Minimum electric‐field gradient coil design: Theoretical limits and practical guidelines
Purpose To develop new concepts for minimum electric‐field (E‐field) gradient design, and to define the extents to which E‐field can be reduced in gradient design while maintaining a desired imaging performance. Methods Efficient calculation of induced electric field in simplified patient models was...
Saved in:
Published in | Magnetic resonance in medicine Vol. 86; no. 1; pp. 569 - 580 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.07.2021
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To develop new concepts for minimum electric‐field (E‐field) gradient design, and to define the extents to which E‐field can be reduced in gradient design while maintaining a desired imaging performance.
Methods
Efficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E‐field. Gradient coils confined to various build envelopes were designed with minimum E‐fields subject to standard magnetic field constraints. We examined the characteristics of E‐field‐constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions.
Results
For transverse gradients, symmetric solutions create high levels of E‐fields in the shoulder region, while fully asymmetric solutions create high E‐fields on the top of the head. Partially asymmetric solutions result in the lowest E‐fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E‐field for x‐gradient and y‐gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion.
Conclusions
We introduce a generalized method for minimum E‐field gradient design and define the theoretical limits of magnetic energy and peak E‐field for gradient coils of arbitrary cylindrical geometry. |
---|---|
AbstractList | To develop new concepts for minimum electric-field (E-field) gradient design, and to define the extents to which E-field can be reduced in gradient design while maintaining a desired imaging performance.PURPOSETo develop new concepts for minimum electric-field (E-field) gradient design, and to define the extents to which E-field can be reduced in gradient design while maintaining a desired imaging performance.Efficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E-field. Gradient coils confined to various build envelopes were designed with minimum E-fields subject to standard magnetic field constraints. We examined the characteristics of E-field-constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions.METHODSEfficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E-field. Gradient coils confined to various build envelopes were designed with minimum E-fields subject to standard magnetic field constraints. We examined the characteristics of E-field-constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions.For transverse gradients, symmetric solutions create high levels of E-fields in the shoulder region, while fully asymmetric solutions create high E-fields on the top of the head. Partially asymmetric solutions result in the lowest E-fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E-field for x-gradient and y-gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion.RESULTSFor transverse gradients, symmetric solutions create high levels of E-fields in the shoulder region, while fully asymmetric solutions create high E-fields on the top of the head. Partially asymmetric solutions result in the lowest E-fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E-field for x-gradient and y-gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion.We introduce a generalized method for minimum E-field gradient design and define the theoretical limits of magnetic energy and peak E-field for gradient coils of arbitrary cylindrical geometry.CONCLUSIONSWe introduce a generalized method for minimum E-field gradient design and define the theoretical limits of magnetic energy and peak E-field for gradient coils of arbitrary cylindrical geometry. PurposeTo develop new concepts for minimum electric‐field (E‐field) gradient design, and to define the extents to which E‐field can be reduced in gradient design while maintaining a desired imaging performance.MethodsEfficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E‐field. Gradient coils confined to various build envelopes were designed with minimum E‐fields subject to standard magnetic field constraints. We examined the characteristics of E‐field‐constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions.ResultsFor transverse gradients, symmetric solutions create high levels of E‐fields in the shoulder region, while fully asymmetric solutions create high E‐fields on the top of the head. Partially asymmetric solutions result in the lowest E‐fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E‐field for x‐gradient and y‐gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion.ConclusionsWe introduce a generalized method for minimum E‐field gradient design and define the theoretical limits of magnetic energy and peak E‐field for gradient coils of arbitrary cylindrical geometry. To develop new concepts for minimum electric-field (E-field) gradient design, and to define the extents to which E-field can be reduced in gradient design while maintaining a desired imaging performance. Efficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E-field. Gradient coils confined to various build envelopes were designed with minimum E-fields subject to standard magnetic field constraints. We examined the characteristics of E-field-constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions. For transverse gradients, symmetric solutions create high levels of E-fields in the shoulder region, while fully asymmetric solutions create high E-fields on the top of the head. Partially asymmetric solutions result in the lowest E-fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E-field for x-gradient and y-gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion. We introduce a generalized method for minimum E-field gradient design and define the theoretical limits of magnetic energy and peak E-field for gradient coils of arbitrary cylindrical geometry. Purpose To develop new concepts for minimum electric‐field (E‐field) gradient design, and to define the extents to which E‐field can be reduced in gradient design while maintaining a desired imaging performance. Methods Efficient calculation of induced electric field in simplified patient models was integrated into gradient design software, allowing constraints to be placed on the peak E‐field. Gradient coils confined to various build envelopes were designed with minimum E‐fields subject to standard magnetic field constraints. We examined the characteristics of E‐field‐constrained gradients designed for imaging the head and body and the importance of asymmetry and concomitant fields in achieving these solutions. Results For transverse gradients, symmetric solutions create high levels of E‐fields in the shoulder region, while fully asymmetric solutions create high E‐fields on the top of the head. Partially asymmetric solutions result in the lowest E‐fields, balanced between shoulders and head and resulting in factors of 1.8 to 2.8 reduction in E‐field for x‐gradient and y‐gradient coils, respectively, when compared with the symmetric designs of identical gradient distortion. Conclusions We introduce a generalized method for minimum E‐field gradient design and define the theoretical limits of magnetic energy and peak E‐field for gradient coils of arbitrary cylindrical geometry. |
Author | Rutt, Brian K. Roemer, Peter B. |
AuthorAffiliation | 1 Roemer Consulting Lutz Florida USA 2 Department of Radiology Stanford University Stanford California USA |
AuthorAffiliation_xml | – name: 2 Department of Radiology Stanford University Stanford California USA – name: 1 Roemer Consulting Lutz Florida USA |
Author_xml | – sequence: 1 givenname: Peter B. surname: Roemer fullname: Roemer, Peter B. organization: Roemer Consulting – sequence: 2 givenname: Brian K. orcidid: 0000-0001-6516-0505 surname: Rutt fullname: Rutt, Brian K. email: brutt@stanford.edu organization: Stanford University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33565135$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAUhS1URKeFBS-AIrGBRVr_JeOwqISq8iN1hITKho3l2DfTWzn2YCeg7voIPCNPgstMEVSwupLvd47O9TkgeyEGIOQpo0eMUn48pvGIq1axB2TBGs5r3nRyjyzoUtJasE7uk4OcryilXbeUj8i-EE3bMNEsyOcVBhznsQIPdkpof9x8HxC8q9bJOIQwVTairxxkXIdX1cUlxAQTWuMrjyNOuTLBVZtk7PZxPaMDjwHyY_JwMD7Dk908JJ_enF2cvqvPP7x9f_r6vLZSClYDW1rZyk44K6Szy8a13Nh-gIEJpXpmZDmjc0rQJVhmeunawikA0cued704JCdb383cj-BsyZyM15uEo0nXOhrUf28CXup1_KoVlR1tVTF4sTNI8csMedIjZgvemwBxzppLpVirpGoK-vweehXnFMp5mje04y1vmSjUsz8T_Y5y9-0FON4CNsWcEwza4mQmjLcB0WtG9W2xuhSrfxVbFC_vKe5M_8Xu3L-hh-v_g3r1cbVV_ARAuLS6 |
CitedBy_id | crossref_primary_10_1002_mrm_28966 crossref_primary_10_1002_mrm_30470 crossref_primary_10_1002_bem_22387 crossref_primary_10_1109_TMI_2022_3193219 crossref_primary_10_1002_jmri_28421 crossref_primary_10_1002_mrm_28853 crossref_primary_10_1002_mrm_29861 crossref_primary_10_1002_mrm_30157 crossref_primary_10_1007_s10334_025_01228_4 crossref_primary_10_1016_j_pbiomolbio_2022_09_002 crossref_primary_10_1002_mrm_30109 |
Cites_doi | 10.1002/mrm.1910350614 10.1002/mrm.27382 10.1002/mrm.1910310415 10.1002/mrm.1910340331 10.1016/j.enganabound.2010.11.001 10.1002/jmri.25210 10.1016/j.neuroimage.2016.11.033 10.1088/0031-9155/53/7/001 10.1088/0031-9155/55/11/007 10.1109/TMI.2020.3023329 10.1002/mrm.22050 10.1002/(SICI)1522-2594(199909)42:3<561::AID-MRM19>3.0.CO;2-0 10.1002/mrm.21615 10.1088/1361-6560/61/24/8875 10.1007/s10334-003-0015-7 10.1002/mrm.22926 10.1002/mrm.21073 10.1002/mrm.26315 10.1002/mrm.26044 10.1002/mrm.27175 10.1016/j.neuroimage.2013.05.078 10.1002/mrm.10508 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
DOI | 10.1002/mrm.28681 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
DocumentTitleAlternate | ROEMER and RUTT |
EISSN | 1522-2594 |
EndPage | 580 |
ExternalDocumentID | PMC8049068 33565135 10_1002_mrm_28681 MRM28681 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: P41 EB015891; R01 EB025131; U01 EB025144 – fundername: NIBIB NIH HHS grantid: R01 EB025131 – fundername: NIBIB NIH HHS grantid: U01 EB025144 – fundername: NIBIB NIH HHS grantid: P41 EB027061 – fundername: NIBIB NIH HHS grantid: P41 EB015891 – fundername: ; grantid: P41 EB015891; R01 EB025131; U01 EB025144 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
ID | FETCH-LOGICAL-c4431-e17c46493dc34dc75d62acbfef1388b1a40749d8307ec1ab4d634d8ee3b4b29b3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:08:39 EDT 2025 Fri Jul 11 16:31:10 EDT 2025 Fri Jul 25 12:13:33 EDT 2025 Mon Jul 21 06:01:49 EDT 2025 Tue Jul 01 04:26:59 EDT 2025 Thu Apr 24 22:55:55 EDT 2025 Wed Aug 20 07:26:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | folded gradient E-field PNS asymmetric gradient electric field gradient coil head gradient peripheral nerve stimulation |
Language | English |
License | Attribution 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4431-e17c46493dc34dc75d62acbfef1388b1a40749d8307ec1ab4d634d8ee3b4b29b3 |
Notes | Funding information National Institutes of Health; Grant/Award Nos. P41 EB015891, R01 EB025131, and U01 EB025144 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6516-0505 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28681 |
PMID | 33565135 |
PQID | 2509262613 |
PQPubID | 1016391 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8049068 proquest_miscellaneous_2488168485 proquest_journals_2509262613 pubmed_primary_33565135 crossref_citationtrail_10_1002_mrm_28681 crossref_primary_10_1002_mrm_28681 wiley_primary_10_1002_mrm_28681_MRM28681 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2019; 8 2010; 55 2009; 62 2006; 56 2018; 168 1995; 34 2016; 76 2018; 80 2003; 16 1999; 42 2011; 35 1993 2008; 53 2003; 50 1996; 35 1999; 9 2019; 81 2020 2017; 77 2013; 80 2011; 66 2017 2016; 61 2016 1961 2015 2021; 40 2008; 60 1994; 31 2016; 44 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Davids M (e_1_2_5_23_1) 2019; 8 e_1_2_5_29_1 Roemer PB (e_1_2_5_13_1) 1993 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_32_1 e_1_2_5_12_1 e_1_2_5_3_1 Harrington RF (e_1_2_5_28_1) 1961 e_1_2_5_2_1 International Electrotechnical Commission (e_1_2_5_5_1) 2015 e_1_2_5_19_1 e_1_2_5_18_1 Bourland JD (e_1_2_5_4_1) 1999; 9 Diffrient N (e_1_2_5_27_1) 2017 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 35 start-page: 875 year: 1996 end-page: 886 article-title: Optimization of torque‐balanced asymmetric head gradient coils publication-title: Magn Reson Med – volume: 61 start-page: 8875 year: 2016 end-page: 8889 article-title: An improved asymmetric gradient coil design for high‐resolution MRI head imaging publication-title: Phys Med Biol – volume: 31 start-page: 450 year: 1994 end-page: 453 article-title: Torque free asymmetric gradient coils for echo planar imaging publication-title: Magn Reson Med – volume: 56 start-page: 1274 year: 2006 end-page: 1282 article-title: 9.4T human MRI: preliminary results publication-title: Magn Reson Med – volume: 42 start-page: 561 year: 1999 end-page: 570 article-title: Modular gradient coil: a new concept in high‐performance whole‐body gradient coil design publication-title: Magn Reson Med – start-page: 480 year: 1961 – volume: 66 start-page: 1498 year: 2011 end-page: 1509 article-title: Reducing peripheral nerve stimulation due to gradient switching using an additional uniform field coil publication-title: Magn Reson Med – volume: 40 start-page: 129 year: 2021 end-page: 142 article-title: Optimization of MRI gradient coils with explicit peripheral nerve stimulation constraints publication-title: IEEE Trans Med Imaging – volume: 53 start-page: 1811 year: 2008 end-page: 1827 article-title: Controlled E‐field gradient coils for MRI publication-title: Phys Med Biol – volume: 80 start-page: 220 year: 2013 end-page: 233 article-title: Pushing the limits of in vivo diffusion MRI for the Human Connectome Project publication-title: Neuroimage – volume: 35 start-page: 264 year: 2011 end-page: 272 article-title: Quasi‐static multi‐domain inverse boundary element method for MRI coil design with minimum induced E‐field publication-title: Eng Anal Boundary Elem – volume: 80 start-page: 2232 year: 2018 end-page: 2245 article-title: Lightweight, compact, and high‐performance 3T MR system for imaging the brain and extremities publication-title: Magn Reson Med – year: 2016 – volume: 81 start-page: 686 year: 2019 end-page: 701 article-title: Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations publication-title: Magn Reson Med – volume: 9 start-page: 363 year: 1999 end-page: 377 article-title: Physiologic effects of intense MR imaging gradient fields publication-title: Neuroimaging Clin N Am – volume: 8 start-page: 87 year: 2019 end-page: 101 article-title: Peripheral nerve stimulation modeling for MRI publication-title: eMagRes – volume: 60 start-page: 128 year: 2008 end-page: 134 article-title: Concomitant field terms for asymmetric gradient coils: consequences for diffusion, flow, and echo‐planar imaging publication-title: Magn Reson Med – volume: 76 start-page: 1939 year: 2016 end-page: 1950 article-title: Peripheral nerve stimulation characteristics of an asymmetric head‐only gradient coil compatible with a high‐channel‐count receiver array publication-title: Magn Reson Med – volume: 77 start-page: 2250 year: 2017 end-page: 2262 article-title: Gradient pre‐emphasis to counteract first‐order concomitant fields on asymmetric MRI gradient systems publication-title: Magn Reson Med – year: 2020 – volume: 34 start-page: 494 year: 1995 end-page: 497 article-title: Quiet transverse gradient coils: Lorentz force balanced designs using geometrical similitude publication-title: Magn Reson Med – volume: 55 start-page: 3087 year: 2010 end-page: 3100 article-title: E‐coil: an inverse boundary element method for a quasi‐static problem publication-title: Phys Med Biol – year: 2017 – volume: 62 start-page: 763 year: 2009 end-page: 770 article-title: Experimental determination of human peripheral nerve stimulation thresholds in a 3‐axis planar gradient system publication-title: Magn Reson Med – volume: 16 start-page: 113 year: 2003 end-page: 120 article-title: Controlled E‐field gradient coils publication-title: MAGMA – volume: 44 start-page: 653 year: 2016 end-page: 664 article-title: High slew‐rate head‐only gradient for improving distortion in echo planar imaging: preliminary experience publication-title: J Magn Reson Imaging – volume: 50 start-page: 50 year: 2003 end-page: 58 article-title: Peripheral nerve stimulation properties of head and body gradient coils of various sizes publication-title: Magn Reson Med – year: 1993 – volume: 168 start-page: 59 year: 2018 end-page: 70 article-title: Gradient and shim technologies for ultra high field MRI publication-title: Neuroimage – year: 2015 – ident: e_1_2_5_11_1 doi: 10.1002/mrm.1910350614 – ident: e_1_2_5_17_1 doi: 10.1002/mrm.27382 – ident: e_1_2_5_12_1 doi: 10.1002/mrm.1910310415 – ident: e_1_2_5_14_1 doi: 10.1002/mrm.1910340331 – volume: 9 start-page: 363 year: 1999 ident: e_1_2_5_4_1 article-title: Physiologic effects of intense MR imaging gradient fields publication-title: Neuroimaging Clin N Am – ident: e_1_2_5_25_1 doi: 10.1016/j.enganabound.2010.11.001 – ident: e_1_2_5_29_1 doi: 10.1002/jmri.25210 – ident: e_1_2_5_2_1 doi: 10.1016/j.neuroimage.2016.11.033 – ident: e_1_2_5_18_1 – ident: e_1_2_5_19_1 doi: 10.1088/0031-9155/53/7/001 – volume-title: Humanscale 1/2/3 Manual year: 2017 ident: e_1_2_5_27_1 – start-page: 480 volume-title: Time‐Harmonic Electromagnetic Fields year: 1961 ident: e_1_2_5_28_1 – volume: 8 start-page: 87 year: 2019 ident: e_1_2_5_23_1 article-title: Peripheral nerve stimulation modeling for MRI publication-title: eMagRes – ident: e_1_2_5_24_1 doi: 10.1088/0031-9155/55/11/007 – volume-title: Medical electrical equipment—Part 2–33: Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis year: 2015 ident: e_1_2_5_5_1 – ident: e_1_2_5_22_1 – ident: e_1_2_5_26_1 doi: 10.1109/TMI.2020.3023329 – ident: e_1_2_5_32_1 doi: 10.1002/mrm.22050 – ident: e_1_2_5_7_1 doi: 10.1002/(SICI)1522-2594(199909)42:3<561::AID-MRM19>3.0.CO;2-0 – ident: e_1_2_5_30_1 doi: 10.1002/mrm.21615 – ident: e_1_2_5_9_1 doi: 10.1088/1361-6560/61/24/8875 – ident: e_1_2_5_16_1 – ident: e_1_2_5_20_1 doi: 10.1007/s10334-003-0015-7 – ident: e_1_2_5_21_1 doi: 10.1002/mrm.22926 – ident: e_1_2_5_10_1 doi: 10.1002/mrm.21073 – ident: e_1_2_5_31_1 doi: 10.1002/mrm.26315 – volume-title: Transverse gradient coils for imaging the head year: 1993 ident: e_1_2_5_13_1 – ident: e_1_2_5_15_1 doi: 10.1002/mrm.26044 – ident: e_1_2_5_8_1 doi: 10.1002/mrm.27175 – ident: e_1_2_5_6_1 doi: 10.1016/j.neuroimage.2013.05.078 – ident: e_1_2_5_3_1 doi: 10.1002/mrm.10508 |
SSID | ssj0009974 |
Score | 2.423956 |
Snippet | Purpose
To develop new concepts for minimum electric‐field (E‐field) gradient design, and to define the extents to which E‐field can be reduced in gradient... To develop new concepts for minimum electric-field (E-field) gradient design, and to define the extents to which E-field can be reduced in gradient design... PurposeTo develop new concepts for minimum electric‐field (E‐field) gradient design, and to define the extents to which E‐field can be reduced in gradient... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 569 |
SubjectTerms | asymmetric gradient Asymmetry Constraints Design electric field Electric fields Electricity Equipment Design E‐field folded gradient Full Papers—Hardware and Instrumentation gradient coil Head - diagnostic imaging head gradient Humans Magnetic Fields Magnetic Resonance Imaging peripheral nerve stimulation PNS Shoulder |
Title | Minimum electric‐field gradient coil design: Theoretical limits and practical guidelines |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28681 https://www.ncbi.nlm.nih.gov/pubmed/33565135 https://www.proquest.com/docview/2509262613 https://www.proquest.com/docview/2488168485 https://pubmed.ncbi.nlm.nih.gov/PMC8049068 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aJoH2wmWMrTAmg3jgJV0Tu66zPSHENE0KQlUrTWhS5Fu2aG2K2uaFJ34Cv5FfwrFzKaUgob1F8XHi27G_xN_5DPAW3Sd2S1MgI6MCxiUNpOibwAodap5ZYb2Ia_KJX4zZ5VX_agvOmliYSh-i_eHmPMPP187BpVqcrERDp_NpNxLch107rpYDRMOVdFQcVwrMA-bmmZg1qkK96KTNub4WbQDMTZ7k7_jVL0Dnj-G6KXrFO7nrlkvV1d_-UHW8Z92ewKMamJL31Uh6Clu22IOHSb31vgcPPFdUL57BlyQv8mk5JdUROrn--f2HJ8KRm7knkC2JnuUTYjw55JSMVrGSZOLiqRZEFobU8Vl486Z0WluOf78P4_OPow8XQX1EQ6AZQo_AhgPNOIup0ZQZPegbHkmtMpuFVAgVSvxeZLEROJNYHUrFDEc7YS1VTEWxos9hp5gV9hAIIhfDTJZl-ADWs0YYFYcac7IeNTKzHXjXdFaqa_1yd4zGJK2Ul6MUWy31rdaBN63p10q0429GR02Pp7XfLlIEhE5AETFOB163yehxbhtFFnZWog3OeSEXTPQ7cFANkPYtlCJADimmDNaGTmvg1LzXU4r81qt6C7cHywVW04-Mfxc8TYaJv3jx_6YvYTdyZBzPMz6CneW8tK8QTS3VMWxH7POxd55fy5Yf2g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrXhcChRKFwoYxIFLtpvY8TqIC0JUCzQ9VFupQkKRXykRu9lqd3PhxE_gN_aXdOw8lqUgIW5RPE78mLHH9jefAV6i-SRuagpkZFTAuKSBFLEJrNCh5rkV1pO4psd8dMo-nsVnG_CmjYWp-SG6DTdnGX68dgbuNqQPVqyh0_m0Hwnu4q633I3efkF1siKPSpKag3nI3EiTsJZXaBAddFnXZ6NrLuZ1pOSvHqyfgg7vwJe28DXy5Fu_Wqq-_v4br-P_1u4ubDe-KXlbK9M92LDlDtxMm9P3Hbjh4aJ6cR8-p0VZTKspqW_RKfTlj58eC0fO5x5DtiR6VkyI8fiQ12S8CpckExdStSCyNKQJ0cKX55Wj23IQ_Adwevh-_G4UNLc0BJqh9xHYcKgZZwk1mjKjh7HhkdQqt3lIhVChxCUjS4zAwcTqUCpmOMoJa6liKkoU3YXNclbaPSDovBhm8jzHD7CBNcKoJNSYkw2okbntwau2tzLdUJi7mzQmWU2-HGXYaplvtR686EQvat6OPwntt12eNaa7yNAndByK6Ob04HmXjEbnTlJkaWcVyuCwF3LBRNyDh7WGdH-hNHbKiCnDNd3pBByh93pKWXz1xN7CHcNygdX0qvH3gmfpSeofHv276DO4NRqnR9nRh-NPj-F25LA5Hna8D5vLeWWfoHO1VE-9DV0B1n8jHg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6ahph44TJuHRt4iAde0jWx6zrwhDaqjZEJTZs0IaTIt4xobTq1zQtP-wn7jfwSjp1LKQNp4i2KjxMnPsf-En_nM8AbDJ_YTU2BjIwKGJc0kKJvAit0qHlmhfUirskR3z9ln876ZyvwvsmFqfQh2h9uLjL8eO0C_NJkOwvR0PF03I0Ed2nXdxjvCefSe8cL7ag4riSYB8wNNDFrZIV60U5bdXkyuoEwbxIlfwewfgYaPoBvTdsr4slFt5yrrv7xh6zjfz7cQ7hfI1PyoXKlR7Bii3VYS-q193W468mievYYviZ5kY_LMan20Mn1z6trz4Qj51PPIJsTPclHxHh2yDtyskiWJCOXUDUjsjCkTtDCk-elE9tyBPwncDr8eLK7H9R7NASaIfYIbDjQjLOYGk2Z0YO-4ZHUKrNZSIVQocQPRhYbgUOJ1aFUzHC0E9ZSxVQUK_oUVotJYZ8DQehimMmyDC_AetYIo-JQY03Wo0ZmtgNvm85KdS1g7vbRGKWV9HKU4ltL_VvrwOvW9LJS7fib0WbT42kduLMUEaFTUESQ04HtthhDzq2jyMJOSrTBQS_kgol-B55VDtLehVJEyCHFksGS67QGTs57uaTIv3tZb-EWYbnAx_Se8e-Gp8lx4g82bm_6Cta-7A3TzwdHhy_gXuSIOZ5zvAmr82lptxBZzdVLH0G_AH_yIdY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimum+electric-field+gradient+coil+design%3A+Theoretical+limits+and+practical+guidelines&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Roemer%2C+Peter+B&rft.au=Rutt%2C+Brian+K&rft.date=2021-07-01&rft.eissn=1522-2594&rft.volume=86&rft.issue=1&rft.spage=569&rft_id=info:doi/10.1002%2Fmrm.28681&rft_id=info%3Apmid%2F33565135&rft.externalDocID=33565135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |