Avalanche criticality in individuals, fluid intelligence, and working memory

The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale‐free brain dynamics remains unclear. In this study, we investigated the whole‐brain avalanche activity and...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 43; no. 8; pp. 2534 - 2553
Main Authors Xu, Longzhou, Feng, Jianfeng, Yu, Lianchun
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.06.2022
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.25802

Cover

Loading…
Abstract The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale‐free brain dynamics remains unclear. In this study, we investigated the whole‐brain avalanche activity and its individual variability in the human resting‐state functional magnetic resonance imaging (fMRI) data. We showed that though the group‐level analysis was inaccurate because of individual variability, the subject wise scale‐free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure–function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order–disorder phase transitions in resting‐state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large‐scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality. The scale‐free dynamics of avalanche for individuals was associated with intermediate synchronization and maximal synchronization entropy. This finding enabled us to not only examine previous conjectures on criticality in large‐scale brain networks, that is, the maximization of functional connectivity complexity and structure‐function coupling by criticality, but also to find the link between brain criticality and cognitive performance, for example, fluid intelligence and working memory.
AbstractList The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale-free brain dynamics remains unclear. In this study, we investigated the whole-brain avalanche activity and its individual variability in the human resting-state functional magnetic resonance imaging (fMRI) data. We showed that though the group-level analysis was inaccurate because of individual variability, the subject wise scale-free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure-function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order-disorder phase transitions in resting-state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large-scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality.
The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale‐free brain dynamics remains unclear. In this study, we investigated the whole‐brain avalanche activity and its individual variability in the human resting‐state functional magnetic resonance imaging (fMRI) data. We showed that though the group‐level analysis was inaccurate because of individual variability, the subject wise scale‐free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure–function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order–disorder phase transitions in resting‐state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large‐scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality. The scale‐free dynamics of avalanche for individuals was associated with intermediate synchronization and maximal synchronization entropy. This finding enabled us to not only examine previous conjectures on criticality in large‐scale brain networks, that is, the maximization of functional connectivity complexity and structure‐function coupling by criticality, but also to find the link between brain criticality and cognitive performance, for example, fluid intelligence and working memory.
The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale-free brain dynamics remains unclear. In this study, we investigated the whole-brain avalanche activity and its individual variability in the human resting-state functional magnetic resonance imaging (fMRI) data. We showed that though the group-level analysis was inaccurate because of individual variability, the subject wise scale-free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure-function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order-disorder phase transitions in resting-state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large-scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality.The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between human cognitive performance and scale-free brain dynamics remains unclear. In this study, we investigated the whole-brain avalanche activity and its individual variability in the human resting-state functional magnetic resonance imaging (fMRI) data. We showed that though the group-level analysis was inaccurate because of individual variability, the subject wise scale-free avalanche activity was significantly associated with maximal synchronization entropy of their brain activity. Meanwhile, the complexity of functional connectivity, as well as structure-function coupling, is maximized in subjects with maximal synchronization entropy. We also observed order-disorder phase transitions in resting-state brain dynamics and found that there were longer times spent in the subcritical regime. These results imply that large-scale brain dynamics favor the slightly subcritical regime of phase transition. Finally, we showed evidence that the neural dynamics of human participants with higher fluid intelligence and working memory scores are closer to criticality. We identified brain regions whose critical dynamics showed significant positive correlations with fluid intelligence performance and found that these regions were located in the prefrontal cortex and inferior parietal cortex, which were believed to be important nodes of brain networks underlying human intelligence. Our results reveal the possible role that avalanche criticality plays in cognitive performance and provide a simple method to identify the critical point and map cortical states on a spectrum of neural dynamics, ranging from subcriticality to supercriticality.
Author Feng, Jianfeng
Yu, Lianchun
Xu, Longzhou
AuthorAffiliation 5 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province Lanzhou University Lanzhou China
6 The School of Nationalities' Educators Qinghai Normal University Xining China
1 School of Physical Science and Technology Lanzhou University Lanzhou China
3 Department of Computer Science University of Warwick Coventry UK
4 School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science Fudan University Shanghai China
2 Institute of Science and Technology for Brain Inspired Intelligence Fudan University Shanghai China
AuthorAffiliation_xml – name: 4 School of Mathematical Sciences, School of Life Science and the Collaborative Innovation Center for Brain Science Fudan University Shanghai China
– name: 5 Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province Lanzhou University Lanzhou China
– name: 3 Department of Computer Science University of Warwick Coventry UK
– name: 1 School of Physical Science and Technology Lanzhou University Lanzhou China
– name: 2 Institute of Science and Technology for Brain Inspired Intelligence Fudan University Shanghai China
– name: 6 The School of Nationalities' Educators Qinghai Normal University Xining China
Author_xml – sequence: 1
  givenname: Longzhou
  orcidid: 0000-0002-4404-1336
  surname: Xu
  fullname: Xu, Longzhou
  organization: Lanzhou University
– sequence: 2
  givenname: Jianfeng
  surname: Feng
  fullname: Feng, Jianfeng
  organization: Fudan University
– sequence: 3
  givenname: Lianchun
  surname: Yu
  fullname: Yu, Lianchun
  email: yulch@lzu.edu.cn
  organization: Qinghai Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35146831$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1LHDEUhoNY_Gov_AMy4E0LjuZjkpncCFZsLWzpTXsdMsmZ3Wgm0czMyv77Zt21VGkhkHDyvC_nnPcQ7YYYAKFjgs8JxvRi0fbnlDeY7qADgmVdYiLZ7voteCmrmuyjw2G4w5gQjske2mecVKJh5ADNrpba62AWUJjkRme0d-OqcCEf65bOTtoPZ0XnJ2dzaQTv3RyCgbNCB1s8xXTvwrzooY9p9R696zIOH7b3Efr15ebn9W05-_H12_XVrDRVxWjJQGhOBCetBdN2VcOpoZIyW1lhG415Z0htWkZqUktaUUqsBaxpnqaRoAU7Qpcb34ep7cEaCGPSXj0k1-u0UlE79fonuIWax6WSmNd5Kdng49YgxccJhlH1bjB5Nh0gToOigjZUSibrjJ6-Qe_ilEIeL1O8FhIL2WTq5O-O_rTysugMXGwAk-IwJOiUcaMeXVw36LwiWK2jVDlK9RxlVnx6o3gx_Re7dX9yHlb_B9Xt5-8bxW-KRK0Z
CitedBy_id crossref_primary_10_1007_s11071_023_08802_2
crossref_primary_10_1002_hbm_26164
crossref_primary_10_1103_PhysRevE_105_064412
crossref_primary_10_1007_s11571_023_10003_x
crossref_primary_10_1177_24705470241311285
crossref_primary_10_1016_j_neunet_2024_107100
crossref_primary_10_1038_s41467_023_40056_9
crossref_primary_10_1007_s11571_022_09863_6
crossref_primary_10_1093_nsr_nwae080
crossref_primary_10_1103_PhysRevE_105_L052201
crossref_primary_10_7759_cureus_80719
Cites_doi 10.1016/j.schres.2005.11.020
10.1523/JNEUROSCI.2523-11.2012
10.1523/JNEUROSCI.3474-14.2014
10.1103/PhysRevLett.122.208101
10.1007/978-3-642-51866-9
10.1017/S0140525X07001185
10.1016/j.neuroimage.2013.05.033
10.1038/nn.4361
10.1109/TMI.2010.2045126
10.1523/JNEUROSCI.5990-11.2012
10.1016/j.neuroimage.2013.05.057
10.1371/journal.pone.0191582
10.1088/1741-2
10.1002/mrm.26143
10.1038/nn1846
10.2478/s11600-013-0154-9
10.3389/fnsys.2014.00166
10.1098/rstb.2013.0526
10.1016/j.cobme.2017.09.008
10.1016/j.neuroimage.2017.02.036
10.1371/journal.pone.0080713
10.1371/journal.pone.0008982
10.1103/PhysRevE.88.062717
10.1038/s41598-020-69
10.1523/JNEUROSCI.2771-11.2012
10.1002/hbm.25404
10.1177/1073191112446655
10.1038/s41593-019-0371-x
10.1523/JNEUROSCI.3864-09.2009
10.1016/j.neuroimage.2013.04.127
10.1098/rsif.2015.1027
10.1523/JNEUROSCI.1516-13.2013
10.3389/fphys.2016.00250
10.3389/fphys.2012.00163
10.1016/j.neuroimage.2013.04.055
10.1016/0921-884X(96)95573-3
10.1063/1.4776495
10.1016/j.tics.2007.04.001
10.1038/s42003-020-0774-y
10.1016/j.nicl.2014.05.004
10.1016/j.neuroimage.2011.06.021
10.1523/JNEUROSCI.4637-10.2011
10.1162/jocn.2008.20055
10.1093/cercor/bhw157
10.1523/JNEUROSCI.2111-11.2011
10.1038/nrn2961
10.1073/pnas.1621147114
10.1097/WNP.0b013e3181fdf8d3
10.1523/JNEUROSCI.17-21-08528.1997
10.1038/s41398-021-01197-x
10.1073/pnas.0800537105
10.1103/PhysRevLett.73.951
10.1103/PhysRevE.97.062305
10.1016/j.neuroimage.2021.117760
10.1523/JNEUROSCI.3694-14.2015
10.3390/e22030339
10.1016/j.conb.2012.11.015
10.1007/s11682-018-0009-8
10.1098/rsif.2019.0262
10.3389/fnsys.2014.00108
10.1038/nn.4125
10.1016/j.pneurobio.2017.07.002
10.1016/S1364-6613(98)01259-5
10.1038/srep32328
10.1073/pnas.1216855110
10.1140/epjst/e2012-01575-5
10.1093/cercor/bhw070
10.1103/PhysRevLett.75.4071
10.1177/1073858412445487
10.1103/PhysRevLett.108.208102
10.1371/journal.pone.0068910
10.1016/j.biopsych.2011.03.028
10.1002/syn.10143
10.3389/fphys.2019.00113
10.3389/fnint.2012.00044
10.1073/pnas.0801268105
10.1073/pnas.2022288118
10.1007/s00213-005-0077-5
10.1038/s41398-021-01333-7
10.1103/PhysRevLett.123.038301
10.1093/cercor/bhu251
10.1038/s42005-019-0276-8
10.1016/j.neuroimage.2018.12.011
10.1523/JNEUROSCI.4286-12.2013
10.1016/j.neuroimage.2009.12.027
10.3758/BF03196323
10.3389/fphys.2016.00425
10.1063/1.4978998
10.1007/s10334-010-0197-8
10.3389/fnagi.2017.00378
10.3389/fphys.2012.00015
10.1137/070710111
10.1371/journal.pcbi.1002312
10.1038/srep02853
10.1016/j.neuroimage.2013.05.041
10.1523/JNEUROSCI.23-35-11167.2003
10.1523/ENEURO.0551-20.2021
10.1016/j.clinph.2013.08.033
10.1038/35065675
10.1073/pnas.91.11.5033
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
– notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7X7
7XB
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1002/hbm.25802
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Chemoreception Abstracts
ProQuest Central (New)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Xu et al
EISSN 1097-0193
EndPage 2553
ExternalDocumentID PMC9057106
35146831
10_1002_hbm_25802
HBM25802
Genre article
Journal Article
GrantInformation_xml – fundername: Shanghai Municipal Science and Technology Major Project
  funderid: 2018SHZDZX01
– fundername: 111 Project
  funderid: B18015
– fundername: Fundamental Research Funds for the Central Universities
  funderid: lzujbky‐2021‐62
– fundername: National Key R&D Program of China
  funderid: 2018YFC1312904; 2019YFA0709502
– fundername: National Natural Science Foundation of China
  funderid: 12047501
– fundername: Fundamental Research Funds for the Central Universities
  grantid: lzujbky-2021-62
– fundername: National Key R&D Program of China
  grantid: 2019YFA0709502
– fundername: 111 Project
  grantid: B18015
– fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2018SHZDZX01
– fundername: National Key R&D Program of China
  grantid: 2018YFC1312904
– fundername: National Natural Science Foundation of China
  grantid: 12047501
– fundername: National Key R&D Program of China
  grantid: 2018YFC1312904; 2019YFA0709502
– fundername: ;
  grantid: 12047501
– fundername: ;
  grantid: B18015
– fundername: ;
  grantid: lzujbky‐2021‐62
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ABUWG
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BENPR
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FYUFA
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HMCUK
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
AAFWJ
AANHP
AAYXX
ABEML
ABJNI
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AFPKN
AGQPQ
ASPBG
AVWKF
AZFZN
BFHJK
CITATION
EJD
FEDTE
GAKWD
HF~
HVGLF
LW6
M6M
PHGZM
PHGZT
RIWAO
RJQFR
SAMSI
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7XB
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c4432-3e6a51651bdecbf4852c2923d4d6d8a05fc17cb31717924221dde0a206589ea63
IEDL.DBID 7X7
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 14:13:00 EDT 2025
Fri Jul 11 02:05:42 EDT 2025
Tue Aug 26 09:31:38 EDT 2025
Wed Feb 19 02:25:36 EST 2025
Tue Jul 01 01:11:06 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Jan 22 16:25:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords avalanche criticality
large-scale brain network
fluid intelligence
phase transition
resting-state fMRI
working memory
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4432-3e6a51651bdecbf4852c2923d4d6d8a05fc17cb31717924221dde0a206589ea63
Notes Funding information
This study was funded by the Fundamental Research Funds for the Central Universities (Grant No. lzujbky‐2021‐62) and the National Natural Science Foundation of China (grant no. 12047501). J. F. is supported by the 111 Project (grant no. B18015), the National Key R&D Program of China (no.2018YFC1312904; no.2019YFA0709502), the Shanghai Municipal Science and Technology Major Project (grant no. 2018SHZDZX01), ZJLab, and Shanghai Center for Brain Science and Brain‐Inspired Technology.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding informationThis study was funded by the Fundamental Research Funds for the Central Universities (Grant No. lzujbky‐2021‐62) and the National Natural Science Foundation of China (grant no. 12047501). J. F. is supported by the 111 Project (grant no. B18015), the National Key R&D Program of China (no.2018YFC1312904; no.2019YFA0709502), the Shanghai Municipal Science and Technology Major Project (grant no. 2018SHZDZX01), ZJLab, and Shanghai Center for Brain Science and Brain‐Inspired Technology.
ORCID 0000-0002-4404-1336
OpenAccessLink https://www.proquest.com/docview/2657690698?pq-origsite=%requestingapplication%
PMID 35146831
PQID 2657690698
PQPubID 996345
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9057106
proquest_miscellaneous_2628299397
proquest_journals_2657690698
pubmed_primary_35146831
crossref_citationtrail_10_1002_hbm_25802
crossref_primary_10_1002_hbm_25802
wiley_primary_10_1002_hbm_25802_HBM25802
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 1, 2022
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 1, 2022
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 35
1995; 75
2021b; 11
2013; 3
2017; 3
2019; 10
2013; 23
2013; 61
2019; 16
2012; 19
2020; 14
2017; 150
2008; 105
2011; 12
2020; 10
2007; 30
2011; 58
2013; 8
2021a; 42
2017; 158
2017; 114
2012; 205
2019; 122
2017; 9
2019; 123
2010; 23
2005; 180
2014; 369
2001; 410
2010; 27
2009; 51
2014; 4
2020; 3
2019; 22
2010; 29
2017; 77
2021; 118
2003; 47
1997; 17
2013; 110
2011; 69
2007; 20
2014; 8
2010; 5
2014; 125
1994; 73
2021; 8
2013; 1510
2016; 19
2015; 18
2013; 88
2002; 9
2017; 27
2011; 31
2007; 10
2007; 11
2012; 32
2019; 188
2012; 108
2016; 13
2009; 29
1996; 99
2016; 6
2016; 7
2012; 3
2006; 83
2021; 11
2013; 33
1997; 283
2013; 80
1963
1998; 2
2020; 22
2012; 6
1994; 91
2016; 26
2018; 97
2014; 34
2012; 8
2010; 50
2003; 23
2018; 13
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
Cai J. X. (e_1_2_8_9_1) 1997; 283
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – volume: 31
  start-page: 13786
  issue: 39
  year: 2011
  end-page: 13795
  article-title: Scale‐free properties of the functional magnetic resonance imaging signal during rest and task
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
– volume: 47
  start-page: 101
  issue: 2
  year: 2003
  end-page: 108
  article-title: D1 dopamine receptors in the mouse prefrontal cortex: Immunocytochemical and cognitive neuropharmacological analyses
  publication-title: Synapse
– volume: 9
  start-page: 378
  year: 2017
  end-page: 378
  article-title: Decreased complexity in Alzheimer's disease: Resting‐state fMRI evidence of brain entropy mapping
  publication-title: Frontiers in Aging Neuroscience
– volume: 33
  start-page: 7079
  issue: 16
  year: 2013
  end-page: 7090
  article-title: Neuronal avalanches in the resting MEG of the human brain
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
– volume: 125
  start-page: 694
  issue: 4
  year: 2014
  end-page: 702
  article-title: Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task
  publication-title: Clinical Neurophysiology
– volume: 50
  start-page: 970
  issue: 3
  year: 2010
  end-page: 983
  article-title: Whole‐brain anatomical networks: Does the choice of nodes matter?
  publication-title: NeuroImage
– volume: 3
  start-page: 28
  year: 2017
  end-page: 36
  article-title: Dynamics of large‐scale fMRI networks: Deconstruct brain activity to build better models of brain function
  publication-title: Current Opinion in Biomedical Engineering
– volume: 12
  start-page: 43
  issue: 1
  year: 2011
  end-page: 56
  article-title: Emerging concepts for the dynamical organization of resting‐state activity in the brain
  publication-title: Nature Reviews Neuroscience
– volume: 6
  start-page: 32,328
  issue: 1
  year: 2016
  article-title: Functional brain networks related to individual differences in human intelligence at rest
  publication-title: Scientific Reports
– volume: 114
  start-page: 5295
  issue: 20
  year: 2017
  end-page: 5299
  article-title: Complexity and compositionality in fluid intelligence
  publication-title: Proceedings of the National Academy of Sciences
– volume: 42
  start-page: 2790
  issue: 9
  year: 2021a
  end-page: 2801
  article-title: Brain dynamics: Synchronous peaks, functional connectivity, and its temporal variability
  publication-title: Human Brain Mapping
– volume: 123
  issue: 3
  year: 2019
  article-title: Hierarchical connectome modes and critical state jointly maximize human brain functional diversity
  publication-title: Physical Review Letters
– volume: 3
  year: 2012
  article-title: Criticality in large‐scale brain fMRI dynamics unveiled by a novel point process analysis
  publication-title: Frontiers in Physiology
– volume: 3
  issue: 1
  year: 2013
  article-title: The increase of the functional entropy of the human brain with age
  publication-title: Scientific Reports
– volume: 6
  year: 2012
  article-title: Self‐regulated dynamical criticality in human ECoG
  publication-title: Frontiers in Integrative Neuroscience
– volume: 8
  issue: 1
  year: 2012
  article-title: Failure of adaptive self‐organized criticality during epileptic seizure attacks
  publication-title: PLOS Computational Biology
– volume: 26
  start-page: 3508
  issue: 8
  year: 2016
  end-page: 3526
  article-title: The human Brainnetome atlas: A new brain atlas based on connectional architecture
  publication-title: Cerebral Cortex
– volume: 180
  start-page: 1
  issue: 4
  year: 2005
  end-page: 10
  article-title: A functional MRI study of the effects of bromocriptine, a dopamine receptor agonist, on component processes of working memory
  publication-title: Psychopharmacology
– volume: 105
  start-page: 6,829
  issue: 19
  year: 2008
  end-page: 6833
  article-title: Improving fluid intelligence with training on working memory
  publication-title: Proceedings of the National Academy of Sciences
– volume: 32
  start-page: 1,061
  issue: 3
  year: 2012
  end-page: 1,1072
  article-title: Maximal variability of phase synchrony in cortical networks with neuronal avalanches
  publication-title: The Journal of Neuroscience
– volume: 158
  start-page: 132
  year: 2017
  end-page: 152
  article-title: Criticality in the brain: A synthesis of neurobiology, models and cognition
  publication-title: Progress in Neurobiology
– volume: 80
  start-page: 318
  year: 2013
  end-page: 329
  article-title: Bottom up modeling of the connectome: Linking structure and function in the resting brain and their changes in aging
  publication-title: NeuroImage
– volume: 77
  start-page: 603
  issue: 2
  year: 2017
  end-page: 612
  article-title: Mapping immune cell infiltration using restricted diffusion MRI
  publication-title: Magnetic Resonance in Medicine
– volume: 11
  start-page: 70
  issue: 1
  year: 2021b
  article-title: Brain dynamics: The temporal variability of connectivity, and differences in schizophrenia and ADHD
  publication-title: Translational Psychiatry
– publication-title: NeuroImage
– volume: 29
  start-page: 1626
  issue: 9
  year: 2010
  end-page: 1635
  article-title: Generalized q‐sampling imaging
  publication-title: IEEE Transactions on Medical Imaging
– volume: 283
  start-page: 183
  issue: 1
  year: 1997
  article-title: Dose‐dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys
  publication-title: Journal of Pharmacology and Experimental Therapeutics
– volume: 32
  start-page: 9,817
  issue: 29
  year: 2012
  end-page: 9,9823
  article-title: Critical‐state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks
  publication-title: The Journal of Neuroscience
– volume: 22
  start-page: 339
  issue: 3
  year: 2020
  article-title: The emergence of integrated information, complexity, and “consciousness” at criticality
  publication-title: Entropy
– volume: 19
  start-page: 354
  issue: 3
  year: 2012
  end-page: 369
  article-title: Development of abbreviated nine‐item forms of the Raven's standard progressive matrices test
  publication-title: Assessment
– volume: 8
  start-page: 166
  year: 2014
  end-page: 166
  article-title: Self‐organized criticality as a fundamental property of neural systems
  publication-title: Frontiers in Systems Neuroscience
– volume: 29
  start-page: 15595
  issue: 49
  year: 2009
  end-page: 15600
  article-title: Neuronal avalanches imply maximum dynamic range in cortical networks at criticality
  publication-title: The Journal of Neuroscience
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  article-title: The WU‐Minn human connectome project: An overview
  publication-title: NeuroImage
– volume: 99
  start-page: 63
  issue: 1
  year: 1996
  end-page: 68
  article-title: Age increases brain complexity
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 1510
  start-page: 4
  issue: 1
  year: 2013
  end-page: 13
  article-title: Brain complexity born out of criticality
  publication-title: AIP Conference Proceedings
– volume: 122
  issue: 20
  year: 2019
  article-title: Criticality between cortical states
  publication-title: Physical Review Letters
– volume: 10
  start-page: 12,145
  issue: 1
  year: 2020
  article-title: Controlling a complex system near its critical point via temporal correlations
  publication-title: Scientific Reports
– volume: 61
  start-page: 1351
  issue: 6
  year: 2013
  end-page: 1394
  article-title: Fitting and goodness‐of‐fit test of non‐truncated and truncated power‐law distributions
  publication-title: Acta Geophysica
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: NeuroImage
– volume: 91
  start-page: 5,033
  issue: 11
  year: 1994
  end-page: 5,5037
  article-title: A measure for brain complexity: Relating functional segregation and integration in the nervous system
  publication-title: Proceedings of the National Academy of Sciences
– volume: 108
  issue: 20
  year: 2012
  article-title: Universal critical dynamics in high resolution neuronal avalanche data
  publication-title: Physical Review Letters
– volume: 205
  start-page: 259
  issue: 1
  year: 2012
  end-page: 301
  article-title: Neuronal avalanches and coherence potentials
  publication-title: The European Physical Journal Special Topics
– volume: 34
  start-page: 16611
  issue: 50
  year: 2014
  end-page: 16620
  article-title: Voltage imaging of waking mouse cortex reveals emergence of critical neuronal dynamics
  publication-title: The Journal of Neuroscience
– volume: 150
  start-page: 213
  year: 2017
  end-page: 229
  article-title: The global signal in fMRI: Nuisance or information?
  publication-title: NeuroImage
– volume: 410
  start-page: 242
  issue: 6825
  year: 2001
  end-page: 250
  article-title: Crackling noise
  publication-title: Nature
– volume: 7
  year: 2016
  article-title: Analysis of power laws, shape collapses, and neural complexity: New techniques and MATLAB support via the NCC toolbox
  publication-title: Frontiers in Physiology
– volume: 13
  issue: 2
  year: 2018
  article-title: Brain entropy and human intelligence: A resting‐state fMRI study
  publication-title: PloS One
– volume: 23
  start-page: 351
  issue: 5
  year: 2010
  end-page: 366
  article-title: A method for evaluating dynamic functional network connectivity and task‐modulation: Application to schizophrenia
  publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine
– volume: 19
  start-page: 1175
  issue: 9
  year: 2016
  end-page: 1187
  article-title: The human connectome project's neuroimaging approach
  publication-title: Nature Neuroscience
– volume: 26
  start-page: 322
  issue: 1
  year: 2016
  end-page: 333
  article-title: Resting‐state network complexity and magnitude are reduced in prematurely born infants
  publication-title: Cerebral Cortex (New York, N.Y.: 1991)
– volume: 105
  start-page: 7576
  issue: 21
  year: 2008
  end-page: 7581
  article-title: Neuronal avalanches organize as nested theta‐ and beta/gamma‐oscillations during development of cortical layer 2/3
  publication-title: Proceedings of the National Academy of Sciences
– volume: 8
  issue: 7
  year: 2013
  article-title: BrainNet viewer: A network visualization tool for human brain connectomics
  publication-title: PloS One
– volume: 23
  start-page: 11167
  issue: 35
  year: 2003
  end-page: 11177
  article-title: Neuronal avalanches in neocortical circuits
  publication-title: The Journal of Neuroscience
– volume: 20
  start-page: 682
  issue: 4
  year: 2007
  end-page: 693
  article-title: Brain is to thought as stomach is to? ?”: Investigating the role of Rostrolateral prefrontal cortex in relational reasoning
  publication-title: Journal of Cognitive Neuroscience
– volume: 30
  start-page: 135
  issue: 2
  year: 2007
  end-page: 154
  article-title: The Parieto‐Frontal Integration Theory (P‐FIT) of intelligence: Converging neuroimaging evidence
  publication-title: Behavioral and Brain Sciences
– volume: 22
  start-page: 820
  issue: 5
  year: 2019
  end-page: 827
  article-title: Working memory revived in older adults by synchronizing rhythmic brain circuits
  publication-title: Nature Neuroscience
– volume: 8
  issue: 11
  year: 2013
  article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy
  publication-title: PloS One
– volume: 3
  year: 2012
  article-title: Being critical of criticality in the brain
  publication-title: Frontiers in Physiology
– volume: 88
  issue: 6
  year: 2013
  article-title: Self‐organized criticality in single‐neuron excitability
  publication-title: Physical Review E
– volume: 118
  issue: 23
  year: 2021
  article-title: Segregation, integration, and balance of large‐scale resting brain networks configure different cognitive abilities
  publication-title: Proceedings of the National Academy of Sciences
– volume: 11
  start-page: 236
  issue: 6
  year: 2007
  end-page: 242
  article-title: Separating cognitive capacity from knowledge: A new hypothesis
  publication-title: Trends in Cognitive Sciences
– volume: 16
  issue: 5
  year: 2019
  article-title: Maximal flexibility in dynamic functional connectivity with critical dynamics revealed by fMRI data analysis and brain network modelling
  publication-title: Journal of Neural Engineering
– volume: 110
  start-page: 3585
  issue: 9
  year: 2013
  end-page: 3590
  article-title: Neuronal long‐range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 8
  start-page: 108
  year: 2014
  end-page: 108
  article-title: Spike avalanches in vivo suggest a driven, slightly subcritical brain state
  publication-title: Frontiers in Systems Neuroscience
– volume: 58
  start-page: 91
  issue: 1
  year: 2011
  end-page: 99
  article-title: NTU‐90: A high angular resolution brain atlas constructed by q‐space diffeomorphic reconstruction
  publication-title: NeuroImage
– volume: 31
  start-page: 55
  issue: 1
  year: 2011
  end-page: 63
  article-title: Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
– volume: 188
  start-page: 228
  year: 2019
  end-page: 238
  article-title: Relationship of critical dynamics, functional connectivity, and states of consciousness in large‐scale human brain networks
  publication-title: NeuroImage
– volume: 5
  start-page: e8982
  issue: 2
  year: 2010
  end-page: e8982
  article-title: Can power‐law scaling and neuronal avalanches arise from stochastic dynamics?
  publication-title: PloS One
– volume: 14
  start-page: 715
  issue: 3
  year: 2020
  end-page: 727
  article-title: Reconfigured functional network dynamics in adult moyamoya disease: A resting‐state fMRI study
  publication-title: Brain Imaging and Behavior
– volume: 80
  start-page: 169
  year: 2013
  end-page: 189
  article-title: Function in the human connectome: Task‐fMRI and individual differences in behavior
  publication-title: NeuroImage
– volume: 4
  start-page: 779
  year: 2014
  end-page: 787
  article-title: Disruption of structure–function coupling in the schizophrenia connectome
  publication-title: NeuroImage: Clinical
– volume: 17
  start-page: 8528
  issue: 21
  year: 1997
  end-page: 8535
  article-title: Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
– volume: 3
  start-page: 13
  issue: 1
  year: 2020
  article-title: Fingerprints of a second order critical line in developing neural networks
  publication-title: Communications Physics
– volume: 23
  start-page: 162
  issue: 2
  year: 2013
  end-page: 171
  article-title: Network attributes for segregation and integration in the human brain
  publication-title: Current Opinion in Neurobiology
– volume: 16
  issue: 158
  year: 2019
  article-title: The avalanche‐like behaviour of large‐scale haemodynamic activity from wakefulness to deep sleep
  publication-title: Journal of the Royal Society Interface
– volume: 75
  start-page: 4071
  issue: 22
  year: 1995
  end-page: 4074
  article-title: Self‐organized branching processes: Mean‐field theory for avalanches
  publication-title: Physical Review Letters
– volume: 27
  issue: 4
  year: 2017
  article-title: Avalanche and edge‐of‐chaos criticality do not necessarily co‐occur in neural networks
  publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science
– volume: 10
  start-page: 113
  year: 2019
  end-page: 113
  article-title: Multi‐scale expressions of one optimal state regulated by dopamine in the prefrontal cortex
  publication-title: Frontiers in Physiology
– volume: 27
  start-page: 386
  issue: 6
  year: 2010
  article-title: Aberrant neuronal avalanches in cortical tissue removed from juvenile epilepsy patients
  publication-title: Journal of Clinical Neurophysiology
– volume: 2
  start-page: 474
  issue: 12
  year: 1998
  end-page: 484
  article-title: Complexity and coherency: Integrating information in the brain
  publication-title: Trends in Cognitive Sciences
– volume: 80
  start-page: 125
  year: 2013
  end-page: 143
  article-title: Advances in diffusion MRI acquisition and processing in the human connectome project
  publication-title: NeuroImage
– volume: 33
  start-page: 17363
  issue: 44
  year: 2013
  end-page: 17372
  article-title: Fading signatures of critical brain dynamics during sustained wakefulness in humans
  publication-title: The Journal of Neuroscience
– volume: 19
  start-page: 88
  issue: 1
  year: 2012
  end-page: 100
  article-title: The functional benefits of criticality in the cortex
  publication-title: The Neuroscientist
– volume: 73
  start-page: 951
  issue: 7
  year: 1994
  end-page: 954
  article-title: Generating surrogate data for time series with several simultaneously measured variables
  publication-title: Physical Review Letters
– volume: 369
  issue: 1653
  year: 2014
  article-title: Reconfigurable task‐dependent functional coupling modes cluster around a core functional architecture
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
– volume: 8
  issue: 2
  year: 2021
  article-title: Is there sufficient evidence for criticality in cortical systems?
  publication-title: Eneuro
– volume: 27
  start-page: 2607
  issue: 4
  year: 2017
  end-page: 2616
  article-title: Multivariate associations of fluid intelligence and NAA
  publication-title: Cerebral Cortex
– volume: 9
  start-page: 637
  issue: 4
  year: 2002
  end-page: 671
  article-title: The role of prefrontal cortex in working‐memory capacity, executive attention, and general fluid intelligence: An individual‐differences perspective
  publication-title: Psychonomic Bulletin & Review
– volume: 97
  issue: 6
  year: 2018
  article-title: Hysteresis, neural avalanches, and critical behavior near a first‐order transition of a spiking neural network
  publication-title: Physical Review E
– volume: 18
  start-page: 1565
  issue: 11
  year: 2015
  end-page: 1567
  article-title: A positive–negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nature Neuroscience
– volume: 10
  start-page: 376
  issue: 3
  year: 2007
  end-page: 384
  article-title: Inverted‐U dopamine D1 receptor actions on prefrontal neurons engaged in working memory
  publication-title: Nature Neuroscience
– volume: 51
  start-page: 661
  issue: 4
  year: 2009
  end-page: 703
  article-title: Power‐law distributions in empirical data
  publication-title: SIAM Review
– year: 1963
– volume: 7
  start-page: 425
  year: 2016
  end-page: 425
  article-title: Criticality maximizes complexity in neural tissue
  publication-title: Frontiers in Physiology
– volume: 3
  start-page: 52
  issue: 1
  year: 2020
  article-title: Closer to critical resting‐state neural dynamics in individuals with higher fluid intelligence
  publication-title: Communications Biology
– volume: 83
  start-page: 155
  issue: 2
  year: 2006
  end-page: 171
  article-title: Decreased volume of left and total anterior insular lobule in schizophrenia
  publication-title: Schizophrenia Research
– volume: 11
  start-page: 215
  issue: 1
  year: 2021
  article-title: Attractor cortical neurodynamics, schizophrenia, and depression
  publication-title: Translational Psychiatry
– volume: 69
  start-page: e113
  issue: 12
  year: 2011
  end-page: e125
  article-title: Inverted‐U shaped dopamine actions on human working memory and cognitive control
  publication-title: Biological Psychiatry
– volume: 32
  start-page: 3366
  issue: 10
  year: 2012
  end-page: 3375
  article-title: Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors
  publication-title: The Journal of Neuroscience
– volume: 13
  issue: 114
  year: 2016
  article-title: Large‐scale signatures of unconsciousness are consistent with a departure from critical dynamics
  publication-title: Journal of the Royal Society, Interface
– volume: 35
  start-page: 4626
  issue: 11
  year: 2015
  end-page: 4634
  article-title: Cascades and cognitive state: Focused attention incurs subcritical dynamics
  publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience
– ident: e_1_2_8_48_1
  doi: 10.1016/j.schres.2005.11.020
– ident: e_1_2_8_15_1
  doi: 10.1523/JNEUROSCI.2523-11.2012
– ident: e_1_2_8_68_1
  doi: 10.1523/JNEUROSCI.3474-14.2014
– ident: e_1_2_8_23_1
  doi: 10.1103/PhysRevLett.122.208101
– ident: e_1_2_8_31_1
  doi: 10.1007/978-3-642-51866-9
– ident: e_1_2_8_38_1
  doi: 10.1017/S0140525X07001185
– ident: e_1_2_8_4_1
  doi: 10.1016/j.neuroimage.2013.05.033
– ident: e_1_2_8_28_1
  doi: 10.1038/nn.4361
– ident: e_1_2_8_96_1
  doi: 10.1109/TMI.2010.2045126
– ident: e_1_2_8_57_1
  doi: 10.1523/JNEUROSCI.5990-11.2012
– ident: e_1_2_8_78_1
  doi: 10.1016/j.neuroimage.2013.05.057
– ident: e_1_2_8_66_1
  doi: 10.1371/journal.pone.0191582
– ident: e_1_2_8_77_1
  doi: 10.1088/1741-2
– ident: e_1_2_8_97_1
  doi: 10.1002/mrm.26143
– ident: e_1_2_8_88_1
  doi: 10.1038/nn1846
– ident: e_1_2_8_17_1
  doi: 10.2478/s11600-013-0154-9
– ident: e_1_2_8_34_1
  doi: 10.3389/fnsys.2014.00166
– ident: e_1_2_8_43_1
  doi: 10.1098/rstb.2013.0526
– ident: e_1_2_8_42_1
  doi: 10.1016/j.cobme.2017.09.008
– volume: 283
  start-page: 183
  issue: 1
  year: 1997
  ident: e_1_2_8_9_1
  article-title: Dose‐dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys
  publication-title: Journal of Pharmacology and Experimental Therapeutics
– ident: e_1_2_8_47_1
  doi: 10.1016/j.neuroimage.2017.02.036
– ident: e_1_2_8_99_1
  doi: 10.1371/journal.pone.0080713
– ident: e_1_2_8_86_1
  doi: 10.1371/journal.pone.0008982
– ident: e_1_2_8_25_1
  doi: 10.1103/PhysRevE.88.062717
– ident: e_1_2_8_10_1
  doi: 10.1038/s41598-020-69
– ident: e_1_2_8_94_1
  doi: 10.1523/JNEUROSCI.2771-11.2012
– ident: e_1_2_8_63_1
  doi: 10.1002/hbm.25404
– ident: e_1_2_8_7_1
  doi: 10.1177/1073191112446655
– ident: e_1_2_8_61_1
  doi: 10.1038/s41593-019-0371-x
– ident: e_1_2_8_71_1
  doi: 10.1523/JNEUROSCI.3864-09.2009
– ident: e_1_2_8_29_1
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: e_1_2_8_82_1
  doi: 10.1098/rsif.2015.1027
– ident: e_1_2_8_50_1
  doi: 10.1523/JNEUROSCI.1516-13.2013
– ident: e_1_2_8_49_1
  doi: 10.3389/fphys.2016.00250
– ident: e_1_2_8_5_1
  doi: 10.3389/fphys.2012.00163
– ident: e_1_2_8_52_1
  doi: 10.1016/j.neuroimage.2013.04.055
– ident: e_1_2_8_3_1
  doi: 10.1016/0921-884X(96)95573-3
– ident: e_1_2_8_81_1
  doi: 10.1063/1.4776495
– ident: e_1_2_8_30_1
  doi: 10.1016/j.tics.2007.04.001
– ident: e_1_2_8_20_1
  doi: 10.1038/s42003-020-0774-y
– ident: e_1_2_8_13_1
  doi: 10.1016/j.nicl.2014.05.004
– ident: e_1_2_8_98_1
  doi: 10.1016/j.neuroimage.2011.06.021
– ident: e_1_2_8_72_1
  doi: 10.1523/JNEUROSCI.4637-10.2011
– ident: e_1_2_8_92_1
  doi: 10.1162/jocn.2008.20055
– ident: e_1_2_8_22_1
  doi: 10.1093/cercor/bhw157
– ident: e_1_2_8_32_1
  doi: 10.1523/JNEUROSCI.2111-11.2011
– ident: e_1_2_8_16_1
  doi: 10.1038/nrn2961
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.1621147114
– ident: e_1_2_8_35_1
  doi: 10.1097/WNP.0b013e3181fdf8d3
– ident: e_1_2_8_100_1
  doi: 10.1523/JNEUROSCI.17-21-08528.1997
– ident: e_1_2_8_64_1
  doi: 10.1038/s41398-021-01197-x
– ident: e_1_2_8_27_1
  doi: 10.1073/pnas.0800537105
– ident: e_1_2_8_59_1
  doi: 10.1103/PhysRevLett.73.951
– ident: e_1_2_8_67_1
  doi: 10.1103/PhysRevE.97.062305
– ident: e_1_2_8_54_1
  doi: 10.1016/j.neuroimage.2021.117760
– ident: e_1_2_8_21_1
  doi: 10.1523/JNEUROSCI.3694-14.2015
– ident: e_1_2_8_58_1
  doi: 10.3390/e22030339
– ident: e_1_2_8_79_1
  doi: 10.1016/j.conb.2012.11.015
– ident: e_1_2_8_45_1
  doi: 10.1007/s11682-018-0009-8
– ident: e_1_2_8_8_1
  doi: 10.1098/rsif.2019.0262
– ident: e_1_2_8_60_1
  doi: 10.3389/fnsys.2014.00108
– ident: e_1_2_8_74_1
  doi: 10.1038/nn.4125
– ident: e_1_2_8_12_1
  doi: 10.1016/j.pneurobio.2017.07.002
– ident: e_1_2_8_84_1
  doi: 10.1016/S1364-6613(98)01259-5
– ident: e_1_2_8_33_1
  doi: 10.1038/srep32328
– ident: e_1_2_8_55_1
  doi: 10.1073/pnas.1216855110
– ident: e_1_2_8_56_1
  doi: 10.1140/epjst/e2012-01575-5
– ident: e_1_2_8_53_1
  doi: 10.1093/cercor/bhw070
– ident: e_1_2_8_102_1
  doi: 10.1103/PhysRevLett.75.4071
– ident: e_1_2_8_70_1
  doi: 10.1177/1073858412445487
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevLett.108.208102
– ident: e_1_2_8_93_1
  doi: 10.1371/journal.pone.0068910
– ident: e_1_2_8_14_1
  doi: 10.1016/j.biopsych.2011.03.028
– ident: e_1_2_8_46_1
  doi: 10.1002/syn.10143
– ident: e_1_2_8_36_1
  doi: 10.3389/fphys.2019.00113
– ident: e_1_2_8_76_1
  doi: 10.3389/fnint.2012.00044
– ident: e_1_2_8_37_1
  doi: 10.1073/pnas.0801268105
– ident: e_1_2_8_91_1
  doi: 10.1073/pnas.2022288118
– ident: e_1_2_8_26_1
  doi: 10.1007/s00213-005-0077-5
– ident: e_1_2_8_62_1
  doi: 10.1038/s41398-021-01333-7
– ident: e_1_2_8_90_1
  doi: 10.1103/PhysRevLett.123.038301
– ident: e_1_2_8_75_1
  doi: 10.1093/cercor/bhu251
– ident: e_1_2_8_39_1
  doi: 10.1038/s42005-019-0276-8
– ident: e_1_2_8_44_1
  doi: 10.1016/j.neuroimage.2018.12.011
– ident: e_1_2_8_73_1
  doi: 10.1523/JNEUROSCI.4286-12.2013
– ident: e_1_2_8_101_1
  doi: 10.1016/j.neuroimage.2009.12.027
– ident: e_1_2_8_41_1
  doi: 10.3758/BF03196323
– ident: e_1_2_8_83_1
  doi: 10.3389/fphys.2016.00425
– ident: e_1_2_8_40_1
  doi: 10.1063/1.4978998
– ident: e_1_2_8_65_1
  doi: 10.1007/s10334-010-0197-8
– ident: e_1_2_8_89_1
  doi: 10.3389/fnagi.2017.00378
– ident: e_1_2_8_80_1
  doi: 10.3389/fphys.2012.00015
– ident: e_1_2_8_11_1
  doi: 10.1137/070710111
– ident: e_1_2_8_51_1
  doi: 10.1371/journal.pcbi.1002312
– ident: e_1_2_8_95_1
  doi: 10.1038/srep02853
– ident: e_1_2_8_87_1
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: e_1_2_8_6_1
  doi: 10.1523/JNEUROSCI.23-35-11167.2003
– ident: e_1_2_8_18_1
  doi: 10.1523/ENEURO.0551-20.2021
– ident: e_1_2_8_2_1
  doi: 10.1016/j.clinph.2013.08.033
– ident: e_1_2_8_69_1
  doi: 10.1038/35065675
– ident: e_1_2_8_85_1
  doi: 10.1073/pnas.91.11.5033
SSID ssj0011501
Score 2.4460287
Snippet The critical brain hypothesis suggests that efficient neural computation can be achieved through critical brain dynamics. However, the relationship between...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2534
SubjectTerms avalanche criticality
Avalanches
Brain
Brain - diagnostic imaging
Brain Mapping
Cognitive ability
Cortex (parietal)
Critical point
Data analysis
Dynamics
Entropy
fluid intelligence
Functional magnetic resonance imaging
Human performance
Humans
Hypotheses
Identification methods
Information storage
Intelligence
large‐scale brain network
Magnetic Resonance Imaging
Memory
Memory, Short-Term
Neural networks
Neuroimaging
phase transition
Phase transitions
Prefrontal cortex
resting‐state fMRI
Short term memory
Structure-function relationships
Synchronism
Synchronization
Time series
working memory
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS9xAEB7EQumL2FNr9CqrSPHB1GQvu8nSp7MoR_FKHyr4FnY3Gy7gRfE8xf_emU0uelihb4FMSDI_dr6d3fkW4DBNY6VM7EJRZlS6sTLEaYQMVRQZ4n8yJqXm5PFvObpMfl2JqxX4seiFafghuoIbRYYfrynAtZmdvJCGTsz0OxcZEUl-oNZacnKe_OmWEBDp-NkW5thQ4RC8oBWK-En36HIyeoMw326UfA1gfQY6X4e1FjqyYWPrz7Di6h5sDGucNk-f2DfmN3P6KnkPPo7bNfMNuBg-0PZFNA6z7bkGiLxZVbOqa8aaHbPyel4VrHrF0HnMdF2wx6aazqa0JfdpEy7Pz_7-HIXtGQqhTZIBDwdOahFLEZvCWVMmmeCWI6grkkIWmY5EaePUGkQRGJmYrnmM412kOSET5bQcbMFqfVO7bWAuRTQnhFOpLhMVW2MiVIyUWVaoxGkTwNFCmbltCcbpnIvrvKFG5jnqPfd6D-CgE71tWDX-JdRfWCRvA2uWc4kTJBVJlQWw393GkKB1Dl27mznJ0PKwQqQVwJfGgN1bqHFBZoM4gHTJtJ0A0W0v36mriafdVght0ZvwN70TvP_h-eh07C92_l90Fz5xaqzw9Z0-rN7fzd1XhDv3Zs-79TOhhvqV
  priority: 102
  providerName: Wiley-Blackwell
Title Avalanche criticality in individuals, fluid intelligence, and working memory
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25802
https://www.ncbi.nlm.nih.gov/pubmed/35146831
https://www.proquest.com/docview/2657690698
https://www.proquest.com/docview/2628299397
https://pubmed.ncbi.nlm.nih.gov/PMC9057106
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7ygNBLaR5t3CaLWkLoIW5srSVbp7IJCUvphhAa2JuxZJkYst60m23Jv--MrHUS8rgYgwZsaUbSN6PRNwB7aRorpWMbiiqj0I2RIboRMlRRpIn_SeuULiePzuTwMvkxFmMfcJv5tMrFmugW6nJqKEZ-yCUiYxVJlX2_-R1S1Sg6XfUlNJZhlajLyPlKx53DRWDHOVy4zYYKV-EFs1DED6_05BsXmY-mdPvRE5D5NFfyIYZ1m9DpO3jr0SMbtOpehyXbbMDmoEHPeXLH9pnL53SB8g1YG_lj8034OfhLGYyoH2Z8aQME36xuWN3dx5odsOp6XpesfkDSecCKpmT_2oA6m1BW7t0WXJ6e_Doehr6MQmiSpM_DvpWFiKWIdWmNrpJMcMMR15VJKcusiERl4tRoBBI4OXHH5jEueVHBCZwoW8j-e1hppo3dBmZTBHRCWJUWVaJio3WEAyNllpUqsYUO4OtiMHPjOcap1MV13rIj8xzHPXfjHsCXTvSmJdZ4TmhnoZHcz61Zfm8JAXzumnFW0FFH0djpnGTohFgh2ArgQ6vA7it0d0Fm_TiA9JFqOwFi3H7c0tRXjnlbIbpFa8JuOiN4-cfz4dHIvXx8vQef4A2n-xQurLMDK7d_5nYXUc6t7sEyT857zqB7sHp0cnZ-0XMRA3pe8P-MS_8Y
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRaK9VC30kUKpW0HVAymJEzvxoUJLAS2wu6oqkLilseOISGyWsmzR_il-I2PnURAtN26RPEri8djzeZ4Aa1HkCyF97bI8NqYbxV28RnBXeJ409Z-kjExy8mDIe8fhwQk7mYPrJhfGhFU2Z6I9qLOxMjbyTcoRGQuPi3jr_LdrukYZ72rTQqMSi0M9u8Ir2-Tb_g6u7zqle7tH33tu3VXAVWEYUDfQPGU-Z77MtJJ5GDOqKMKcLMx4Fqcey5UfKYl6FWUVFRj18QTwUmp0tdApD_C9T2A-DBAqdGB-e3f442frt0B4Za94SOwKPPebWkYe3TyVo6-UxbX9ptWA92Dt_ejM26jZqr29F_C8xqukWwnYS5jT5SIsdUu8q49m5DOxEaTWNL8IC4PaUb8E_e4fEzOJEkFU3UwB4T4pSlK0GWCTDZKfTYuMFLfKgm6QtMzIVWXCJyMTBzx7BcePwuLX0CnHpX4LREcIIRnTIkrzUPhKSg8Zw3kcZyLUqXTgS8PMRNVVzU1zjbOkqsdME-R7YvnuwKeW9Lwq5fEvopVmRZJ6N0-Sv7LnwMd2GPehca6kpR5PDY3xSQuEdw68qRaw_YrJluBx4DsQ3VnalsDU-L47Uhantta3QDyN0oTTtELw_x9PetsD-_Du4Rl8gKe9o0E_6e8PD5fhGTXZHNaotAKdy4upfo8Y61Ku1oJN4Ndj76UbooY32Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcELQ8AgUMAsShYRMnseMDQgtltaXdigOV9hZix1EjdbOF7VLtX-PXMeM8aFXg1lukjPIYz3i-Gc8D4KWUoVI6tH5SphS6McJHN0L4Kgg09X_SWlJx8uRQjI_iz9Nkuga_uloYSqvs9kS3URdzQzHyAReIjFUgVDoo27SIL7uj96fffZogRSet3TiNRkT27eoc3bfFu71dXOtXnI8-ff049tsJA76J44j7kRV5Eook1IU1uozThBuOkKeIC1GkeZCUJpRGo41FuUVjxkPcDYKck91WNhcRPvcG3JQRmk3UJTntnT0CWs7ZQ1JfoQXouhoFfHCsZ295kraRnN4WXgG4V_M0L-JnZwBHd-B2i1zZsBG1u7Bm603YGtbotc9W7DVzuaQuSL8JG5P2yH4LDoY_KXsSZYOZdqwCAn9W1azqa8EWO6w8WVYFqy40CN1heV2w8yaYz2aUEby6B0fXwuD7sF7Pa_sQmJUIJpPEKpmXsQqN1gEyRog0LVRsc-3Bm46ZmWn7m9OYjZOs6czMM-R75vjuwYue9LRp6vE3ou1uRbJWrxfZHyn04Hl_GzWSjlny2s6XREOn0wqBngcPmgXs30J1EyKNQg_kpaXtCajb9-U7dXXsun4rRNYoTfibTgj-_eHZ-MPEXTz6_x88gw3UoOxg73D_MdziVNbhokvbsH72Y2mfINg600-dVDP4dt1q9BvGdTqp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Avalanche+criticality+in+individuals%2C+fluid+intelligence%2C+and+working+memory&rft.jtitle=Human+brain+mapping&rft.au=Xu%2C+Longzhou&rft.au=Feng%2C+Jianfeng&rft.au=Yu%2C+Lianchun&rft.date=2022-06-01&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=43&rft.issue=8&rft.spage=2534&rft.epage=2553&rft_id=info:doi/10.1002%2Fhbm.25802&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_hbm_25802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon