Circulating β cell‐specific CD8+ T cells restricted by high‐risk HLA class I molecules show antigen experience in children with and at risk of type 1 diabetes

Summary In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8+ T cells that recognize peptides presented by t...

Full description

Saved in:
Bibliographic Details
Published inClinical and experimental immunology Vol. 199; no. 3; pp. 263 - 277
Main Authors Yeo, L., Pujol‐Autonell, I., Baptista, R., Eichmann, M., Kronenberg‐Versteeg, D., Heck, S., Dolton, G., Sewell, A. K., Härkönen, T., Mikk, M.‐L., Toppari, J., Veijola, R., Knip, M., Ilonen, J., Peakman, M.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.03.2020
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0009-9104
1365-2249
1365-2249
DOI10.1111/cei.13391

Cover

Loading…
Abstract Summary In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8+ T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)‐specific and insulin B (InsB)‐specific CD8+ T cells in HLA‐B*3906+ children newly diagnosed with T1D and in high‐risk HLA‐A*2402+ children before the appearance of disease‐specific autoantibodies and before diagnosis of T1D. Antigen‐specific CD8+ T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA‐B*3906+ children with T1D, we observed an increase in PPI5–12‐specific transitional memory CD8+ T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI5–12‐specific CD8+ T cells in HLA‐B*3906+ children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8+ T cells. In longitudinal samples from high‐risk HLA‐A*2402+ children, the percentage of terminal effector cells within the InsB15–24‐specific CD8+ T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA‐B*3906‐restricted autoreactive CD8+ T cells in T1D. Collectively, our results provide evidence that β cell‐reactive CD8+ T cells restricted by disease‐associated HLA class I molecules display an antigen‐experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease. In this study, we characterised circulating autoreactive CD8+ T cells in children with type 1 diabetes with HLA-B*3906+ and HLA-A*2402+ genotypes which are associated with increased risk and early onset of disease. In HLA-B*3906+ children with newly diagnosed type 1 diabetes, we observed an increase in PPI5–12‐specific transitional memory CD8+ T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI5–12‐specific CD8+ T cells in HLA‐B*3906+ children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8+ T cells. Further, in longitudinal samples from high-risk HLA-A*2402+ children, the percentage of terminal effector cells within the InsB15–24‐specific CD8+ T cell population was increased before diagnosis relative to samples taken before the appearance of autoantibodies.
AbstractList In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin-producing β cells. The HLA-B*3906 and HLA-A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8+ T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)-specific and insulin B (InsB)-specific CD8+ T cells in HLA-B*3906+ children newly diagnosed with T1D and in high-risk HLA-A*2402+ children before the appearance of disease-specific autoantibodies and before diagnosis of T1D. Antigen-specific CD8+ T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA-B*3906+ children with T1D, we observed an increase in PPI5-12 -specific transitional memory CD8+ T cells compared to non-diabetic, age- and HLA-matched subjects. Furthermore, PPI5-12 -specific CD8+ T cells in HLA-B*3906+ children with T1D showed a significantly more antigen-experienced phenotype compared to polyclonal CD8+ T cells. In longitudinal samples from high-risk HLA-A*2402+ children, the percentage of terminal effector cells within the InsB15-24 -specific CD8+ T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA-B*3906-restricted autoreactive CD8+ T cells in T1D. Collectively, our results provide evidence that β cell-reactive CD8+ T cells restricted by disease-associated HLA class I molecules display an antigen-experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease.In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin-producing β cells. The HLA-B*3906 and HLA-A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8+ T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)-specific and insulin B (InsB)-specific CD8+ T cells in HLA-B*3906+ children newly diagnosed with T1D and in high-risk HLA-A*2402+ children before the appearance of disease-specific autoantibodies and before diagnosis of T1D. Antigen-specific CD8+ T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA-B*3906+ children with T1D, we observed an increase in PPI5-12 -specific transitional memory CD8+ T cells compared to non-diabetic, age- and HLA-matched subjects. Furthermore, PPI5-12 -specific CD8+ T cells in HLA-B*3906+ children with T1D showed a significantly more antigen-experienced phenotype compared to polyclonal CD8+ T cells. In longitudinal samples from high-risk HLA-A*2402+ children, the percentage of terminal effector cells within the InsB15-24 -specific CD8+ T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA-B*3906-restricted autoreactive CD8+ T cells in T1D. Collectively, our results provide evidence that β cell-reactive CD8+ T cells restricted by disease-associated HLA class I molecules display an antigen-experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease.
In type 1 diabetes (T1D), autoreactive cytotoxic CD8 T cells are implicated in the destruction of insulin-producing β cells. The HLA-B*3906 and HLA-A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8 T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)-specific and insulin B (InsB)-specific CD8 T cells in HLA-B*3906 children newly diagnosed with T1D and in high-risk HLA-A*2402 children before the appearance of disease-specific autoantibodies and before diagnosis of T1D. Antigen-specific CD8 T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA-B*3906 children with T1D, we observed an increase in PPI -specific transitional memory CD8 T cells compared to non-diabetic, age- and HLA-matched subjects. Furthermore, PPI -specific CD8 T cells in HLA-B*3906 children with T1D showed a significantly more antigen-experienced phenotype compared to polyclonal CD8 T cells. In longitudinal samples from high-risk HLA-A*2402 children, the percentage of terminal effector cells within the InsB -specific CD8 T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA-B*3906-restricted autoreactive CD8 T cells in T1D. Collectively, our results provide evidence that β cell-reactive CD8 T cells restricted by disease-associated HLA class I molecules display an antigen-experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease.
Summary In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8+ T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)‐specific and insulin B (InsB)‐specific CD8+ T cells in HLA‐B*3906+ children newly diagnosed with T1D and in high‐risk HLA‐A*2402+ children before the appearance of disease‐specific autoantibodies and before diagnosis of T1D. Antigen‐specific CD8+ T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA‐B*3906+ children with T1D, we observed an increase in PPI5–12‐specific transitional memory CD8+ T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI5–12‐specific CD8+ T cells in HLA‐B*3906+ children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8+ T cells. In longitudinal samples from high‐risk HLA‐A*2402+ children, the percentage of terminal effector cells within the InsB15–24‐specific CD8+ T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA‐B*3906‐restricted autoreactive CD8+ T cells in T1D. Collectively, our results provide evidence that β cell‐reactive CD8+ T cells restricted by disease‐associated HLA class I molecules display an antigen‐experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease. In this study, we characterised circulating autoreactive CD8+ T cells in children with type 1 diabetes with HLA-B*3906+ and HLA-A*2402+ genotypes which are associated with increased risk and early onset of disease. In HLA-B*3906+ children with newly diagnosed type 1 diabetes, we observed an increase in PPI5–12‐specific transitional memory CD8+ T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI5–12‐specific CD8+ T cells in HLA‐B*3906+ children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8+ T cells. Further, in longitudinal samples from high-risk HLA-A*2402+ children, the percentage of terminal effector cells within the InsB15–24‐specific CD8+ T cell population was increased before diagnosis relative to samples taken before the appearance of autoantibodies.
In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8+ T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)‐specific and insulin B (InsB)‐specific CD8+ T cells in HLA‐B*3906+ children newly diagnosed with T1D and in high‐risk HLA‐A*2402+ children before the appearance of disease‐specific autoantibodies and before diagnosis of T1D. Antigen‐specific CD8+ T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA‐B*3906+ children with T1D, we observed an increase in PPI5–12‐specific transitional memory CD8+ T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI5–12‐specific CD8+ T cells in HLA‐B*3906+ children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8+ T cells. In longitudinal samples from high‐risk HLA‐A*2402+ children, the percentage of terminal effector cells within the InsB15–24‐specific CD8+ T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA‐B*3906‐restricted autoreactive CD8+ T cells in T1D. Collectively, our results provide evidence that β cell‐reactive CD8+ T cells restricted by disease‐associated HLA class I molecules display an antigen‐experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease.
In type 1 diabetes (T1D), autoreactive cytotoxic CD8 + T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402 class I genes confer increased risk and promote early disease onset, suggesting that CD8 + T cells that recognize peptides presented by these class I molecules on pancreatic β cells play a pivotal role in the autoimmune response. We examined the frequency and phenotype of circulating preproinsulin (PPI)‐specific and insulin B (InsB)‐specific CD8 + T cells in HLA‐B*3906 + children newly diagnosed with T1D and in high‐risk HLA‐A*2402 + children before the appearance of disease‐specific autoantibodies and before diagnosis of T1D. Antigen‐specific CD8 + T cells were detected using human leucocyte antigen (HLA) class I tetramers and flow cytometry was used to assess memory status. In HLA‐B*3906 + children with T1D, we observed an increase in PPI 5–12 ‐specific transitional memory CD8 + T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI 5–12 ‐specific CD8 + T cells in HLA‐B*3906 + children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8 + T cells. In longitudinal samples from high‐risk HLA‐A*2402 + children, the percentage of terminal effector cells within the InsB 15–24 ‐specific CD8 + T cells was increased before diagnosis relative to samples taken before the appearance of autoantibodies. This is the first study, to our knowledge, to report HLA‐B*3906 ‐restricted autoreactive CD8 + T cells in T1D. Collectively, our results provide evidence that β cell‐reactive CD8 + T cells restricted by disease‐associated HLA class I molecules display an antigen‐experienced phenotype and acquire enhanced effector function during the period leading to clinical diagnosis, implicating these cells in driving disease. In this study, we characterised circulating autoreactive CD8 + T cells in children with type 1 diabetes with HLA-B*3906 + and HLA-A*2402 + genotypes which are associated with increased risk and early onset of disease. In HLA-B*3906 + children with newly diagnosed type 1 diabetes, we observed an increase in PPI 5–12 ‐specific transitional memory CD8 + T cells compared to non‐diabetic, age‐ and HLA‐matched subjects. Furthermore, PPI 5–12 ‐specific CD8 + T cells in HLA‐B*3906 + children with T1D showed a significantly more antigen‐experienced phenotype compared to polyclonal CD8 + T cells. Further, in longitudinal samples from high-risk HLA-A*2402 + children, the percentage of terminal effector cells within the InsB 15–24 ‐specific CD8 + T cell population was increased before diagnosis relative to samples taken before the appearance of autoantibodies.
Author Dolton, G.
Toppari, J.
Veijola, R.
Eichmann, M.
Heck, S.
Sewell, A. K.
Yeo, L.
Knip, M.
Baptista, R.
Mikk, M.‐L.
Kronenberg‐Versteeg, D.
Härkönen, T.
Pujol‐Autonell, I.
Peakman, M.
Ilonen, J.
AuthorAffiliation 4 Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
3 Division of Infection and Immunity School of Medicine and Systems Immunity Research Institute Cardiff University Cardiff UK
6 Department of Paediatrics University of Turku and Turku University Hospital Turku Finland
11 Folkhälsan Research Centre Helsinki Finland
10 Department of Pediatrics Tampere University Hospital Tampere Finland
2 National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College London London UK
12 Clinical Microbiology Turku University Hospital Turku Finland
13 King’s Health Partners Institute of Diabetes, Endocrinology and Obesity London UK
1 Department of Immunobiology Faculty of Life Sciences and Medicine King’s College London London UK
9 Children’s Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
5 Immunogenetics Laboratory Institute of Biomedicine University of Turku Tu
AuthorAffiliation_xml – name: 11 Folkhälsan Research Centre Helsinki Finland
– name: 7 Institute of Biomedicine Research Centre for Integrative Physiology and Pharmacology University of Turku Turku Finland
– name: 2 National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College London London UK
– name: 3 Division of Infection and Immunity School of Medicine and Systems Immunity Research Institute Cardiff University Cardiff UK
– name: 8 Department of Paediatrics PEDEGO Research Unit Medical Research Centre Oulu University Hospital and University of Oulu Oulu Finland
– name: 10 Department of Pediatrics Tampere University Hospital Tampere Finland
– name: 5 Immunogenetics Laboratory Institute of Biomedicine University of Turku Turku Finland
– name: 1 Department of Immunobiology Faculty of Life Sciences and Medicine King’s College London London UK
– name: 13 King’s Health Partners Institute of Diabetes, Endocrinology and Obesity London UK
– name: 6 Department of Paediatrics University of Turku and Turku University Hospital Turku Finland
– name: 9 Children’s Hospital University of Helsinki and Helsinki University Hospital Helsinki Finland
– name: 12 Clinical Microbiology Turku University Hospital Turku Finland
– name: 4 Research Program for Clinical and Molecular Metabolism Faculty of Medicine University of Helsinki Helsinki Finland
Author_xml – sequence: 1
  givenname: L.
  orcidid: 0000-0002-9638-4920
  surname: Yeo
  fullname: Yeo, L.
  organization: National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College London
– sequence: 2
  givenname: I.
  surname: Pujol‐Autonell
  fullname: Pujol‐Autonell, I.
  organization: King’s College London
– sequence: 3
  givenname: R.
  surname: Baptista
  fullname: Baptista, R.
  organization: National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College London
– sequence: 4
  givenname: M.
  surname: Eichmann
  fullname: Eichmann, M.
  organization: King’s College London
– sequence: 5
  givenname: D.
  surname: Kronenberg‐Versteeg
  fullname: Kronenberg‐Versteeg, D.
  organization: King’s College London
– sequence: 6
  givenname: S.
  surname: Heck
  fullname: Heck, S.
  organization: National Institute of Health Research Biomedical Research Centre at Guy’s and St Thomas’ Hospital and King’s College London
– sequence: 7
  givenname: G.
  surname: Dolton
  fullname: Dolton, G.
  organization: Cardiff University
– sequence: 8
  givenname: A. K.
  surname: Sewell
  fullname: Sewell, A. K.
  organization: Cardiff University
– sequence: 9
  givenname: T.
  surname: Härkönen
  fullname: Härkönen, T.
  organization: University of Helsinki
– sequence: 10
  givenname: M.‐L.
  surname: Mikk
  fullname: Mikk, M.‐L.
  organization: University of Turku
– sequence: 11
  givenname: J.
  surname: Toppari
  fullname: Toppari, J.
  organization: University of Turku
– sequence: 12
  givenname: R.
  surname: Veijola
  fullname: Veijola, R.
  organization: Oulu University Hospital and University of Oulu
– sequence: 13
  givenname: M.
  surname: Knip
  fullname: Knip, M.
  organization: Folkhälsan Research Centre
– sequence: 14
  givenname: J.
  surname: Ilonen
  fullname: Ilonen, J.
  organization: Turku University Hospital
– sequence: 15
  givenname: M.
  surname: Peakman
  fullname: Peakman, M.
  email: mark.peakman@kcl.ac.uk
  organization: King’s Health Partners Institute of Diabetes, Endocrinology and Obesity
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31660582$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uEzEQxy1URNPCgRdAI3GhQtva3vVmfalUpYVGisSlnC2vdzbrsrGDvSHkxiPwDrwBD8JD8CQ4SamgEvhizcxv_pqvI3LgvENCnjN6ytI7M2hPWZ5L9oiMWF6KjPNCHpARpVRmktHikBzFeJvMsiz5E3KYs7KkouIj8m1ig1n1erBuDj--g8G-__nla1yisa01MLmsXsPNzh0hYByCNQM2UG-gs_MuocHGD3A9uwDT6xhhCgvfY5LECLHza9BusHN0gJ-XGCw6g2AdmM72TUjutR26xDSgB9hJ-RaGzRKBQWN1jQPGp-Rxq_uIz-7-Y_L-zdXN5DqbvXs7nVzMMlMUOcuwEqaWnNeFELRFrGs5rpJldCOrGptClC03OGbYVmPMDU8Ta2ROpRm3NRU8Pybne93lql5gY9ANQfdqGexCh43y2qq_I852au4_qTGlFedbgVd3AsF_XKVhqYWN29Fph34VFc8Z5ZWkpUzoywforV8Fl9pLlOBCCMa31Is_K7ov5ff-EnCyB0zwMQZs7xFG1fY2VLoNtbuNxJ49YI0d0uL9thnb_y9jbXvc_FtaTa6m-4xfsDvOXw
CitedBy_id crossref_primary_10_2337_db21_0259
crossref_primary_10_1007_s40618_024_02497_x
crossref_primary_10_3390_biomedicines10123042
crossref_primary_10_1016_j_clim_2024_110266
crossref_primary_10_3390_ijms22136733
crossref_primary_10_1016_j_molmet_2024_101998
crossref_primary_10_1111_imcb_12593
crossref_primary_10_3389_fimmu_2023_1292238
crossref_primary_10_3892_br_2024_1770
crossref_primary_10_1038_s41574_020_0330_3
crossref_primary_10_3389_fimmu_2022_829126
crossref_primary_10_1016_j_jbc_2024_107702
crossref_primary_10_1016_j_molmet_2023_101809
crossref_primary_10_2174_1573399819666220610150342
crossref_primary_10_3389_fimmu_2023_1183909
crossref_primary_10_3389_fimmu_2024_1342335
crossref_primary_10_1007_s00125_020_05298_y
crossref_primary_10_1111_imcb_12442
crossref_primary_10_1097_MED_0000000000000553
crossref_primary_10_1007_s00125_023_05970_z
crossref_primary_10_3389_fendo_2020_606434
crossref_primary_10_3389_fimmu_2021_667989
crossref_primary_10_1111_tan_14280
crossref_primary_10_1136_bmjsem_2024_002144
crossref_primary_10_3389_fimmu_2024_1457213
crossref_primary_10_2174_1573396318666220409001955
crossref_primary_10_1111_sji_12887
crossref_primary_10_1016_j_sjbs_2022_103434
Cites_doi 10.1136/jmg.2009.066647
10.2337/db11-0270
10.1002/eji.201343751
10.1034/j.1399-0039.1999.540107.x
10.4049/jimmunol.171.1.27
10.1073/pnas.0508621102
10.1038/366072a0
10.1016/j.humimm.2004.12.001
10.1016/j.jim.2008.09.014
10.2337/dc17-2462
10.1016/S0198-8859(02)00421-4
10.2337/db14-0497
10.1038/gene.2008.88
10.2337/diab.42.7.1086
10.1016/S2213-8587(13)70111-6
10.2337/diabetes.49.12.2217
10.1002/dmrr.2440
10.1084/jem.20041542
10.1038/366069a0
10.1172/JCI120555
10.1016/j.humimm.2013.09.008
10.1007/BF00452061
10.2337/db14-0365
10.2337/db10-0167
10.1074/jbc.M114.622522
10.2337/diabetes.48.3.460
10.3389/fimmu.2018.02692
10.2337/db12-1468
10.2337/diab.46.11.1888
10.1007/BF00400620
10.1111/tan.12413
10.1084/jem.20161066
10.1038/nature24633
10.1126/sciimmunol.aao4013
10.1210/jc.2004-1371
10.1172/JCI27564
10.1371/journal.ppat.1004740
10.1038/nm.4203
10.4049/jimmunol.1401785
10.4049/jimmunol.177.3.1780
10.1016/j.humimm.2007.04.005
10.2337/diabetes.49.2.202
10.2337/diabetes.47.5.733
10.1530/EJE-07-0853
10.4049/jimmunol.161.12.6963
10.2337/db12-0315
10.2337/db14-0332
10.1034/j.1399-0039.2003.00013.x
10.1186/s12865-015-0115-y
10.1111/j.1600-065X.1998.tb01213.x
10.1007/s00125-016-4067-4
10.1016/j.humimm.2006.05.008
10.1016/j.coi.2011.10.001
10.1101/cshperspect.a007781
10.1084/jem.20111187
10.1007/s00125-019-4822-4
10.2337/db07-0416
10.1007/s00125-012-2608-z
10.2337/db09-1486
10.1111/j.1365-2249.2008.03860.x
10.2337/diab.43.1.33
10.1111/tan.12967
10.1016/j.jaci.2018.04.022
10.1038/nature06406
10.2337/db12-0747
10.1046/j.1365-2370.1997.d01-108.x
10.1007/s00125-012-2523-3
10.1016/j.immuni.2015.05.001
10.2337/dc15-2768
10.1074/jbc.M500555200
10.1172/JCI116835
10.4049/jimmunol.1002042
10.1084/jem.20161760
10.2337/db10-0699
10.1371/journal.pone.0126019
10.1016/j.immuni.2009.11.012
10.1210/jc.2002-020018
10.4049/jimmunol.166.8.5265
10.1016/S0140-6736(08)61309-4
10.1023/B:JOCI.0000029120.77824.41
10.1111/j.1463-1326.2008.01001.x
10.1007/s00125-011-2161-1
10.1038/ni1268
10.1111/tan.12036
10.1016/S0198-8859(00)00178-6
10.2337/db17-0021
10.2337/db11-1520
10.2337/db11-0131
ContentType Journal Article
Copyright 2019 British Society for Immunology
2019 British Society for Immunology.
2020 British Society for Immunology
2019 The Authors. published by John Wiley & Sons Ltd on behalf of British Society for Immunology
Copyright_xml – notice: 2019 British Society for Immunology
– notice: 2019 British Society for Immunology.
– notice: 2020 British Society for Immunology
– notice: 2019 The Authors. published by John Wiley & Sons Ltd on behalf of British Society for Immunology
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7U9
H94
M7N
7X8
5PM
DOI 10.1111/cei.13391
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AIDS and Cancer Research Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate Autoreactive diabetogenic T cells restricted by high‐risk class I HLA
EISSN 1365-2249
EndPage 277
ExternalDocumentID PMC7008222
31660582
10_1111_cei_13391
CEI13391
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  funderid: WT100327MA
– fundername: Horizon 2020 Framework Programme
– fundername: Juvenile Diabetes Research Foundation International
  funderid: 17‐2013‐583
– fundername: Suomen Akatemia
– fundername: Leona M. and Harry B. Helmsley Charitable Trust
– fundername: Sigrid Juséliuksen Säätiö
– fundername: National Institute for Health Research
  funderid: Biomedical Research Centre Award to Guy’s & St Tho
– fundername: H2020 Marie Skłodowska‐Curie Actions
  funderid: 704974
– fundername: Wellcome Trust
  grantid: WT100327MA
– fundername: Department of Health
– fundername: ;
– fundername: ;
  grantid: WT100327MA
– fundername: ;
  grantid: 17‐2013‐583
– fundername: ;
  grantid: 704974
– fundername: ;
  grantid: Biomedical Research Centre Award to Guy’s & St Tho
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
169
1OC
24P
29B
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
5WD
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
A8Z
AABZA
AACZT
AAESR
AAEVG
AAHHS
AAONW
AAPXW
AARHZ
AAUAY
AAVAP
AAZKR
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABJNI
ABLJU
ABNHQ
ABOCM
ABPTD
ABPVW
ABQNK
ABXVV
ACAHQ
ACCFJ
ACFBH
ACGFO
ACGFS
ACMXC
ACPOU
ACPRK
ACSCC
ACUFI
ACUHS
ACXQS
ADBBV
ADEOM
ADIPN
ADIYS
ADIZJ
ADKYN
ADMGS
ADOZA
ADQBN
ADVEK
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFFZL
AFGKR
AFPWT
AFRAH
AFTUV
AFXAL
AFZJQ
AGMDO
AGUTN
AHMMS
AIACR
AIAGR
AIURR
AIWBW
AJAOE
AJBDE
AJEEA
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
AOIJS
ATGXG
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BCRHZ
BEYMZ
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GX1
H.X
H13
HF~
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
J5H
K48
KBUDW
KBYEO
KOP
KSI
KSN
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NOMLY
NU-
O66
O9-
OAUYM
OBS
OCZFY
OHT
OIG
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P2W
P2X
P2Z
P4B
P4D
Q.N
Q11
QB0
Q~Q
R.K
ROL
ROX
RPM
RX1
SUPJJ
SV3
TEORI
TR2
TUS
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WOW
WQJ
WRC
WVDHM
WXI
X7M
XG1
Y6R
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAFWJ
AAYXX
ABGNP
ABVGC
AEMQT
AGORE
AJBYB
AJNCP
ALXQX
CITATION
AAMMB
ACVCV
AEFGJ
AFFQV
AGXDD
AHGBF
AIDQK
AIDYY
AJDVS
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7U9
H94
M7N
7X8
5PM
ID FETCH-LOGICAL-c4431-e85cb922b4550feebb9782b4cad98bed456f2ce71ef87e3c2339d9309c7fb0523
IEDL.DBID DR2
ISSN 0009-9104
1365-2249
IngestDate Thu Aug 21 13:41:37 EDT 2025
Thu Jul 10 22:15:51 EDT 2025
Wed Aug 13 04:46:56 EDT 2025
Mon Jul 21 05:43:03 EDT 2025
Tue Jul 01 03:53:10 EDT 2025
Thu Apr 24 22:52:41 EDT 2025
Wed Jan 22 16:39:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords HLA-A24
HLA-B39
CD8+ T cells
type 1 diabetes
Language English
License https://creativecommons.org/licenses/by/4.0
2019 British Society for Immunology.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4431-e85cb922b4550feebb9782b4cad98bed456f2ce71ef87e3c2339d9309c7fb0523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-9638-4920
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcei.13391
PMID 31660582
PQID 2352555129
PQPubID 36527
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7008222
proquest_miscellaneous_2310289069
proquest_journals_2352555129
pubmed_primary_31660582
crossref_primary_10_1111_cei_13391
crossref_citationtrail_10_1111_cei_13391
wiley_primary_10_1111_cei_13391_CEI13391
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Clinical and experimental immunology
PublicationTitleAlternate Clin Exp Immunol
PublicationYear 2020
Publisher Oxford University Press
John Wiley and Sons Inc
Publisher_xml – name: Oxford University Press
– name: John Wiley and Sons Inc
References 2012; 61
2013; 29
2009; 46
2010; 59
2013; 1
2000; 49
2018; 128
1995; 38
2013; 62
2011; 60
1997; 46
1999; 48
2017; 89
2004; 24
2009; 155
2010; 185
2011; 54
2018; 41
1999; 84
2014; 63
2016; 39
2017; 552
1993; 366
2012; 55
2005; 66
2006; 177
1998; 47
2012; 209
2009; 11
2018; 9
2018; 3
2015; 290
2009; 10
2019; 62
2006; 67
2018; 215
2005; 102
2015; 42
2002; 87
2007; 450
2000; 61
2008; 118
1999; 54
2011; 23
2008; 159
2007; 68
1998; 161
1998; 164
2018; 142
2001; 166
2010; 32
2015; 16
2013; 43
2005; 90
1997; 24
1993; 42
2015; 11
2015; 10
2003; 171
2018; 67
2006; 116
2014; 84
2007; 56
2016; 59
2017; 214
1994; 43
2005; 280
2015; 194
2012; 2
2002; 63
1993; 92
2005; 201
2015; 64
1986; 29
2013; 81
2005; 6
1996; 81
2009; 340
2003; 61
2008; 372
2016; 22
2014; 75
Gombos (2022021407183962300_cei13391-bib-0023) 2006; 67
Richardson (2022021407183962300_cei13391-bib-0006) 2016; 59
Mikk (2022021407183962300_cei13391-bib-0029) 2014; 75
Tungatt (2022021407183962300_cei13391-bib-0055) 2015; 194
Culina (2022021407183962300_cei13391-bib-0056) 2018; 3
Makinen (2022021407183962300_cei13391-bib-0045) 2008; 159
Abdelsamed (2022021407183962300_cei13391-bib-0065) 2017; 214
Ding (2022021407183962300_cei13391-bib-0068) 2018; 142
Oram (2022021407183962300_cei13391-bib-0084) 2019; 62
Noble (2022021407183962300_cei13391-bib-0031) 2010; 59
Jeng (2022021407183962300_cei13391-bib-0059) 2018; 215
Kimpimaki (2022021407183962300_cei13391-bib-0072) 2002; 87
Maiers (2022021407183962300_cei13391-bib-0018) 2007; 68
Naserke (2022021407183962300_cei13391-bib-0075) 1998; 161
Haimila (2022021407183962300_cei13391-bib-0019) 2013; 81
Long (2022021407183962300_cei13391-bib-0087) 2013; 62
Noble (2022021407183962300_cei13391-bib-0035) 2002; 63
Velthuis (2022021407183962300_cei13391-bib-0090) 2010; 59
Ziegler (2022021407183962300_cei13391-bib-0073) 1999; 48
Lissina (2022021407183962300_cei13391-bib-0054) 2009; 340
Arif (2022021407183962300_cei13391-bib-0004) 2014; 63
Skowera (2022021407183962300_cei13391-bib-0012) 2015; 64
Yu (2022021407183962300_cei13391-bib-0091) 2015; 42
Baschal (2022021407183962300_cei13391-bib-0030) 2011; 54
Intlekofer (2022021407183962300_cei13391-bib-0064) 2005; 6
Akondy (2022021407183962300_cei13391-bib-0066) 2017; 552
Eike (2022021407183962300_cei13391-bib-0022) 2009; 10
Nanto-Salonen (2022021407183962300_cei13391-bib-0047) 2008; 372
Roep (2022021407183962300_cei13391-bib-0001) 2011; 23
Kukko (2022021407183962300_cei13391-bib-0048) 2005; 90
Pudney (2022021407183962300_cei13391-bib-0052) 2005; 201
Gelber (2022021407183962300_cei13391-bib-0081) 1994; 43
Balke (2022021407183962300_cei13391-bib-0039) 2018; 41
Helminen (2022021407183962300_cei13391-bib-0049) 2015; 64
Salonen (2022021407183962300_cei13391-bib-0050) 2013; 29
Nakanishi (2022021407183962300_cei13391-bib-0040) 1999; 84
Babon (2022021407183962300_cei13391-bib-0011) 2016; 22
Williams (2022021407183962300_cei13391-bib-0032) 1999; 54
Skowera (2022021407183962300_cei13391-bib-0015) 2008; 118
Ott (2022021407183962300_cei13391-bib-0079) 2004; 24
Billingsley (2022021407183962300_cei13391-bib-0057) 2015; 11
Bonifacio (2022021407183962300_cei13391-bib-0074) 2000; 49
Foulis (2022021407183962300_cei13391-bib-0008) 1986; 29
Demeester (2022021407183962300_cei13391-bib-0042) 2016; 39
Parikka (2022021407183962300_cei13391-bib-0046) 2012; 55
Tait (2022021407183962300_cei13391-bib-0038) 2003; 61
Valdes (2022021407183962300_cei13391-bib-0024) 2005; 66
Nejentsev (2022021407183962300_cei13391-bib-0021) 2000; 49
Kawasaki (2022021407183962300_cei13391-bib-0076) 1998; 47
Lipponen (2022021407183962300_cei13391-bib-0025) 2010; 59
Yeo (2022021407183962300_cei13391-bib-0014) 2018; 128
Middleton (2022021407183962300_cei13391-bib-0033) 2000; 61
Picker (2022021407183962300_cei13391-bib-0058) 2006; 116
Yu (2022021407183962300_cei13391-bib-0077) 1996; 81
Howson (2022021407183962300_cei13391-bib-0085) 2011; 60
Zechel (2022021407183962300_cei13391-bib-0082) 1998; 164
Qu (2022021407183962300_cei13391-bib-0086) 2009; 46
Luce (2022021407183962300_cei13391-bib-0089) 2011; 60
Nejentsev (2022021407183962300_cei13391-bib-0028) 1997; 46
Kronenberg-Versteeg (2022021407183962300_cei13391-bib-0043) 2018; 67
Pipkin (2022021407183962300_cei13391-bib-0063) 2010; 32
Eichmann (2022021407183962300_cei13391-bib-0044) 2014; 84
Brooks-Worrell (2022021407183962300_cei13391-bib-0078) 2001; 166
Mbunwe (2022021407183962300_cei13391-bib-0037) 2013; 62
Rigby (2022021407183962300_cei13391-bib-0016) 2013; 1
Tisch (2022021407183962300_cei13391-bib-0083) 1993; 366
Willcox (2022021407183962300_cei13391-bib-0003) 2009; 155
In’t Veld (2022021407183962300_cei13391-bib-0005) 2007; 56
Fujisawa (2022021407183962300_cei13391-bib-0034) 1995; 38
Knight (2022021407183962300_cei13391-bib-0088) 2013; 62
Reijonen (2022021407183962300_cei13391-bib-0027) 1997; 24
Valdes (2022021407183962300_cei13391-bib-0036) 2012; 55
Banerjee (2022021407183962300_cei13391-bib-0062) 2010; 185
Mikk (2022021407183962300_cei13391-bib-0026) 2017; 89
Martin (2022021407183962300_cei13391-bib-0061) 2018; 9
Jansen (2022021407183962300_cei13391-bib-0069) 2015; 10
Pinkse (2022021407183962300_cei13391-bib-0010) 2005; 102
Howson (2022021407183962300_cei13391-bib-0020) 2009; 11
Longwe (2022021407183962300_cei13391-bib-0071) 2015; 16
Roep (2022021407183962300_cei13391-bib-0002) 2012; 2
Caccamo (2022021407183962300_cei13391-bib-0070) 2006; 177
Mahnke (2022021407183962300_cei13391-bib-0060) 2013; 43
Barber (2022021407183962300_cei13391-bib-0067) 2003; 171
Kaufman (2022021407183962300_cei13391-bib-0080) 1993; 366
Coppieters (2022021407183962300_cei13391-bib-0009) 2012; 209
Wooldridge (2022021407183962300_cei13391-bib-0051) 2005; 280
Nejentsev (2022021407183962300_cei13391-bib-0017) 2007; 450
Motozono (2022021407183962300_cei13391-bib-0053) 2015; 290
Kronenberg (2022021407183962300_cei13391-bib-0013) 2012; 61
Itoh (2022021407183962300_cei13391-bib-0007) 1993; 92
Nakanishi (2022021407183962300_cei13391-bib-0041) 1993; 42
References_xml – volume: 55
  start-page: 2394
  year: 2012
  end-page: 401
  article-title: Use of class I and class II HLA loci for predicting age at onset of type 1 diabetes in multiple populations
  publication-title: Diabetologia
– volume: 201
  start-page: 349
  year: 2005
  end-page: 60
  article-title: CD8 immunodominance among Epstein–Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells
  publication-title: J Exp Med
– volume: 3
  year: 2018
  article-title: Islet‐reactive CD8( ) T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors
  publication-title: Sci Immunol
– volume: 9
  start-page: 2692
  year: 2018
  article-title: Defining memory CD8 T cell
  publication-title: Front Immunol
– volume: 55
  start-page: 1926
  year: 2012
  end-page: 36
  article-title: Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk
  publication-title: Diabetologia
– volume: 102
  start-page: 18425
  year: 2005
  end-page: 30
  article-title: Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes
  publication-title: Proc Natl Acad Sci USA
– volume: 340
  start-page: 11
  year: 2009
  end-page: 24
  article-title: Protein kinase inhibitors substantially improve the physical detection of T‐cells with peptide‐MHC tetramers
  publication-title: J Immunol Methods
– volume: 42
  start-page: 1086
  year: 1993
  end-page: 93
  article-title: Association of HLA‐A24 with complete beta‐cell destruction in IDDM
  publication-title: Diabetes
– volume: 38
  start-page: 1493
  year: 1995
  end-page: 5
  article-title: Class I HLA is associated with age‐at‐onset of IDDM, while class II HLA confers susceptibility to IDDM
  publication-title: Diabetologia
– volume: 29
  start-page: 267
  year: 1986
  end-page: 74
  article-title: The histopathology of the pancreas in type 1 (insulin‐dependent) diabetes mellitus: a 25‐year review of deaths in patients under 20 years of age in the United Kingdom
  publication-title: Diabetologia
– volume: 54
  start-page: 1702
  year: 2011
  end-page: 9
  article-title: The HLA‐B 3906 allele imparts a high risk of diabetes only on specific HLA‐DR/DQ haplotypes
  publication-title: Diabetologia
– volume: 90
  start-page: 2712
  year: 2005
  end-page: 7
  article-title: Dynamics of diabetes‐associated autoantibodies in young children with human leukocyte antigen‐conferred risk of type 1 diabetes recruited from the general population
  publication-title: J Clin Endocrinol Metab
– volume: 61
  start-page: 1752
  year: 2012
  end-page: 9
  article-title: Circulating preproinsulin signal peptide‐specific CD8 T cells restricted by the susceptibility molecule HLA‐A24 are expanded at onset of type 1 diabetes and kill beta‐cells
  publication-title: Diabetes
– volume: 11
  year: 2015
  article-title: Characterization of CD8 T cell differentiation following SIVDeltanef vaccination by transcription factor expression profiling
  publication-title: PLOS Pathog
– volume: 43
  start-page: 2797
  year: 2013
  end-page: 809
  article-title: The who’s who of T‐cell differentiation: human memory T‐cell subsets
  publication-title: Eur J Immunol
– volume: 62
  start-page: 567
  year: 2019
  end-page: 77
  article-title: Beta cells in type 1 diabetes: mass and function; sleeping or dead?
  publication-title: Diabetologia
– volume: 128
  start-page: 3460
  year: 2018
  end-page: 74
  article-title: Autoreactive T effector memory differentiation mirrors beta cell function in type 1 diabetes
  publication-title: J Clin Invest
– volume: 11
  start-page: 31
  issue: Suppl 1
  year: 2009
  end-page: 45
  article-title: Confirmation of HLA class II independent type 1 diabetes associations in the major histocompatibility complex including HLA‐B and HLA‐A
  publication-title: Diabetes Obes Metab
– volume: 84
  start-page: 378
  year: 2014
  end-page: 88
  article-title: Identification and characterisation of peptide binding motifs of six autoimmune disease‐associated human leukocyte antigen‐class I molecules including HLA‐B*39:06
  publication-title: Tissue Antigens
– volume: 280
  start-page: 27491
  year: 2005
  end-page: 501
  article-title: Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor‐antigen complexes at the cell surface
  publication-title: J Biol Chem
– volume: 49
  start-page: 2217
  year: 2000
  end-page: 21
  article-title: Non‐class II HLA gene associated with type 1 diabetes maps to the 240‐kb region near HLA‐B
  publication-title: Diabetes
– volume: 75
  start-page: 65
  year: 2014
  end-page: 70
  article-title: The HLA‐B*39 allele increases type 1 diabetes risk conferred by HLA‐DRB1*04:04‐DQB1*03:02 and HLA‐DRB1*08‐DQB1*04 class II haplotypes
  publication-title: Hum Immunol
– volume: 61
  start-page: 146
  year: 2003
  end-page: 53
  article-title: HLA genes associated with autoimmunity and progression to disease in type 1 diabetes
  publication-title: Tissue Antigens
– volume: 48
  start-page: 460
  year: 1999
  end-page: 8
  article-title: Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2‐year analysis of the German BABYDIAB Study
  publication-title: Diabetes
– volume: 63
  start-page: 3835
  year: 2014
  end-page: 45
  article-title: Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes
  publication-title: Diabetes
– volume: 10
  start-page: 141
  year: 2009
  end-page: 50
  article-title: Genetic variants of the HLA‐A, HLA‐B and AIF1 loci show independent associations with type 1 diabetes in Norwegian families
  publication-title: Genes Immun
– volume: 32
  start-page: 79
  year: 2010
  end-page: 90
  article-title: Interleukin‐2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells
  publication-title: Immunity
– volume: 49
  start-page: 202
  year: 2000
  end-page: 8
  article-title: Maturation of the humoral autoimmune response to epitopes of GAD in preclinical childhood type 1 diabetes
  publication-title: Diabetes
– volume: 552
  start-page: 362
  year: 2017
  end-page: 7
  article-title: Origin and differentiation of human memory CD8 T cells after vaccination
  publication-title: Nature
– volume: 59
  start-page: 2972
  year: 2010
  end-page: 9
  article-title: HLA class I and genetic susceptibility to type 1 diabetes: results from the Type 1 Diabetes Genetics Consortium
  publication-title: Diabetes
– volume: 62
  start-page: 1345
  year: 2013
  end-page: 50
  article-title: HLA‐A*24 is an independent predictor of 5‐year progression to diabetes in autoantibody‐positive first‐degree relatives of type 1 diabetic patients
  publication-title: Diabetes
– volume: 59
  start-page: 1721
  year: 2010
  end-page: 30
  article-title: Simultaneous detection of circulating autoreactive CD8 T‐cells specific for different islet cell‐associated epitopes using combinatorial MHC multimers
  publication-title: Diabetes
– volume: 159
  start-page: 19
  year: 2008
  end-page: 26
  article-title: Characterization of the humoral immune response to islet antigen 2 in children with newly diagnosed type 1 diabetes
  publication-title: Eur J Endocrinol
– volume: 81
  start-page: 4264
  year: 1996
  end-page: 7
  article-title: Antiislet autoantibodies usually develop sequentially rather than simultaneously
  publication-title: J Clin Endocrinol Metab
– volume: 16
  start-page: 50
  year: 2015
  article-title: Proportions of CD4 , CD8 and B cell subsets are not affected by exposure to HIV or to Cotrimoxazole prophylaxis in Malawian HIV‐uninfected but exposed children
  publication-title: BMC Immunol
– volume: 116
  start-page: 1514
  year: 2006
  end-page: 24
  article-title: IL‐15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates
  publication-title: J Clin Invest
– volume: 155
  start-page: 173
  year: 2009
  end-page: 81
  article-title: Analysis of islet inflammation in human type 1 diabetes
  publication-title: Clin Exp Immunol
– volume: 67
  start-page: 687
  year: 2018
  end-page: 96
  article-title: Molecular pathways for immune recognition of preproinsulin signal peptide in type 1 diabetes
  publication-title: Diabetes
– volume: 372
  start-page: 1746
  year: 2008
  end-page: 55
  article-title: Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double‐blind, randomised controlled trial
  publication-title: Lancet
– volume: 2
  year: 2012
  article-title: Antigen targets of type 1 diabetes autoimmunity
  publication-title: Cold Spring Harb Perspect Med
– volume: 24
  start-page: 357
  year: 1997
  end-page: 63
  article-title: HLA‐DR4 subtype and ‐B alleles in DQB1*0302‐positive haplotypes associated with IDDM. The Childhood Diabetes in Finland Study Group
  publication-title: Eur J Immunogenet
– volume: 24
  start-page: 327
  year: 2004
  end-page: 39
  article-title: T cells recognize multiple GAD65 and proinsulin epitopes in human type 1 diabetes, suggesting determinant spreading
  publication-title: J Clin Immunol
– volume: 215
  start-page: 51
  year: 2018
  end-page: 62
  article-title: Metabolic reprogramming of human CD8( ) memory T cells through loss of SIRT1
  publication-title: J Exp Med
– volume: 22
  start-page: 1482
  year: 2016
  end-page: 7
  article-title: Analysis of self‐antigen specificity of islet‐infiltrating T cells from human donors with type 1 diabetes
  publication-title: Nat Med
– volume: 63
  start-page: 657
  year: 2002
  end-page: 64
  article-title: The HLA class I A locus affects susceptibility to type 1 diabetes
  publication-title: Hum Immunol
– volume: 161
  start-page: 6963
  year: 1998
  end-page: 9
  article-title: Early development and spreading of autoantibodies to epitopes of IA‐2 and their association with progression to type 1 diabetes
  publication-title: J Immunol
– volume: 177
  start-page: 1780
  year: 2006
  end-page: 5
  article-title: Phenotypical and functional analysis of memory and effector human CD8 T cells specific for mycobacterial antigens
  publication-title: J Immunol
– volume: 62
  start-page: 2067
  year: 2013
  end-page: 71
  article-title: Humoral responses to islet antigen‐2 and zinc transporter 8 are attenuated in patients carrying HLA‐A*24 alleles at the onset of type 1 diabetes
  publication-title: Diabetes
– volume: 60
  start-page: 3289
  year: 2011
  end-page: 99
  article-title: Single insulin‐specific CD8 T cells show characteristic gene expression profiles in human type 1 diabetes
  publication-title: Diabetes
– volume: 59
  start-page: 3253
  year: 2010
  end-page: 6
  article-title: Effect of HLA class I and class II alleles on progression from autoantibody positivity to overt type 1 diabetes in children with risk‐associated class II genotypes
  publication-title: Diabetes
– volume: 47
  start-page: 733
  year: 1998
  end-page: 42
  article-title: Definition of multiple ICA512/phogrin autoantibody epitopes and detection of intramolecular epitope spreading in relatives of patients with type 1 diabetes
  publication-title: Diabetes
– volume: 68
  start-page: 779
  year: 2007
  end-page: 88
  article-title: High‐resolution HLA alleles and haplotypes in the United States population
  publication-title: Hum Immunol
– volume: 1
  start-page: 284
  year: 2013
  end-page: 94
  article-title: Targeting of memory T cells with alefacept in new‐onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double‐blind, placebo‐controlled phase 2 trial
  publication-title: Lancet Diabetes Endocrinol
– volume: 194
  start-page: 463
  year: 2015
  end-page: 74
  article-title: Antibody stabilization of peptide‐MHC multimers reveals functional T cells bearing extremely low‐affinity TCRs
  publication-title: J Immunol
– volume: 164
  start-page: 111
  year: 1998
  end-page: 8
  article-title: Epitope dominance: evidence for reciprocal determinant spreading to glutamic acid decarboxylase in non‐obese diabetic mice
  publication-title: Immunol Rev
– volume: 6
  start-page: 1236
  year: 2005
  end-page: 44
  article-title: Effector and memory CD8 T cell fate coupled by T‐bet and eomesodermin
  publication-title: Nat Immunol
– volume: 10
  year: 2015
  article-title: Decreased memory B cells and increased CD8 memory T cells in blood of breastfed children: the generation R study
  publication-title: PLOS ONE
– volume: 87
  start-page: 4572
  year: 2002
  end-page: 9
  article-title: Natural history of beta‐cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes recruited from the general population
  publication-title: J Clin Endocrinol Metab
– volume: 366
  start-page: 72
  year: 1993
  end-page: 5
  article-title: Immune response to glutamic acid decarboxylase correlates with insulitis in non‐obese diabetic mice
  publication-title: Nature
– volume: 89
  start-page: 215
  year: 2017
  end-page: 24
  article-title: The association of the HLA‐A*24:02, B*39:01 and B*39:06 alleles with type 1 diabetes is restricted to specific HLA‐DR/DQ haplotypes in Finns
  publication-title: HLA
– volume: 450
  start-page: 887
  year: 2007
  end-page: 92
  article-title: Localization of type 1 diabetes susceptibility to the MHC class I genes HLA‐B and HLA‐A
  publication-title: Nature
– volume: 64
  start-page: 1719
  year: 2015
  end-page: 27
  article-title: HbA1c predicts time to diagnosis of type 1 diabetes in children at risk
  publication-title: Diabetes
– volume: 64
  start-page: 916
  year: 2015
  end-page: 25
  article-title: beta‐cell‐specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure
  publication-title: Diabetes
– volume: 60
  start-page: 2635
  year: 2011
  end-page: 44
  article-title: Evidence that HLA class I and II associations with type 1 diabetes, autoantibodies to GAD and autoantibodies to IA‐2, are distinct
  publication-title: Diabetes
– volume: 29
  start-page: 646
  year: 2013
  end-page: 54
  article-title: Autoantibodies against zinc transporter 8 are related to age, metabolic state and HLA DR genotype in children with newly diagnosed type 1 diabetes
  publication-title: Diabetes Metab Res Rev
– volume: 66
  start-page: 301
  year: 2005
  end-page: 13
  article-title: Human leukocyte antigen class I B and C loci contribute to Type 1 Diabetes (T1D) susceptibility and age at T1D onset
  publication-title: Hum Immunol
– volume: 59
  start-page: 2448
  year: 2016
  end-page: 58
  article-title: Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes
  publication-title: Diabetologia
– volume: 366
  start-page: 69
  year: 1993
  end-page: 72
  article-title: Spontaneous loss of T‐cell tolerance to glutamic acid decarboxylase in murine insulin‐dependent diabetes
  publication-title: Nature
– volume: 43
  start-page: 33
  year: 1994
  end-page: 9
  article-title: Isolation of nonobese diabetic mouse T‐cells that recognize novel autoantigens involved in the early events of diabetes
  publication-title: Diabetes
– volume: 46
  start-page: 1888
  year: 1997
  end-page: 92
  article-title: The effect of HLA‐B allele on the IDDM risk defined by DRB1*04 subtypes and DQB1*0302
  publication-title: Diabetes
– volume: 84
  start-page: 3721
  year: 1999
  end-page: 5
  article-title: Human leukocyte antigen‐A24 and ‐DQA1*0301 in Japanese insulin‐dependent diabetes mellitus: independent contributions to susceptibility to the disease and additive contributions to acceleration of beta‐cell destruction
  publication-title: J Clin Endocrinol Metab
– volume: 142
  start-page: 970
  year: 2018
  end-page: 3.e8
  article-title: Reference values for peripheral blood lymphocyte subsets of healthy children in China
  publication-title: J Allergy Clin Immunol
– volume: 214
  start-page: 1593
  year: 2017
  end-page: 606
  article-title: Human memory CD8 T cell effector potential is epigenetically preserved during homeostasis
  publication-title: J Exp Med
– volume: 42
  start-page: 929
  year: 2015
  end-page: 41
  article-title: Clonal deletion prunes but does not eliminate self‐specific alphabeta CD8( ) T lymphocytes
  publication-title: Immunity
– volume: 41
  start-page: 1076
  year: 2018
  end-page: 83
  article-title: Accelerated progression to type 1 diabetes in the presence of HLA‐A*24 and ‐B*18 is restricted to multiple islet autoantibody‐positive individuals with distinct HLA‐DQ and autoantibody risk profiles
  publication-title: Diabetes Care
– volume: 46
  start-page: 469
  year: 2009
  end-page: 71
  article-title: The effect of the MHC locus on autoantibodies in type 1 diabetes
  publication-title: J Med Genet
– volume: 166
  start-page: 5265
  year: 2001
  end-page: 70
  article-title: Intermolecular antigen spreading occurs during the preclinical period of human type 1 diabetes
  publication-title: J Immunol
– volume: 56
  start-page: 2400
  year: 2007
  end-page: 4
  article-title: Screening for insulitis in adult autoantibody‐positive organ donors
  publication-title: Diabetes
– volume: 61
  start-page: 1048
  year: 2000
  end-page: 52
  article-title: Analysis of the distribution of HLA‐A alleles in populations from five continents
  publication-title: Hum Immunol
– volume: 62
  start-page: 205
  year: 2013
  end-page: 13
  article-title: Human beta‐cell killing by autoreactive preproinsulin‐specific CD8 T cells is predominantly granule‐mediated with the potency dependent upon T‐cell receptor avidity
  publication-title: Diabetes
– volume: 92
  start-page: 2313
  year: 1993
  end-page: 22
  article-title: Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin‐dependent diabetes mellitus patients
  publication-title: J Clin Invest
– volume: 290
  start-page: 18924
  year: 2015
  end-page: 33
  article-title: Distortion of the major histocompatibility complex class I binding groove to accommodate an insulin‐derived 10‐mer peptide
  publication-title: J Biol Chem
– volume: 209
  start-page: 51
  year: 2012
  end-page: 60
  article-title: Demonstration of islet‐autoreactive CD8 T cells in insulitic lesions from recent onset and long‐term type 1 diabetes patients
  publication-title: J Exp Med
– volume: 23
  start-page: 746
  year: 2011
  end-page: 53
  article-title: Diabetogenic T lymphocytes in human type 1 diabetes
  publication-title: Curr Opin Immunol
– volume: 39
  start-page: 1060
  year: 2016
  end-page: 4
  article-title: HLA‐A*24 carrier status and autoantibody surges posttransplantation associate with poor functional outcome in recipients of an isl lograft
  publication-title: Diabetes Care
– volume: 81
  start-page: 35
  year: 2013
  end-page: 43
  article-title: HLA antigen, allele and haplotype frequencies and their use in virtual panel reactive antigen calculations in the Finnish population
  publication-title: Tissue Antigens
– volume: 67
  start-page: 714
  year: 2006
  end-page: 21
  article-title: Human leukocyte antigen non‐class II determinants for type 1 diabetes in the Finnish population
  publication-title: Hum Immunol
– volume: 185
  start-page: 4988
  year: 2010
  end-page: 92
  article-title: Cutting edge: the transcription factor eomesodermin enables CD8 T cells to compete for the memory cell niche
  publication-title: J Immunol
– volume: 118
  start-page: 3390
  year: 2008
  end-page: 402
  article-title: CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose‐regulated preproinsulin epitope
  publication-title: J Clin Invest
– volume: 171
  start-page: 27
  year: 2003
  end-page: 31
  article-title: Cutting edge: rapid killing by memory CD8 T cells
  publication-title: J Immunol
– volume: 54
  start-page: 59
  year: 1999
  end-page: 68
  article-title: Allele resolution of HLA‐A using oligonucleotide probes in a two‐stage typing strategy
  publication-title: Tissue Antigens
– volume: 46
  start-page: 469
  year: 2009
  ident: 2022021407183962300_cei13391-bib-0086
  article-title: The effect of the MHC locus on autoantibodies in type 1 diabetes
  publication-title: J Med Genet
  doi: 10.1136/jmg.2009.066647
– volume: 60
  start-page: 3289
  year: 2011
  ident: 2022021407183962300_cei13391-bib-0089
  article-title: Single insulin-specific CD8+ T cells show characteristic gene expression profiles in human type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/db11-0270
– volume: 43
  start-page: 2797
  year: 2013
  ident: 2022021407183962300_cei13391-bib-0060
  article-title: The who’s who of T-cell differentiation: human memory T-cell subsets
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201343751
– volume: 54
  start-page: 59
  year: 1999
  ident: 2022021407183962300_cei13391-bib-0032
  article-title: Allele resolution of HLA-A using oligonucleotide probes in a two-stage typing strategy
  publication-title: Tissue Antigens
  doi: 10.1034/j.1399-0039.1999.540107.x
– volume: 171
  start-page: 27
  year: 2003
  ident: 2022021407183962300_cei13391-bib-0067
  article-title: Cutting edge: rapid in vivo killing by memory CD8 T cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.171.1.27
– volume: 102
  start-page: 18425
  year: 2005
  ident: 2022021407183962300_cei13391-bib-0010
  article-title: Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0508621102
– volume: 366
  start-page: 72
  year: 1993
  ident: 2022021407183962300_cei13391-bib-0083
  article-title: Immune response to glutamic acid decarboxylase correlates with insulitis in non-obese diabetic mice
  publication-title: Nature
  doi: 10.1038/366072a0
– volume: 66
  start-page: 301
  year: 2005
  ident: 2022021407183962300_cei13391-bib-0024
  article-title: Human leukocyte antigen class I B and C loci contribute to Type 1 Diabetes (T1D) susceptibility and age at T1D onset
  publication-title: Hum Immunol
  doi: 10.1016/j.humimm.2004.12.001
– volume: 340
  start-page: 11
  year: 2009
  ident: 2022021407183962300_cei13391-bib-0054
  article-title: Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers
  publication-title: J Immunol Methods
  doi: 10.1016/j.jim.2008.09.014
– volume: 41
  start-page: 1076
  year: 2018
  ident: 2022021407183962300_cei13391-bib-0039
  article-title: Accelerated progression to type 1 diabetes in the presence of HLA-A*24 and -B*18 is restricted to multiple islet autoantibody-positive individuals with distinct HLA-DQ and autoantibody risk profiles
  publication-title: Diabetes Care
  doi: 10.2337/dc17-2462
– volume: 63
  start-page: 657
  year: 2002
  ident: 2022021407183962300_cei13391-bib-0035
  article-title: The HLA class I A locus affects susceptibility to type 1 diabetes
  publication-title: Hum Immunol
  doi: 10.1016/S0198-8859(02)00421-4
– volume: 64
  start-page: 1719
  year: 2015
  ident: 2022021407183962300_cei13391-bib-0049
  article-title: HbA1c predicts time to diagnosis of type 1 diabetes in children at risk
  publication-title: Diabetes
  doi: 10.2337/db14-0497
– volume: 10
  start-page: 141
  year: 2009
  ident: 2022021407183962300_cei13391-bib-0022
  article-title: Genetic variants of the HLA-A, HLA-B and AIF1 loci show independent associations with type 1 diabetes in Norwegian families
  publication-title: Genes Immun
  doi: 10.1038/gene.2008.88
– volume: 42
  start-page: 1086
  year: 1993
  ident: 2022021407183962300_cei13391-bib-0041
  article-title: Association of HLA-A24 with complete beta-cell destruction in IDDM
  publication-title: Diabetes
  doi: 10.2337/diab.42.7.1086
– volume: 1
  start-page: 284
  year: 2013
  ident: 2022021407183962300_cei13391-bib-0016
  article-title: Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial
  publication-title: Lancet Diabetes Endocrinol
  doi: 10.1016/S2213-8587(13)70111-6
– volume: 49
  start-page: 2217
  year: 2000
  ident: 2022021407183962300_cei13391-bib-0021
  article-title: Non-class II HLA gene associated with type 1 diabetes maps to the 240-kb region near HLA-B
  publication-title: Diabetes
  doi: 10.2337/diabetes.49.12.2217
– volume: 29
  start-page: 646
  year: 2013
  ident: 2022021407183962300_cei13391-bib-0050
  article-title: Autoantibodies against zinc transporter 8 are related to age, metabolic state and HLA DR genotype in children with newly diagnosed type 1 diabetes
  publication-title: Diabetes Metab Res Rev
  doi: 10.1002/dmrr.2440
– volume: 201
  start-page: 349
  year: 2005
  ident: 2022021407183962300_cei13391-bib-0052
  article-title: CD8+ immunodominance among Epstein–Barr virus lytic cycle antigens directly reflects the efficiency of antigen presentation in lytically infected cells
  publication-title: J Exp Med
  doi: 10.1084/jem.20041542
– volume: 366
  start-page: 69
  year: 1993
  ident: 2022021407183962300_cei13391-bib-0080
  article-title: Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes
  publication-title: Nature
  doi: 10.1038/366069a0
– volume: 128
  start-page: 3460
  year: 2018
  ident: 2022021407183962300_cei13391-bib-0014
  article-title: Autoreactive T effector memory differentiation mirrors beta cell function in type 1 diabetes
  publication-title: J Clin Invest
  doi: 10.1172/JCI120555
– volume: 75
  start-page: 65
  year: 2014
  ident: 2022021407183962300_cei13391-bib-0029
  article-title: The HLA-B*39 allele increases type 1 diabetes risk conferred by HLA-DRB1*04:04-DQB1*03:02 and HLA-DRB1*08-DQB1*04 class II haplotypes
  publication-title: Hum Immunol
  doi: 10.1016/j.humimm.2013.09.008
– volume: 118
  start-page: 3390
  year: 2008
  ident: 2022021407183962300_cei13391-bib-0015
  article-title: CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope
  publication-title: J Clin Invest
– volume: 29
  start-page: 267
  year: 1986
  ident: 2022021407183962300_cei13391-bib-0008
  article-title: The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom
  publication-title: Diabetologia
  doi: 10.1007/BF00452061
– volume: 63
  start-page: 3835
  year: 2014
  ident: 2022021407183962300_cei13391-bib-0004
  article-title: Blood and islet phenotypes indicate immunological heterogeneity in type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/db14-0365
– volume: 59
  start-page: 3253
  year: 2010
  ident: 2022021407183962300_cei13391-bib-0025
  article-title: Effect of HLA class I and class II alleles on progression from autoantibody positivity to overt type 1 diabetes in children with risk-associated class II genotypes
  publication-title: Diabetes
  doi: 10.2337/db10-0167
– volume: 290
  start-page: 18924
  year: 2015
  ident: 2022021407183962300_cei13391-bib-0053
  article-title: Distortion of the major histocompatibility complex class I binding groove to accommodate an insulin-derived 10-mer peptide
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.622522
– volume: 48
  start-page: 460
  year: 1999
  ident: 2022021407183962300_cei13391-bib-0073
  article-title: Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study
  publication-title: Diabetes
  doi: 10.2337/diabetes.48.3.460
– volume: 9
  start-page: 2692
  year: 2018
  ident: 2022021407183962300_cei13391-bib-0061
  article-title: Defining memory CD8 T cell
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.02692
– volume: 62
  start-page: 2067
  year: 2013
  ident: 2022021407183962300_cei13391-bib-0087
  article-title: Humoral responses to islet antigen-2 and zinc transporter 8 are attenuated in patients carrying HLA-A*24 alleles at the onset of type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/db12-1468
– volume: 46
  start-page: 1888
  year: 1997
  ident: 2022021407183962300_cei13391-bib-0028
  article-title: The effect of HLA-B allele on the IDDM risk defined by DRB1*04 subtypes and DQB1*0302
  publication-title: Diabetes
  doi: 10.2337/diab.46.11.1888
– volume: 38
  start-page: 1493
  year: 1995
  ident: 2022021407183962300_cei13391-bib-0034
  article-title: Class I HLA is associated with age-at-onset of IDDM, while class II HLA confers susceptibility to IDDM
  publication-title: Diabetologia
  doi: 10.1007/BF00400620
– volume: 84
  start-page: 378
  year: 2014
  ident: 2022021407183962300_cei13391-bib-0044
  article-title: Identification and characterisation of peptide binding motifs of six autoimmune disease-associated human leukocyte antigen-class I molecules including HLA-B*39:06
  publication-title: Tissue Antigens
  doi: 10.1111/tan.12413
– volume: 215
  start-page: 51
  year: 2018
  ident: 2022021407183962300_cei13391-bib-0059
  article-title: Metabolic reprogramming of human CD8(+) memory T cells through loss of SIRT1
  publication-title: J Exp Med
  doi: 10.1084/jem.20161066
– volume: 552
  start-page: 362
  year: 2017
  ident: 2022021407183962300_cei13391-bib-0066
  article-title: Origin and differentiation of human memory CD8 T cells after vaccination
  publication-title: Nature
  doi: 10.1038/nature24633
– volume: 3
  start-page: eaao4013
  year: 2018
  ident: 2022021407183962300_cei13391-bib-0056
  article-title: Islet-reactive CD8(+) T cell frequencies in the pancreas, but not in blood, distinguish type 1 diabetic patients from healthy donors
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.aao4013
– volume: 90
  start-page: 2712
  year: 2005
  ident: 2022021407183962300_cei13391-bib-0048
  article-title: Dynamics of diabetes-associated autoantibodies in young children with human leukocyte antigen-conferred risk of type 1 diabetes recruited from the general population
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2004-1371
– volume: 116
  start-page: 1514
  year: 2006
  ident: 2022021407183962300_cei13391-bib-0058
  article-title: IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates
  publication-title: J Clin Invest
  doi: 10.1172/JCI27564
– volume: 11
  start-page: e1004740
  year: 2015
  ident: 2022021407183962300_cei13391-bib-0057
  article-title: Characterization of CD8+ T cell differentiation following SIVDeltanef vaccination by transcription factor expression profiling
  publication-title: PLOS Pathog
  doi: 10.1371/journal.ppat.1004740
– volume: 22
  start-page: 1482
  year: 2016
  ident: 2022021407183962300_cei13391-bib-0011
  article-title: Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes
  publication-title: Nat Med
  doi: 10.1038/nm.4203
– volume: 194
  start-page: 463
  year: 2015
  ident: 2022021407183962300_cei13391-bib-0055
  article-title: Antibody stabilization of peptide-MHC multimers reveals functional T cells bearing extremely low-affinity TCRs
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1401785
– volume: 177
  start-page: 1780
  year: 2006
  ident: 2022021407183962300_cei13391-bib-0070
  article-title: Phenotypical and functional analysis of memory and effector human CD8 T cells specific for mycobacterial antigens
  publication-title: J Immunol
  doi: 10.4049/jimmunol.177.3.1780
– volume: 81
  start-page: 4264
  year: 1996
  ident: 2022021407183962300_cei13391-bib-0077
  article-title: Antiislet autoantibodies usually develop sequentially rather than simultaneously
  publication-title: J Clin Endocrinol Metab
– volume: 68
  start-page: 779
  year: 2007
  ident: 2022021407183962300_cei13391-bib-0018
  article-title: High-resolution HLA alleles and haplotypes in the United States population
  publication-title: Hum Immunol
  doi: 10.1016/j.humimm.2007.04.005
– volume: 49
  start-page: 202
  year: 2000
  ident: 2022021407183962300_cei13391-bib-0074
  article-title: Maturation of the humoral autoimmune response to epitopes of GAD in preclinical childhood type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.49.2.202
– volume: 47
  start-page: 733
  year: 1998
  ident: 2022021407183962300_cei13391-bib-0076
  article-title: Definition of multiple ICA512/phogrin autoantibody epitopes and detection of intramolecular epitope spreading in relatives of patients with type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.47.5.733
– volume: 159
  start-page: 19
  year: 2008
  ident: 2022021407183962300_cei13391-bib-0045
  article-title: Characterization of the humoral immune response to islet antigen 2 in children with newly diagnosed type 1 diabetes
  publication-title: Eur J Endocrinol
  doi: 10.1530/EJE-07-0853
– volume: 161
  start-page: 6963
  year: 1998
  ident: 2022021407183962300_cei13391-bib-0075
  article-title: Early development and spreading of autoantibodies to epitopes of IA-2 and their association with progression to type 1 diabetes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.161.12.6963
– volume: 62
  start-page: 205
  year: 2013
  ident: 2022021407183962300_cei13391-bib-0088
  article-title: Human beta-cell killing by autoreactive preproinsulin-specific CD8 T cells is predominantly granule-mediated with the potency dependent upon T-cell receptor avidity
  publication-title: Diabetes
  doi: 10.2337/db12-0315
– volume: 64
  start-page: 916
  year: 2015
  ident: 2022021407183962300_cei13391-bib-0012
  article-title: beta-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure
  publication-title: Diabetes
  doi: 10.2337/db14-0332
– volume: 61
  start-page: 146
  year: 2003
  ident: 2022021407183962300_cei13391-bib-0038
  article-title: HLA genes associated with autoimmunity and progression to disease in type 1 diabetes
  publication-title: Tissue Antigens
  doi: 10.1034/j.1399-0039.2003.00013.x
– volume: 16
  start-page: 50
  year: 2015
  ident: 2022021407183962300_cei13391-bib-0071
  article-title: Proportions of CD4+, CD8+ and B cell subsets are not affected by exposure to HIV or to Cotrimoxazole prophylaxis in Malawian HIV-uninfected but exposed children
  publication-title: BMC Immunol
  doi: 10.1186/s12865-015-0115-y
– volume: 164
  start-page: 111
  year: 1998
  ident: 2022021407183962300_cei13391-bib-0082
  article-title: Epitope dominance: evidence for reciprocal determinant spreading to glutamic acid decarboxylase in non-obese diabetic mice
  publication-title: Immunol Rev
  doi: 10.1111/j.1600-065X.1998.tb01213.x
– volume: 59
  start-page: 2448
  year: 2016
  ident: 2022021407183962300_cei13391-bib-0006
  article-title: Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-016-4067-4
– volume: 67
  start-page: 714
  year: 2006
  ident: 2022021407183962300_cei13391-bib-0023
  article-title: Human leukocyte antigen non-class II determinants for type 1 diabetes in the Finnish population
  publication-title: Hum Immunol
  doi: 10.1016/j.humimm.2006.05.008
– volume: 23
  start-page: 746
  year: 2011
  ident: 2022021407183962300_cei13391-bib-0001
  article-title: Diabetogenic T lymphocytes in human type 1 diabetes
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2011.10.001
– volume: 2
  start-page: a007781
  year: 2012
  ident: 2022021407183962300_cei13391-bib-0002
  article-title: Antigen targets of type 1 diabetes autoimmunity
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a007781
– volume: 209
  start-page: 51
  year: 2012
  ident: 2022021407183962300_cei13391-bib-0009
  article-title: Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients
  publication-title: J Exp Med
  doi: 10.1084/jem.20111187
– volume: 62
  start-page: 567
  year: 2019
  ident: 2022021407183962300_cei13391-bib-0084
  article-title: Beta cells in type 1 diabetes: mass and function; sleeping or dead?
  publication-title: Diabetologia
  doi: 10.1007/s00125-019-4822-4
– volume: 56
  start-page: 2400
  year: 2007
  ident: 2022021407183962300_cei13391-bib-0005
  article-title: Screening for insulitis in adult autoantibody-positive organ donors
  publication-title: Diabetes
  doi: 10.2337/db07-0416
– volume: 55
  start-page: 2394
  year: 2012
  ident: 2022021407183962300_cei13391-bib-0036
  article-title: Use of class I and class II HLA loci for predicting age at onset of type 1 diabetes in multiple populations
  publication-title: Diabetologia
  doi: 10.1007/s00125-012-2608-z
– volume: 84
  start-page: 3721
  year: 1999
  ident: 2022021407183962300_cei13391-bib-0040
  article-title: Human leukocyte antigen-A24 and -DQA1*0301 in Japanese insulin-dependent diabetes mellitus: independent contributions to susceptibility to the disease and additive contributions to acceleration of beta-cell destruction
  publication-title: J Clin Endocrinol Metab
– volume: 59
  start-page: 1721
  year: 2010
  ident: 2022021407183962300_cei13391-bib-0090
  article-title: Simultaneous detection of circulating autoreactive CD8+ T-cells specific for different islet cell-associated epitopes using combinatorial MHC multimers
  publication-title: Diabetes
  doi: 10.2337/db09-1486
– volume: 155
  start-page: 173
  year: 2009
  ident: 2022021407183962300_cei13391-bib-0003
  article-title: Analysis of islet inflammation in human type 1 diabetes
  publication-title: Clin Exp Immunol
  doi: 10.1111/j.1365-2249.2008.03860.x
– volume: 43
  start-page: 33
  year: 1994
  ident: 2022021407183962300_cei13391-bib-0081
  article-title: Isolation of nonobese diabetic mouse T-cells that recognize novel autoantigens involved in the early events of diabetes
  publication-title: Diabetes
  doi: 10.2337/diab.43.1.33
– volume: 89
  start-page: 215
  year: 2017
  ident: 2022021407183962300_cei13391-bib-0026
  article-title: The association of the HLA-A*24:02, B*39:01 and B*39:06 alleles with type 1 diabetes is restricted to specific HLA-DR/DQ haplotypes in Finns
  publication-title: HLA
  doi: 10.1111/tan.12967
– volume: 142
  start-page: 970
  year: 2018
  ident: 2022021407183962300_cei13391-bib-0068
  article-title: Reference values for peripheral blood lymphocyte subsets of healthy children in China
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2018.04.022
– volume: 450
  start-page: 887
  year: 2007
  ident: 2022021407183962300_cei13391-bib-0017
  article-title: Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A
  publication-title: Nature
  doi: 10.1038/nature06406
– volume: 62
  start-page: 1345
  year: 2013
  ident: 2022021407183962300_cei13391-bib-0037
  article-title: HLA-A*24 is an independent predictor of 5-year progression to diabetes in autoantibody-positive first-degree relatives of type 1 diabetic patients
  publication-title: Diabetes
  doi: 10.2337/db12-0747
– volume: 24
  start-page: 357
  year: 1997
  ident: 2022021407183962300_cei13391-bib-0027
  article-title: HLA-DR4 subtype and -B alleles in DQB1*0302-positive haplotypes associated with IDDM. The Childhood Diabetes in Finland Study Group
  publication-title: Eur J Immunogenet
  doi: 10.1046/j.1365-2370.1997.d01-108.x
– volume: 55
  start-page: 1926
  year: 2012
  ident: 2022021407183962300_cei13391-bib-0046
  article-title: Early seroconversion and rapidly increasing autoantibody concentrations predict prepubertal manifestation of type 1 diabetes in children at genetic risk
  publication-title: Diabetologia
  doi: 10.1007/s00125-012-2523-3
– volume: 42
  start-page: 929
  year: 2015
  ident: 2022021407183962300_cei13391-bib-0091
  article-title: Clonal deletion prunes but does not eliminate self-specific alphabeta CD8(+) T lymphocytes
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.05.001
– volume: 39
  start-page: 1060
  year: 2016
  ident: 2022021407183962300_cei13391-bib-0042
  article-title: HLA-A*24 carrier status and autoantibody surges posttransplantation associate with poor functional outcome in recipients of an islet allograft
  publication-title: Diabetes Care
  doi: 10.2337/dc15-2768
– volume: 280
  start-page: 27491
  year: 2005
  ident: 2022021407183962300_cei13391-bib-0051
  article-title: Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor-antigen complexes at the cell surface
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M500555200
– volume: 92
  start-page: 2313
  year: 1993
  ident: 2022021407183962300_cei13391-bib-0007
  article-title: Mononuclear cell infiltration and its relation to the expression of major histocompatibility complex antigens and adhesion molecules in pancreas biopsy specimens from newly diagnosed insulin-dependent diabetes mellitus patients
  publication-title: J Clin Invest
  doi: 10.1172/JCI116835
– volume: 185
  start-page: 4988
  year: 2010
  ident: 2022021407183962300_cei13391-bib-0062
  article-title: Cutting edge: the transcription factor eomesodermin enables CD8+ T cells to compete for the memory cell niche
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1002042
– volume: 214
  start-page: 1593
  year: 2017
  ident: 2022021407183962300_cei13391-bib-0065
  article-title: Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis
  publication-title: J Exp Med
  doi: 10.1084/jem.20161760
– volume: 59
  start-page: 2972
  year: 2010
  ident: 2022021407183962300_cei13391-bib-0031
  article-title: HLA class I and genetic susceptibility to type 1 diabetes: results from the Type 1 Diabetes Genetics Consortium
  publication-title: Diabetes
  doi: 10.2337/db10-0699
– volume: 10
  start-page: e0126019
  year: 2015
  ident: 2022021407183962300_cei13391-bib-0069
  article-title: Decreased memory B cells and increased CD8 memory T cells in blood of breastfed children: the generation R study
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0126019
– volume: 32
  start-page: 79
  year: 2010
  ident: 2022021407183962300_cei13391-bib-0063
  article-title: Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.11.012
– volume: 87
  start-page: 4572
  year: 2002
  ident: 2022021407183962300_cei13391-bib-0072
  article-title: Natural history of beta-cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes recruited from the general population
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2002-020018
– volume: 166
  start-page: 5265
  year: 2001
  ident: 2022021407183962300_cei13391-bib-0078
  article-title: Intermolecular antigen spreading occurs during the preclinical period of human type 1 diabetes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.8.5265
– volume: 372
  start-page: 1746
  year: 2008
  ident: 2022021407183962300_cei13391-bib-0047
  article-title: Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)61309-4
– volume: 24
  start-page: 327
  year: 2004
  ident: 2022021407183962300_cei13391-bib-0079
  article-title: T cells recognize multiple GAD65 and proinsulin epitopes in human type 1 diabetes, suggesting determinant spreading
  publication-title: J Clin Immunol
  doi: 10.1023/B:JOCI.0000029120.77824.41
– volume: 11
  start-page: 31
  issue: Suppl 1
  year: 2009
  ident: 2022021407183962300_cei13391-bib-0020
  article-title: Confirmation of HLA class II independent type 1 diabetes associations in the major histocompatibility complex including HLA-B and HLA-A
  publication-title: Diabetes Obes Metab
  doi: 10.1111/j.1463-1326.2008.01001.x
– volume: 54
  start-page: 1702
  year: 2011
  ident: 2022021407183962300_cei13391-bib-0030
  article-title: The HLA-B 3906 allele imparts a high risk of diabetes only on specific HLA-DR/DQ haplotypes
  publication-title: Diabetologia
  doi: 10.1007/s00125-011-2161-1
– volume: 6
  start-page: 1236
  year: 2005
  ident: 2022021407183962300_cei13391-bib-0064
  article-title: Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin
  publication-title: Nat Immunol
  doi: 10.1038/ni1268
– volume: 81
  start-page: 35
  year: 2013
  ident: 2022021407183962300_cei13391-bib-0019
  article-title: HLA antigen, allele and haplotype frequencies and their use in virtual panel reactive antigen calculations in the Finnish population
  publication-title: Tissue Antigens
  doi: 10.1111/tan.12036
– volume: 61
  start-page: 1048
  year: 2000
  ident: 2022021407183962300_cei13391-bib-0033
  article-title: Analysis of the distribution of HLA-A alleles in populations from five continents
  publication-title: Hum Immunol
  doi: 10.1016/S0198-8859(00)00178-6
– volume: 67
  start-page: 687
  year: 2018
  ident: 2022021407183962300_cei13391-bib-0043
  article-title: Molecular pathways for immune recognition of preproinsulin signal peptide in type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/db17-0021
– volume: 61
  start-page: 1752
  year: 2012
  ident: 2022021407183962300_cei13391-bib-0013
  article-title: Circulating preproinsulin signal peptide-specific CD8 T cells restricted by the susceptibility molecule HLA-A24 are expanded at onset of type 1 diabetes and kill beta-cells
  publication-title: Diabetes
  doi: 10.2337/db11-1520
– volume: 60
  start-page: 2635
  year: 2011
  ident: 2022021407183962300_cei13391-bib-0085
  article-title: Evidence that HLA class I and II associations with type 1 diabetes, autoantibodies to GAD and autoantibodies to IA-2, are distinct
  publication-title: Diabetes
  doi: 10.2337/db11-0131
SSID ssj0006662
Score 2.4308057
Snippet Summary In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and...
In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin-producing β cells. The HLA-B*3906 and HLA-A*2402...
In type 1 diabetes (T1D), autoreactive cytotoxic CD8 T cells are implicated in the destruction of insulin-producing β cells. The HLA-B*3906 and HLA-A*2402...
In type 1 diabetes (T1D), autoreactive cytotoxic CD8+ T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402...
In type 1 diabetes (T1D), autoreactive cytotoxic CD8 + T cells are implicated in the destruction of insulin‐producing β cells. The HLA‐B*3906 and HLA‐A*2402...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 263
SubjectTerms Antigens
Autoantibodies
Autoimmunity - immunology
Beta cells
CD8 antigen
CD8+ T cells
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - metabolism
Child
Child, Preschool
Children
Cytotoxicity
Diabetes
Diabetes mellitus (insulin dependent)
Diabetes Mellitus, Type 1 - blood
Diabetes Mellitus, Type 1 - immunology
Diabetes Mellitus, Type 1 - metabolism
Diagnosis
Effector cells
Female
Flow cytometry
Genotype & phenotype
Histocompatibility antigen HLA
Histocompatibility Antigens Class I - immunology
Histocompatibility Antigens Class I - metabolism
HLA-A24 Antigen - immunology
HLA-A24 Antigen - metabolism
HLA-B Antigens - immunology
HLA-B Antigens - metabolism
HLA‐A24
HLA‐B39
Humans
Immunological memory
Infant
Insulin
Insulin - immunology
Insulin - metabolism
Insulin-Secreting Cells - immunology
Insulin-Secreting Cells - metabolism
Lymphocytes
Lymphocytes T
Male
Memory cells
Original
Pancreas
Phenotypes
Preproinsulin
Protein Precursors - immunology
Protein Precursors - metabolism
Risk Factors
type 1 diabetes
Title Circulating β cell‐specific CD8+ T cells restricted by high‐risk HLA class I molecules show antigen experience in children with and at risk of type 1 diabetes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcei.13391
https://www.ncbi.nlm.nih.gov/pubmed/31660582
https://www.proquest.com/docview/2352555129
https://www.proquest.com/docview/2310289069
https://pubmed.ncbi.nlm.nih.gov/PMC7008222
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VSiAuLZS_lFINiEMl5CjZOLEtTlXaKgGKEGqlHpCs3fUsjSgOqhNV7YlH4B14Ax6Eh-BJmFn_0FCQEJcoiceOs57Z_WZ25huApzbuR0lkYkZumoLQOBOw20yBiq3qJDaLrCfS3n89GB2GL476R0vwvK6FKfkhmoCbWIafr8XAtSkuGbmlSZsdLF-5LrlaAoje_qKOYliu6i5qvCSGFauQZPE0Zy6uRVcA5tU8ycv41S9Ae6vwrr71Mu_kQ3s-M2178Rur43_-t1uwUgFT3C416TYsUb4G18tWledrcGO_2oS_A1-Hk1Pru37l7_H7N5TY_4_PX6RmU_KOcLgTP8MD_3WB0vqDp1rGtWjOUciRWVTy2XH0ahutYHcc48eySS8VWBxPz5CftpCEIjU8zDjJsa47R4kds0yGeob-UlOHEkrGLtah5LtwuLd7MBwFVa-HwIaMYQKK-9YkShmpsnZExrB7y5-szpLYUMY4zylLUZdcHFHPKh6dLOmxOkXOSGj7Hizn05weAGbOKZ25ZKC1CynSWhnX6VjKTMj-l05asFU_9dRWROjSj-MkrR0iHv7UD38LnjSin0r2jz8JbdSqk1YTQJEqoZntC5pqwePmMJuuDL7OaToXma7f5x2wzP1S05pf6XUHsmGtWhAt6GAjILTgi0fyybGnB488iz-fueVV7O83ng53x_7N-r-LPoSbSiIOPgtvA5Znp3N6xLBsZjbhmgrf8OvO-OWmt8WfyFM6hg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB5VRfxc-CkUAgUGxKEScpRsnNiWuFShVQJJDyiVekHW7nqWRrQOahKhcuIReAfegAfhIXgSZtY_NBQkxC2Ox46zntn9ZnbmG4BnNu5GSWRiRm6agtA4E7DbTIGKrWolNousJ9Ie7_cGB-Grw-7hGryoamEKfog64CaW4edrMXAJSJ-zckvTJntYUrp-STp6e4fqzS_yKAbmquqjxotiWPIKSR5PfenqanQBYl7MlDyPYP0StHcD3lYPX2SevG8uF6ZpP_3G6_i__-4mXC-xKe4UynQL1ijfgMtFt8qzDbgyLvfhb8PX_vTU-sZf-Tv8_g0l_P_j8xcp25TUI-y_jJ_jxH89R-n-wbMtQ1s0Zyj8yCwqKe04GO2gFfiOQzwp-vTSHOdHs4_IL1x4QpFqKmac5liVnqOEj1kmQ71Af6uZQ4kmYxuraPIdONjbnfQHQdnuIbAhw5iA4q41iVJGCq0dkTHs4fKR1VkSG8oY6jllKWqTiyPqWMWjkyUd1qjIGYlub8J6PsvpHmDmnNKZS3pau5AirZVxrZalzITsgumkAdvVa09tyYUuLTmO08on4uFP_fA34Gkt-qEgAPmT0FalO2k5B8xTJUyzXQFUDXhSn2brlcHXOc2WItP2W709lrlbqFr9K512T_asVQOiFSWsBYQZfPVMPj3yDOGRJ_LnK7e9jv39wdP-7tB_uP_voo_h6mAyHqWj4f7rB3BNSQDCJ-VtwfridEkPGaUtzCNvjD8BaH480Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dahNREB5KS4s31ta_aNVRvCjIhuRksz94VZKGRNsi0kIvhOX82tC6KU2C1CsfwXfwDXwQH8Incebsj41VEO-y2dnN5uzMOd_MmfkG4LlOunEaq4SQm7RBqJwKyG22gUi0aKXaxNoTae8fRMOj8NVx93gJXla1MAU_RB1wY8vw8zUb-LlxV4xc23GTHCyuXF8Jo1bCKt1_-4s7inC5qNqo0ZoYlrRCnMZTX7q4GF1DmNcTJa8CWL8CDdbhXfXsReLJaXM-U0396Tdax__8c7fgZolMcadQpQ1YsvkmrBa9Ki83YW2_3IW_DV974wvt237l7_H7N-Tg_4_PX7hokxOPsNdPXuCh_3qK3PuD5loCtqgukdmRSZQT2nG4t4OawTuO8EPRpddOcXoy-Yj0upklFG1NxIzjHKvCc-TgMckYlDP0t5o45FgytrGKJd-Bo8HuYW8YlM0eAh0SiAls0tUqFUJxmbWzVinyb-lIS5MmyhoCek5oG7etS2Lb0YJGx6Qd0qfYKY5t34XlfJLb-4DGOSGNSyMpXWhjKYVyrZa2RoXkgMm0AdvVW890yYTODTnOssojouHP_PA34Fktel7Qf_xJaKtSnaycAaaZYJ7ZLsOpBjytT5Pt8uDL3E7mLNP2G70RydwrNK3-lU474h1r0YB4QQdrAeYFXzyTj088P3jsafzpym2vYn9_8Ky3O_IfHvy76BNYe9MfZHujg9cP4Ybg6IPPyNuC5dnF3D4iiDZTj70p_gS07DuJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circulating+%CE%B2+cell-specific+CD8+%2B+T+cells+restricted+by+high-risk+HLA+class+I+molecules+show+antigen+experience+in+children+with+and+at+risk+of+type+1+diabetes&rft.jtitle=Clinical+and+experimental+immunology&rft.au=Yeo%2C+L&rft.au=Pujol-Autonell%2C+I&rft.au=Baptista%2C+R&rft.au=Eichmann%2C+M&rft.date=2020-03-01&rft.eissn=1365-2249&rft.volume=199&rft.issue=3&rft.spage=263&rft_id=info:doi/10.1111%2Fcei.13391&rft_id=info%3Apmid%2F31660582&rft.externalDocID=31660582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-9104&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-9104&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-9104&client=summon