Minimum electric‐field gradient coil design: Theoretical limits and practical guidelines

Purpose To develop new concepts for minimum electric‐field (E‐field) gradient design, and to define the extents to which E‐field can be reduced in gradient design while maintaining a desired imaging performance. Methods Efficient calculation of induced electric field in simplified patient models was...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 86; no. 1; pp. 569 - 580
Main Authors Roemer, Peter B., Rutt, Brian K.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To develop new concepts for minimum electric‐field (E‐field) gradient design, and to define the extents to which E‐field can be reduced in gradient design while maintaining a desired imaging performance. Methods Efficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E‐field. Gradient coils confined to various build envelopes were designed with minimum E‐fields subject to standard magnetic field constraints. We examined the characteristics of E‐field‐constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions. Results For transverse gradients, symmetric solutions create high levels of E‐fields in the shoulder region, while fully asymmetric solutions create high E‐fields on the top of the head. Partially asymmetric solutions result in the lowest E‐fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E‐field for x‐gradient and y‐gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion. Conclusions We introduce a generalized method for minimum E‐field gradient design and define the theoretical limits of magnetic energy and peak E‐field for gradient coils of arbitrary cylindrical geometry.
AbstractList To develop new concepts for minimum electric-field (E-field) gradient design, and to define the extents to which E-field can be reduced in gradient design while maintaining a desired imaging performance.PURPOSETo develop new concepts for minimum electric-field (E-field) gradient design, and to define the extents to which E-field can be reduced in gradient design while maintaining a desired imaging performance.Efficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E-field. Gradient coils confined to various build envelopes were designed with minimum E-fields subject to standard magnetic field constraints. We examined the characteristics of E-field-constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions.METHODSEfficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E-field. Gradient coils confined to various build envelopes were designed with minimum E-fields subject to standard magnetic field constraints. We examined the characteristics of E-field-constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions.For transverse gradients, symmetric solutions create high levels of E-fields in the shoulder region, while fully asymmetric solutions create high E-fields on the top of the head. Partially asymmetric solutions result in the lowest E-fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E-field for x-gradient and y-gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion.RESULTSFor transverse gradients, symmetric solutions create high levels of E-fields in the shoulder region, while fully asymmetric solutions create high E-fields on the top of the head. Partially asymmetric solutions result in the lowest E-fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E-field for x-gradient and y-gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion.We introduce a generalized method for minimum E-field gradient design and define the theoretical limits of magnetic energy and peak E-field for gradient coils of arbitrary cylindrical geometry.CONCLUSIONSWe introduce a generalized method for minimum E-field gradient design and define the theoretical limits of magnetic energy and peak E-field for gradient coils of arbitrary cylindrical geometry.
PurposeTo develop new concepts for minimum electric‐field (E‐field) gradient design, and to define the extents to which E‐field can be reduced in gradient design while maintaining a desired imaging performance.MethodsEfficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E‐field. Gradient coils confined to various build envelopes were designed with minimum E‐fields subject to standard magnetic field constraints. We examined the characteristics of E‐field‐constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions.ResultsFor transverse gradients, symmetric solutions create high levels of E‐fields in the shoulder region, while fully asymmetric solutions create high E‐fields on the top of the head. Partially asymmetric solutions result in the lowest E‐fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E‐field for x‐gradient and y‐gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion.ConclusionsWe introduce a generalized method for minimum E‐field gradient design and define the theoretical limits of magnetic energy and peak E‐field for gradient coils of arbitrary cylindrical geometry.
To develop new concepts for minimum electric-field (E-field) gradient design, and to define the extents to which E-field can be reduced in gradient design while maintaining a desired imaging performance. Efficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E-field. Gradient coils confined to various build envelopes were designed with minimum E-fields subject to standard magnetic field constraints. We examined the characteristics of E-field-constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions. For transverse gradients, symmetric solutions create high levels of E-fields in the shoulder region, while fully asymmetric solutions create high E-fields on the top of the head. Partially asymmetric solutions result in the lowest E-fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E-field for x-gradient and y-gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion. We introduce a generalized method for minimum E-field gradient design and define the theoretical limits of magnetic energy and peak E-field for gradient coils of arbitrary cylindrical geometry.
Purpose To develop new concepts for minimum electric‐field (E‐field) gradient design, and to define the extents to which E‐field can be reduced in gradient design while maintaining a desired imaging performance. Methods Efficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E‐field. Gradient coils confined to various build envelopes were designed with minimum E‐fields subject to standard magnetic field constraints. We examined the characteristics of E‐field‐constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions. Results For transverse gradients, symmetric solutions create high levels of E‐fields in the shoulder region, while fully asymmetric solutions create high E‐fields on the top of the head. Partially asymmetric solutions result in the lowest E‐fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E‐field for x‐gradient and y‐gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion. Conclusions We introduce a generalized method for minimum E‐field gradient design and define the theoretical limits of magnetic energy and peak E‐field for gradient coils of arbitrary cylindrical geometry.
Author Rutt, Brian K.
Roemer, Peter B.
AuthorAffiliation 1 Roemer Consulting Lutz Florida USA
2 Department of Radiology Stanford University Stanford California USA
AuthorAffiliation_xml – name: 2 Department of Radiology Stanford University Stanford California USA
– name: 1 Roemer Consulting Lutz Florida USA
Author_xml – sequence: 1
  givenname: Peter B.
  surname: Roemer
  fullname: Roemer, Peter B.
  organization: Roemer Consulting
– sequence: 2
  givenname: Brian K.
  orcidid: 0000-0001-6516-0505
  surname: Rutt
  fullname: Rutt, Brian K.
  email: brutt@stanford.edu
  organization: Stanford University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33565135$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAUhS1URKeFBS-AIrGBRVr_JeOwqISq8iN1hITKho3l2DfTWzn2YCeg7voIPCNPgstMEVSwupLvd47O9TkgeyEGIOQpo0eMUn48pvGIq1axB2TBGs5r3nRyjyzoUtJasE7uk4OcryilXbeUj8i-EE3bMNEsyOcVBhznsQIPdkpof9x8HxC8q9bJOIQwVTairxxkXIdX1cUlxAQTWuMrjyNOuTLBVZtk7PZxPaMDjwHyY_JwMD7Dk908JJ_enF2cvqvPP7x9f_r6vLZSClYDW1rZyk44K6Szy8a13Nh-gIEJpXpmZDmjc0rQJVhmeunawikA0cued704JCdb383cj-BsyZyM15uEo0nXOhrUf28CXup1_KoVlR1tVTF4sTNI8csMedIjZgvemwBxzppLpVirpGoK-vweehXnFMp5mje04y1vmSjUsz8T_Y5y9-0FON4CNsWcEwza4mQmjLcB0WtG9W2xuhSrfxVbFC_vKe5M_8Xu3L-hh-v_g3r1cbVV_ARAuLS6
CitedBy_id crossref_primary_10_1002_mrm_28966
crossref_primary_10_1002_mrm_30470
crossref_primary_10_1002_bem_22387
crossref_primary_10_1109_TMI_2022_3193219
crossref_primary_10_1002_jmri_28421
crossref_primary_10_1002_mrm_28853
crossref_primary_10_1002_mrm_29861
crossref_primary_10_1002_mrm_30157
crossref_primary_10_1007_s10334_025_01228_4
crossref_primary_10_1016_j_pbiomolbio_2022_09_002
crossref_primary_10_1002_mrm_30109
Cites_doi 10.1002/mrm.1910350614
10.1002/mrm.27382
10.1002/mrm.1910310415
10.1002/mrm.1910340331
10.1016/j.enganabound.2010.11.001
10.1002/jmri.25210
10.1016/j.neuroimage.2016.11.033
10.1088/0031-9155/53/7/001
10.1088/0031-9155/55/11/007
10.1109/TMI.2020.3023329
10.1002/mrm.22050
10.1002/(SICI)1522-2594(199909)42:3<561::AID-MRM19>3.0.CO;2-0
10.1002/mrm.21615
10.1088/1361-6560/61/24/8875
10.1007/s10334-003-0015-7
10.1002/mrm.22926
10.1002/mrm.21073
10.1002/mrm.26315
10.1002/mrm.26044
10.1002/mrm.27175
10.1016/j.neuroimage.2013.05.078
10.1002/mrm.10508
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.28681
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Biochemistry Abstracts 1
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate ROEMER and RUTT
EISSN 1522-2594
EndPage 580
ExternalDocumentID PMC8049068
33565135
10_1002_mrm_28681
MRM28681
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: P41 EB015891; R01 EB025131; U01 EB025144
– fundername: NIBIB NIH HHS
  grantid: R01 EB025131
– fundername: NIBIB NIH HHS
  grantid: U01 EB025144
– fundername: NIBIB NIH HHS
  grantid: P41 EB027061
– fundername: NIBIB NIH HHS
  grantid: P41 EB015891
– fundername: ;
  grantid: P41 EB015891; R01 EB025131; U01 EB025144
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4431-e17c46493dc34dc75d62acbfef1388b1a40749d8307ec1ab4d634d8ee3b4b29b3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:08:39 EDT 2025
Fri Jul 11 16:31:10 EDT 2025
Fri Jul 25 12:13:33 EDT 2025
Mon Jul 21 06:01:49 EDT 2025
Tue Jul 01 04:26:59 EDT 2025
Thu Apr 24 22:55:55 EDT 2025
Wed Aug 20 07:26:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords folded gradient
E-field
PNS
asymmetric gradient
electric field
gradient coil
head gradient
peripheral nerve stimulation
Language English
License Attribution
2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4431-e17c46493dc34dc75d62acbfef1388b1a40749d8307ec1ab4d634d8ee3b4b29b3
Notes Funding information
National Institutes of Health; Grant/Award Nos. P41 EB015891, R01 EB025131, and U01 EB025144
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6516-0505
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28681
PMID 33565135
PQID 2509262613
PQPubID 1016391
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8049068
proquest_miscellaneous_2488168485
proquest_journals_2509262613
pubmed_primary_33565135
crossref_citationtrail_10_1002_mrm_28681
crossref_primary_10_1002_mrm_28681
wiley_primary_10_1002_mrm_28681_MRM28681
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2019; 8
2010; 55
2009; 62
2006; 56
2018; 168
1995; 34
2016; 76
2018; 80
2003; 16
1999; 42
2011; 35
1993
2008; 53
2003; 50
1996; 35
1999; 9
2019; 81
2020
2017; 77
2013; 80
2011; 66
2017
2016; 61
2016
1961
2015
2021; 40
2008; 60
1994; 31
2016; 44
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Davids M (e_1_2_5_23_1) 2019; 8
e_1_2_5_29_1
Roemer PB (e_1_2_5_13_1) 1993
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_32_1
e_1_2_5_12_1
e_1_2_5_3_1
Harrington RF (e_1_2_5_28_1) 1961
e_1_2_5_2_1
International Electrotechnical Commission (e_1_2_5_5_1) 2015
e_1_2_5_19_1
e_1_2_5_18_1
Bourland JD (e_1_2_5_4_1) 1999; 9
Diffrient N (e_1_2_5_27_1) 2017
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 35
  start-page: 875
  year: 1996
  end-page: 886
  article-title: Optimization of torque‐balanced asymmetric head gradient coils
  publication-title: Magn Reson Med
– volume: 61
  start-page: 8875
  year: 2016
  end-page: 8889
  article-title: An improved asymmetric gradient coil design for high‐resolution MRI head imaging
  publication-title: Phys Med Biol
– volume: 31
  start-page: 450
  year: 1994
  end-page: 453
  article-title: Torque free asymmetric gradient coils for echo planar imaging
  publication-title: Magn Reson Med
– volume: 56
  start-page: 1274
  year: 2006
  end-page: 1282
  article-title: 9.4T human MRI: preliminary results
  publication-title: Magn Reson Med
– volume: 42
  start-page: 561
  year: 1999
  end-page: 570
  article-title: Modular gradient coil: a new concept in high‐performance whole‐body gradient coil design
  publication-title: Magn Reson Med
– start-page: 480
  year: 1961
– volume: 66
  start-page: 1498
  year: 2011
  end-page: 1509
  article-title: Reducing peripheral nerve stimulation due to gradient switching using an additional uniform field coil
  publication-title: Magn Reson Med
– volume: 40
  start-page: 129
  year: 2021
  end-page: 142
  article-title: Optimization of MRI gradient coils with explicit peripheral nerve stimulation constraints
  publication-title: IEEE Trans Med Imaging
– volume: 53
  start-page: 1811
  year: 2008
  end-page: 1827
  article-title: Controlled E‐field gradient coils for MRI
  publication-title: Phys Med Biol
– volume: 80
  start-page: 220
  year: 2013
  end-page: 233
  article-title: Pushing the limits of in vivo diffusion MRI for the Human Connectome Project
  publication-title: Neuroimage
– volume: 35
  start-page: 264
  year: 2011
  end-page: 272
  article-title: Quasi‐static multi‐domain inverse boundary element method for MRI coil design with minimum induced E‐field
  publication-title: Eng Anal Boundary Elem
– volume: 80
  start-page: 2232
  year: 2018
  end-page: 2245
  article-title: Lightweight, compact, and high‐performance 3T MR system for imaging the brain and extremities
  publication-title: Magn Reson Med
– year: 2016
– volume: 81
  start-page: 686
  year: 2019
  end-page: 701
  article-title: Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations
  publication-title: Magn Reson Med
– volume: 9
  start-page: 363
  year: 1999
  end-page: 377
  article-title: Physiologic effects of intense MR imaging gradient fields
  publication-title: Neuroimaging Clin N Am
– volume: 8
  start-page: 87
  year: 2019
  end-page: 101
  article-title: Peripheral nerve stimulation modeling for MRI
  publication-title: eMagRes
– volume: 60
  start-page: 128
  year: 2008
  end-page: 134
  article-title: Concomitant field terms for asymmetric gradient coils: consequences for diffusion, flow, and echo‐planar imaging
  publication-title: Magn Reson Med
– volume: 76
  start-page: 1939
  year: 2016
  end-page: 1950
  article-title: Peripheral nerve stimulation characteristics of an asymmetric head‐only gradient coil compatible with a high‐channel‐count receiver array
  publication-title: Magn Reson Med
– volume: 77
  start-page: 2250
  year: 2017
  end-page: 2262
  article-title: Gradient pre‐emphasis to counteract first‐order concomitant fields on asymmetric MRI gradient systems
  publication-title: Magn Reson Med
– year: 2020
– volume: 34
  start-page: 494
  year: 1995
  end-page: 497
  article-title: Quiet transverse gradient coils: Lorentz force balanced designs using geometrical similitude
  publication-title: Magn Reson Med
– volume: 55
  start-page: 3087
  year: 2010
  end-page: 3100
  article-title: E‐coil: an inverse boundary element method for a quasi‐static problem
  publication-title: Phys Med Biol
– year: 2017
– volume: 62
  start-page: 763
  year: 2009
  end-page: 770
  article-title: Experimental determination of human peripheral nerve stimulation thresholds in a 3‐axis planar gradient system
  publication-title: Magn Reson Med
– volume: 16
  start-page: 113
  year: 2003
  end-page: 120
  article-title: Controlled E‐field gradient coils
  publication-title: MAGMA
– volume: 44
  start-page: 653
  year: 2016
  end-page: 664
  article-title: High slew‐rate head‐only gradient for improving distortion in echo planar imaging: preliminary experience
  publication-title: J Magn Reson Imaging
– volume: 50
  start-page: 50
  year: 2003
  end-page: 58
  article-title: Peripheral nerve stimulation properties of head and body gradient coils of various sizes
  publication-title: Magn Reson Med
– year: 1993
– volume: 168
  start-page: 59
  year: 2018
  end-page: 70
  article-title: Gradient and shim technologies for ultra high field MRI
  publication-title: Neuroimage
– year: 2015
– ident: e_1_2_5_11_1
  doi: 10.1002/mrm.1910350614
– ident: e_1_2_5_17_1
  doi: 10.1002/mrm.27382
– ident: e_1_2_5_12_1
  doi: 10.1002/mrm.1910310415
– ident: e_1_2_5_14_1
  doi: 10.1002/mrm.1910340331
– volume: 9
  start-page: 363
  year: 1999
  ident: e_1_2_5_4_1
  article-title: Physiologic effects of intense MR imaging gradient fields
  publication-title: Neuroimaging Clin N Am
– ident: e_1_2_5_25_1
  doi: 10.1016/j.enganabound.2010.11.001
– ident: e_1_2_5_29_1
  doi: 10.1002/jmri.25210
– ident: e_1_2_5_2_1
  doi: 10.1016/j.neuroimage.2016.11.033
– ident: e_1_2_5_18_1
– ident: e_1_2_5_19_1
  doi: 10.1088/0031-9155/53/7/001
– volume-title: Humanscale 1/2/3 Manual
  year: 2017
  ident: e_1_2_5_27_1
– start-page: 480
  volume-title: Time‐Harmonic Electromagnetic Fields
  year: 1961
  ident: e_1_2_5_28_1
– volume: 8
  start-page: 87
  year: 2019
  ident: e_1_2_5_23_1
  article-title: Peripheral nerve stimulation modeling for MRI
  publication-title: eMagRes
– ident: e_1_2_5_24_1
  doi: 10.1088/0031-9155/55/11/007
– volume-title: Medical electrical equipment—Part 2–33: Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis
  year: 2015
  ident: e_1_2_5_5_1
– ident: e_1_2_5_22_1
– ident: e_1_2_5_26_1
  doi: 10.1109/TMI.2020.3023329
– ident: e_1_2_5_32_1
  doi: 10.1002/mrm.22050
– ident: e_1_2_5_7_1
  doi: 10.1002/(SICI)1522-2594(199909)42:3<561::AID-MRM19>3.0.CO;2-0
– ident: e_1_2_5_30_1
  doi: 10.1002/mrm.21615
– ident: e_1_2_5_9_1
  doi: 10.1088/1361-6560/61/24/8875
– ident: e_1_2_5_16_1
– ident: e_1_2_5_20_1
  doi: 10.1007/s10334-003-0015-7
– ident: e_1_2_5_21_1
  doi: 10.1002/mrm.22926
– ident: e_1_2_5_10_1
  doi: 10.1002/mrm.21073
– ident: e_1_2_5_31_1
  doi: 10.1002/mrm.26315
– volume-title: Transverse gradient coils for imaging the head
  year: 1993
  ident: e_1_2_5_13_1
– ident: e_1_2_5_15_1
  doi: 10.1002/mrm.26044
– ident: e_1_2_5_8_1
  doi: 10.1002/mrm.27175
– ident: e_1_2_5_6_1
  doi: 10.1016/j.neuroimage.2013.05.078
– ident: e_1_2_5_3_1
  doi: 10.1002/mrm.10508
SSID ssj0009974
Score 2.423956
Snippet Purpose To develop new concepts for minimum electric‐field (E‐field) gradient design, and to define the extents to which E‐field can be reduced in gradient...
To develop new concepts for minimum electric-field (E-field) gradient design, and to define the extents to which E-field can be reduced in gradient design...
PurposeTo develop new concepts for minimum electric‐field (E‐field) gradient design, and to define the extents to which E‐field can be reduced in gradient...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 569
SubjectTerms asymmetric gradient
Asymmetry
Constraints
Design
electric field
Electric fields
Electricity
Equipment Design
E‐field
folded gradient
Full Papers—Hardware and Instrumentation
gradient coil
Head - diagnostic imaging
head gradient
Humans
Magnetic Fields
Magnetic Resonance Imaging
peripheral nerve stimulation
PNS
Shoulder
Title Minimum electric‐field gradient coil design: Theoretical limits and practical guidelines
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28681
https://www.ncbi.nlm.nih.gov/pubmed/33565135
https://www.proquest.com/docview/2509262613
https://www.proquest.com/docview/2488168485
https://pubmed.ncbi.nlm.nih.gov/PMC8049068
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aJoH2wmWMrTAmg3jgJV0Tu66zPSHENE0KQlUrTWhS5Fu2aG2K2uaFJ34Cv5FfwrFzKaUgob1F8XHi27G_xN_5DPAW3Sd2S1MgI6MCxiUNpOibwAodap5ZYb2Ia_KJX4zZ5VX_agvOmliYSh-i_eHmPMPP187BpVqcrERDp_NpNxLch107rpYDRMOVdFQcVwrMA-bmmZg1qkK96KTNub4WbQDMTZ7k7_jVL0Dnj-G6KXrFO7nrlkvV1d_-UHW8Z92ewKMamJL31Uh6Clu22IOHSb31vgcPPFdUL57BlyQv8mk5JdUROrn--f2HJ8KRm7knkC2JnuUTYjw55JSMVrGSZOLiqRZEFobU8Vl486Z0WluOf78P4_OPow8XQX1EQ6AZQo_AhgPNOIup0ZQZPegbHkmtMpuFVAgVSvxeZLEROJNYHUrFDEc7YS1VTEWxos9hp5gV9hAIIhfDTJZl-ADWs0YYFYcac7IeNTKzHXjXdFaqa_1yd4zGJK2Ul6MUWy31rdaBN63p10q0429GR02Pp7XfLlIEhE5AETFOB163yehxbhtFFnZWog3OeSEXTPQ7cFANkPYtlCJADimmDNaGTmvg1LzXU4r81qt6C7cHywVW04-Mfxc8TYaJv3jx_6YvYTdyZBzPMz6CneW8tK8QTS3VMWxH7POxd55fy5Yf2g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrXhcChRKFwoYxIFLtpvY8TqIC0JUCzQ9VFupQkKRXykRu9lqd3PhxE_gN_aXdOw8lqUgIW5RPE78mLHH9jefAV6i-SRuagpkZFTAuKSBFLEJrNCh5rkV1pO4psd8dMo-nsVnG_CmjYWp-SG6DTdnGX68dgbuNqQPVqyh0_m0Hwnu4q633I3efkF1siKPSpKag3nI3EiTsJZXaBAddFnXZ6NrLuZ1pOSvHqyfgg7vwJe28DXy5Fu_Wqq-_v4br-P_1u4ubDe-KXlbK9M92LDlDtxMm9P3Hbjh4aJ6cR8-p0VZTKspqW_RKfTlj58eC0fO5x5DtiR6VkyI8fiQ12S8CpckExdStSCyNKQJ0cKX55Wj23IQ_Adwevh-_G4UNLc0BJqh9xHYcKgZZwk1mjKjh7HhkdQqt3lIhVChxCUjS4zAwcTqUCpmOMoJa6liKkoU3YXNclbaPSDovBhm8jzHD7CBNcKoJNSYkw2okbntwau2tzLdUJi7mzQmWU2-HGXYaplvtR686EQvat6OPwntt12eNaa7yNAndByK6Ob04HmXjEbnTlJkaWcVyuCwF3LBRNyDh7WGdH-hNHbKiCnDNd3pBByh93pKWXz1xN7CHcNygdX0qvH3gmfpSeofHv276DO4NRqnR9nRh-NPj-F25LA5Hna8D5vLeWWfoHO1VE-9DV0B1n8jHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6ahph44TJuHRt4iAde0jWx6zrwhDaqjZEJTZs0IaTIt4xobTq1zQtP-wn7jfwSjp1LKQNp4i2KjxMnPsf-En_nM8AbDJ_YTU2BjIwKGJc0kKJvAit0qHlmhfUirskR3z9ln876ZyvwvsmFqfQh2h9uLjL8eO0C_NJkOwvR0PF03I0Ed2nXdxjvCefSe8cL7ag4riSYB8wNNDFrZIV60U5bdXkyuoEwbxIlfwewfgYaPoBvTdsr4slFt5yrrv7xh6zjfz7cQ7hfI1PyoXKlR7Bii3VYS-q193W468mievYYviZ5kY_LMan20Mn1z6trz4Qj51PPIJsTPclHxHh2yDtyskiWJCOXUDUjsjCkTtDCk-elE9tyBPwncDr8eLK7H9R7NASaIfYIbDjQjLOYGk2Z0YO-4ZHUKrNZSIVQocQPRhYbgUOJ1aFUzHC0E9ZSxVQUK_oUVotJYZ8DQehimMmyDC_AetYIo-JQY03Wo0ZmtgNvm85KdS1g7vbRGKWV9HKU4ltL_VvrwOvW9LJS7fib0WbT42kduLMUEaFTUESQ04HtthhDzq2jyMJOSrTBQS_kgol-B55VDtLehVJEyCHFksGS67QGTs57uaTIv3tZb-EWYbnAx_Se8e-Gp8lx4g82bm_6Cta-7A3TzwdHhy_gXuSIOZ5zvAmr82lptxBZzdVLH0G_AH_yIdY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+electric-field+gradient+coil+design%3A+Theoretical+limits+and+practical+guidelines&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Roemer%2C+Peter+B&rft.au=Rutt%2C+Brian+K&rft.date=2021-07-01&rft.eissn=1522-2594&rft.volume=86&rft.issue=1&rft.spage=569&rft_id=info:doi/10.1002%2Fmrm.28681&rft_id=info%3Apmid%2F33565135&rft.externalDocID=33565135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon