cercor/bhu251 – ident: e_1_2_8_39_1 doi: 10.1038/s42005-019-0276-8 – ident: e_1_2_8_44_1 doi: 10.1016/j.neuroimage.2018.12.011 – ident: e_1_2_8_73_1 doi: 10.1523/JNEUROSCI.4286-12.2013 – ident: e_1_2_8_101_1 doi: 10.1016/j.neuroimage.2009.12.027 – ident: e_1_2_8_41_1 doi: 10.3758/BF03196323 – ident: e_1_2_8_83_1 doi: 10.3389/fphys.2016.00425 – ident: e_1_2_8_40_1 doi: 10.1063/1.4978998 – ident: e_1_2_8_65_1 doi: 10.1007/s10334-010-0197-8 – ident: e_1_2_8_89_1 doi: 10.3389/fnagi.2017.00378 – ident: e_1_2_8_80_1 doi: 10.3389/fphys.2012.00015 – ident: e_1_2_8_11_1 doi: 10.1137/070710111 – ident: e_1_2_8_51_1 doi: 10.1371/journal.pcbi.1002312 – ident: e_1_2_8_95_1 doi: 10.1038/srep02853 – ident: e_1_2_8_87_1 doi: 10.1016/j.neuroimage.2013.05.041 – ident: e_1_2_8_6_1 doi: 10.1523/JNEUROSCI.23-35-11167.2003 – ident: e_1_2_8_18_1 doi: 10.1523/ENEURO.0551-20.2021 – ident: e_1_2_8_2_1 doi: 10.1016/j.clinph.2013.08.033 – ident: e_1_2_8_69_1 doi: 10.1038/35065675 – ident: e_1_2_8_85_1 doi: 10.1073/pnas.91.11.5033 |
SSID | ssj0011501 |
Score | 2.4460287 |
Snippet | The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2534 |
SubjectTerms | avalanche criticality Avalanches Brain Brain - diagnostic imaging Brain Mapping Cognitive ability Cortex (parietal) Critical point Data analysis Dynamics Entropy fluid intelligence Functional magnetic resonance imaging Human performance Humans Hypotheses Identification methods Information storage Intelligence large‐scale brain network Magnetic Resonance Imaging Memory Memory, Short-Term Neural networks Neuroimaging phase transition Phase transitions Prefrontal cortex resting‐state fMRI Short term memory Structure-function relationships Synchronism Synchronization Time series working memory |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS9xAEB7EQumL2FNr9CqrSPHB1GQvu8nSp7MoR_FKHyr4FnY3Gy7gRfE8xf_emU0uelihb4FMSDI_dr6d3fkW4DBNY6VM7EJRZlS6sTLEaYQMVRQZ4n8yJqXm5PFvObpMfl2JqxX4seiFafghuoIbRYYfrynAtZmdvJCGTsz0OxcZEUl-oNZacnKe_OmWEBDp-NkW5thQ4RC8oBWK-En36HIyeoMw326UfA1gfQY6X4e1FjqyYWPrz7Di6h5sDGucNk-f2DfmN3P6KnkPPo7bNfMNuBg-0PZFNA6z7bkGiLxZVbOqa8aaHbPyel4VrHrF0HnMdF2wx6aazqa0JfdpEy7Pz_7-HIXtGQqhTZIBDwdOahFLEZvCWVMmmeCWI6grkkIWmY5EaePUGkQRGJmYrnmM412kOSET5bQcbMFqfVO7bWAuRTQnhFOpLhMVW2MiVIyUWVaoxGkTwNFCmbltCcbpnIvrvKFG5jnqPfd6D-CgE71tWDX-JdRfWCRvA2uWc4kTJBVJlQWw393GkKB1Dl27mznJ0PKwQqQVwJfGgN1bqHFBZoM4gHTJtJ0A0W0v36mriafdVght0ZvwN70TvP_h-eh07C92_l90Fz5xaqzw9Z0-rN7fzd1XhDv3Zs-79TOhhvqV priority: 102 providerName: Wiley-Blackwell |
Title | Avalanche criticality in individuals, fluid intelligence, and working memory |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25802 https://www.ncbi.nlm.nih.gov/pubmed/35146831 https://www.proquest.com/docview/2657690698 https://www.proquest.com/docview/2628299397 https://pubmed.ncbi.nlm.nih.gov/PMC9057106 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7ygNBLaR5t3CaLWkLoIW5srSVbp7IJCUvphhAa2JuxZJkYst60m23Jv--MrHUS8rgYgwZsaUbSN6PRNwB7aRorpWMbiiqj0I2RIboRMlRRpIn_SeuULiePzuTwMvkxFmMfcJv5tMrFmugW6nJqKEZ-yCUiYxVJlX2_-R1S1Sg6XfUlNJZhlajLyPlKx53DRWDHOVy4zYYKV-EFs1DED6_05BsXmY-mdPvRE5D5NFfyIYZ1m9DpO3jr0SMbtOpehyXbbMDmoEHPeXLH9pnL53SB8g1YG_lj8034OfhLGYyoH2Z8aQME36xuWN3dx5odsOp6XpesfkDSecCKpmT_2oA6m1BW7t0WXJ6e_Doehr6MQmiSpM_DvpWFiKWIdWmNrpJMcMMR15VJKcusiERl4tRoBBI4OXHH5jEueVHBCZwoW8j-e1hppo3dBmZTBHRCWJUWVaJio3WEAyNllpUqsYUO4OtiMHPjOcap1MV13rIj8xzHPXfjHsCXTvSmJdZ4TmhnoZHcz61Zfm8JAXzumnFW0FFH0djpnGTohFgh2ArgQ6vA7it0d0Fm_TiA9JFqOwFi3H7c0tRXjnlbIbpFa8JuOiN4-cfz4dHIvXx8vQef4A2n-xQurLMDK7d_5nYXUc6t7sEyT857zqB7sHp0cnZ-0XMRA3pe8P-MS_8Y |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRaK9VC30kUKpW0HVAymJEzvxoUJLAS2wu6oqkLilseOISGyWsmzR_il-I2PnURAtN26RPEri8djzeZ4Aa1HkCyF97bI8NqYbxV28RnBXeJ409Z-kjExy8mDIe8fhwQk7mYPrJhfGhFU2Z6I9qLOxMjbyTcoRGQuPi3jr_LdrukYZ72rTQqMSi0M9u8Ir2-Tb_g6u7zqle7tH33tu3VXAVWEYUDfQPGU-Z77MtJJ5GDOqKMKcLMx4Fqcey5UfKYl6FWUVFRj18QTwUmp0tdApD_C9T2A-DBAqdGB-e3f442frt0B4Za94SOwKPPebWkYe3TyVo6-UxbX9ptWA92Dt_ejM26jZqr29F_C8xqukWwnYS5jT5SIsdUu8q49m5DOxEaTWNL8IC4PaUb8E_e4fEzOJEkFU3UwB4T4pSlK0GWCTDZKfTYuMFLfKgm6QtMzIVWXCJyMTBzx7BcePwuLX0CnHpX4LREcIIRnTIkrzUPhKSg8Zw3kcZyLUqXTgS8PMRNVVzU1zjbOkqsdME-R7YvnuwKeW9Lwq5fEvopVmRZJ6N0-Sv7LnwMd2GPehca6kpR5PDY3xSQuEdw68qRaw_YrJluBx4DsQ3VnalsDU-L47Uhantta3QDyN0oTTtELw_x9PetsD-_Du4Rl8gKe9o0E_6e8PD5fhGTXZHNaotAKdy4upfo8Y61Ku1oJN4Ndj76UbooY32Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcELQ8AgUMAsShYRMnseMDQgtltaXdigOV9hZix1EjdbOF7VLtX-PXMeM8aFXg1lukjPIYz3i-Gc8D4KWUoVI6tH5SphS6McJHN0L4Kgg09X_SWlJx8uRQjI_iz9Nkuga_uloYSqvs9kS3URdzQzHyAReIjFUgVDoo27SIL7uj96fffZogRSet3TiNRkT27eoc3bfFu71dXOtXnI8-ff049tsJA76J44j7kRV5Eook1IU1uozThBuOkKeIC1GkeZCUJpRGo41FuUVjxkPcDYKck91WNhcRPvcG3JQRmk3UJTntnT0CWs7ZQ1JfoQXouhoFfHCsZ295kraRnN4WXgG4V_M0L-JnZwBHd-B2i1zZsBG1u7Bm603YGtbotc9W7DVzuaQuSL8JG5P2yH4LDoY_KXsSZYOZdqwCAn9W1azqa8EWO6w8WVYFqy40CN1heV2w8yaYz2aUEby6B0fXwuD7sF7Pa_sQmJUIJpPEKpmXsQqN1gEyRog0LVRsc-3Bm46ZmWn7m9OYjZOs6czMM-R75vjuwYue9LRp6vE3ou1uRbJWrxfZHyn04Hl_GzWSjlny2s6XREOn0wqBngcPmgXs30J1EyKNQg_kpaXtCajb9-U7dXXsun4rRNYoTfibTgj-_eHZ-MPEXTz6_x88gw3UoOxg73D_MdziVNbhokvbsH72Y2mfINg600-dVDP4dt1q9BvGdTqp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Avalanche+criticality+in+individuals%2C+fluid+intelligence%2C+and+working+memory&rft.jtitle=Human+brain+mapping&rft.au=Xu%2C+Longzhou&rft.au=Feng%2C+Jianfeng&rft.au=Yu%2C+Lianchun&rft.date=2022-06-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=43&rft.issue=8&rft.spage=2534&rft.epage=2553&rft_id=info:doi/10.1002%2Fhbm.25802&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_25802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |