Circulating β cell‐specific CD8+ T cells restricted by high‐risk HLA class I molecules show antigen experience in children with and at risk of type 1 diabetes
Summary In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8+ T cells that recognize peptides presented by t...
Saved in:
Published in | Clinical and experimental immunology Vol. 199; no. 3; pp. 263 - 277 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.03.2020
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0009-9104 1365-2249 1365-2249 |
DOI | 10.1111/cei.13391 |
Cover
Loading…
Abstract | Summary
In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8+ T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)‐specific and insulin B (InsB)‐specific CD8+ T cells in HLA‐B*3906+ children newly diagnosed with T1D and in high‐risk HLA‐A*2402+ children before the appearance of disease‐specific autoantibodies and before diagnosis of T1D. Antigen‐specific CD8+ T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA‐B*3906+ children with T1D, we observed an increase in PPI5–12‐specific transitional memory CD8+ T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI5–12‐specific CD8+ T cells in HLA‐B*3906+ children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8+ T cells. In longitudinal samples from high‐risk HLA‐A*2402+ children, the percentage of terminal effector cells within the InsB15–24‐specific CD8+ T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA‐B*3906‐restricted autoreactive CD8+ T cells in T1D. Collectively, our results provide evidence that β cell‐reactive CD8+ T cells restricted by disease‐associated HLA class I molecules display an antigen‐experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease.
In this study, we characterised circulating autoreactive CD8+ T cells in children with type 1 diabetes with HLA-B*3906+ and HLA-A*2402+ genotypes which are associated with increased risk and early onset of disease. In HLA-B*3906+ children with newly diagnosed type 1 diabetes, we observed an increase in PPI5–12‐specific transitional memory CD8+ T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI5–12‐specific CD8+ T cells in HLA‐B*3906+ children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8+ T cells. Further, in longitudinal samples from high-risk HLA-A*2402+ children, the percentage of terminal effector cells within the InsB15–24‐specific CD8+ T cell population was increased before diagnosis relative to samples taken before the appearance of autoantibodies. |
---|---|
AbstractList | In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin-producing β cells. The HLA-B*3906 and HLA-A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8+ T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)-specific and insulin B (InsB)-specific CD8+ T cells in HLA-B*3906+ children newly diagnosed with T1D and in high-risk HLA-A*2402+ children before the appearance of disease-specific autoantibodies and before diagnosis of T1D. Antigen-specific CD8+ T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA-B*3906+ children with T1D, we observed an increase in PPI5-12 -specific transitional memory CD8+ T cells compared to non-diabetic, age- and HLA-matched subjects. Furthermore, PPI5-12 -specific CD8+ T cells in HLA-B*3906+ children with T1D showed a significantly more antigen-experienced phenotype compared to polyclonal CD8+ T cells. In longitudinal samples from high-risk HLA-A*2402+ children, the percentage of terminal effector cells within the InsB15-24 -specific CD8+ T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA-B*3906-restricted autoreactive CD8+ T cells in T1D. Collectively, our results provide evidence that β cell-reactive CD8+ T cells restricted by disease-associated HLA class I molecules display an antigen-experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease.In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin-producing β cells. The HLA-B*3906 and HLA-A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8+ T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)-specific and insulin B (InsB)-specific CD8+ T cells in HLA-B*3906+ children newly diagnosed with T1D and in high-risk HLA-A*2402+ children before the appearance of disease-specific autoantibodies and before diagnosis of T1D. Antigen-specific CD8+ T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA-B*3906+ children with T1D, we observed an increase in PPI5-12 -specific transitional memory CD8+ T cells compared to non-diabetic, age- and HLA-matched subjects. Furthermore, PPI5-12 -specific CD8+ T cells in HLA-B*3906+ children with T1D showed a significantly more antigen-experienced phenotype compared to polyclonal CD8+ T cells. In longitudinal samples from high-risk HLA-A*2402+ children, the percentage of terminal effector cells within the InsB15-24 -specific CD8+ T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA-B*3906-restricted autoreactive CD8+ T cells in T1D. Collectively, our results provide evidence that β cell-reactive CD8+ T cells restricted by disease-associated HLA class I molecules display an antigen-experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease. In type 1 diabetes (T1D), autoreactive cytotoxic CD8 T cells are implicated in the destruction of insulin-producing β cells. The HLA-B*3906 and HLA-A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8 T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)-specific and insulin B (InsB)-specific CD8 T cells in HLA-B*3906 children newly diagnosed with T1D and in high-risk HLA-A*2402 children before the appearance of disease-specific autoantibodies and before diagnosis of T1D. Antigen-specific CD8 T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA-B*3906 children with T1D, we observed an increase in PPI -specific transitional memory CD8 T cells compared to non-diabetic, age- and HLA-matched subjects. Furthermore, PPI -specific CD8 T cells in HLA-B*3906 children with T1D showed a significantly more antigen-experienced phenotype compared to polyclonal CD8 T cells. In longitudinal samples from high-risk HLA-A*2402 children, the percentage of terminal effector cells within the InsB -specific CD8 T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA-B*3906-restricted autoreactive CD8 T cells in T1D. Collectively, our results provide evidence that β cell-reactive CD8 T cells restricted by disease-associated HLA class I molecules display an antigen-experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease. Summary In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8+ T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)‐specific and insulin B (InsB)‐specific CD8+ T cells in HLA‐B*3906+ children newly diagnosed with T1D and in high‐risk HLA‐A*2402+ children before the appearance of disease‐specific autoantibodies and before diagnosis of T1D. Antigen‐specific CD8+ T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA‐B*3906+ children with T1D, we observed an increase in PPI5–12‐specific transitional memory CD8+ T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI5–12‐specific CD8+ T cells in HLA‐B*3906+ children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8+ T cells. In longitudinal samples from high‐risk HLA‐A*2402+ children, the percentage of terminal effector cells within the InsB15–24‐specific CD8+ T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA‐B*3906‐restricted autoreactive CD8+ T cells in T1D. Collectively, our results provide evidence that β cell‐reactive CD8+ T cells restricted by disease‐associated HLA class I molecules display an antigen‐experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease. In this study, we characterised circulating autoreactive CD8+ T cells in children with type 1 diabetes with HLA-B*3906+ and HLA-A*2402+ genotypes which are associated with increased risk and early onset of disease. In HLA-B*3906+ children with newly diagnosed type 1 diabetes, we observed an increase in PPI5–12‐specific transitional memory CD8+ T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI5–12‐specific CD8+ T cells in HLA‐B*3906+ children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8+ T cells. Further, in longitudinal samples from high-risk HLA-A*2402+ children, the percentage of terminal effector cells within the InsB15–24‐specific CD8+ T cell population was increased before diagnosis relative to samples taken before the appearance of autoantibodies. In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8+ T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)‐specific and insulin B (InsB)‐specific CD8+ T cells in HLA‐B*3906+ children newly diagnosed with T1D and in high‐risk HLA‐A*2402+ children before the appearance of disease‐specific autoantibodies and before diagnosis of T1D. Antigen‐specific CD8+ T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA‐B*3906+ children with T1D, we observed an increase in PPI5–12‐specific transitional memory CD8+ T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI5–12‐specific CD8+ T cells in HLA‐B*3906+ children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8+ T cells. In longitudinal samples from high‐risk HLA‐A*2402+ children, the percentage of terminal effector cells within the InsB15–24‐specific CD8+ T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA‐B*3906‐restricted autoreactive CD8+ T cells in T1D. Collectively, our results provide evidence that β cell‐reactive CD8+ T cells restricted by disease‐associated HLA class I molecules display an antigen‐experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease. In type 1 diabetes (T1D), autoreactive cytotoxic CD8 + T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8 + T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)‐specific and insulin B (InsB)‐specific CD8 + T cells in HLA‐B*3906 + children newly diagnosed with T1D and in high‐risk HLA‐A*2402 + children before the appearance of disease‐specific autoantibodies and before diagnosis of T1D. Antigen‐specific CD8 + T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA‐B*3906 + children with T1D, we observed an increase in PPI 5–12 ‐specific transitional memory CD8 + T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI 5–12 ‐specific CD8 + T cells in HLA‐B*3906 + children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8 + T cells. In longitudinal samples from high‐risk HLA‐A*2402 + children, the percentage of terminal effector cells within the InsB 15–24 ‐specific CD8 + T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA‐B*3906 ‐restricted autoreactive CD8 + T cells in T1D. Collectively, our results provide evidence that β cell‐reactive CD8 + T cells restricted by disease‐associated HLA class I molecules display an antigen‐experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease. In this study, we characterised circulating autoreactive CD8 + T cells in children with type 1 diabetes with HLA-B*3906 + and HLA-A*2402 + genotypes which are associated with increased risk and early onset of disease. In HLA-B*3906 + children with newly diagnosed type 1 diabetes, we observed an increase in PPI 5–12 ‐specific transitional memory CD8 + T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI 5–12 ‐specific CD8 + T cells in HLA‐B*3906 + children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8 + T cells. Further, in longitudinal samples from high-risk HLA-A*2402 + children, the percentage of terminal effector cells within the InsB 15–24 ‐specific CD8 + T cell population was increased before diagnosis relative to samples taken before the appearance of autoantibodies. |
Author | Dolton, G. Toppari, J. Veijola, R. Eichmann, M. Heck, S. Sewell, A. K. Yeo, L. Knip, M. Baptista, R. Mikk, M.‐L. Kronenberg‐Versteeg, D. Härkönen, T. Pujol‐Autonell, I. Peakman, M. Ilonen, J. |
AuthorAffiliation | 4 Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland 3 Division of Infection and Immunity School of Medicine and Systems Immunity Research Institute Cardiff University Cardiff UK 6 Department of Paediatrics University of Turku and Turku University Hospital Turku Finland 11 Folkhälsan Research Centre Helsinki Finland 10 Department of Pediatrics Tampere University Hospital Tampere Finland 2 National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College London London UK 12 Clinical Microbiology Turku University Hospital Turku Finland 13 King’s Health Partners Institute of Diabetes, Endocrinology and Obesity London UK 1 Department of Immunobiology Faculty of Life Sciences and Medicine King’s College London London UK 9 Children’s Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland 5 Immunogenetics Laboratory Institute of Biomedicine University of Turku Tu |
AuthorAffiliation_xml | – name: 11 Folkhälsan Research Centre Helsinki Finland – name: 7 Institute of Biomedicine Research Centre for Integrative Physiology and Pharmacology University of Turku Turku Finland – name: 2 National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College London London UK – name: 3 Division of Infection and Immunity School of Medicine and Systems Immunity Research Institute Cardiff University Cardiff UK – name: 8 Department of Paediatrics PEDEGO Research Unit Medical Research Centre Oulu University Hospital and University of Oulu Oulu Finland – name: 10 Department of Pediatrics Tampere University Hospital Tampere Finland – name: 5 Immunogenetics Laboratory Institute of Biomedicine University of Turku Turku Finland – name: 1 Department of Immunobiology Faculty of Life Sciences and Medicine King’s College London London UK – name: 13 King’s Health Partners Institute of Diabetes, Endocrinology and Obesity London UK – name: 6 Department of Paediatrics University of Turku and Turku University Hospital Turku Finland – name: 9 Children’s Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland – name: 12 Clinical Microbiology Turku University Hospital Turku Finland – name: 4 Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland |
Author_xml | – sequence: 1 givenname: L. orcidid: 0000-0002-9638-4920 surname: Yeo fullname: Yeo, L. organization: National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College London – sequence: 2 givenname: I. surname: Pujol‐Autonell fullname: Pujol‐Autonell, I. organization: King’s College London – sequence: 3 givenname: R. surname: Baptista fullname: Baptista, R. organization: National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College London – sequence: 4 givenname: M. surname: Eichmann fullname: Eichmann, M. organization: King’s College London – sequence: 5 givenname: D. surname: Kronenberg‐Versteeg fullname: Kronenberg‐Versteeg, D. organization: King’s College London – sequence: 6 givenname: S. surname: Heck fullname: Heck, S. organization: National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College London – sequence: 7 givenname: G. surname: Dolton fullname: Dolton, G. organization: Cardiff University – sequence: 8 givenname: A. K. surname: Sewell fullname: Sewell, A. K. organization: Cardiff University – sequence: 9 givenname: T. surname: Härkönen fullname: Härkönen, T. organization: University of Helsinki – sequence: 10 givenname: M.‐L. surname: Mikk fullname: Mikk, M.‐L. organization: University of Turku – sequence: 11 givenname: J. surname: Toppari fullname: Toppari, J. organization: University of Turku – sequence: 12 givenname: R. surname: Veijola fullname: Veijola, R. organization: Oulu University Hospital and University of Oulu – sequence: 13 givenname: M. surname: Knip fullname: Knip, M. organization: Folkhälsan Research Centre – sequence: 14 givenname: J. surname: Ilonen fullname: Ilonen, J. organization: Turku University Hospital – sequence: 15 givenname: M. surname: Peakman fullname: Peakman, M. email: mark.peakman@kcl.ac.uk organization: King’s Health Partners Institute of Diabetes, Endocrinology and Obesity |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31660582$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1uEzEQxy1URNPCgRdAI3GhQtva3vVmfalUpYVGisSlnC2vdzbrsrGDvSHkxiPwDrwBD8JD8CQ4SamgEvhizcxv_pqvI3LgvENCnjN6ytI7M2hPWZ5L9oiMWF6KjPNCHpARpVRmktHikBzFeJvMsiz5E3KYs7KkouIj8m1ig1n1erBuDj--g8G-__nla1yisa01MLmsXsPNzh0hYByCNQM2UG-gs_MuocHGD3A9uwDT6xhhCgvfY5LECLHza9BusHN0gJ-XGCw6g2AdmM72TUjutR26xDSgB9hJ-RaGzRKBQWN1jQPGp-Rxq_uIz-7-Y_L-zdXN5DqbvXs7nVzMMlMUOcuwEqaWnNeFELRFrGs5rpJldCOrGptClC03OGbYVmPMDU8Ta2ROpRm3NRU8Pybne93lql5gY9ANQfdqGexCh43y2qq_I852au4_qTGlFedbgVd3AsF_XKVhqYWN29Fph34VFc8Z5ZWkpUzoywforV8Fl9pLlOBCCMa31Is_K7ov5ff-EnCyB0zwMQZs7xFG1fY2VLoNtbuNxJ49YI0d0uL9thnb_y9jbXvc_FtaTa6m-4xfsDvOXw |
CitedBy_id | crossref_primary_10_2337_db21_0259 crossref_primary_10_1007_s40618_024_02497_x crossref_primary_10_3390_biomedicines10123042 crossref_primary_10_1016_j_clim_2024_110266 crossref_primary_10_3390_ijms22136733 crossref_primary_10_1016_j_molmet_2024_101998 crossref_primary_10_1111_imcb_12593 crossref_primary_10_3389_fimmu_2023_1292238 crossref_primary_10_3892_br_2024_1770 crossref_primary_10_1038_s41574_020_0330_3 crossref_primary_10_3389_fimmu_2022_829126 crossref_primary_10_1016_j_jbc_2024_107702 crossref_primary_10_1016_j_molmet_2023_101809 crossref_primary_10_2174_1573399819666220610150342 crossref_primary_10_3389_fimmu_2023_1183909 crossref_primary_10_3389_fimmu_2024_1342335 crossref_primary_10_1007_s00125_020_05298_y crossref_primary_10_1111_imcb_12442 crossref_primary_10_1097_MED_0000000000000553 crossref_primary_10_1007_s00125_023_05970_z crossref_primary_10_3389_fendo_2020_606434 crossref_primary_10_3389_fimmu_2021_667989 crossref_primary_10_1111_tan_14280 crossref_primary_10_1136_bmjsem_2024_002144 crossref_primary_10_3389_fimmu_2024_1457213 crossref_primary_10_2174_1573396318666220409001955 crossref_primary_10_1111_sji_12887 crossref_primary_10_1016_j_sjbs_2022_103434 |
Cites_doi | 10.1136/jmg.2009.066647 10.2337/db11-0270 10.1002/eji.201343751 10.1034/j.1399-0039.1999.540107.x 10.4049/jimmunol.171.1.27 10.1073/pnas.0508621102 10.1038/366072a0 10.1016/j.humimm.2004.12.001 10.1016/j.jim.2008.09.014 10.2337/dc17-2462 10.1016/S0198-8859(02)00421-4 10.2337/db14-0497 10.1038/gene.2008.88 10.2337/diab.42.7.1086 10.1016/S2213-8587(13)70111-6 10.2337/diabetes.49.12.2217 10.1002/dmrr.2440 10.1084/jem.20041542 10.1038/366069a0 10.1172/JCI120555 10.1016/j.humimm.2013.09.008 10.1007/BF00452061 10.2337/db14-0365 10.2337/db10-0167 10.1074/jbc.M114.622522 10.2337/diabetes.48.3.460 10.3389/fimmu.2018.02692 10.2337/db12-1468 10.2337/diab.46.11.1888 10.1007/BF00400620 10.1111/tan.12413 10.1084/jem.20161066 10.1038/nature24633 10.1126/sciimmunol.aao4013 10.1210/jc.2004-1371 10.1172/JCI27564 10.1371/journal.ppat.1004740 10.1038/nm.4203 10.4049/jimmunol.1401785 10.4049/jimmunol.177.3.1780 10.1016/j.humimm.2007.04.005 10.2337/diabetes.49.2.202 10.2337/diabetes.47.5.733 10.1530/EJE-07-0853 10.4049/jimmunol.161.12.6963 10.2337/db12-0315 10.2337/db14-0332 10.1034/j.1399-0039.2003.00013.x 10.1186/s12865-015-0115-y 10.1111/j.1600-065X.1998.tb01213.x 10.1007/s00125-016-4067-4 10.1016/j.humimm.2006.05.008 10.1016/j.coi.2011.10.001 10.1101/cshperspect.a007781 10.1084/jem.20111187 10.1007/s00125-019-4822-4 10.2337/db07-0416 10.1007/s00125-012-2608-z 10.2337/db09-1486 10.1111/j.1365-2249.2008.03860.x 10.2337/diab.43.1.33 10.1111/tan.12967 10.1016/j.jaci.2018.04.022 10.1038/nature06406 10.2337/db12-0747 10.1046/j.1365-2370.1997.d01-108.x 10.1007/s00125-012-2523-3 10.1016/j.immuni.2015.05.001 10.2337/dc15-2768 10.1074/jbc.M500555200 10.1172/JCI116835 10.4049/jimmunol.1002042 10.1084/jem.20161760 10.2337/db10-0699 10.1371/journal.pone.0126019 10.1016/j.immuni.2009.11.012 10.1210/jc.2002-020018 10.4049/jimmunol.166.8.5265 10.1016/S0140-6736(08)61309-4 10.1023/B:JOCI.0000029120.77824.41 10.1111/j.1463-1326.2008.01001.x 10.1007/s00125-011-2161-1 10.1038/ni1268 10.1111/tan.12036 10.1016/S0198-8859(00)00178-6 10.2337/db17-0021 10.2337/db11-1520 10.2337/db11-0131 |
ContentType | Journal Article |
Copyright | 2019 British Society for Immunology 2019 British Society for Immunology. 2020 British Society for Immunology 2019 The Authors. published by John Wiley & Sons Ltd on behalf of British Society for Immunology |
Copyright_xml | – notice: 2019 British Society for Immunology – notice: 2019 British Society for Immunology. – notice: 2020 British Society for Immunology – notice: 2019 The Authors. published by John Wiley & Sons Ltd on behalf of British Society for Immunology |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7U9 H94 M7N 7X8 5PM |
DOI | 10.1111/cei.13391 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Immunology Abstracts Virology and AIDS Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | Autoreactive diabetogenic T cells restricted by high‐risk class I HLA |
EISSN | 1365-2249 |
EndPage | 277 |
ExternalDocumentID | PMC7008222 31660582 10_1111_cei_13391 CEI13391 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust funderid: WT100327MA – fundername: Horizon 2020 Framework Programme – fundername: Juvenile Diabetes Research Foundation International funderid: 17‐2013‐583 – fundername: Suomen Akatemia – fundername: Leona M. and Harry B. Helmsley Charitable Trust – fundername: Sigrid Juséliuksen Säätiö – fundername: National Institute for Health Research funderid: Biomedical Research Centre Award to Guy’s & St Tho – fundername: H2020 Marie Skłodowska‐Curie Actions funderid: 704974 – fundername: Wellcome Trust grantid: WT100327MA – fundername: Department of Health – fundername: ; – fundername: ; grantid: WT100327MA – fundername: ; grantid: 17‐2013‐583 – fundername: ; grantid: 704974 – fundername: ; grantid: Biomedical Research Centre Award to Guy’s & St Tho |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 169 1OC 24P 29B 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 5WD 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 A8Z AABZA AACZT AAESR AAEVG AAHHS AAONW AAPXW AARHZ AAUAY AAVAP AAZKR ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABJNI ABLJU ABNHQ ABOCM ABPTD ABPVW ABQNK ABXVV ACAHQ ACCFJ ACFBH ACGFO ACGFS ACMXC ACPOU ACPRK ACSCC ACUFI ACUHS ACXQS ADBBV ADEOM ADIPN ADIYS ADIZJ ADKYN ADMGS ADOZA ADQBN ADVEK ADXAS ADZMN ADZOD AEEZP AEGXH AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFFZL AFGKR AFPWT AFRAH AFTUV AFXAL AFZJQ AGMDO AGUTN AHMMS AIACR AIAGR AIURR AIWBW AJAOE AJBDE AJEEA ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB AOIJS ATGXG ATUGU AZBYB AZVAB BAFTC BAWUL BCRHZ BEYMZ BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBB EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GX1 H.X H13 HF~ HZI HZ~ IH2 IHE IPNFZ IX1 J0M J5H K48 KBUDW KBYEO KOP KSI KSN LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NOMLY NU- O66 O9- OAUYM OBS OCZFY OHT OIG OJZSN OK1 OPAEJ OVD OWPYF P2P P2W P2X P2Z P4B P4D Q.N Q11 QB0 Q~Q R.K ROL ROX RPM RX1 SUPJJ SV3 TEORI TR2 TUS UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOQ WOW WQJ WRC WVDHM WXI X7M XG1 Y6R YFH YOC YUY ZGI ZXP ZZTAW ~IA ~KM ~WT AAFWJ AAYXX ABGNP ABVGC AEMQT AGORE AJBYB AJNCP ALXQX CITATION AAMMB ACVCV AEFGJ AFFQV AGXDD AHGBF AIDQK AIDYY AJDVS CGR CUY CVF ECM EIF NPM 7T5 7U9 H94 M7N 7X8 5PM |
ID | FETCH-LOGICAL-c4431-e85cb922b4550feebb9782b4cad98bed456f2ce71ef87e3c2339d9309c7fb0523 |
IEDL.DBID | DR2 |
ISSN | 0009-9104 1365-2249 |
IngestDate | Thu Aug 21 13:41:37 EDT 2025 Thu Jul 10 22:15:51 EDT 2025 Wed Aug 13 04:46:56 EDT 2025 Mon Jul 21 05:43:03 EDT 2025 Tue Jul 01 03:53:10 EDT 2025 Thu Apr 24 22:52:41 EDT 2025 Wed Jan 22 16:39:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | HLA-A24 HLA-B39 CD8+ T cells type 1 diabetes |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2019 British Society for Immunology. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4431-e85cb922b4550feebb9782b4cad98bed456f2ce71ef87e3c2339d9309c7fb0523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-9638-4920 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcei.13391 |
PMID | 31660582 |
PQID | 2352555129 |
PQPubID | 36527 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7008222 proquest_miscellaneous_2310289069 proquest_journals_2352555129 pubmed_primary_31660582 crossref_primary_10_1111_cei_13391 crossref_citationtrail_10_1111_cei_13391 wiley_primary_10_1111_cei_13391_CEI13391 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Clinical and experimental immunology |
PublicationTitleAlternate | Clin Exp Immunol |
PublicationYear | 2020 |
Publisher | Oxford University Press John Wiley and Sons Inc |
Publisher_xml | – name: Oxford University Press – name: John Wiley and Sons Inc |
References | 2012; 61 2013; 29 2009; 46 2010; 59 2013; 1 2000; 49 2018; 128 1995; 38 2013; 62 2011; 60 1997; 46 1999; 48 2017; 89 2004; 24 2009; 155 2010; 185 2011; 54 2018; 41 1999; 84 2014; 63 2016; 39 2017; 552 1993; 366 2012; 55 2005; 66 2006; 177 1998; 47 2012; 209 2009; 11 2018; 9 2018; 3 2015; 290 2009; 10 2019; 62 2006; 67 2018; 215 2005; 102 2015; 42 2002; 87 2007; 450 2000; 61 2008; 118 1999; 54 2011; 23 2008; 159 2007; 68 1998; 161 1998; 164 2018; 142 2001; 166 2010; 32 2015; 16 2013; 43 2005; 90 1997; 24 1993; 42 2015; 11 2015; 10 2003; 171 2018; 67 2006; 116 2014; 84 2007; 56 2016; 59 2017; 214 1994; 43 2005; 280 2015; 194 2012; 2 2002; 63 1993; 92 2005; 201 2015; 64 1986; 29 2013; 81 2005; 6 1996; 81 2009; 340 2003; 61 2008; 372 2016; 22 2014; 75 Gombos (2022021407183962300_cei13391-bib-0023) 2006; 67 Richardson (2022021407183962300_cei13391-bib-0006) 2016; 59 Mikk (2022021407183962300_cei13391-bib-0029) 2014; 75 Tungatt (2022021407183962300_cei13391-bib-0055) 2015; 194 Culina (2022021407183962300_cei13391-bib-0056) 2018; 3 Makinen (2022021407183962300_cei13391-bib-0045) 2008; 159 Abdelsamed (2022021407183962300_cei13391-bib-0065) 2017; 214 Ding (2022021407183962300_cei13391-bib-0068) 2018; 142 Oram (2022021407183962300_cei13391-bib-0084) 2019; 62 Noble (2022021407183962300_cei13391-bib-0031) 2010; 59 Jeng (2022021407183962300_cei13391-bib-0059) 2018; 215 Kimpimaki (2022021407183962300_cei13391-bib-0072) 2002; 87 Maiers (2022021407183962300_cei13391-bib-0018) 2007; 68 Naserke (2022021407183962300_cei13391-bib-0075) 1998; 161 Haimila (2022021407183962300_cei13391-bib-0019) 2013; 81 Long (2022021407183962300_cei13391-bib-0087) 2013; 62 Noble (2022021407183962300_cei13391-bib-0035) 2002; 63 Velthuis (2022021407183962300_cei13391-bib-0090) 2010; 59 Ziegler (2022021407183962300_cei13391-bib-0073) 1999; 48 Lissina (2022021407183962300_cei13391-bib-0054) 2009; 340 Arif (2022021407183962300_cei13391-bib-0004) 2014; 63 Skowera (2022021407183962300_cei13391-bib-0012) 2015; 64 Yu (2022021407183962300_cei13391-bib-0091) 2015; 42 Baschal (2022021407183962300_cei13391-bib-0030) 2011; 54 Intlekofer (2022021407183962300_cei13391-bib-0064) 2005; 6 Akondy (2022021407183962300_cei13391-bib-0066) 2017; 552 Eike (2022021407183962300_cei13391-bib-0022) 2009; 10 Nanto-Salonen (2022021407183962300_cei13391-bib-0047) 2008; 372 Roep (2022021407183962300_cei13391-bib-0001) 2011; 23 Kukko (2022021407183962300_cei13391-bib-0048) 2005; 90 Pudney (2022021407183962300_cei13391-bib-0052) 2005; 201 Gelber (2022021407183962300_cei13391-bib-0081) 1994; 43 Balke (2022021407183962300_cei13391-bib-0039) 2018; 41 Helminen (2022021407183962300_cei13391-bib-0049) 2015; 64 Salonen (2022021407183962300_cei13391-bib-0050) 2013; 29 Nakanishi (2022021407183962300_cei13391-bib-0040) 1999; 84 Babon (2022021407183962300_cei13391-bib-0011) 2016; 22 Williams (2022021407183962300_cei13391-bib-0032) 1999; 54 Skowera (2022021407183962300_cei13391-bib-0015) 2008; 118 Ott (2022021407183962300_cei13391-bib-0079) 2004; 24 Billingsley (2022021407183962300_cei13391-bib-0057) 2015; 11 Bonifacio (2022021407183962300_cei13391-bib-0074) 2000; 49 Foulis (2022021407183962300_cei13391-bib-0008) 1986; 29 Demeester (2022021407183962300_cei13391-bib-0042) 2016; 39 Parikka (2022021407183962300_cei13391-bib-0046) 2012; 55 Tait (2022021407183962300_cei13391-bib-0038) 2003; 61 Valdes (2022021407183962300_cei13391-bib-0024) 2005; 66 Nejentsev (2022021407183962300_cei13391-bib-0021) 2000; 49 Kawasaki (2022021407183962300_cei13391-bib-0076) 1998; 47 Lipponen (2022021407183962300_cei13391-bib-0025) 2010; 59 Yeo (2022021407183962300_cei13391-bib-0014) 2018; 128 Middleton (2022021407183962300_cei13391-bib-0033) 2000; 61 Picker (2022021407183962300_cei13391-bib-0058) 2006; 116 Yu (2022021407183962300_cei13391-bib-0077) 1996; 81 Howson (2022021407183962300_cei13391-bib-0085) 2011; 60 Zechel (2022021407183962300_cei13391-bib-0082) 1998; 164 Qu (2022021407183962300_cei13391-bib-0086) 2009; 46 Luce (2022021407183962300_cei13391-bib-0089) 2011; 60 Nejentsev (2022021407183962300_cei13391-bib-0028) 1997; 46 Kronenberg-Versteeg (2022021407183962300_cei13391-bib-0043) 2018; 67 Pipkin (2022021407183962300_cei13391-bib-0063) 2010; 32 Eichmann (2022021407183962300_cei13391-bib-0044) 2014; 84 Brooks-Worrell (2022021407183962300_cei13391-bib-0078) 2001; 166 Mbunwe (2022021407183962300_cei13391-bib-0037) 2013; 62 Rigby (2022021407183962300_cei13391-bib-0016) 2013; 1 Tisch (2022021407183962300_cei13391-bib-0083) 1993; 366 Willcox (2022021407183962300_cei13391-bib-0003) 2009; 155 In’t Veld (2022021407183962300_cei13391-bib-0005) 2007; 56 Fujisawa (2022021407183962300_cei13391-bib-0034) 1995; 38 Knight (2022021407183962300_cei13391-bib-0088) 2013; 62 Reijonen (2022021407183962300_cei13391-bib-0027) 1997; 24 Valdes (2022021407183962300_cei13391-bib-0036) 2012; 55 Banerjee (2022021407183962300_cei13391-bib-0062) 2010; 185 Mikk (2022021407183962300_cei13391-bib-0026) 2017; 89 Martin (2022021407183962300_cei13391-bib-0061) 2018; 9 Jansen (2022021407183962300_cei13391-bib-0069) 2015; 10 Pinkse (2022021407183962300_cei13391-bib-0010) 2005; 102 Howson (2022021407183962300_cei13391-bib-0020) 2009; 11 Longwe (2022021407183962300_cei13391-bib-0071) 2015; 16 Roep (2022021407183962300_cei13391-bib-0002) 2012; 2 Caccamo (2022021407183962300_cei13391-bib-0070) 2006; 177 Mahnke (2022021407183962300_cei13391-bib-0060) 2013; 43 Barber (2022021407183962300_cei13391-bib-0067) 2003; 171 Kaufman (2022021407183962300_cei13391-bib-0080) 1993; 366 Coppieters (2022021407183962300_cei13391-bib-0009) 2012; 209 Wooldridge (2022021407183962300_cei13391-bib-0051) 2005; 280 Nejentsev (2022021407183962300_cei13391-bib-0017) 2007; 450 Motozono (2022021407183962300_cei13391-bib-0053) 2015; 290 Kronenberg (2022021407183962300_cei13391-bib-0013) 2012; 61 Itoh (2022021407183962300_cei13391-bib-0007) 1993; 92 Nakanishi (2022021407183962300_cei13391-bib-0041) 1993; 42 |
References_xml | – volume: 55 start-page: 2394 year: 2012 end-page: 401 article-title: Use of class I and class II HLA loci for predicting age at onset of type 1 diabetes in multiple populations publication-title: Diabetologia – volume: 201 start-page: 349 year: 2005 end-page: 60 article-title: CD8 immunodominance among Epstein–Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells publication-title: J Exp Med – volume: 3 year: 2018 article-title: Islet‐reactive CD8( ) T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors publication-title: Sci Immunol – volume: 9 start-page: 2692 year: 2018 article-title: Defining memory CD8 T cell publication-title: Front Immunol – volume: 55 start-page: 1926 year: 2012 end-page: 36 article-title: Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk publication-title: Diabetologia – volume: 102 start-page: 18425 year: 2005 end-page: 30 article-title: Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes publication-title: Proc Natl Acad Sci USA – volume: 340 start-page: 11 year: 2009 end-page: 24 article-title: Protein kinase inhibitors substantially improve the physical detection of T‐cells with peptide‐MHC tetramers publication-title: J Immunol Methods – volume: 42 start-page: 1086 year: 1993 end-page: 93 article-title: Association of HLA‐A24 with complete beta‐cell destruction in IDDM publication-title: Diabetes – volume: 38 start-page: 1493 year: 1995 end-page: 5 article-title: Class I HLA is associated with age‐at‐onset of IDDM, while class II HLA confers susceptibility to IDDM publication-title: Diabetologia – volume: 29 start-page: 267 year: 1986 end-page: 74 article-title: The histopathology of the pancreas in type 1 (insulin‐dependent) diabetes mellitus: a 25‐year review of deaths in patients under 20 years of age in the United Kingdom publication-title: Diabetologia – volume: 54 start-page: 1702 year: 2011 end-page: 9 article-title: The HLA‐B 3906 allele imparts a high risk of diabetes only on specific HLA‐DR/DQ haplotypes publication-title: Diabetologia – volume: 90 start-page: 2712 year: 2005 end-page: 7 article-title: Dynamics of diabetes‐associated autoantibodies in young children with human leukocyte antigen‐conferred risk of type 1 diabetes recruited from the general population publication-title: J Clin Endocrinol Metab – volume: 61 start-page: 1752 year: 2012 end-page: 9 article-title: Circulating preproinsulin signal peptide‐specific CD8 T cells restricted by the susceptibility molecule HLA‐A24 are expanded at onset of type 1 diabetes and kill beta‐cells publication-title: Diabetes – volume: 11 year: 2015 article-title: Characterization of CD8 T cell differentiation following SIVDeltanef vaccination by transcription factor expression profiling publication-title: PLOS Pathog – volume: 43 start-page: 2797 year: 2013 end-page: 809 article-title: The who’s who of T‐cell differentiation: human memory T‐cell subsets publication-title: Eur J Immunol – volume: 62 start-page: 567 year: 2019 end-page: 77 article-title: Beta cells in type 1 diabetes: mass and function; sleeping or dead? publication-title: Diabetologia – volume: 128 start-page: 3460 year: 2018 end-page: 74 article-title: Autoreactive T effector memory differentiation mirrors beta cell function in type 1 diabetes publication-title: J Clin Invest – volume: 11 start-page: 31 issue: Suppl 1 year: 2009 end-page: 45 article-title: Confirmation of HLA class II independent type 1 diabetes associations in the major histocompatibility complex including HLA‐B and HLA‐A publication-title: Diabetes Obes Metab – volume: 84 start-page: 378 year: 2014 end-page: 88 article-title: Identification and characterisation of peptide binding motifs of six autoimmune disease‐associated human leukocyte antigen‐class I molecules including HLA‐B*39:06 publication-title: Tissue Antigens – volume: 280 start-page: 27491 year: 2005 end-page: 501 article-title: Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor‐antigen complexes at the cell surface publication-title: J Biol Chem – volume: 49 start-page: 2217 year: 2000 end-page: 21 article-title: Non‐class II HLA gene associated with type 1 diabetes maps to the 240‐kb region near HLA‐B publication-title: Diabetes – volume: 75 start-page: 65 year: 2014 end-page: 70 article-title: The HLA‐B*39 allele increases type 1 diabetes risk conferred by HLA‐DRB1*04:04‐DQB1*03:02 and HLA‐DRB1*08‐DQB1*04 class II haplotypes publication-title: Hum Immunol – volume: 61 start-page: 146 year: 2003 end-page: 53 article-title: HLA genes associated with autoimmunity and progression to disease in type 1 diabetes publication-title: Tissue Antigens – volume: 48 start-page: 460 year: 1999 end-page: 8 article-title: Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2‐year analysis of the German BABYDIAB Study publication-title: Diabetes – volume: 63 start-page: 3835 year: 2014 end-page: 45 article-title: Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes publication-title: Diabetes – volume: 10 start-page: 141 year: 2009 end-page: 50 article-title: Genetic variants of the HLA‐A, HLA‐B and AIF1 loci show independent associations with type 1 diabetes in Norwegian families publication-title: Genes Immun – volume: 32 start-page: 79 year: 2010 end-page: 90 article-title: Interleukin‐2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells publication-title: Immunity – volume: 49 start-page: 202 year: 2000 end-page: 8 article-title: Maturation of the humoral autoimmune response to epitopes of GAD in preclinical childhood type 1 diabetes publication-title: Diabetes – volume: 552 start-page: 362 year: 2017 end-page: 7 article-title: Origin and differentiation of human memory CD8 T cells after vaccination publication-title: Nature – volume: 59 start-page: 2972 year: 2010 end-page: 9 article-title: HLA class I and genetic susceptibility to type 1 diabetes: results from the Type 1 Diabetes Genetics Consortium publication-title: Diabetes – volume: 62 start-page: 1345 year: 2013 end-page: 50 article-title: HLA‐A*24 is an independent predictor of 5‐year progression to diabetes in autoantibody‐positive first‐degree relatives of type 1 diabetic patients publication-title: Diabetes – volume: 59 start-page: 1721 year: 2010 end-page: 30 article-title: Simultaneous detection of circulating autoreactive CD8 T‐cells specific for different islet cell‐associated epitopes using combinatorial MHC multimers publication-title: Diabetes – volume: 159 start-page: 19 year: 2008 end-page: 26 article-title: Characterization of the humoral immune response to islet antigen 2 in children with newly diagnosed type 1 diabetes publication-title: Eur J Endocrinol – volume: 81 start-page: 4264 year: 1996 end-page: 7 article-title: Antiislet autoantibodies usually develop sequentially rather than simultaneously publication-title: J Clin Endocrinol Metab – volume: 16 start-page: 50 year: 2015 article-title: Proportions of CD4 , CD8 and B cell subsets are not affected by exposure to HIV or to Cotrimoxazole prophylaxis in Malawian HIV‐uninfected but exposed children publication-title: BMC Immunol – volume: 116 start-page: 1514 year: 2006 end-page: 24 article-title: IL‐15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates publication-title: J Clin Invest – volume: 155 start-page: 173 year: 2009 end-page: 81 article-title: Analysis of islet inflammation in human type 1 diabetes publication-title: Clin Exp Immunol – volume: 67 start-page: 687 year: 2018 end-page: 96 article-title: Molecular pathways for immune recognition of preproinsulin signal peptide in type 1 diabetes publication-title: Diabetes – volume: 372 start-page: 1746 year: 2008 end-page: 55 article-title: Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double‐blind, randomised controlled trial publication-title: Lancet – volume: 2 year: 2012 article-title: Antigen targets of type 1 diabetes autoimmunity publication-title: Cold Spring Harb Perspect Med – volume: 24 start-page: 357 year: 1997 end-page: 63 article-title: HLA‐DR4 subtype and ‐B alleles in DQB1*0302‐positive haplotypes associated with IDDM. The Childhood Diabetes in Finland Study Group publication-title: Eur J Immunogenet – volume: 24 start-page: 327 year: 2004 end-page: 39 article-title: T cells recognize multiple GAD65 and proinsulin epitopes in human type 1 diabetes, suggesting determinant spreading publication-title: J Clin Immunol – volume: 215 start-page: 51 year: 2018 end-page: 62 article-title: Metabolic reprogramming of human CD8( ) memory T cells through loss of SIRT1 publication-title: J Exp Med – volume: 22 start-page: 1482 year: 2016 end-page: 7 article-title: Analysis of self‐antigen specificity of islet‐infiltrating T cells from human donors with type 1 diabetes publication-title: Nat Med – volume: 63 start-page: 657 year: 2002 end-page: 64 article-title: The HLA class I A locus affects susceptibility to type 1 diabetes publication-title: Hum Immunol – volume: 161 start-page: 6963 year: 1998 end-page: 9 article-title: Early development and spreading of autoantibodies to epitopes of IA‐2 and their association with progression to type 1 diabetes publication-title: J Immunol – volume: 177 start-page: 1780 year: 2006 end-page: 5 article-title: Phenotypical and functional analysis of memory and effector human CD8 T cells specific for mycobacterial antigens publication-title: J Immunol – volume: 62 start-page: 2067 year: 2013 end-page: 71 article-title: Humoral responses to islet antigen‐2 and zinc transporter 8 are attenuated in patients carrying HLA‐A*24 alleles at the onset of type 1 diabetes publication-title: Diabetes – volume: 60 start-page: 3289 year: 2011 end-page: 99 article-title: Single insulin‐specific CD8 T cells show characteristic gene expression profiles in human type 1 diabetes publication-title: Diabetes – volume: 59 start-page: 3253 year: 2010 end-page: 6 article-title: Effect of HLA class I and class II alleles on progression from autoantibody positivity to overt type 1 diabetes in children with risk‐associated class II genotypes publication-title: Diabetes – volume: 47 start-page: 733 year: 1998 end-page: 42 article-title: Definition of multiple ICA512/phogrin autoantibody epitopes and detection of intramolecular epitope spreading in relatives of patients with type 1 diabetes publication-title: Diabetes – volume: 68 start-page: 779 year: 2007 end-page: 88 article-title: High‐resolution HLA alleles and haplotypes in the United States population publication-title: Hum Immunol – volume: 1 start-page: 284 year: 2013 end-page: 94 article-title: Targeting of memory T cells with alefacept in new‐onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double‐blind, placebo‐controlled phase 2 trial publication-title: Lancet Diabetes Endocrinol – volume: 194 start-page: 463 year: 2015 end-page: 74 article-title: Antibody stabilization of peptide‐MHC multimers reveals functional T cells bearing extremely low‐affinity TCRs publication-title: J Immunol – volume: 164 start-page: 111 year: 1998 end-page: 8 article-title: Epitope dominance: evidence for reciprocal determinant spreading to glutamic acid decarboxylase in non‐obese diabetic mice publication-title: Immunol Rev – volume: 6 start-page: 1236 year: 2005 end-page: 44 article-title: Effector and memory CD8 T cell fate coupled by T‐bet and eomesodermin publication-title: Nat Immunol – volume: 10 year: 2015 article-title: Decreased memory B cells and increased CD8 memory T cells in blood of breastfed children: the generation R study publication-title: PLOS ONE – volume: 87 start-page: 4572 year: 2002 end-page: 9 article-title: Natural history of beta‐cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes recruited from the general population publication-title: J Clin Endocrinol Metab – volume: 366 start-page: 72 year: 1993 end-page: 5 article-title: Immune response to glutamic acid decarboxylase correlates with insulitis in non‐obese diabetic mice publication-title: Nature – volume: 89 start-page: 215 year: 2017 end-page: 24 article-title: The association of the HLA‐A*24:02, B*39:01 and B*39:06 alleles with type 1 diabetes is restricted to specific HLA‐DR/DQ haplotypes in Finns publication-title: HLA – volume: 450 start-page: 887 year: 2007 end-page: 92 article-title: Localization of type 1 diabetes susceptibility to the MHC class I genes HLA‐B and HLA‐A publication-title: Nature – volume: 64 start-page: 1719 year: 2015 end-page: 27 article-title: HbA1c predicts time to diagnosis of type 1 diabetes in children at risk publication-title: Diabetes – volume: 64 start-page: 916 year: 2015 end-page: 25 article-title: beta‐cell‐specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure publication-title: Diabetes – volume: 60 start-page: 2635 year: 2011 end-page: 44 article-title: Evidence that HLA class I and II associations with type 1 diabetes, autoantibodies to GAD and autoantibodies to IA‐2, are distinct publication-title: Diabetes – volume: 29 start-page: 646 year: 2013 end-page: 54 article-title: Autoantibodies against zinc transporter 8 are related to age, metabolic state and HLA DR genotype in children with newly diagnosed type 1 diabetes publication-title: Diabetes Metab Res Rev – volume: 66 start-page: 301 year: 2005 end-page: 13 article-title: Human leukocyte antigen class I B and C loci contribute to Type 1 Diabetes (T1D) susceptibility and age at T1D onset publication-title: Hum Immunol – volume: 59 start-page: 2448 year: 2016 end-page: 58 article-title: Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes publication-title: Diabetologia – volume: 366 start-page: 69 year: 1993 end-page: 72 article-title: Spontaneous loss of T‐cell tolerance to glutamic acid decarboxylase in murine insulin‐dependent diabetes publication-title: Nature – volume: 43 start-page: 33 year: 1994 end-page: 9 article-title: Isolation of nonobese diabetic mouse T‐cells that recognize novel autoantigens involved in the early events of diabetes publication-title: Diabetes – volume: 46 start-page: 1888 year: 1997 end-page: 92 article-title: The effect of HLA‐B allele on the IDDM risk defined by DRB1*04 subtypes and DQB1*0302 publication-title: Diabetes – volume: 84 start-page: 3721 year: 1999 end-page: 5 article-title: Human leukocyte antigen‐A24 and ‐DQA1*0301 in Japanese insulin‐dependent diabetes mellitus: independent contributions to susceptibility to the disease and additive contributions to acceleration of beta‐cell destruction publication-title: J Clin Endocrinol Metab – volume: 142 start-page: 970 year: 2018 end-page: 3.e8 article-title: Reference values for peripheral blood lymphocyte subsets of healthy children in China publication-title: J Allergy Clin Immunol – volume: 214 start-page: 1593 year: 2017 end-page: 606 article-title: Human memory CD8 T cell effector potential is epigenetically preserved during homeostasis publication-title: J Exp Med – volume: 42 start-page: 929 year: 2015 end-page: 41 article-title: Clonal deletion prunes but does not eliminate self‐specific alphabeta CD8( ) T lymphocytes publication-title: Immunity – volume: 41 start-page: 1076 year: 2018 end-page: 83 article-title: Accelerated progression to type 1 diabetes in the presence of HLA‐A*24 and ‐B*18 is restricted to multiple islet autoantibody‐positive individuals with distinct HLA‐DQ and autoantibody risk profiles publication-title: Diabetes Care – volume: 46 start-page: 469 year: 2009 end-page: 71 article-title: The effect of the MHC locus on autoantibodies in type 1 diabetes publication-title: J Med Genet – volume: 166 start-page: 5265 year: 2001 end-page: 70 article-title: Intermolecular antigen spreading occurs during the preclinical period of human type 1 diabetes publication-title: J Immunol – volume: 56 start-page: 2400 year: 2007 end-page: 4 article-title: Screening for insulitis in adult autoantibody‐positive organ donors publication-title: Diabetes – volume: 61 start-page: 1048 year: 2000 end-page: 52 article-title: Analysis of the distribution of HLA‐A alleles in populations from five continents publication-title: Hum Immunol – volume: 62 start-page: 205 year: 2013 end-page: 13 article-title: Human beta‐cell killing by autoreactive preproinsulin‐specific CD8 T cells is predominantly granule‐mediated with the potency dependent upon T‐cell receptor avidity publication-title: Diabetes – volume: 92 start-page: 2313 year: 1993 end-page: 22 article-title: Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin‐dependent diabetes mellitus patients publication-title: J Clin Invest – volume: 290 start-page: 18924 year: 2015 end-page: 33 article-title: Distortion of the major histocompatibility complex class I binding groove to accommodate an insulin‐derived 10‐mer peptide publication-title: J Biol Chem – volume: 209 start-page: 51 year: 2012 end-page: 60 article-title: Demonstration of islet‐autoreactive CD8 T cells in insulitic lesions from recent onset and long‐term type 1 diabetes patients publication-title: J Exp Med – volume: 23 start-page: 746 year: 2011 end-page: 53 article-title: Diabetogenic T lymphocytes in human type 1 diabetes publication-title: Curr Opin Immunol – volume: 39 start-page: 1060 year: 2016 end-page: 4 article-title: HLA‐A*24 carrier status and autoantibody surges posttransplantation associate with poor functional outcome in recipients of an isl lograft publication-title: Diabetes Care – volume: 81 start-page: 35 year: 2013 end-page: 43 article-title: HLA antigen, allele and haplotype frequencies and their use in virtual panel reactive antigen calculations in the Finnish population publication-title: Tissue Antigens – volume: 67 start-page: 714 year: 2006 end-page: 21 article-title: Human leukocyte antigen non‐class II determinants for type 1 diabetes in the Finnish population publication-title: Hum Immunol – volume: 185 start-page: 4988 year: 2010 end-page: 92 article-title: Cutting edge: the transcription factor eomesodermin enables CD8 T cells to compete for the memory cell niche publication-title: J Immunol – volume: 118 start-page: 3390 year: 2008 end-page: 402 article-title: CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose‐regulated preproinsulin epitope publication-title: J Clin Invest – volume: 171 start-page: 27 year: 2003 end-page: 31 article-title: Cutting edge: rapid killing by memory CD8 T cells publication-title: J Immunol – volume: 54 start-page: 59 year: 1999 end-page: 68 article-title: Allele resolution of HLA‐A using oligonucleotide probes in a two‐stage typing strategy publication-title: Tissue Antigens – volume: 46 start-page: 469 year: 2009 ident: 2022021407183962300_cei13391-bib-0086 article-title: The effect of the MHC locus on autoantibodies in type 1 diabetes publication-title: J Med Genet doi: 10.1136/jmg.2009.066647 – volume: 60 start-page: 3289 year: 2011 ident: 2022021407183962300_cei13391-bib-0089 article-title: Single insulin-specific CD8+ T cells show characteristic gene expression profiles in human type 1 diabetes publication-title: Diabetes doi: 10.2337/db11-0270 – volume: 43 start-page: 2797 year: 2013 ident: 2022021407183962300_cei13391-bib-0060 article-title: The who’s who of T-cell differentiation: human memory T-cell subsets publication-title: Eur J Immunol doi: 10.1002/eji.201343751 – volume: 54 start-page: 59 year: 1999 ident: 2022021407183962300_cei13391-bib-0032 article-title: Allele resolution of HLA-A using oligonucleotide probes in a two-stage typing strategy publication-title: Tissue Antigens doi: 10.1034/j.1399-0039.1999.540107.x – volume: 171 start-page: 27 year: 2003 ident: 2022021407183962300_cei13391-bib-0067 article-title: Cutting edge: rapid in vivo killing by memory CD8 T cells publication-title: J Immunol doi: 10.4049/jimmunol.171.1.27 – volume: 102 start-page: 18425 year: 2005 ident: 2022021407183962300_cei13391-bib-0010 article-title: Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0508621102 – volume: 366 start-page: 72 year: 1993 ident: 2022021407183962300_cei13391-bib-0083 article-title: Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice publication-title: Nature doi: 10.1038/366072a0 – volume: 66 start-page: 301 year: 2005 ident: 2022021407183962300_cei13391-bib-0024 article-title: Human leukocyte antigen class I B and C loci contribute to Type 1 Diabetes (T1D) susceptibility and age at T1D onset publication-title: Hum Immunol doi: 10.1016/j.humimm.2004.12.001 – volume: 340 start-page: 11 year: 2009 ident: 2022021407183962300_cei13391-bib-0054 article-title: Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers publication-title: J Immunol Methods doi: 10.1016/j.jim.2008.09.014 – volume: 41 start-page: 1076 year: 2018 ident: 2022021407183962300_cei13391-bib-0039 article-title: Accelerated progression to type 1 diabetes in the presence of HLA-A*24 and -B*18 is restricted to multiple islet autoantibody-positive individuals with distinct HLA-DQ and autoantibody risk profiles publication-title: Diabetes Care doi: 10.2337/dc17-2462 – volume: 63 start-page: 657 year: 2002 ident: 2022021407183962300_cei13391-bib-0035 article-title: The HLA class I A locus affects susceptibility to type 1 diabetes publication-title: Hum Immunol doi: 10.1016/S0198-8859(02)00421-4 – volume: 64 start-page: 1719 year: 2015 ident: 2022021407183962300_cei13391-bib-0049 article-title: HbA1c predicts time to diagnosis of type 1 diabetes in children at risk publication-title: Diabetes doi: 10.2337/db14-0497 – volume: 10 start-page: 141 year: 2009 ident: 2022021407183962300_cei13391-bib-0022 article-title: Genetic variants of the HLA-A, HLA-B and AIF1 loci show independent associations with type 1 diabetes in Norwegian families publication-title: Genes Immun doi: 10.1038/gene.2008.88 – volume: 42 start-page: 1086 year: 1993 ident: 2022021407183962300_cei13391-bib-0041 article-title: Association of HLA-A24 with complete beta-cell destruction in IDDM publication-title: Diabetes doi: 10.2337/diab.42.7.1086 – volume: 1 start-page: 284 year: 2013 ident: 2022021407183962300_cei13391-bib-0016 article-title: Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial publication-title: Lancet Diabetes Endocrinol doi: 10.1016/S2213-8587(13)70111-6 – volume: 49 start-page: 2217 year: 2000 ident: 2022021407183962300_cei13391-bib-0021 article-title: Non-class II HLA gene associated with type 1 diabetes maps to the 240-kb region near HLA-B publication-title: Diabetes doi: 10.2337/diabetes.49.12.2217 – volume: 29 start-page: 646 year: 2013 ident: 2022021407183962300_cei13391-bib-0050 article-title: Autoantibodies against zinc transporter 8 are related to age, metabolic state and HLA DR genotype in children with newly diagnosed type 1 diabetes publication-title: Diabetes Metab Res Rev doi: 10.1002/dmrr.2440 – volume: 201 start-page: 349 year: 2005 ident: 2022021407183962300_cei13391-bib-0052 article-title: CD8+ immunodominance among Epstein–Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells publication-title: J Exp Med doi: 10.1084/jem.20041542 – volume: 366 start-page: 69 year: 1993 ident: 2022021407183962300_cei13391-bib-0080 article-title: Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes publication-title: Nature doi: 10.1038/366069a0 – volume: 128 start-page: 3460 year: 2018 ident: 2022021407183962300_cei13391-bib-0014 article-title: Autoreactive T effector memory differentiation mirrors beta cell function in type 1 diabetes publication-title: J Clin Invest doi: 10.1172/JCI120555 – volume: 75 start-page: 65 year: 2014 ident: 2022021407183962300_cei13391-bib-0029 article-title: The HLA-B*39 allele increases type 1 diabetes risk conferred by HLA-DRB1*04:04-DQB1*03:02 and HLA-DRB1*08-DQB1*04 class II haplotypes publication-title: Hum Immunol doi: 10.1016/j.humimm.2013.09.008 – volume: 118 start-page: 3390 year: 2008 ident: 2022021407183962300_cei13391-bib-0015 article-title: CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope publication-title: J Clin Invest – volume: 29 start-page: 267 year: 1986 ident: 2022021407183962300_cei13391-bib-0008 article-title: The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom publication-title: Diabetologia doi: 10.1007/BF00452061 – volume: 63 start-page: 3835 year: 2014 ident: 2022021407183962300_cei13391-bib-0004 article-title: Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes publication-title: Diabetes doi: 10.2337/db14-0365 – volume: 59 start-page: 3253 year: 2010 ident: 2022021407183962300_cei13391-bib-0025 article-title: Effect of HLA class I and class II alleles on progression from autoantibody positivity to overt type 1 diabetes in children with risk-associated class II genotypes publication-title: Diabetes doi: 10.2337/db10-0167 – volume: 290 start-page: 18924 year: 2015 ident: 2022021407183962300_cei13391-bib-0053 article-title: Distortion of the major histocompatibility complex class I binding groove to accommodate an insulin-derived 10-mer peptide publication-title: J Biol Chem doi: 10.1074/jbc.M114.622522 – volume: 48 start-page: 460 year: 1999 ident: 2022021407183962300_cei13391-bib-0073 article-title: Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study publication-title: Diabetes doi: 10.2337/diabetes.48.3.460 – volume: 9 start-page: 2692 year: 2018 ident: 2022021407183962300_cei13391-bib-0061 article-title: Defining memory CD8 T cell publication-title: Front Immunol doi: 10.3389/fimmu.2018.02692 – volume: 62 start-page: 2067 year: 2013 ident: 2022021407183962300_cei13391-bib-0087 article-title: Humoral responses to islet antigen-2 and zinc transporter 8 are attenuated in patients carrying HLA-A*24 alleles at the onset of type 1 diabetes publication-title: Diabetes doi: 10.2337/db12-1468 – volume: 46 start-page: 1888 year: 1997 ident: 2022021407183962300_cei13391-bib-0028 article-title: The effect of HLA-B allele on the IDDM risk defined by DRB1*04 subtypes and DQB1*0302 publication-title: Diabetes doi: 10.2337/diab.46.11.1888 – volume: 38 start-page: 1493 year: 1995 ident: 2022021407183962300_cei13391-bib-0034 article-title: Class I HLA is associated with age-at-onset of IDDM, while class II HLA confers susceptibility to IDDM publication-title: Diabetologia doi: 10.1007/BF00400620 – volume: 84 start-page: 378 year: 2014 ident: 2022021407183962300_cei13391-bib-0044 article-title: Identification and characterisation of peptide binding motifs of six autoimmune disease-associated human leukocyte antigen-class I molecules including HLA-B*39:06 publication-title: Tissue Antigens doi: 10.1111/tan.12413 – volume: 215 start-page: 51 year: 2018 ident: 2022021407183962300_cei13391-bib-0059 article-title: Metabolic reprogramming of human CD8(+) memory T cells through loss of SIRT1 publication-title: J Exp Med doi: 10.1084/jem.20161066 – volume: 552 start-page: 362 year: 2017 ident: 2022021407183962300_cei13391-bib-0066 article-title: Origin and differentiation of human memory CD8 T cells after vaccination publication-title: Nature doi: 10.1038/nature24633 – volume: 3 start-page: eaao4013 year: 2018 ident: 2022021407183962300_cei13391-bib-0056 article-title: Islet-reactive CD8(+) T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors publication-title: Sci Immunol doi: 10.1126/sciimmunol.aao4013 – volume: 90 start-page: 2712 year: 2005 ident: 2022021407183962300_cei13391-bib-0048 article-title: Dynamics of diabetes-associated autoantibodies in young children with human leukocyte antigen-conferred risk of type 1 diabetes recruited from the general population publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2004-1371 – volume: 116 start-page: 1514 year: 2006 ident: 2022021407183962300_cei13391-bib-0058 article-title: IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates publication-title: J Clin Invest doi: 10.1172/JCI27564 – volume: 11 start-page: e1004740 year: 2015 ident: 2022021407183962300_cei13391-bib-0057 article-title: Characterization of CD8+ T cell differentiation following SIVDeltanef vaccination by transcription factor expression profiling publication-title: PLOS Pathog doi: 10.1371/journal.ppat.1004740 – volume: 22 start-page: 1482 year: 2016 ident: 2022021407183962300_cei13391-bib-0011 article-title: Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes publication-title: Nat Med doi: 10.1038/nm.4203 – volume: 194 start-page: 463 year: 2015 ident: 2022021407183962300_cei13391-bib-0055 article-title: Antibody stabilization of peptide-MHC multimers reveals functional T cells bearing extremely low-affinity TCRs publication-title: J Immunol doi: 10.4049/jimmunol.1401785 – volume: 177 start-page: 1780 year: 2006 ident: 2022021407183962300_cei13391-bib-0070 article-title: Phenotypical and functional analysis of memory and effector human CD8 T cells specific for mycobacterial antigens publication-title: J Immunol doi: 10.4049/jimmunol.177.3.1780 – volume: 81 start-page: 4264 year: 1996 ident: 2022021407183962300_cei13391-bib-0077 article-title: Antiislet autoantibodies usually develop sequentially rather than simultaneously publication-title: J Clin Endocrinol Metab – volume: 68 start-page: 779 year: 2007 ident: 2022021407183962300_cei13391-bib-0018 article-title: High-resolution HLA alleles and haplotypes in the United States population publication-title: Hum Immunol doi: 10.1016/j.humimm.2007.04.005 – volume: 49 start-page: 202 year: 2000 ident: 2022021407183962300_cei13391-bib-0074 article-title: Maturation of the humoral autoimmune response to epitopes of GAD in preclinical childhood type 1 diabetes publication-title: Diabetes doi: 10.2337/diabetes.49.2.202 – volume: 47 start-page: 733 year: 1998 ident: 2022021407183962300_cei13391-bib-0076 article-title: Definition of multiple ICA512/phogrin autoantibody epitopes and detection of intramolecular epitope spreading in relatives of patients with type 1 diabetes publication-title: Diabetes doi: 10.2337/diabetes.47.5.733 – volume: 159 start-page: 19 year: 2008 ident: 2022021407183962300_cei13391-bib-0045 article-title: Characterization of the humoral immune response to islet antigen 2 in children with newly diagnosed type 1 diabetes publication-title: Eur J Endocrinol doi: 10.1530/EJE-07-0853 – volume: 161 start-page: 6963 year: 1998 ident: 2022021407183962300_cei13391-bib-0075 article-title: Early development and spreading of autoantibodies to epitopes of IA-2 and their association with progression to type 1 diabetes publication-title: J Immunol doi: 10.4049/jimmunol.161.12.6963 – volume: 62 start-page: 205 year: 2013 ident: 2022021407183962300_cei13391-bib-0088 article-title: Human beta-cell killing by autoreactive preproinsulin-specific CD8 T cells is predominantly granule-mediated with the potency dependent upon T-cell receptor avidity publication-title: Diabetes doi: 10.2337/db12-0315 – volume: 64 start-page: 916 year: 2015 ident: 2022021407183962300_cei13391-bib-0012 article-title: beta-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure publication-title: Diabetes doi: 10.2337/db14-0332 – volume: 61 start-page: 146 year: 2003 ident: 2022021407183962300_cei13391-bib-0038 article-title: HLA genes associated with autoimmunity and progression to disease in type 1 diabetes publication-title: Tissue Antigens doi: 10.1034/j.1399-0039.2003.00013.x – volume: 16 start-page: 50 year: 2015 ident: 2022021407183962300_cei13391-bib-0071 article-title: Proportions of CD4+, CD8+ and B cell subsets are not affected by exposure to HIV or to Cotrimoxazole prophylaxis in Malawian HIV-uninfected but exposed children publication-title: BMC Immunol doi: 10.1186/s12865-015-0115-y – volume: 164 start-page: 111 year: 1998 ident: 2022021407183962300_cei13391-bib-0082 article-title: Epitope dominance: evidence for reciprocal determinant spreading to glutamic acid decarboxylase in non-obese diabetic mice publication-title: Immunol Rev doi: 10.1111/j.1600-065X.1998.tb01213.x – volume: 59 start-page: 2448 year: 2016 ident: 2022021407183962300_cei13391-bib-0006 article-title: Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes publication-title: Diabetologia doi: 10.1007/s00125-016-4067-4 – volume: 67 start-page: 714 year: 2006 ident: 2022021407183962300_cei13391-bib-0023 article-title: Human leukocyte antigen non-class II determinants for type 1 diabetes in the Finnish population publication-title: Hum Immunol doi: 10.1016/j.humimm.2006.05.008 – volume: 23 start-page: 746 year: 2011 ident: 2022021407183962300_cei13391-bib-0001 article-title: Diabetogenic T lymphocytes in human type 1 diabetes publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2011.10.001 – volume: 2 start-page: a007781 year: 2012 ident: 2022021407183962300_cei13391-bib-0002 article-title: Antigen targets of type 1 diabetes autoimmunity publication-title: Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a007781 – volume: 209 start-page: 51 year: 2012 ident: 2022021407183962300_cei13391-bib-0009 article-title: Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients publication-title: J Exp Med doi: 10.1084/jem.20111187 – volume: 62 start-page: 567 year: 2019 ident: 2022021407183962300_cei13391-bib-0084 article-title: Beta cells in type 1 diabetes: mass and function; sleeping or dead? publication-title: Diabetologia doi: 10.1007/s00125-019-4822-4 – volume: 56 start-page: 2400 year: 2007 ident: 2022021407183962300_cei13391-bib-0005 article-title: Screening for insulitis in adult autoantibody-positive organ donors publication-title: Diabetes doi: 10.2337/db07-0416 – volume: 55 start-page: 2394 year: 2012 ident: 2022021407183962300_cei13391-bib-0036 article-title: Use of class I and class II HLA loci for predicting age at onset of type 1 diabetes in multiple populations publication-title: Diabetologia doi: 10.1007/s00125-012-2608-z – volume: 84 start-page: 3721 year: 1999 ident: 2022021407183962300_cei13391-bib-0040 article-title: Human leukocyte antigen-A24 and -DQA1*0301 in Japanese insulin-dependent diabetes mellitus: independent contributions to susceptibility to the disease and additive contributions to acceleration of beta-cell destruction publication-title: J Clin Endocrinol Metab – volume: 59 start-page: 1721 year: 2010 ident: 2022021407183962300_cei13391-bib-0090 article-title: Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers publication-title: Diabetes doi: 10.2337/db09-1486 – volume: 155 start-page: 173 year: 2009 ident: 2022021407183962300_cei13391-bib-0003 article-title: Analysis of islet inflammation in human type 1 diabetes publication-title: Clin Exp Immunol doi: 10.1111/j.1365-2249.2008.03860.x – volume: 43 start-page: 33 year: 1994 ident: 2022021407183962300_cei13391-bib-0081 article-title: Isolation of nonobese diabetic mouse T-cells that recognize novel autoantigens involved in the early events of diabetes publication-title: Diabetes doi: 10.2337/diab.43.1.33 – volume: 89 start-page: 215 year: 2017 ident: 2022021407183962300_cei13391-bib-0026 article-title: The association of the HLA-A*24:02, B*39:01 and B*39:06 alleles with type 1 diabetes is restricted to specific HLA-DR/DQ haplotypes in Finns publication-title: HLA doi: 10.1111/tan.12967 – volume: 142 start-page: 970 year: 2018 ident: 2022021407183962300_cei13391-bib-0068 article-title: Reference values for peripheral blood lymphocyte subsets of healthy children in China publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2018.04.022 – volume: 450 start-page: 887 year: 2007 ident: 2022021407183962300_cei13391-bib-0017 article-title: Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A publication-title: Nature doi: 10.1038/nature06406 – volume: 62 start-page: 1345 year: 2013 ident: 2022021407183962300_cei13391-bib-0037 article-title: HLA-A*24 is an independent predictor of 5-year progression to diabetes in autoantibody-positive first-degree relatives of type 1 diabetic patients publication-title: Diabetes doi: 10.2337/db12-0747 – volume: 24 start-page: 357 year: 1997 ident: 2022021407183962300_cei13391-bib-0027 article-title: HLA-DR4 subtype and -B alleles in DQB1*0302-positive haplotypes associated with IDDM. The Childhood Diabetes in Finland Study Group publication-title: Eur J Immunogenet doi: 10.1046/j.1365-2370.1997.d01-108.x – volume: 55 start-page: 1926 year: 2012 ident: 2022021407183962300_cei13391-bib-0046 article-title: Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk publication-title: Diabetologia doi: 10.1007/s00125-012-2523-3 – volume: 42 start-page: 929 year: 2015 ident: 2022021407183962300_cei13391-bib-0091 article-title: Clonal deletion prunes but does not eliminate self-specific alphabeta CD8(+) T lymphocytes publication-title: Immunity doi: 10.1016/j.immuni.2015.05.001 – volume: 39 start-page: 1060 year: 2016 ident: 2022021407183962300_cei13391-bib-0042 article-title: HLA-A*24 carrier status and autoantibody surges posttransplantation associate with poor functional outcome in recipients of an islet allograft publication-title: Diabetes Care doi: 10.2337/dc15-2768 – volume: 280 start-page: 27491 year: 2005 ident: 2022021407183962300_cei13391-bib-0051 article-title: Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor-antigen complexes at the cell surface publication-title: J Biol Chem doi: 10.1074/jbc.M500555200 – volume: 92 start-page: 2313 year: 1993 ident: 2022021407183962300_cei13391-bib-0007 article-title: Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients publication-title: J Clin Invest doi: 10.1172/JCI116835 – volume: 185 start-page: 4988 year: 2010 ident: 2022021407183962300_cei13391-bib-0062 article-title: Cutting edge: the transcription factor eomesodermin enables CD8+ T cells to compete for the memory cell niche publication-title: J Immunol doi: 10.4049/jimmunol.1002042 – volume: 214 start-page: 1593 year: 2017 ident: 2022021407183962300_cei13391-bib-0065 article-title: Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis publication-title: J Exp Med doi: 10.1084/jem.20161760 – volume: 59 start-page: 2972 year: 2010 ident: 2022021407183962300_cei13391-bib-0031 article-title: HLA class I and genetic susceptibility to type 1 diabetes: results from the Type 1 Diabetes Genetics Consortium publication-title: Diabetes doi: 10.2337/db10-0699 – volume: 10 start-page: e0126019 year: 2015 ident: 2022021407183962300_cei13391-bib-0069 article-title: Decreased memory B cells and increased CD8 memory T cells in blood of breastfed children: the generation R study publication-title: PLOS ONE doi: 10.1371/journal.pone.0126019 – volume: 32 start-page: 79 year: 2010 ident: 2022021407183962300_cei13391-bib-0063 article-title: Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells publication-title: Immunity doi: 10.1016/j.immuni.2009.11.012 – volume: 87 start-page: 4572 year: 2002 ident: 2022021407183962300_cei13391-bib-0072 article-title: Natural history of beta-cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes recruited from the general population publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2002-020018 – volume: 166 start-page: 5265 year: 2001 ident: 2022021407183962300_cei13391-bib-0078 article-title: Intermolecular antigen spreading occurs during the preclinical period of human type 1 diabetes publication-title: J Immunol doi: 10.4049/jimmunol.166.8.5265 – volume: 372 start-page: 1746 year: 2008 ident: 2022021407183962300_cei13391-bib-0047 article-title: Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(08)61309-4 – volume: 24 start-page: 327 year: 2004 ident: 2022021407183962300_cei13391-bib-0079 article-title: T cells recognize multiple GAD65 and proinsulin epitopes in human type 1 diabetes, suggesting determinant spreading publication-title: J Clin Immunol doi: 10.1023/B:JOCI.0000029120.77824.41 – volume: 11 start-page: 31 issue: Suppl 1 year: 2009 ident: 2022021407183962300_cei13391-bib-0020 article-title: Confirmation of HLA class II independent type 1 diabetes associations in the major histocompatibility complex including HLA-B and HLA-A publication-title: Diabetes Obes Metab doi: 10.1111/j.1463-1326.2008.01001.x – volume: 54 start-page: 1702 year: 2011 ident: 2022021407183962300_cei13391-bib-0030 article-title: The HLA-B 3906 allele imparts a high risk of diabetes only on specific HLA-DR/DQ haplotypes publication-title: Diabetologia doi: 10.1007/s00125-011-2161-1 – volume: 6 start-page: 1236 year: 2005 ident: 2022021407183962300_cei13391-bib-0064 article-title: Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin publication-title: Nat Immunol doi: 10.1038/ni1268 – volume: 81 start-page: 35 year: 2013 ident: 2022021407183962300_cei13391-bib-0019 article-title: HLA antigen, allele and haplotype frequencies and their use in virtual panel reactive antigen calculations in the Finnish population publication-title: Tissue Antigens doi: 10.1111/tan.12036 – volume: 61 start-page: 1048 year: 2000 ident: 2022021407183962300_cei13391-bib-0033 article-title: Analysis of the distribution of HLA-A alleles in populations from five continents publication-title: Hum Immunol doi: 10.1016/S0198-8859(00)00178-6 – volume: 67 start-page: 687 year: 2018 ident: 2022021407183962300_cei13391-bib-0043 article-title: Molecular pathways for immune recognition of preproinsulin signal peptide in type 1 diabetes publication-title: Diabetes doi: 10.2337/db17-0021 – volume: 61 start-page: 1752 year: 2012 ident: 2022021407183962300_cei13391-bib-0013 article-title: Circulating preproinsulin signal peptide-specific CD8 T cells restricted by the susceptibility molecule HLA-A24 are expanded at onset of type 1 diabetes and kill beta-cells publication-title: Diabetes doi: 10.2337/db11-1520 – volume: 60 start-page: 2635 year: 2011 ident: 2022021407183962300_cei13391-bib-0085 article-title: Evidence that HLA class I and II associations with type 1 diabetes, autoantibodies to GAD and autoantibodies to IA-2, are distinct publication-title: Diabetes doi: 10.2337/db11-0131 |
SSID | ssj0006662 |
Score | 2.4308057 |
Snippet | Summary
In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and... In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin-producing β cells. The HLA-B*3906 and HLA-A*2402... In type 1 diabetes (T1D), autoreactive cytotoxic CD8 T cells are implicated in the destruction of insulin-producing β cells. The HLA-B*3906 and HLA-A*2402... In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402... In type 1 diabetes (T1D), autoreactive cytotoxic CD8 + T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 263 |
SubjectTerms | Antigens Autoantibodies Autoimmunity - immunology Beta cells CD8 antigen CD8+ T cells CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - metabolism Child Child, Preschool Children Cytotoxicity Diabetes Diabetes mellitus (insulin dependent) Diabetes Mellitus, Type 1 - blood Diabetes Mellitus, Type 1 - immunology Diabetes Mellitus, Type 1 - metabolism Diagnosis Effector cells Female Flow cytometry Genotype & phenotype Histocompatibility antigen HLA Histocompatibility Antigens Class I - immunology Histocompatibility Antigens Class I - metabolism HLA-A24 Antigen - immunology HLA-A24 Antigen - metabolism HLA-B Antigens - immunology HLA-B Antigens - metabolism HLA‐A24 HLA‐B39 Humans Immunological memory Infant Insulin Insulin - immunology Insulin - metabolism Insulin-Secreting Cells - immunology Insulin-Secreting Cells - metabolism Lymphocytes Lymphocytes T Male Memory cells Original Pancreas Phenotypes Preproinsulin Protein Precursors - immunology Protein Precursors - metabolism Risk Factors type 1 diabetes |
Title | Circulating β cell‐specific CD8+ T cells restricted by high‐risk HLA class I molecules show antigen experience in children with and at risk of type 1 diabetes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcei.13391 https://www.ncbi.nlm.nih.gov/pubmed/31660582 https://www.proquest.com/docview/2352555129 https://www.proquest.com/docview/2310289069 https://pubmed.ncbi.nlm.nih.gov/PMC7008222 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VSiAuLZS_lFINiEMl5CjZOLEtTlXaKgGKEGqlHpCs3fUsjSgOqhNV7YlH4B14Ax6Eh-BJmFn_0FCQEJcoiceOs57Z_WZ25huApzbuR0lkYkZumoLQOBOw20yBiq3qJDaLrCfS3n89GB2GL476R0vwvK6FKfkhmoCbWIafr8XAtSkuGbmlSZsdLF-5LrlaAoje_qKOYliu6i5qvCSGFauQZPE0Zy6uRVcA5tU8ycv41S9Ae6vwrr71Mu_kQ3s-M2178Rur43_-t1uwUgFT3C416TYsUb4G18tWledrcGO_2oS_A1-Hk1Pru37l7_H7N5TY_4_PX6RmU_KOcLgTP8MD_3WB0vqDp1rGtWjOUciRWVTy2XH0ahutYHcc48eySS8VWBxPz5CftpCEIjU8zDjJsa47R4kds0yGeob-UlOHEkrGLtah5LtwuLd7MBwFVa-HwIaMYQKK-9YkShmpsnZExrB7y5-szpLYUMY4zylLUZdcHFHPKh6dLOmxOkXOSGj7Hizn05weAGbOKZ25ZKC1CynSWhnX6VjKTMj-l05asFU_9dRWROjSj-MkrR0iHv7UD38LnjSin0r2jz8JbdSqk1YTQJEqoZntC5pqwePmMJuuDL7OaToXma7f5x2wzP1S05pf6XUHsmGtWhAt6GAjILTgi0fyybGnB488iz-fueVV7O83ng53x_7N-r-LPoSbSiIOPgtvA5Znp3N6xLBsZjbhmgrf8OvO-OWmt8WfyFM6hg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5VRfxc-CkUAgUGxKEScpRsnNiWuFShVQJJDyiVekHW7nqWRrQOahKhcuIReAfegAfhIXgSZtY_NBQkxC2Ox46zntn9ZnbmG4BnNu5GSWRiRm6agtA4E7DbTIGKrWolNousJ9Ie7_cGB-Grw-7hGryoamEKfog64CaW4edrMXAJSJ-zckvTJntYUrp-STp6e4fqzS_yKAbmquqjxotiWPIKSR5PfenqanQBYl7MlDyPYP0StHcD3lYPX2SevG8uF6ZpP_3G6_i__-4mXC-xKe4UynQL1ijfgMtFt8qzDbgyLvfhb8PX_vTU-sZf-Tv8_g0l_P_j8xcp25TUI-y_jJ_jxH89R-n-wbMtQ1s0Zyj8yCwqKe04GO2gFfiOQzwp-vTSHOdHs4_IL1x4QpFqKmac5liVnqOEj1kmQ71Af6uZQ4kmYxuraPIdONjbnfQHQdnuIbAhw5iA4q41iVJGCq0dkTHs4fKR1VkSG8oY6jllKWqTiyPqWMWjkyUd1qjIGYlub8J6PsvpHmDmnNKZS3pau5AirZVxrZalzITsgumkAdvVa09tyYUuLTmO08on4uFP_fA34Gkt-qEgAPmT0FalO2k5B8xTJUyzXQFUDXhSn2brlcHXOc2WItP2W709lrlbqFr9K512T_asVQOiFSWsBYQZfPVMPj3yDOGRJ_LnK7e9jv39wdP-7tB_uP_voo_h6mAyHqWj4f7rB3BNSQDCJ-VtwfridEkPGaUtzCNvjD8BaH480Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dahNREB5KS4s31ta_aNVRvCjIhuRksz94VZKGRNsi0kIvhOX82tC6KU2C1CsfwXfwDXwQH8Incebsj41VEO-y2dnN5uzMOd_MmfkG4LlOunEaq4SQm7RBqJwKyG22gUi0aKXaxNoTae8fRMOj8NVx93gJXla1MAU_RB1wY8vw8zUb-LlxV4xc23GTHCyuXF8Jo1bCKt1_-4s7inC5qNqo0ZoYlrRCnMZTX7q4GF1DmNcTJa8CWL8CDdbhXfXsReLJaXM-U0396Tdax__8c7fgZolMcadQpQ1YsvkmrBa9Ki83YW2_3IW_DV974wvt237l7_H7N-Tg_4_PX7hokxOPsNdPXuCh_3qK3PuD5loCtqgukdmRSZQT2nG4t4OawTuO8EPRpddOcXoy-Yj0upklFG1NxIzjHKvCc-TgMckYlDP0t5o45FgytrGKJd-Bo8HuYW8YlM0eAh0SiAls0tUqFUJxmbWzVinyb-lIS5MmyhoCek5oG7etS2Lb0YJGx6Qd0qfYKY5t34XlfJLb-4DGOSGNSyMpXWhjKYVyrZa2RoXkgMm0AdvVW890yYTODTnOssojouHP_PA34Fktel7Qf_xJaKtSnaycAaaZYJ7ZLsOpBjytT5Pt8uDL3E7mLNP2G70RydwrNK3-lU474h1r0YB4QQdrAeYFXzyTj088P3jsafzpym2vYn9_8Ky3O_IfHvy76BNYe9MfZHujg9cP4Ybg6IPPyNuC5dnF3D4iiDZTj70p_gS07DuJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circulating+%CE%B2+cell-specific+CD8+%2B+T+cells+restricted+by+high-risk+HLA+class+I+molecules+show+antigen+experience+in+children+with+and+at+risk+of+type+1+diabetes&rft.jtitle=Clinical+and+experimental+immunology&rft.au=Yeo%2C+L&rft.au=Pujol-Autonell%2C+I&rft.au=Baptista%2C+R&rft.au=Eichmann%2C+M&rft.date=2020-03-01&rft.eissn=1365-2249&rft.volume=199&rft.issue=3&rft.spage=263&rft_id=info:doi/10.1111%2Fcei.13391&rft_id=info%3Apmid%2F31660582&rft.externalDocID=31660582 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-9104&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-9104&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-9104&client=summon |