Real‐time shimming with FID navigators

Purpose To implement a method for real‐time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improving T2*$$ {\mathrm{T}}_2^{\ast } $$‐weighted image quality. Methods FIDnavs were embedded...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 88; no. 6; pp. 2548 - 2563
Main Authors Wallace, Tess E., Kober, Tobias, Stockmann, Jason P., Polimeni, Jonathan R., Warfield, Simon K., Afacan, Onur
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2022
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.29421

Cover

Abstract Purpose To implement a method for real‐time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improving T2*$$ {\mathrm{T}}_2^{\ast } $$‐weighted image quality. Methods FIDnavs were embedded in a gradient echo sequence and a subject‐specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID‐navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B0 shim settings. To evaluate improvement in T2*$$ {\mathrm{T}}_2^{\ast } $$‐weighted image quality with real‐time shimming, 10 volunteers were scanned at 3T while performing deep‐breathing and nose‐touching tasks designed to modulate the B0 field. Quantitative image quality metrics were compared with and without FID‐navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra‐high field. Results Applying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID‐navigated real‐time shimming led to a substantial reduction in field fluctuations and a consequent improvement in T2*$$ {\mathrm{T}}_2^{\ast } $$‐weighted image quality in volunteers performing deep‐breathing and nose‐touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively. Conclusion FIDnavs facilitate rapid measurement and application of field coefficients for slice‐wise B0 shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improves T2*$$ {\mathrm{T}}_2^{\ast } $$‐weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra‐high field.
AbstractList To implement a method for real-time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improving -weighted image quality. FIDnavs were embedded in a gradient echo sequence and a subject-specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID-navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B shim settings. To evaluate improvement in -weighted image quality with real-time shimming, 10 volunteers were scanned at 3T while performing deep-breathing and nose-touching tasks designed to modulate the B field. Quantitative image quality metrics were compared with and without FID-navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra-high field. Applying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID-navigated real-time shimming led to a substantial reduction in field fluctuations and a consequent improvement in -weighted image quality in volunteers performing deep-breathing and nose-touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively. FIDnavs facilitate rapid measurement and application of field coefficients for slice-wise B shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improves -weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra-high field.
Purpose To implement a method for real‐time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improving T2*$$ {\mathrm{T}}_2^{\ast } $$‐weighted image quality. Methods FIDnavs were embedded in a gradient echo sequence and a subject‐specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID‐navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B0 shim settings. To evaluate improvement in T2*$$ {\mathrm{T}}_2^{\ast } $$‐weighted image quality with real‐time shimming, 10 volunteers were scanned at 3T while performing deep‐breathing and nose‐touching tasks designed to modulate the B0 field. Quantitative image quality metrics were compared with and without FID‐navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra‐high field. Results Applying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID‐navigated real‐time shimming led to a substantial reduction in field fluctuations and a consequent improvement in T2*$$ {\mathrm{T}}_2^{\ast } $$‐weighted image quality in volunteers performing deep‐breathing and nose‐touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively. Conclusion FIDnavs facilitate rapid measurement and application of field coefficients for slice‐wise B0 shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improves T2*$$ {\mathrm{T}}_2^{\ast } $$‐weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra‐high field.
Click here for author‐reader discussions
PurposeTo implement a method for real‐time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improving T2*$$ {\mathrm{T}}_2^{\ast } $$‐weighted image quality.MethodsFIDnavs were embedded in a gradient echo sequence and a subject‐specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID‐navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B0 shim settings. To evaluate improvement in T2*$$ {\mathrm{T}}_2^{\ast } $$‐weighted image quality with real‐time shimming, 10 volunteers were scanned at 3T while performing deep‐breathing and nose‐touching tasks designed to modulate the B0 field. Quantitative image quality metrics were compared with and without FID‐navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra‐high field.ResultsApplying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID‐navigated real‐time shimming led to a substantial reduction in field fluctuations and a consequent improvement in T2*$$ {\mathrm{T}}_2^{\ast } $$‐weighted image quality in volunteers performing deep‐breathing and nose‐touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively.ConclusionFIDnavs facilitate rapid measurement and application of field coefficients for slice‐wise B0 shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improves T2*$$ {\mathrm{T}}_2^{\ast } $$‐weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra‐high field.
To implement a method for real-time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improving T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality.PURPOSETo implement a method for real-time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improving T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality.FIDnavs were embedded in a gradient echo sequence and a subject-specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID-navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B0 shim settings. To evaluate improvement in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality with real-time shimming, 10 volunteers were scanned at 3T while performing deep-breathing and nose-touching tasks designed to modulate the B0 field. Quantitative image quality metrics were compared with and without FID-navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra-high field.METHODSFIDnavs were embedded in a gradient echo sequence and a subject-specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID-navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B0 shim settings. To evaluate improvement in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality with real-time shimming, 10 volunteers were scanned at 3T while performing deep-breathing and nose-touching tasks designed to modulate the B0 field. Quantitative image quality metrics were compared with and without FID-navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra-high field.Applying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID-navigated real-time shimming led to a substantial reduction in field fluctuations and a consequent improvement in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality in volunteers performing deep-breathing and nose-touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively.RESULTSApplying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID-navigated real-time shimming led to a substantial reduction in field fluctuations and a consequent improvement in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality in volunteers performing deep-breathing and nose-touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively.FIDnavs facilitate rapid measurement and application of field coefficients for slice-wise B0 shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improves T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra-high field.CONCLUSIONFIDnavs facilitate rapid measurement and application of field coefficients for slice-wise B0 shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improves T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra-high field.
Author Stockmann, Jason P.
Polimeni, Jonathan R.
Warfield, Simon K.
Wallace, Tess E.
Kober, Tobias
Afacan, Onur
AuthorAffiliation 2. Department of Radiology, Harvard Medical School, Boston, MA, United States
4. Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
3. Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
1. Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
5. LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
6. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
AuthorAffiliation_xml – name: 3. Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
– name: 4. Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
– name: 5. LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
– name: 6. Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
– name: 1. Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, United States
– name: 2. Department of Radiology, Harvard Medical School, Boston, MA, United States
Author_xml – sequence: 1
  givenname: Tess E.
  orcidid: 0000-0002-8519-5913
  surname: Wallace
  fullname: Wallace, Tess E.
  email: tess.wallace@childrens.harvard.edu
  organization: Harvard Medical School
– sequence: 2
  givenname: Tobias
  orcidid: 0000-0001-7598-9456
  surname: Kober
  fullname: Kober, Tobias
  organization: LTS5, École Polytechnique Fédérale de Lausanne
– sequence: 3
  givenname: Jason P.
  orcidid: 0000-0001-8454-5347
  surname: Stockmann
  fullname: Stockmann, Jason P.
  organization: Massachusetts General Hospital
– sequence: 4
  givenname: Jonathan R.
  orcidid: 0000-0002-1348-1179
  surname: Polimeni
  fullname: Polimeni, Jonathan R.
  organization: Massachusetts General Hospital
– sequence: 5
  givenname: Simon K.
  orcidid: 0000-0002-7659-3880
  surname: Warfield
  fullname: Warfield, Simon K.
  organization: Harvard Medical School
– sequence: 6
  givenname: Onur
  orcidid: 0000-0003-2112-3205
  surname: Afacan
  fullname: Afacan, Onur
  email: onur.afacan@childrens.harvard.edu
  organization: Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36093989$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9OwkAQhzcGo4AefAFD4gUP1f1H27mYGBQlkZgYPW-Wdgpr2i7uFgg3H8Fn9EksokZN9DSH_eabmf21SKO0JRJywOgJo5SfFq444SA52yJN1uM84D2QDdKkkaSBYCB3Scv7R0opQCR3yK4IKQiIoUm6d6jz1-eXyhTY8VNTFKacdJammnYGw4tOqRdmoivr_B7ZznTucf-jtsnD4PK-fx3c3F4N--c3QSKlYEEWZiIFTseJ1DzhqLOQs5hxhCTSTFORxiGKjEVCgEZIEbMQx3HKdE9IDalok7ONdzYfF5gmWFZO52rmTKHdSllt1M-X0kzVxC4U9DjUg2pB90Pg7NMcfaUK4xPMc12inXvFIyZEzUmo0aNf6KOdu7I-b02BiCPga-Hh942-Vvn8xBo43gCJs947zL4QRtU6IFUHpN4DqtnTX2xiKl0Zuz7G5P91LE2Oq7_VanQ32nS8AZMXobM
CitedBy_id crossref_primary_10_1002_mrm_30262
crossref_primary_10_1002_mrm_30385
crossref_primary_10_1002_mrm_30441
crossref_primary_10_1002_mrm_30475
crossref_primary_10_1093_psyrad_kkae013
Cites_doi 10.1016/j.neuroimage.2017.11.031
10.1016/j.neuroimage.2013.09.034
10.1002/mrm.1910310505
10.1016/j.neuroimage.2015.11.022
10.1002/mrm.22083
10.1002/1522-2594(200011)44:5<758::AID-MRM14>3.0.CO;2-G
10.1002/mrm.26524
10.1002/mrm.29022
10.1016/j.neuroimage.2017.02.046
10.1002/mrm.26735
10.1002/jmri.24199
10.1002/nbm.3753
10.1016/j.neuroimage.2019.116332
10.1002/mrm.25167
10.1002/mrm.27063
10.1002/mrm.28505
10.1002/mrm.25838
10.1016/j.mri.2014.09.004
10.1016/j.jalz.2013.02.002
10.1016/j.mri.2005.02.010
10.1016/j.neurobiolaging.2016.09.005
10.1016/j.mric.2020.09.006
10.1002/mrm.27381
10.1016/j.neuroimage.2010.03.048
10.1002/mrm.28197
10.1002/mrm.20695
10.1016/j.neuroimage.2016.11.031
10.1002/mrm.27957
10.1002/mrm.10145
10.1016/j.neuroimage.2017.01.014
10.1002/mrm.29253
10.1002/mrm.10259
10.1002/jmri.24768
10.1002/mrm.25802
10.1002/mrm.24202
10.1097/RLI.0000000000000754
10.1016/j.neuroimage.2020.117286
10.1002/mrm.25407
10.1002/mrm.10065
10.1002/mrm.28044
10.1002/mrm.20198
10.1002/mrm.21038
10.1002/mrm.21136
10.1002/mrm.27339
ContentType Journal Article
Copyright 2022 International Society for Magnetic Resonance in Medicine.
2022 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2022 International Society for Magnetic Resonance in Medicine.
– notice: 2022 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.29421
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
Biochemistry Abstracts 1
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2563
ExternalDocumentID PMC9529812
36093989
10_1002_mrm_29421
MRM29421
Genre researchArticle
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Thrasher Research Fund
  funderid: Early Career Award #14989
– fundername: National Institutes of Health
– fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: P41 EB030006; R01 EB019483
– fundername: NIH Office of the Director
  funderid: S10 OD023637; S10 OD025111
– fundername: National Institute of Neurological Disorders and Stroke
  funderid: R01 NS106030; R01 NS121657
– fundername: NIH HHS
  grantid: S10 OD025111
– fundername: NIH HHS
  grantid: S10 OD023637
– fundername: NIBIB NIH HHS
  grantid: R01 EB019483
– fundername: NINDS NIH HHS
  grantid: R01 NS106030
– fundername: NIBIB NIH HHS
  grantid: P41 EB030006
– fundername: NINDS NIH HHS
  grantid: R01 NS121657
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4431-f6f3d920bc4a2c2eaf621812e9c7a1a03d86e3f17339ae9deef6eb8d1a534a9d3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:35:54 EDT 2025
Thu Jul 10 22:24:42 EDT 2025
Fri Jul 25 12:17:05 EDT 2025
Thu Apr 03 07:06:00 EDT 2025
Tue Jul 01 04:27:04 EDT 2025
Thu Apr 24 23:00:38 EDT 2025
Wed Jan 22 16:23:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords real-time shimming
B0 inhomogeneity
weighted imaging
FID navigators
artifact correction
Language English
License 2022 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4431-f6f3d920bc4a2c2eaf621812e9c7a1a03d86e3f17339ae9deef6eb8d1a534a9d3
Notes Funding information
Parts of this work were presented at the joint Annual Meeting of the ISMRM‐ESMRMB, London, UK, 2022.
National Institute of Biomedical Imaging and Bioengineering, Grant/Award Numbers: P41 EB030006; R01 EB019483; National Institute of Neurological Disorders and Stroke, Grant/Award Numbers: R01 NS106030; R01 NS121657; NIH Office of the Director, and Stroke, Grant/Award Numbers: S10 OD023637; S10 OD025111; Thrasher Research Fund, Grant/Award Number: Early Career Award #14989; National Institutes of Health
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8454-5347
0000-0001-7598-9456
0000-0002-1348-1179
0000-0002-7659-3880
0000-0002-8519-5913
0000-0003-2112-3205
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/191053
PMID 36093989
PQID 2719387922
PQPubID 1016391
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9529812
proquest_miscellaneous_2713312349
proquest_journals_2719387922
pubmed_primary_36093989
crossref_primary_10_1002_mrm_29421
crossref_citationtrail_10_1002_mrm_29421
wiley_primary_10_1002_mrm_29421_MRM29421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009; 62
2006; 56
2020; 84
2015; 73
2020; 83
2018; 168
2021; 29
2018; 167
2015; 74
2021; 226
2015; 33
2016; 76
2016; 75
2018; 80
2020; 206
2016; 126
2022; 87
2017; 154
2022; 88
2007; 57
2014; 88
2005; 23
2002; 47
2004; 52
2017; 53
2002; 48
2017; 30
2019; 81
2021; 56
2021
2000; 765
2015; 42
2017; 78
2005; 54
2014; 39
2012; 68
2021; 85
2010; 51
2014; 10
2018; 79
1994; 31
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
Wallace TE (e_1_2_8_42_1) 2021
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 56
  start-page: 409
  year: 2021
  end-page: 416
  article-title: Navigator‐guided motion and B correction of ‐weighted magnetic resonance imaging improves multiple sclerosis cortical lesion detection
  publication-title: Invest Radiol
– volume: 54
  start-page: 1261
  year: 2005
  end-page: 1267
  article-title: Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 56
  start-page: 1019
  year: 2006
  end-page: 1032
  article-title: Real‐time rigid body motion correction and shimming using cloverleaf navigators
  publication-title: Magn Reson Med
– volume: 80
  start-page: 2538
  year: 2018
  end-page: 2548
  article-title: Effect of head motion on MRI B field distribution
  publication-title: Magn Reson Med
– volume: 84
  start-page: 1218
  year: 2020
  end-page: 1234
  article-title: Improved susceptibility‐weighted imaging for high contrast and resolution thalamic nuclei mapping at 7T
  publication-title: Magn Reson Med
– volume: 206
  year: 2020
  article-title: Reducing motion sensitivity in 3D high‐resolution ‐weighted MRI by navigator‐based motion and nonlinear magnetic field correction
  publication-title: Neuroimage
– volume: 42
  start-page: 23
  year: 2015
  end-page: 41
  article-title: Susceptibility‐weighted imaging and quantitative susceptibility mapping in the brain
  publication-title: J Magn Reson Imaging
– volume: 79
  start-page: 770
  year: 2018
  end-page: 778
  article-title: Enhanced quantitative susceptibility mapping (QSM) using real‐time field control
  publication-title: Magn Reson Med
– volume: 88
  start-page: 787
  year: 2022
  end-page: 801
  article-title: Combining navigator and optical prospective motion correction for high‐quality 500 μm resolution quantitative multi‐parameter mapping at 7T
  publication-title: Magn Reson Med
– volume: 47
  start-page: 888
  year: 2002
  end-page: 895
  article-title: Respiration‐induced B fluctuations and their spatial distribution in the human brain at 7 Tesla
  publication-title: Magn Reson Med
– volume: 52
  start-page: 612
  year: 2004
  end-page: 618
  article-title: Susceptibility weighted imaging (SWI)
  publication-title: Magn Reson Med
– volume: 39
  start-page: 633
  year: 2014
  end-page: 640
  article-title: Texture analysis of ultrahigh field ‐weighted MR images of the brain: application to Huntington's disease
  publication-title: J Magn Reson Imaging
– volume: 29
  start-page: 41
  year: 2021
  end-page: 52
  article-title: Ultrahigh field MR imaging in epilepsy
  publication-title: Magn Reson Imaging Clin N Am
– volume: 126
  start-page: 60
  year: 2016
  end-page: 71
  article-title: Real‐time measurement and correction of both B changes and subject motion in diffusion tensor imaging using a double volumetric navigated (DvNav) sequence
  publication-title: Neuroimage
– start-page: 3526
  year: 2021
– volume: 765
  start-page: 758
  year: 2000
  end-page: 765
  article-title: B ‐fluctuation‐induced temporal variation in EPI image series due to the disturbance of steady‐state spin evolution under a train of RF pulses
  publication-title: Magn Reson Med
– volume: 51
  start-page: 1082
  year: 2010
  end-page: 1088
  article-title: Origin and reduction of motion and f0 artifacts in high resolution magnetic resonance imaging: application in Alzheimer's disease patients
  publication-title: Neuroimage
– volume: 33
  start-page: 1
  year: 2015
  end-page: 25
  article-title: Quantitative susceptibility mapping: current status and future directions
  publication-title: Magn Reson Imaging
– volume: 154
  start-page: 92
  year: 2017
  end-page: 105
  article-title: Analysis and correction of field fluctuations in fMRI data using field monitoring
  publication-title: Neuroimage
– volume: 87
  start-page: 1074
  year: 2022
  end-page: 1092
  article-title: A 31‐channel integrated “AC/DC” B shim and radiofrequency receive array coil for improved 7T MRI
  publication-title: Magn Reson Med
– volume: 168
  start-page: 477
  year: 2018
  end-page: 489
  article-title: Key clinical benefits of neuroimaging at 7T
  publication-title: Neuroimage
– volume: 48
  start-page: 771
  year: 2002
  end-page: 780
  article-title: Real‐time autoshimming for echo planar timecourse imaging
  publication-title: Magn Reson Med
– volume: 168
  start-page: 152
  year: 2018
  end-page: 161
  article-title: Studying brain microstructure with magnetic susceptibility contrast at high‐field
  publication-title: Neuroimage
– volume: 53
  start-page: 20
  year: 2017
  end-page: 26
  article-title: In vivo assessment of iron content of the cerebral cortex in healthy aging using 7‐Tesla ‐weighted phase imaging
  publication-title: Neurobiol Aging
– volume: 80
  start-page: 585
  year: 2018
  end-page: 597
  article-title: Investigating the accuracy of FatNav‐derived estimates of temporal B changes and their application to retrospective correction of high‐resolution 3D GRE of the human brain at 7T
  publication-title: Magn Reson Med
– volume: 83
  start-page: 575
  year: 2020
  end-page: 589
  article-title: Rapid measurement and correction of spatiotemporal B field changes using FID navigators and a multi‐channel reference image
  publication-title: Magn Reson Med
– volume: 83
  start-page: 1730
  year: 2020
  end-page: 1740
  article-title: Dynamic B shimming of the motor cortex and cerebellum with a multicoil shim setup for BOLD fMRI at 9 .4T
  publication-title: Magn Reson Med
– volume: 78
  start-page: 1373
  year: 2017
  end-page: 1382
  article-title: A comparison of navigators, snap‐shot field monitoring, and probe‐based field model training for correcting B ‐induced artifacts in ‐weighted images at 7T
  publication-title: Magn Reson Med
– volume: 10
  start-page: 19
  year: 2014
  end-page: 26
  article-title: Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker
  publication-title: Alzheimers Dement
– volume: 75
  start-page: 2020
  year: 2016
  end-page: 2030
  article-title: Measuring motion‐induced B ‐fluctuations in the brain using field probes
  publication-title: Magn Reson Med
– volume: 68
  start-page: 1836
  year: 2012
  end-page: 1845
  article-title: Retrospective image correction in the presence of nonlinear temporal magnetic field changes using multichannel navigator echoes
  publication-title: Magn Reson Med
– volume: 30
  start-page: 1
  year: 2017
  end-page: 13
  article-title: Feedback field control improves the precision of quantification at 7T
  publication-title: NMR Biomed
– volume: 167
  start-page: 191
  year: 2018
  end-page: 202
  article-title: Spatiotemporal characterization of breathing‐induced B field fluctuations in the cervical spinal cord at 7T
  publication-title: Neuroimage
– volume: 81
  start-page: 258
  year: 2019
  end-page: 274
  article-title: Head motion measurement and correction using FID navigators
  publication-title: Magn Reson Med
– volume: 74
  start-page: 396
  year: 2015
  end-page: 409
  article-title: Monitoring, analysis, and correction of magnetic field fluctuations in echo planar imaging time series
  publication-title: Magn Reson Med
– volume: 88
  start-page: 22
  year: 2014
  end-page: 31
  article-title: Real‐time motion‐ and B ‐correction for LASER‐localized spiral‐accelerated 3D‐MRSI of the brain at 3T
  publication-title: Neuroimage
– volume: 62
  start-page: 1319
  year: 2009
  end-page: 1325
  article-title: SENSE shimming (SSH): a fast approach for determining B field inhomogeneities using sensitivity coding
  publication-title: Magn Reson Med
– volume: 31
  start-page: 495
  year: 1994
  end-page: 503
  article-title: Reduction of signal fluctuation in functional MRI using navigator echoes
  publication-title: Magn Reson Med
– volume: 76
  start-page: 430
  year: 2016
  end-page: 439
  article-title: Utility of real‐time field control in ‐weighted head MRI at 7T
  publication-title: Magn Reson Med
– volume: 47
  start-page: 344
  year: 2002
  end-page: 353
  article-title: Correction of physiologically induced global off‐resonance effects in dynamic echo‐planar and spiral functional imaging
  publication-title: Magn Reson Med
– volume: 226
  year: 2021
  article-title: Simultaneous feedback control for joint field and motion correction in brain MRI
  publication-title: Neuroimage
– volume: 85
  start-page: 1294
  year: 2021
  end-page: 1307
  article-title: Dynamic distortion correction for functional MRI using FID navigators
  publication-title: Magn Reson Med
– volume: 57
  start-page: 362
  year: 2007
  end-page: 368
  article-title: Real‐time shimming to compensate for respiration‐induced B fluctuations
  publication-title: Magn Reson Med
– volume: 73
  start-page: 884
  year: 2015
  end-page: 893
  article-title: Real‐time feedback for spatiotemporal field stabilization in MR systems
  publication-title: Magn Reson Med
– volume: 23
  start-page: 539
  year: 2005
  end-page: 548
  article-title: High‐resolution ultrahigh‐field MRI of stroke
  publication-title: Magn Reson Imaging
– ident: e_1_2_8_6_1
  doi: 10.1016/j.neuroimage.2017.11.031
– ident: e_1_2_8_24_1
  doi: 10.1016/j.neuroimage.2013.09.034
– ident: e_1_2_8_30_1
  doi: 10.1002/mrm.1910310505
– ident: e_1_2_8_25_1
  doi: 10.1016/j.neuroimage.2015.11.022
– ident: e_1_2_8_32_1
  doi: 10.1002/mrm.22083
– ident: e_1_2_8_35_1
  doi: 10.1002/1522-2594(200011)44:5<758::AID-MRM14>3.0.CO;2-G
– ident: e_1_2_8_18_1
  doi: 10.1002/mrm.26524
– ident: e_1_2_8_44_1
  doi: 10.1002/mrm.29022
– ident: e_1_2_8_15_1
  doi: 10.1016/j.neuroimage.2017.02.046
– ident: e_1_2_8_14_1
  doi: 10.1002/mrm.26735
– ident: e_1_2_8_37_1
  doi: 10.1002/jmri.24199
– ident: e_1_2_8_41_1
  doi: 10.1002/nbm.3753
– ident: e_1_2_8_27_1
  doi: 10.1016/j.neuroimage.2019.116332
– ident: e_1_2_8_19_1
  doi: 10.1002/mrm.25167
– ident: e_1_2_8_26_1
  doi: 10.1002/mrm.27063
– ident: e_1_2_8_34_1
  doi: 10.1002/mrm.28505
– ident: e_1_2_8_20_1
  doi: 10.1002/mrm.25838
– ident: e_1_2_8_12_1
  doi: 10.1016/j.mri.2014.09.004
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jalz.2013.02.002
– ident: e_1_2_8_39_1
  doi: 10.1016/j.mri.2005.02.010
– ident: e_1_2_8_40_1
  doi: 10.1016/j.neurobiolaging.2016.09.005
– ident: e_1_2_8_38_1
  doi: 10.1016/j.mric.2020.09.006
– ident: e_1_2_8_29_1
  doi: 10.1002/mrm.27381
– ident: e_1_2_8_3_1
  doi: 10.1016/j.neuroimage.2010.03.048
– ident: e_1_2_8_11_1
  doi: 10.1002/mrm.28197
– ident: e_1_2_8_7_1
  doi: 10.1002/mrm.20695
– ident: e_1_2_8_16_1
  doi: 10.1016/j.neuroimage.2016.11.031
– ident: e_1_2_8_33_1
  doi: 10.1002/mrm.27957
– ident: e_1_2_8_2_1
  doi: 10.1002/mrm.10145
– start-page: 3526
  volume-title: Proceedings 29th Meeting of the ISMRM, Virtual Conference; International Society of Magnetic Resonance in Medicine (ISMRM)
  year: 2021
  ident: e_1_2_8_42_1
– ident: e_1_2_8_17_1
  doi: 10.1016/j.neuroimage.2017.01.014
– ident: e_1_2_8_45_1
  doi: 10.1002/mrm.29253
– ident: e_1_2_8_22_1
  doi: 10.1002/mrm.10259
– ident: e_1_2_8_13_1
  doi: 10.1002/jmri.24768
– ident: e_1_2_8_5_1
  doi: 10.1002/mrm.25802
– ident: e_1_2_8_23_1
  doi: 10.1002/mrm.24202
– ident: e_1_2_8_9_1
  doi: 10.1097/RLI.0000000000000754
– ident: e_1_2_8_21_1
  doi: 10.1016/j.neuroimage.2020.117286
– ident: e_1_2_8_8_1
  doi: 10.1002/mrm.25407
– ident: e_1_2_8_31_1
  doi: 10.1002/mrm.10065
– ident: e_1_2_8_43_1
  doi: 10.1002/mrm.28044
– ident: e_1_2_8_10_1
  doi: 10.1002/mrm.20198
– ident: e_1_2_8_28_1
  doi: 10.1002/mrm.21038
– ident: e_1_2_8_4_1
  doi: 10.1002/mrm.21136
– ident: e_1_2_8_46_1
  doi: 10.1002/mrm.27339
SSID ssj0009974
Score 2.4314113
Snippet Purpose To implement a method for real‐time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach...
Click here for author‐reader discussions
To implement a method for real-time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for...
PurposeTo implement a method for real‐time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2548
SubjectTerms artifact correction
B0 inhomogeneity
Brain - diagnostic imaging
Calibration
FID navigators
Humans
Image Processing, Computer-Assisted - methods
Image quality
Linear Models
Magnetic Resonance Imaging - methods
Navigators
Nose
Performance evaluation
Perturbation
Phantoms, Imaging
real‐time shimming
Scanners
T2$$ {\mathrm{T}}_2^{\ast } $$ ‐weighted imaging
Volunteers
Title Real‐time shimming with FID navigators
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29421
https://www.ncbi.nlm.nih.gov/pubmed/36093989
https://www.proquest.com/docview/2719387922
https://www.proquest.com/docview/2713312349
https://pubmed.ncbi.nlm.nih.gov/PMC9529812
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9wwEMdHK6QiLtAChQWKUsSBS5bE43VicULdrqDS9rACiUOlyHYcgWCzaLPLgRMfgc_YT1LbedDlISFukTxRHI_H85cfPwPsxzqNLRbMD6mKfCq7yo-J5r7UoTRiTkop7OHkwW92ck5_XXQvWnBUn4Up-RDNhJuNDDde2wAXsjh8goaOJqMO4dQdIg-RWW5-b_iEjuK8JDBH1I4znNZUoYAcNm_O56IXAvPlPsn_9atLQP0V-FNXvdx3ct2ZTWVH3T-jOn7w3z7DciVMveOyJ32Bls5XYXFQLb2vwie3V1QVa3AwNOLy78OjvZbeKy6vRiOT_jw7oev1T3teLu4stmM8KdbhvP_z7MeJX1244CtqhISfsQxTTgKpqCCKaJExpwA0V5EIRYDGrxqzMEK0TO9U64xpGaeh6CIVPMWvsJCPc70JnmRMCIUcMVKU0IynmdYKlUJMiQ5YGw7qpk9URSO3l2LcJCVHmSSmDRLXBm3Ya0xvSwTHa0Y7tf-SKgqLhERGnsYRJ6QN35tiEz92UUTkejxzNogmfVPeho3S3c1XkAUceWxKormO0BhYNvd8SX516RjdvEu4aTnzm87Pb1c8GQwH7mHr_abbsESMtiq3wu3AwnQy09-MNprKXRcE_wCUmAwP
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUIELtDy3UBpQD1yym3i8SSz1UpWulkc4rEDigiLbcQSCzaJ9cODET-hv5JdgOw-6QKWqt0ieKPaMx_PFnvkM8C1SaWRowVyfytCloi3diCjmCuULDeaEENwUJ8enQfecHl20L2bge1ULU_BD1BtuxjPsem0c3GxIt15YQ_vDfpMwaqrI56gGGubX66D3Qh7FWMHBHFKz0jBa8Qp5pFW_Oh2N3kDMt5mSfyJYG4I6y3BZdb7IPLlpTsaiKR9e8Tr-7-g-wlKJTZ0fxWT6BDMqX4H5uDx9X4EPNl1UjlZhv6fx5dPjb3MzvTO6uu73dQR0zJ6u0zk8cHJ-b5g7BsPRGpx3fp397LrlnQuupBpLuFmQYcqIJyTlRBLFs8CCAMVkyH3uoTatwswPEQ2td6pUFigRpT5vI-UsxXWYzQe52gRHBAHnEhliKCmhGUszpSRKiZgS5QUN2K90n8iSkNzci3GbFFTKJNE6SKwOGrBXi94VLBzvCW1XBkxKRxwlJNQINQoZIQ3YrZu1C5lzEZ6rwcTKIOoITlkDNgp711_BwGPIIt0STs2EWsDQc0-35NdXlqabtQnTmtPDtIb-e8eTuBfbh8__LvoVFrpn8Ulycnh6vAWLxBRl2CSbbZgdDyfqi4ZKY7FjPeIZSaMQLA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKhAXyqOULY8G1AOXLInH68TihIAVr0XVqkgcKkW24wjUbhbtgwMnfgK_kV-C7TxgoZWq3iJ5rNgzHs8ne-YzwLdYp7GlBfNDqiKfypbyY6K5L3UoDZiTUgpbnNy5YMeX9PSqdTUFe1UtTMEPUR-4Wc9w-7V18Ns0230hDe0Nek3CqS0i_0CZQRIWEXVfuKM4LyiYI2o3Gk4rWqGA7NZdJ4PRO4T5PlHyNYB1Eaj9EX5WYy8ST341xyPZVPdvaB3_c3ILMF8iU2-_WEqLMKXzJZjtlHfvSzDjkkXVcBl2ugZdPj082nfpveH1Ta9n4p9nT3S99smhl4s7y9vRHww_wWX76MfBsV--uOArapCEn7EMU04CqaggimiRMQcBNFeRCEWAxrAaszBCtKTeqdYZ0zJOQ9FCKniKKzCd93O9Cp5kTAiFHDFSlNCMp5nWCpVCTIkOWAN2KtUnqqQjt69i_E4KImWSGB0kTgcN2K5FbwsOjj8JrVf2S0o3HCYkMvg0jjghDdiqm40D2VsRkev-2MkgmvhNeQM-F-au_4Is4Mhj0xJNLIRawJJzT7bkN9eOpJu3CDeaM9N0dv77wJNOt-M-vvy76FeY_X7YTs5PLs7WYI7YigyXYbMO06PBWG8YnDSSm84fngEXfg7b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+shimming+with+FID+navigators&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Wallace%2C+Tess+E&rft.au=Kober%2C+Tobias&rft.au=Stockmann%2C+Jason+P&rft.au=Polimeni%2C+Jonathan+R&rft.date=2022-12-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=88&rft.issue=6&rft.spage=2548&rft.epage=2563&rft_id=info:doi/10.1002%2Fmrm.29421&rft_id=info%3Apmid%2F36093989&rft.externalDocID=PMC9529812
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon