Wax biosynthesis in response to danger its regulation upon abiotic and biotic stress
The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin embedded and sealed with organic, solvent-extractable cuticular waxes. Cuticular wax ultrastructure and chemical composition differ with plant species, d...
Saved in:
Published in | The New phytologist Vol. 227; no. 3; pp. 698 - 713 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley
01.08.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin embedded and sealed with organic, solvent-extractable cuticular waxes. Cuticular wax ultrastructure and chemical composition differ with plant species, developmental stage and physiological state. Despite this complexity, cuticular wax consistently serves a critical role in restricting nonstomatal water loss. It also protects the plant against other environmental stresses, including desiccation, UVradiation, microorganisms and insects. Within the broader context of plant responses to abiotic and biotic stresses, our knowledge of the explicit roles of wax crystalline structures and chemical compounds is lacking. In this review, we summarize our current knowledge of wax biosynthesis and regulation in relation to abiotic and biotic stresses and stress responses. |
---|---|
AbstractList | The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin embedded and sealed with organic, solvent‐extractable cuticular waxes. Cuticular wax ultrastructure and chemical composition differ with plant species, developmental stage and physiological state. Despite this complexity, cuticular wax consistently serves a critical role in restricting nonstomatal water loss. It also protects the plant against other environmental stresses, including desiccation, UV radiation, microorganisms and insects. Within the broader context of plant responses to abiotic and biotic stresses, our knowledge of the explicit roles of wax crystalline structures and chemical compounds is lacking. In this review, we summarize our current knowledge of wax biosynthesis and regulation in relation to abiotic and biotic stresses and stress responses. The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin embedded and sealed with organic, solvent-extractable cuticular waxes. Cuticular wax ultrastructure and chemical composition differ with plant species, developmental stage and physiological state. Despite this complexity, cuticular wax consistently serves a critical role in restricting nonstomatal water loss. It also protects the plant against other environmental stresses, including desiccation, UV radiation, microorganisms and insects. Within the broader context of plant responses to abiotic and biotic stresses, our knowledge of the explicit roles of wax crystalline structures and chemical compounds is lacking. In this review, we summarize our current knowledge of wax biosynthesis and regulation in relation to abiotic and biotic stresses and stress responses.The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin embedded and sealed with organic, solvent-extractable cuticular waxes. Cuticular wax ultrastructure and chemical composition differ with plant species, developmental stage and physiological state. Despite this complexity, cuticular wax consistently serves a critical role in restricting nonstomatal water loss. It also protects the plant against other environmental stresses, including desiccation, UV radiation, microorganisms and insects. Within the broader context of plant responses to abiotic and biotic stresses, our knowledge of the explicit roles of wax crystalline structures and chemical compounds is lacking. In this review, we summarize our current knowledge of wax biosynthesis and regulation in relation to abiotic and biotic stresses and stress responses. Summary The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin embedded and sealed with organic, solvent‐extractable cuticular waxes. Cuticular wax ultrastructure and chemical composition differ with plant species, developmental stage and physiological state. Despite this complexity, cuticular wax consistently serves a critical role in restricting nonstomatal water loss. It also protects the plant against other environmental stresses, including desiccation, UV radiation, microorganisms and insects. Within the broader context of plant responses to abiotic and biotic stresses, our knowledge of the explicit roles of wax crystalline structures and chemical compounds is lacking. In this review, we summarize our current knowledge of wax biosynthesis and regulation in relation to abiotic and biotic stresses and stress responses. The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin embedded and sealed with organic, solvent-extractable cuticular waxes. Cuticular wax ultrastructure and chemical composition differ with plant species, developmental stage and physiological state. Despite this complexity, cuticular wax consistently serves a critical role in restricting nonstomatal water loss. It also protects the plant against other environmental stresses, including desiccation, UVradiation, microorganisms and insects. Within the broader context of plant responses to abiotic and biotic stresses, our knowledge of the explicit roles of wax crystalline structures and chemical compounds is lacking. In this review, we summarize our current knowledge of wax biosynthesis and regulation in relation to abiotic and biotic stresses and stress responses. |
Author | Keyl, Alisa Lewandowska, Milena Feussner, Ivo |
Author_xml | – sequence: 1 givenname: Milena surname: Lewandowska fullname: Lewandowska, Milena – sequence: 2 givenname: Alisa surname: Keyl fullname: Keyl, Alisa – sequence: 3 givenname: Ivo surname: Feussner fullname: Feussner, Ivo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32242934$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1KAzEURoMo2lYXPoAyIIguRpObn8kspagVRF0ouguZmVRTpklNZtC-vVNbXQhqFjebcz649-ujdeedQWiX4BPSvVM3ezkhgmdkDfUIE3kqCc3WUQ9jkKlg4mkL9WOcYIxzLmATbVEABjllPXT4qN-Twvo4d82LiTYm1iXBxJl30SSNTyrtnk3YRhtjXUezs_oH6OHi_H44Sq9vL6-GZ9dpyRglqcTAgWpiNGhqyowUosgqmTEtTAEEi1yQirMKxrKQBc1ZZSoqseC8gLybdICOlrmz4F9bExs1tbE0da2d8W1UwAXhDLqo_1EqBUgQUnbowQ904tvgukUUMCI5SMYXgfsrqi2mplKzYKc6zNXXsTrgeAmUwccYzPgbIVgtilBdEeqziI49_cGWttGN9a4J2tZ_GW-2NvPfo9XN3ejL2Fsak9j48G2AyEFSIekHNoee2A |
CitedBy_id | crossref_primary_10_1016_j_cj_2022_11_007 crossref_primary_10_1093_pcp_pcad137 crossref_primary_10_1007_s11295_023_01637_3 crossref_primary_10_3389_fpls_2023_1227859 crossref_primary_10_1016_j_ijbiomac_2025_139600 crossref_primary_10_1111_pce_14549 crossref_primary_10_1002_arch_22101 crossref_primary_10_1016_j_postharvbio_2024_112856 crossref_primary_10_1093_plphys_kiae007 crossref_primary_10_1111_ppl_14122 crossref_primary_10_1038_s41477_021_01039_0 crossref_primary_10_1128_spectrum_03774_23 crossref_primary_10_1111_nph_20190 crossref_primary_10_3390_horticulturae9070748 crossref_primary_10_1016_j_isci_2025_111901 crossref_primary_10_1016_j_quascirev_2023_108084 crossref_primary_10_1038_s41477_024_01892_9 crossref_primary_10_1111_ppl_13718 crossref_primary_10_3389_fpls_2022_1064390 crossref_primary_10_1016_j_ijbiomac_2024_134771 crossref_primary_10_1111_pbi_14093 crossref_primary_10_3390_ijms23084450 crossref_primary_10_1002_tpg2_20537 crossref_primary_10_3389_fpls_2023_1162676 crossref_primary_10_1016_j_polymdegradstab_2024_110842 crossref_primary_10_3390_ijms22179175 crossref_primary_10_1111_ppl_14252 crossref_primary_10_3390_ijms25137255 crossref_primary_10_1093_plphys_kiae118 crossref_primary_10_1016_j_envexpbot_2020_104364 crossref_primary_10_3390_crops1030011 crossref_primary_10_1093_jxb_erad047 crossref_primary_10_3389_fpls_2021_792384 crossref_primary_10_1016_j_funbio_2021_11_006 crossref_primary_10_1111_tpj_16989 crossref_primary_10_1016_j_orggeochem_2023_104709 crossref_primary_10_1016_j_scitotenv_2022_157160 crossref_primary_10_3390_agronomy14123070 crossref_primary_10_1016_j_foodchem_2024_141330 crossref_primary_10_1007_s11240_024_02901_7 crossref_primary_10_1016_j_plaphy_2024_108937 crossref_primary_10_3390_ijms25116106 crossref_primary_10_1093_hr_uhaf006 crossref_primary_10_3389_fpls_2021_775019 crossref_primary_10_1016_j_gene_2024_148626 crossref_primary_10_3390_jof8070725 crossref_primary_10_3390_ijms232113025 crossref_primary_10_1007_s00468_024_02516_7 crossref_primary_10_1007_s10142_022_00940_x crossref_primary_10_1007_s42965_022_00270_w crossref_primary_10_1007_s10905_025_09876_z crossref_primary_10_1016_j_jplph_2023_153921 crossref_primary_10_1002_advs_202407543 crossref_primary_10_1139_cjb_2021_0206 crossref_primary_10_3390_ijms22084160 crossref_primary_10_3389_fpls_2023_1228394 crossref_primary_10_1111_nph_17941 crossref_primary_10_1111_nph_19687 crossref_primary_10_1111_tpj_15631 crossref_primary_10_1007_s11103_023_01371_3 crossref_primary_10_3390_ijms23137031 crossref_primary_10_3390_agriculture12081154 crossref_primary_10_1016_j_heliyon_2023_e13825 crossref_primary_10_1016_j_plaphy_2022_08_021 crossref_primary_10_1093_hr_uhab027 crossref_primary_10_1016_j_scitotenv_2023_164791 crossref_primary_10_1007_s11816_023_00815_y crossref_primary_10_1016_j_foodchem_2023_135449 crossref_primary_10_1093_plphys_kiae150 crossref_primary_10_1016_j_plaphy_2023_108266 crossref_primary_10_3389_fpls_2021_663165 crossref_primary_10_1038_s41438_021_00511_4 crossref_primary_10_3390_ijms232416156 crossref_primary_10_3389_fpls_2021_761952 crossref_primary_10_3390_ijms23158401 crossref_primary_10_3390_cimb47030195 crossref_primary_10_1111_nph_16843 crossref_primary_10_1016_j_indcrop_2024_118558 crossref_primary_10_3114_sim_2022_104_01 crossref_primary_10_3390_metabo11080558 crossref_primary_10_3390_ijms25084549 crossref_primary_10_3390_genes12020189 crossref_primary_10_1007_s00425_023_04164_6 crossref_primary_10_1007_s10340_023_01700_x crossref_primary_10_3390_ijms221910242 crossref_primary_10_3390_metabo13060716 crossref_primary_10_1111_tpj_16701 crossref_primary_10_3390_jof8050526 crossref_primary_10_1016_j_hpj_2023_01_001 crossref_primary_10_1021_acs_jafc_4c06750 crossref_primary_10_1002_ajb2_16287 crossref_primary_10_3389_fpls_2024_1429976 crossref_primary_10_1016_j_envexpbot_2022_105182 crossref_primary_10_1002_cbdv_202201104 crossref_primary_10_3390_ijms24054287 crossref_primary_10_1007_s00344_023_10922_3 crossref_primary_10_1093_hr_uhac219 crossref_primary_10_1021_acs_jafc_2c05470 crossref_primary_10_1038_s41588_020_0690_6 crossref_primary_10_1016_j_cropro_2024_106963 crossref_primary_10_1111_nph_19898 crossref_primary_10_1007_s44154_022_00048_z crossref_primary_10_3389_fbioe_2021_794714 crossref_primary_10_3390_cells9102249 crossref_primary_10_1016_j_stress_2024_100586 crossref_primary_10_1038_s41598_024_52949_w crossref_primary_10_3390_horticulturae9080868 crossref_primary_10_3390_genes12121936 crossref_primary_10_1007_s11103_024_01448_7 crossref_primary_10_3390_genes14091785 crossref_primary_10_1016_j_plaphy_2025_109682 crossref_primary_10_1186_s13007_021_00717_6 crossref_primary_10_1093_aob_mcad038 crossref_primary_10_1111_nph_70052 crossref_primary_10_1016_j_scienta_2024_113251 crossref_primary_10_3389_fpls_2022_1055851 crossref_primary_10_1007_s40415_021_00743_7 crossref_primary_10_1016_j_algal_2023_103106 crossref_primary_10_1038_s41598_023_44938_2 crossref_primary_10_1093_g3journal_jkae241 crossref_primary_10_3390_biom14020227 crossref_primary_10_1038_s41467_023_42340_0 crossref_primary_10_1016_j_scienta_2024_113806 crossref_primary_10_1016_j_xplc_2024_101009 crossref_primary_10_1111_nph_18716 crossref_primary_10_1111_ppl_70113 crossref_primary_10_1111_tpj_17100 crossref_primary_10_1016_j_envexpbot_2021_104570 crossref_primary_10_1111_tpj_16499 crossref_primary_10_1093_jxb_erab236 crossref_primary_10_1177_00368504241237610 crossref_primary_10_3390_molecules28093759 crossref_primary_10_3389_fpls_2021_786874 crossref_primary_10_1371_journal_pone_0308744 crossref_primary_10_3390_ijpb16010013 crossref_primary_10_1007_s11676_021_01406_9 crossref_primary_10_1093_jxb_eraf031 crossref_primary_10_1186_s12864_024_10140_5 crossref_primary_10_55446_IJE_2024_2031 crossref_primary_10_1038_s41598_024_71847_9 crossref_primary_10_3390_ijms23031080 crossref_primary_10_1111_pce_15376 crossref_primary_10_1093_ee_nvab038 crossref_primary_10_3389_fpls_2022_943547 crossref_primary_10_1007_s00344_024_11506_5 crossref_primary_10_1111_nph_18498 crossref_primary_10_3389_fpls_2022_872263 crossref_primary_10_1371_journal_pone_0250902 crossref_primary_10_3390_horticulturae9090982 crossref_primary_10_1002_tqem_21924 crossref_primary_10_3390_biom15030346 crossref_primary_10_1111_plb_13650 crossref_primary_10_1016_j_scienta_2023_112343 crossref_primary_10_1093_pcp_pcaa160 crossref_primary_10_1093_treephys_tpae111 crossref_primary_10_1073_pnas_2307012120 crossref_primary_10_1111_1541_4337_13225 crossref_primary_10_3390_life13020533 crossref_primary_10_1111_pce_15465 crossref_primary_10_1016_j_envexpbot_2022_105140 crossref_primary_10_1111_nph_17965 crossref_primary_10_3390_ijms24076510 crossref_primary_10_1038_s41477_024_01897_4 crossref_primary_10_3390_metabo13121170 crossref_primary_10_1016_j_postharvbio_2022_111907 crossref_primary_10_3390_plants13020251 crossref_primary_10_1016_j_plaphy_2024_109072 crossref_primary_10_3390_cells10061284 crossref_primary_10_1016_j_plaphy_2021_04_015 crossref_primary_10_1111_tpj_15947 crossref_primary_10_1093_treephys_tpac060 crossref_primary_10_1016_j_plaphy_2021_04_010 crossref_primary_10_3390_ijms23158818 crossref_primary_10_3390_horticulturae9010025 crossref_primary_10_1002_agj2_20825 crossref_primary_10_1038_s41477_021_01046_1 crossref_primary_10_1093_hr_uhac004 crossref_primary_10_1186_s40538_024_00590_0 crossref_primary_10_3390_agronomy11061045 crossref_primary_10_1007_s11105_024_01521_x crossref_primary_10_1016_j_plaphy_2021_08_021 crossref_primary_10_3390_plants12193380 crossref_primary_10_3389_fpls_2021_615114 crossref_primary_10_1016_j_foodchem_2021_130946 crossref_primary_10_1016_j_ipha_2024_09_009 crossref_primary_10_1016_j_plantsci_2024_111992 crossref_primary_10_1016_j_stress_2024_100513 crossref_primary_10_1111_pce_15320 crossref_primary_10_1093_jxb_erae319 crossref_primary_10_1007_s00344_023_10965_6 crossref_primary_10_1016_j_indcrop_2022_116090 crossref_primary_10_1093_dnares_dsae024 crossref_primary_10_1016_j_scienta_2023_112636 crossref_primary_10_1093_jxb_erad337 crossref_primary_10_1038_s42003_021_02422_5 crossref_primary_10_1093_jxb_erac006 crossref_primary_10_1016_j_plantsci_2023_111904 crossref_primary_10_48130_opr_0023_0023 crossref_primary_10_1021_acs_jafc_3c03881 crossref_primary_10_1093_jxb_erac360 crossref_primary_10_3390_plants12061274 crossref_primary_10_1016_j_isci_2021_103346 crossref_primary_10_1016_j_scitotenv_2023_162887 crossref_primary_10_1111_1755_0998_13616 crossref_primary_10_1016_j_hpj_2024_06_008 crossref_primary_10_1016_j_postharvbio_2022_112020 crossref_primary_10_3390_ijms21155514 crossref_primary_10_1007_s00122_024_04632_x crossref_primary_10_1007_s00122_023_04464_1 crossref_primary_10_1016_j_jfca_2023_105891 crossref_primary_10_1007_s44307_024_00045_5 crossref_primary_10_1038_s41588_024_02065_2 crossref_primary_10_3389_fpls_2023_1161181 crossref_primary_10_1002_ppp3_10493 crossref_primary_10_1016_j_foodres_2022_111429 crossref_primary_10_1093_jxb_erae212 crossref_primary_10_3390_plants13071010 crossref_primary_10_1021_acs_chemrev_3c00763 crossref_primary_10_1007_s12298_020_00848_5 crossref_primary_10_1016_j_scienta_2022_111494 crossref_primary_10_1016_j_jhazmat_2024_133951 crossref_primary_10_3390_jof8020199 crossref_primary_10_1016_j_postharvbio_2022_112118 crossref_primary_10_1093_jxb_erab509 crossref_primary_10_1016_j_apsoil_2023_105151 crossref_primary_10_1021_acsagscitech_2c00335 crossref_primary_10_1093_jxb_erae202 crossref_primary_10_1016_j_cub_2023_01_003 crossref_primary_10_1016_j_ijbiomac_2024_134438 crossref_primary_10_3389_fpls_2022_898307 crossref_primary_10_1016_j_indcrop_2025_120676 crossref_primary_10_1093_jxb_erae442 crossref_primary_10_1038_s41467_024_52436_w crossref_primary_10_3390_genes12081256 crossref_primary_10_1186_s12870_022_03931_z crossref_primary_10_1007_s13237_024_00490_6 crossref_primary_10_1111_jipb_13586 crossref_primary_10_32615_bp_2023_037 |
Cites_doi | 10.1016/0031-9422(93)85289-4 10.1007/s11103-011-9861-2 10.1073/pnas.1316412110 10.1199/tab.0167 10.1111/j.1469-8137.2010.03183.x 10.1139/g93-082 10.1104/pp.108.1.369 10.1104/pp.114.246348 10.1007/s00425-010-1110-4 10.1007/s11103-008-9339-z 10.1111/j.1365-313X.2007.03252.x 10.1146/annurev.phyto.42.040803.140421 10.1093/pcp/pcs083 10.1016/j.plaphy.2013.11.028 10.1016/0098-8472(90)90013-T 10.1104/pp.109.137497 10.1111/nyas.12540 10.1105/tpc.107.054858 10.1146/annurev.arplant.59.103006.093219 10.1111/nph.13608 10.1111/tpj.12060 10.1016/0022-1910(82)90114-7 10.1105/tpc.110.077974 10.1105/tpc.12.10.2001 10.1105/tpc.113.117648 10.1016/j.cell.2018.06.033 10.1016/j.chom.2009.01.001 10.1016/S0169-5347(96)10062-8 10.1016/0031-9422(75)85160-0 10.1104/pp.111.172320 10.1016/j.febslet.2006.05.027 10.1104/pp.104.053579 10.1016/j.plipres.2012.10.002 10.1105/tpc.114.123307 10.1016/j.molp.2016.04.001 10.1093/pcp/pcm152 10.1371/journal.pone.0078613 10.1242/jeb.01939 10.1105/tpc.11.5.825 10.1093/jxb/erx271 10.1046/j.1365-3040.2002.00779.x 10.1007/s004420050303 10.1002/jsfa.2740200214 10.1603/0046-225X-29.4.773 10.4161/psb.26959 10.1104/pp.109.141911 10.1046/j.1365-313X.2003.01854.x 10.1104/pp.105.070805 10.1105/tpc.19.00152 10.2307/1937427 10.1007/s00299-014-1636-1 10.1111/j.1469-8137.1975.tb01417.x 10.1105/tpc.112.099796 10.1023/A:1010343205114 10.1007/s10327-011-0331-0 10.1093/pcp/pcw147 10.1007/s00299-014-1710-8 10.1126/science.1102331 10.1016/S0031-9422(97)00272-0 10.1111/j.1095-8339.1998.tb02529.x 10.1105/tpc.108.064451 10.1093/pcp/pcu142 10.1104/pp.110.161646 10.1104/pp.114.253195 10.1104/pp.107.105676 10.1016/j.funbio.2012.05.006 10.1105/tpc.109.068874 10.1105/tpc.106.047076 10.1073/pnas.152047199 10.4141/cjps89-059 10.1007/s00425-008-0770-9 10.1105/tpc.111.093104 10.3389/fpls.2013.00442 10.1199/tab.0161 10.1104/pp.103.1.267 10.1104/pp.109.144220 10.1016/j.envexpbot.2004.09.013 10.1105/tpc.111.083121 10.1104/pp.106.094318 10.1002/9780470988718.ch11 10.1002/9780470988718.ch4 10.1038/37918 10.1071/BT9760309 10.1007/s00425-009-0924-4 10.3389/fpls.2017.01210 10.1093/oxfordjournals.jhered.a110808 10.1186/1471-2229-13-133 10.1007/s11829-008-9049-0 10.1007/s00299-015-1772-2 10.1111/j.1365-313X.2009.03892.x 10.1093/jxb/err132 10.1111/pce.12981 10.1073/pnas.0703343104 10.1002/9780470988718.ch6 10.1111/j.1469-8137.2007.02233.x 10.1105/tpc.104.022897 10.1111/tpj.14269 10.1199/tab.0016 10.1105/tpc.017608 10.1111/j.1570-7458.1980.tb02992.x 10.1111/j.1469-8137.2010.03419.x 10.1071/FP10058 10.1111/j.1469-8137.2006.01826.x 10.1105/tpc.010926 10.1111/j.1744-7348.1965.tb01245.x 10.1104/pp.105.069724 10.1007/s00425-003-1197-y 10.1104/pp.107.107300 10.1006/pmpp.1996.0043 10.1111/mpp.12740 10.1104/pp.108.123471 10.1104/pp.18.01075 10.1016/j.tplants.2016.09.005 10.1104/pp.113.234583 10.1111/nph.16311 10.1016/0098-8472(96)00128-1 10.1071/AR05062 10.1371/journal.pgen.1000703 10.1038/ncomms2479 10.1093/pcp/pcz019 10.3390/plants7010006 10.1038/sj.emboj.7601658 10.1093/pcp/pcm139 10.1006/pmpp.2002.0376 10.1073/pnas.0305574101 10.1111/j.1365-3059.2011.02467.x 10.1038/ncomms14713 10.1007/BF00395975 10.1371/journal.pgen.1004283 10.1016/j.febslet.2007.06.065 10.4161/psb.29463 10.1093/aob/mcw131 10.1104/pp.112.198697 10.1111/j.1399-3054.1996.tb06695.x 10.1093/ee/20.2.470 10.1023/A:1015690702313 10.1105/tpc.11.11.2187 10.1371/journal.pone.0070146 10.1093/pcp/pcy033 10.1104/pp.109.142158 10.1105/tpc.111.083485 10.1016/j.pmpp.2006.05.006 10.1094/MPMI-22-12-1601 10.1093/icb/42.6.1091 10.3390/plants6020023 10.1006/pmpp.1997.0105 10.1104/pp.109.137745 10.1111/j.1469-8137.1974.tb01324.x 10.1104/pp.106.086785 10.1303/aez.24.253 10.1007/s11103-007-9150-2 |
ContentType | Journal Article |
Copyright | 2020 The Authors © 2020 New Phytologist Trust 2020 The Authors. New Phytologist © 2020 New Phytologist Trust 2020 The Authors. New Phytologist © 2020 New Phytologist Trust. 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors © 2020 New Phytologist Trust – notice: 2020 The Authors. New Phytologist © 2020 New Phytologist Trust – notice: 2020 The Authors. New Phytologist © 2020 New Phytologist Trust. – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1111/nph.16571 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 713 |
ExternalDocumentID | 32242934 10_1111_nph_16571 NPH16571 26928368 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft funderid: GRK 2172 |
GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT .Y3 24P 31~ AASVR ABEFU ABEML ABGDZ ABSQW ACHIC ACQPF ADULT ADXHL AGUYK AHXOZ AILXY AQVQM AS~ CAG COF EJD FIJ GTFYD HF~ HGD HQ2 HTVGU LPU LW6 MVM NEJ RCA WHG XOL YXE ZCG AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION AEUQT AFPWT CGR CUY CVF DOOOF ECM EIF ESX IPNFZ JSODD NPM PKN WRC 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4431-802523a1ea2a3ec71b6b7d874a6eb2106961d54d2f8b8b394ded380655b296553 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Jul 11 18:23:08 EDT 2025 Fri Jul 11 15:25:58 EDT 2025 Fri Jul 25 12:12:04 EDT 2025 Wed Feb 19 02:29:37 EST 2025 Thu Apr 24 22:56:20 EDT 2025 Tue Jul 01 02:28:34 EDT 2025 Wed Aug 20 07:24:07 EDT 2025 Thu Jul 03 21:56:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | cuticular wax wax crystals plant-microbe interactions plant-insect interactions wax composition abiotic stress |
Language | English |
License | Attribution-NonCommercial 2020 The Authors. New Phytologist © 2020 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4431-802523a1ea2a3ec71b6b7d874a6eb2106961d54d2f8b8b394ded380655b296553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4687-848X 0000-0002-9888-7003 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16571 |
PMID | 32242934 |
PQID | 2418528450 |
PQPubID | 2026848 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2561542210 proquest_miscellaneous_2386282688 proquest_journals_2418528450 pubmed_primary_32242934 crossref_primary_10_1111_nph_16571 crossref_citationtrail_10_1111_nph_16571 wiley_primary_10_1111_nph_16571_NPH16571 jstor_primary_26928368 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200801 August 2020 2020-08-00 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 8 year: 2020 text: 20200801 day: 1 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2020 |
Publisher | Wiley Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley – name: Wiley Subscription Services, Inc |
References | 2007; 104 2013; 4 2019; 98 2011; 60 2007; 581 1997; 46 2011; 62 2002; 99 2014; 26 2010; 188 2008; 228 1975; 14 2010; 186 2009; 230 2006; 171 2013; 8 1985; 164 2018; 7 1997; 389 2010; 22 1993; 36 2018; 174 1997; 51 1993; 139 2019; 20 2000; 12 1993; 33 2013; 52 2010; 231 2013; 110 2008; 20 2004; 219 2007; 64 2012; 24 2014; 10 1990; 30 2007; 19 2004; 42 2010; 37 2016; 209 2019; 31 2006; 56 1974; 73 1980; 61 2017; 68 2002; 1 2003; 36 2008; 59 2011; 77 2001; 27 2014; 1324 1993; 103 2004; 306 1989; 69 1996; 98 1995; 7 1999 2002; 124 2013; 73 1969; 20 2006; 580 2019; 179 2016; 28 2012; 116 2016; 9 2014; 33 2017; 40 2017; 6 2015; 34 2007; 145 2017; 8 1976; 24 2013; 25 1965; 56 1989; 80 2007; 144 1997; 112 2005; 139 2003; 15 2009; 150 2009; 151 2008; 148 2002; 60 1996; 36 2008; 2 2011; 156 2012; 53 2019; 60 1982; 28 2013; 11 2002; 42 2006; 68 2013; 13 2016; 118 1997; 12 2010; 154 2008; 67 1999; 11 1998; 126 2011; 23 2014; 9 2014; 166 2007; 23 2014; 164 2014; 56 2009; 59 2007; 26 2004; 101 1980; 28 2009; 22 2000; 29 2009; 21 2017; 22 2015; 167 2020; 225 2006 1975; 75 2007; 52 1989; 24 2012; 78 2016; 57 2002; 25 2004; 16 1978; 85 1991; 20 1971; 78 1995; 108 2006; 140 2005; 208 2006; 142 2009; 5 2013 2012; 159 2008; 177 1996; 49 2018; 59 2005; 56 2007; 48 2014; 75 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 Lee S (e_1_2_9_75_1) 2016; 28 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_157_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 Aarts M (e_1_2_9_2_1) 1995; 7 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 Klingauf F (e_1_2_9_69_1) 1971; 78 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 Jeffree CE (e_1_2_9_57_1) 2007; 23 e_1_2_9_80_1 e_1_2_9_5_1 Rashotte AM (e_1_2_9_112_1) 1999 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_27_1 e_1_2_9_110_1 Romantschuk M (e_1_2_9_119_1) 1993; 139 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_120_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_117_1 e_1_2_9_155_1 e_1_2_9_136_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_127_1 e_1_2_9_100_1 Klingauf F (e_1_2_9_70_1) 1978; 85 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 e_1_2_9_29_1 e_1_2_9_150_1 |
References_xml | – volume: 60 start-page: 51 year: 2002 end-page: 57 article-title: Chemical factors of the leaf surface involved in the morphogenesis of publication-title: Physiological and Molecular Plant Pathology – volume: 77 start-page: 273 year: 2011 end-page: 281 article-title: Inhibition of prepenetration processes of the powdery mildew on host inflorescence stems is reduced in the Arabidopsis cuticular mutant but not in publication-title: Journal of General Plant Pathology – volume: 22 start-page: 1601 year: 2009 end-page: 1610 article-title: Analysis of a ‐secreted lipase reveals the importance of host epicuticular wax components for fungal adhesion and development publication-title: Molecular Plant–Microbe Interactions – volume: 52 start-page: 485 year: 2007 end-page: 498 article-title: Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion publication-title: The Plant Journal – volume: 1 year: 2002 article-title: Cuticular waxes of Arabidopsis publication-title: The Arabidopsis Book – start-page: 334 year: 2006 end-page: 367 – volume: 53 start-page: 1391 year: 2012 end-page: 1403 article-title: Characterization of glycosylphosphatidylinositol‐anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in publication-title: Plant and Cell Physiology – volume: 85 start-page: 228 year: 1978 end-page: 237 article-title: Die Rolle peripherer Pflanzenwachse für den Befall durch phytophage Insekten/The role of cuticle waxes in insect infestation behaviour publication-title: Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection – volume: 151 start-page: 1918 year: 2009 article-title: The impact of water deficiency on leaf cuticle lipids of Arabidopsis publication-title: Plant Physiology – volume: 7 start-page: 6 year: 2018 article-title: Deciphering the evolution and development of the cuticle by studying lipid transfer proteins in mosses and liverworts publication-title: Plants – volume: 59 start-page: 966 year: 2018 end-page: 977 article-title: DEWAX2 transcription factor negatively regulates cuticular wax biosynthesis in Arabidopsis leaves publication-title: Plant and Cell Physiology – volume: 179 start-page: 415 year: 2019 end-page: 432 article-title: Arabidopsis CER1‐LIKE1 functions in a cuticular very‐long‐chain alkane‐forming complex publication-title: Plant Physiology – volume: 101 start-page: 4706 year: 2004 end-page: 4711 article-title: WIN1, a transcriptional activator of epidermal wax accumulation in publication-title: Proceedings of the National Academy of Sciences, USA – volume: 580 start-page: 3498 year: 2006 end-page: 3504 article-title: An essential role for salicylic acid in AtMYB30‐mediated control of the hypersensitive cell death program in Arabidopsis publication-title: FEBS Letters – volume: 75 start-page: 24 year: 2014 end-page: 35 article-title: Enhanced expression of improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic publication-title: Plant Physiology and Biochemistry – volume: 9 start-page: 926 year: 2016 end-page: 938 article-title: Dissecting abscisic acid signaling pathways involved in cuticle formation publication-title: Molecular Plant – volume: 164 start-page: 1250 year: 2014 end-page: 1260 article-title: Golgi‐ and trans‐Golgi network‐mediated vesicle trafficking is required for wax secretion from epidermal cells publication-title: Plant Physiology – volume: 13 start-page: 133 year: 2013 article-title: Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance publication-title: BMC Plant Biology – volume: 167 start-page: 682 year: 2015 end-page: 692 article-title: ECERIFERUM2‐LIKE proteins have unique biochemical and physiological functions in very‐long‐chain fatty acid elongation publication-title: Plant Physiology – volume: 110 start-page: 17790 year: 2013 end-page: 17795 article-title: Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress‐induced wax deposition in rice publication-title: Proceedings of the National Academy of Sciences, USA – volume: 140 start-page: 176 year: 2006 end-page: 183 article-title: Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco publication-title: Plant Physiology – volume: 2 start-page: 247 year: 2008 end-page: 259 article-title: Attachment force of the beetle (Coleoptera, Coccinellidae) on leaflet surfaces of mutants of the pea (Fabaceae) with regular and reduced wax coverage publication-title: Arthropod–Plant Interactions – volume: 42 start-page: 1091 year: 2002 end-page: 1099 article-title: Attachment to plant surface waxes by an insect predator publication-title: Integrative and Comparative Biology – volume: 62 start-page: 3707 year: 2011 end-page: 3711 article-title: China's success in increasing per capita food production publication-title: Journal of Experimental Botany – volume: 118 start-page: 511 year: 2016 end-page: 522 article-title: The moss has cuticular wax similar to vascular plants, with distinct composition on leafy gametophyte, calyptra and sporophyte capsule surfaces publication-title: Annals of Botany – volume: 20 start-page: 752 year: 2008 end-page: 767 article-title: A MYB transcription factor regulates very‐long‐chain fatty acid biosynthesis for activation of the hypersensitive cell death response in publication-title: Plant Cell – volume: 78 start-page: 641 year: 1971 end-page: 648 article-title: Einfluß einiger Wachskomponenten von Vicia faba L. auf das Wirtswahlverhalten von (Harris) (Homoptera: Aphididae) publication-title: Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection – volume: 8 year: 2013 article-title: Expression analysis reveals a role for hydrophobic or epicuticular wax signals in pre‐penetration structure formation of publication-title: Plant Signaling & Behavior – volume: 42 start-page: 185 year: 2004 end-page: 209 article-title: Systemic acquired resistance publication-title: Annual Review of Phytopathology – volume: 139 start-page: 2251 year: 1993 end-page: 2260 article-title: Pilus‐mediated adsorption of to the surface of host and non‐host plant leaves publication-title: Microbiology – volume: 225 start-page: 2468 year: 2020 end-page: 2483 article-title: Occurrence of land‐plant‐specific glycerol‐3‐phosphate acyltransferases is essential for cuticle formation and gametophore development in publication-title: New Phytologist – volume: 60 start-page: 1041 year: 2019 end-page: 1054 article-title: Functional overlap of long‐chain acyl‐CoA synthetases in Arabidopsis publication-title: Plant and Cell Physiology – volume: 126 start-page: 237 year: 1998 end-page: 260 article-title: Classification and terminology of plant epicuticular waxes publication-title: Botanical Journal of the Linnean Society – volume: 48 start-page: 1524 year: 2007 end-page: 1533 article-title: Cytological and biochemical analysis of , an mutant of an ABC transporter gene publication-title: Plant & Cell Physiology – volume: 73 start-page: 955 year: 1974 end-page: 966 article-title: The influence of environment on leaf wax development in var. publication-title: New Phytologist – volume: 80 start-page: 118 year: 1989 end-page: 122 article-title: A genetic and phenotypic description of ( ) mutants in publication-title: Journal of Heredity – volume: 28 start-page: 100 year: 1980 end-page: 107 article-title: Role of waxblooms in preventing attachment to brassicas by the mustard beetle, publication-title: Entomologia Experimentalis et Applicata – volume: 22 start-page: 124 year: 2017 end-page: 139 article-title: Molecular evolution of grass stomata publication-title: Trends in Plant Science – volume: 20 start-page: 69 year: 2019 end-page: 77 article-title: Involvement of lipid transfer proteins in resistance against a non‐host powdery mildew in publication-title: Molecular Plant Pathology – volume: 25 start-page: 4000 year: 2013 end-page: 4013 article-title: An ATP binding cassette transporter is required for cuticular wax deposition and desiccation tolerance in the moss publication-title: Plant Cell – volume: 59 start-page: 553 year: 2009 end-page: 564 article-title: Arabidopsis encodes LONG‐CHAIN ACYL‐COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis publication-title: The Plant Journal – volume: 11 start-page: 825 year: 1999 end-page: 828 article-title: an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very‐long‐chain fatty acid condensing enzyme publication-title: Plant Cell – start-page: 145 year: 2006 end-page: 181 – volume: 1324 start-page: 7 year: 2014 end-page: 14 article-title: An overview of global rice production, supply, trade, and consumption publication-title: Annals of the New York Academy of Sciences – volume: 26 start-page: 2158 year: 2007 end-page: 2168 article-title: A permeable cuticle in leads to a strong resistance to publication-title: EMBO Journal – volume: 57 start-page: 2300 year: 2016 end-page: 2311 article-title: MYB94 and MYB96 additively activate cuticular wax biosynthesis in Arabidopsis publication-title: Plant and Cell Physiology – volume: 22 start-page: 508 year: 2010 end-page: 522 article-title: PEPR2 Is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in publication-title: Plant Cell – volume: 209 start-page: 192 year: 2016 end-page: 201 article-title: The ABCG transporter PEC1/ABCG32 is required for the formation of the developing leaf cuticle in Arabidopsis publication-title: New Phytologist – volume: 68 start-page: 33 year: 2006 end-page: 40 article-title: The C28 aldehyde octacosanal is a morphogenetically active component involved in host plant recognition and infection structure differentiation in the wheat stem rust fungus publication-title: Physiological and Molecular Plant Pathology – volume: 20 start-page: 124 year: 1969 end-page: 128 article-title: Chemistry of leaf waxes in relation to wetting publication-title: Journal of the Science of Food and Agriculture – volume: 37 start-page: 806 year: 2010 end-page: 812 article-title: The evolution of abscisic acid (ABA) and ABA function in lower plants, fungi and lichen publication-title: Functional Plant Biology – volume: 24 start-page: 309 year: 1976 end-page: 318 article-title: Temperature effects on formation and fine structure of leaf waxes publication-title: Australian Journal of Botany – volume: 108 start-page: 369 year: 1995 end-page: 377 article-title: Leaf epicuticular waxes of the mutants in publication-title: Plant Physiology – volume: 581 start-page: 3538 year: 2007 end-page: 3544 article-title: The wax biosynthetic gene from is allelic to publication-title: FEBS Letters – volume: 116 start-page: 890 year: 2012 end-page: 901 article-title: Appressorium morphogenesis and cell cycle progression are linked in the grass powdery mildew fungus publication-title: Fungal Biology – volume: 34 start-page: 519 year: 2015 end-page: 532 article-title: An annotated database of Arabidopsis mutants of acyl lipid metabolism publication-title: Plant Cell Reports – volume: 174 start-page: 448 year: 2018 end-page: 464 article-title: The genome: secondary complexity and implications for plant terrestrialization publication-title: Cell – volume: 8 start-page: 14713 year: 2017 article-title: A phenol‐enriched cuticle is ancestral to lignin evolution in land plants publication-title: Nature Communications – volume: 159 start-page: 930 year: 2012 article-title: Arabidopsis involvement in cuticle formation and maintenance of plant water status publication-title: Plant Physiology – volume: 27 start-page: 985 year: 2001 end-page: 994 article-title: Host finding and oviposition behavior in a chrysomelid specialist–the importance of host plant surface waxes publication-title: Journal of Chemical Ecology – volume: 150 start-page: 42 year: 2009 end-page: 54 article-title: Disruption of glycosylphosphatidylinositol‐anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen publication-title: Plant Physiology – volume: 61 start-page: 612 year: 1980 end-page: 619 article-title: Leaf ultraviolet optical properties along a latitudinal gradient in the arctic‐alpine life zone publication-title: Ecology – volume: 145 start-page: 653 year: 2007 end-page: 667 article-title: The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis publication-title: Plant Physiology – volume: 186 start-page: 471 year: 2010 end-page: 483 article-title: MYB96‐mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in publication-title: New Phytologist – volume: 34 start-page: 557 year: 2015 end-page: 572 article-title: Advances in the understanding of cuticular waxes in and crop species publication-title: Plant Cell Reports – volume: 59 start-page: 683 year: 2008 end-page: 707 article-title: Sealing plant surfaces: Cuticular wax formation by epidermal cells publication-title: Annual Review of Plant Biology – volume: 145 start-page: 1345 year: 2007 end-page: 1360 article-title: The Arabidopsis transporter is required for cutin and wax secretion publication-title: Plant Physiology – volume: 21 start-page: 1230 year: 2009 end-page: 1238 article-title: LTPG is a glycosylphosphatidylinositol‐anchored lipid transfer protein required for export of lipids to the plant surface publication-title: Plant Cell – volume: 104 start-page: 10732 year: 2007 end-page: 10736 article-title: Endogenous peptide defense signals in differentially amplify signaling for the innate immune response publication-title: Proceedings of the National Academy of Sciences, USA – volume: 8 start-page: 1210 year: 2017 article-title: DEWAX transcription factor is involved in resistance to in and publication-title: Frontiers in Plant Science – volume: 208 start-page: 4651 year: 2005 article-title: Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant and its effect on insect attachment publication-title: Journal of Experimental Biology – volume: 36 start-page: 610 year: 1993 end-page: 618 article-title: Isolation and characterization of ( ) mutants induced by T‐DNA insertions in publication-title: Genome – volume: 49 start-page: 103 year: 1996 end-page: 120 article-title: Induction of resistance in barley against f.sp. by free cutin monomers publication-title: Physiological and Molecular Plant Pathology – volume: 154 start-page: 833 year: 2010 article-title: The mutation affects cuticle formation and plant responses to microbes publication-title: Plant Physiology – year: 2013 – volume: 230 start-page: 95 year: 2009 end-page: 105 article-title: Two sides of a leaf blade: needs chemical cues in cuticular waxes of for germination and differentiation publication-title: Planta – volume: 124 start-page: 237 year: 2002 end-page: 243 article-title: Systemic acquired resistance publication-title: Euphytica – volume: 99 start-page: 10179 year: 2002 end-page: 10184 article-title: A R2R3‐MYB gene, , acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack publication-title: Proceedings of the National Academy of Sciences, USA – volume: 8 year: 2013 article-title: Distinct phyllosphere bacterial communities on wax mutant leaves publication-title: PLoS ONE – volume: 24 start-page: 253 year: 1989 end-page: 257 article-title: Possible role of cabbage leaf wax bloom in suppressing diamondback moth (Lepidoptera, Yponomeutidae) oviposition publication-title: Applied Entomology and Zoology – volume: 103 start-page: 267 year: 1993 article-title: Chemical signals from avocado surface wax trigger germination and appressorium formation in publication-title: Plant Physiology – volume: 306 start-page: 702 year: 2004 end-page: 704 article-title: Plant cuticular lipid export requires an ABC transporter publication-title: Science – volume: 48 start-page: 1790 year: 2007 end-page: 1802 article-title: An ABC transporter gene of , , is involved in cuticle development and prevention of organ fusion publication-title: Plant & Cell Physiology – volume: 389 start-page: 33 year: 1997 end-page: 39 article-title: The origin and early evolution of plants on land publication-title: Nature – volume: 56 start-page: 326 year: 1965 end-page: 328 article-title: An example of varietal variations in resistance of Brussels sprouts publication-title: Annals of Applied Biology – volume: 46 start-page: 83 year: 1997 end-page: 96 article-title: Effects of environment on the composition of epicuticular wax esters from kale and swede publication-title: Phytochemistry – volume: 150 start-page: 1174 year: 2009 end-page: 1191 article-title: Functional characterization of the Arabidopsis β‐ketoacyl‐Coenzyme A reductase candidates of the fatty acid elongase publication-title: Plant Physiology – volume: 166 start-page: 1621 year: 2014 end-page: 1633 article-title: Evolutionary conserved function of barley and Arabidopsis 3‐KETOACYL‐CoA SYNTHASES in providing wax signals for germination of powdery mildew fungi publication-title: Plant Physiology – volume: 4 start-page: 1476 year: 2013 article-title: ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence publication-title: Nature Communications – volume: 33 start-page: 851 year: 1993 end-page: 855 article-title: Epicuticular waxes of mutants of publication-title: Phytochemistry – volume: 177 start-page: 251 year: 2008 end-page: 263 article-title: Host surface properties affect prepenetration processes in the barley powdery mildew fungus publication-title: New Phytologist – volume: 219 start-page: 5 year: 2004 end-page: 13 article-title: Novel mutants in publication-title: Planta – volume: 23 start-page: 1958 year: 2011 end-page: 1970 article-title: A member of the PLEIOTROPIC DRUG RESISTANCE family of ATP binding cassette transporters is required for the formation of a functional cuticle in publication-title: Plant Cell – volume: 19 start-page: 1278 year: 2007 end-page: 1294 article-title: The transcription factor WIN1/SHN1 regulates cutin biosynthesis in publication-title: Plant Cell – volume: 75 start-page: 539 year: 1975 end-page: 549 article-title: Ultrastructure and recrystallization of plant epicuticular waxes publication-title: New Phytologist – volume: 171 start-page: 469 year: 2006 end-page: 499 article-title: The effects of stress on plant cuticular waxes publication-title: New Phytologist – volume: 23 start-page: 1138 year: 2011 end-page: 1152 article-title: The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in publication-title: Plant Cell – volume: 29 start-page: 773 year: 2000 end-page: 780 article-title: Effects of surface wax variation in on herbivorous and entomophagous insects in the field publication-title: Environmental Entomology – volume: 73 start-page: 733 year: 2013 end-page: 746 article-title: The mutant, like the mutant, is specifically affected in the very long chain fatty acid elongation process publication-title: The Plant Journal – volume: 12 start-page: 22 year: 1997 end-page: 28 article-title: UV‐B as an environmental factor in plant life: stress and regulation publication-title: Trends in Ecology & Evolution – volume: 56 start-page: 48 year: 2014 end-page: 60 article-title: Cuticular wax biosynthesis is up‐regulated by the MYB94 transcription factor in Arabidopsis publication-title: Plant and Cell Physiology – volume: 11 start-page: 2187 year: 1999 article-title: Characterization of the gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis publication-title: Plant Cell – volume: 22 start-page: 3066 year: 2010 end-page: 3075 article-title: ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations publication-title: Plant Cell – volume: 144 start-page: 1093 year: 2007 end-page: 1103 article-title: Mutations in , a long‐chain acyl‐Coenzyme A synthetase, enhance susceptibility to avirulent but confer resistance to in Arabidopsis publication-title: Plant Physiology – volume: 5 year: 2009 article-title: Dissection of the complex phenotype in cuticular mutants of arabidopsis reveals a role of SERRATE as a mediator publication-title: PLoS Genetics – volume: 67 start-page: 547 year: 2008 end-page: 566 article-title: The VLCFA elongase gene family in : phylogenetic analysis, 3D modelling and expression profiling publication-title: Plant Molecular Biology – volume: 60 start-page: 1151 year: 2011 end-page: 1161 article-title: Wax matters: absence of very‐long‐chain aldehydes from the leaf cuticular wax of the mutant of maize compromises the prepenetration processes of publication-title: Plant Pathology – volume: 56 start-page: 1245 year: 2005 end-page: 1252 article-title: A review of drought adaptation in crop plants: changes in vegetative and reproductive physiology induced by ABA‐based chemical signals publication-title: Australian Journal of Agricultural Research – volume: 16 start-page: 2463 year: 2004 end-page: 2480 article-title: The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis publication-title: Plant Cell – volume: 36 start-page: 61 year: 1996 end-page: 69 article-title: Effect of water stress on the epicuticular wax composition and ultrastructure of cotton ( L.) leaf, bract, and boll publication-title: Environmental and Experimental Botany – volume: 11 year: 2013 article-title: Apoplastic diffusion barriers in Arabidopsis publication-title: The Arabidopsis book – volume: 30 start-page: 93 year: 1990 end-page: 100 article-title: Response of four species to drought stress publication-title: Environmental and Experimental Botany – volume: 151 start-page: 290 year: 2009 end-page: 305 article-title: The Arabidopsis RESURRECTION1 gene regulates a novel antagonistic interaction in plant defense to biotrophs and necrotrophs publication-title: Plant Physiology – volume: 68 start-page: 5323 year: 2017 end-page: 5337 article-title: Anti‐adhesive effects of plant wax coverage on insect attachment publication-title: Journal of Experimental Botany – volume: 15 start-page: 1170 year: 2003 end-page: 1185 article-title: Cloning and characterization of the gene of Arabidopsis involved in cuticle membrane and wax production publication-title: Plant Cell – volume: 164 start-page: 557 year: 1985 end-page: 564 article-title: Action of ultraviolet radiation (UV‐B) upon cuticular waxes in some crop plants publication-title: Planta – volume: 40 start-page: 1761 year: 2017 end-page: 1776 article-title: Arabidopsis ketoacyl‐CoA synthase 16 forms C36/C38 acyl precursors for leaf trichome and pavement surface wax publication-title: Plant, Cell & Environment – volume: 14 start-page: 921 year: 1975 end-page: 929 article-title: Effects of light and temperature on the composition of epicuticular wax of barley leaves publication-title: Phytochemistry – volume: 156 start-page: 29 year: 2011 end-page: 45 article-title: Overexpression of Arabidopsis promotes wax very‐long‐chain alkane biosynthesis and influences plant response to biotic and abiotic stesses publication-title: Plant Physiology – volume: 26 start-page: 1666 year: 2014 end-page: 1680 article-title: Arabidopsis cuticular wax biosynthesis is negatively regulated by the gene encoding an AP2/ERF‐type transcription factor publication-title: Plant Cell – volume: 5 start-page: 151 year: 2009 end-page: 165 article-title: An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants publication-title: Cell Host & Microbe – volume: 31 start-page: 2223 year: 2019 end-page: 2240 article-title: The F‐box protein SAGL1 and ECERIFERUM3 regulate cuticular wax biosynthesis in response to changes in humidity in Arabidopsis publication-title: Plant Cell – volume: 12 start-page: 2001 year: 2000 end-page: 2008 article-title: Alterations in , a gene identical to differentially affect long‐chain lipid content on the surface of pollen and stems publication-title: Plant Cell – volume: 9 year: 2014 article-title: DEWAX‐mediated transcriptional repression of cuticular wax biosynthesis in publication-title: Plant Signaling & Behavior – volume: 23 start-page: 11 year: 2007 end-page: 125 article-title: The fine structure of the plant cuticle publication-title: Annual Plant Reviews – volume: 51 start-page: 75 year: 1997 end-page: 84 article-title: Cuticular waxes relieve self‐inhibition of germination and appressorium formation by the conidia of publication-title: Physiological and Molecular Plant Pathology – start-page: 216 year: 2006 end-page: 249 – volume: 24 start-page: 3106 year: 2012 end-page: 3118 article-title: Reconstitution of plant alkane biosynthesis in yeast demonstrates that ECERIFERUM1 and ECERIFERUM3 are core components of a very‐long‐chain alkane synthesis complex publication-title: Plant Cell – volume: 24 start-page: 353 year: 2012 end-page: 370 article-title: Loss of abaxial leaf epicuticular wax in mutants results in reduced spore differentiation of anthracnose and nonhost rust pathogens publication-title: Plant Cell – volume: 142 start-page: 866 year: 2006 end-page: 877 article-title: encodes an alcohol‐forming fatty acyl‐Coenzyme A reductase involved in cuticular wax production in Arabidopsis publication-title: Plant Physiology – volume: 98 start-page: 727 year: 2019 end-page: 744 article-title: Surface wax esters contribute to drought tolerance in Arabidopsis publication-title: The Plant Journal – volume: 10 year: 2014 article-title: A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota publication-title: PLoS Genetics – volume: 20 start-page: 470 year: 1991 end-page: 476 article-title: Epicuticular lipids of Alfalfa leaves relative to position on the stem and their correlation with aphid (Homoptera: Aphididae) distributions publication-title: Environmental Entomology – volume: 33 start-page: 1535 year: 2014 end-page: 1546 article-title: Overexpression of Arabidopsis confers drought resistance in via cuticular wax accumulation publication-title: Plant Cell Reports – volume: 148 start-page: 97 year: 2008 end-page: 107 article-title: Identification of the wax ester synthase/acyl‐Coenzyme A:diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis publication-title: Plant Physiology – volume: 64 start-page: 265 year: 2007 end-page: 278 article-title: Heterologous expression of two putative ERF transcription factor genes, and , in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance publication-title: Plant Molecular Biology – volume: 139 start-page: 519 year: 2005 end-page: 530 article-title: What do microbes encounter at the plant surface? Chemical composition of pea leaf cuticular waxes publication-title: Plant Physiology – volume: 98 start-page: 852 year: 1996 end-page: 860 article-title: Responses to ultraviolet‐B radiation (280–315 nm) of pea ( ) lines differing in leaf surface wax publication-title: Physiologia Plantarum – volume: 188 start-page: 1039 year: 2010 end-page: 1054 article-title: Very‐long‐chain aldehydes promote prepenetration processes of in a dose‐ and chain length‐dependent manner publication-title: New Phytologist – volume: 231 start-page: 1089 year: 2010 end-page: 1100 article-title: Organ fusion and defective cuticle function in a double mutant of publication-title: Planta – volume: 52 start-page: 110 year: 2013 end-page: 129 article-title: Arabidopsis cuticular waxes: Advances in synthesis, export and regulation publication-title: Progress in Lipid Research – volume: 139 start-page: 1649 year: 2005 end-page: 1665 article-title: Cuticular lipid composition, surface structure, and gene expression in Arabidopsis stem epidermis publication-title: Plant Physiology – volume: 78 start-page: 275 year: 2012 end-page: 288 article-title: An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice publication-title: Plant Molecular Biology – volume: 4 start-page: 442 year: 2013 article-title: Root traits contributing to plant productivity under drought publication-title: Frontiers in Plant Science – volume: 36 start-page: 55 year: 2003 end-page: 66 article-title: The gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis publication-title: The Plant Journal – volume: 28 start-page: 969 year: 1982 end-page: 973 article-title: ‐Hexacosanol and ‐octacosanol: feeding stimulants for larvae of the silkworm, publication-title: Journal of Insect Physiology – volume: 16 start-page: 629 year: 2004 end-page: 642 article-title: The acyl‐CoA synthetase encoded by is essential for normal cuticle development in Arabidopsis publication-title: Plant Cell – volume: 7 start-page: 2115 year: 1995 end-page: 2127 article-title: Molecular characterization of the gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility publication-title: Plant Cell – volume: 151 start-page: 275 year: 2009 end-page: 289 article-title: The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis publication-title: Plant Physiology – volume: 6 start-page: 23 year: 2017 article-title: The unique role of the ECERIFERUM2‐LIKE clade of the BAHD acyltransferase superfamily in cuticular wax metabolism publication-title: Plants – volume: 25 start-page: 85 year: 2002 end-page: 93 article-title: Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: a comparison of a range of species publication-title: Plant, Cell & Environment – volume: 8 year: 2013 article-title: Overexpression of / provokes unique defense responses publication-title: PLoS ONE – volume: 69 start-page: 481 year: 1989 end-page: 490 article-title: Water stress and genotypic effects on epicuticular wax production of alfalfa and crested wheatgrass in relation to yield and excised leaf water loss rate publication-title: Canadian Journal of Plant Science – volume: 56 start-page: 1 year: 2006 end-page: 9 article-title: Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability publication-title: Environmental and Experimental Botany – volume: 28 start-page: 1640 year: 2016 end-page: 1661 article-title: Global regulation of plant immunity by histone lysine methyl transferases publication-title: Plant Cell – volume: 228 start-page: 675 year: 2008 end-page: 685 article-title: encodes a β‐ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf publication-title: Planta – volume: 112 start-page: 217 year: 1997 end-page: 224 article-title: Slippery ant‐plants and skilful climbers: selection and protection of specific ant partners by epicuticular wax blooms in (Euphorbiaceae) publication-title: Oecologia – year: 1999 – ident: e_1_2_9_42_1 doi: 10.1016/0031-9422(93)85289-4 – ident: e_1_2_9_144_1 doi: 10.1007/s11103-011-9861-2 – ident: e_1_2_9_159_1 doi: 10.1073/pnas.1316412110 – ident: e_1_2_9_100_1 doi: 10.1199/tab.0167 – ident: e_1_2_9_129_1 doi: 10.1111/j.1469-8137.2010.03183.x – ident: e_1_2_9_94_1 doi: 10.1139/g93-082 – ident: e_1_2_9_60_1 doi: 10.1104/pp.108.1.369 – ident: e_1_2_9_146_1 doi: 10.1104/pp.114.246348 – ident: e_1_2_9_147_1 doi: 10.1007/s00425-010-1110-4 – ident: e_1_2_9_62_1 doi: 10.1007/s11103-008-9339-z – ident: e_1_2_9_15_1 doi: 10.1111/j.1365-313X.2007.03252.x – ident: e_1_2_9_28_1 doi: 10.1146/annurev.phyto.42.040803.140421 – volume: 139 start-page: 2251 year: 1993 ident: e_1_2_9_119_1 article-title: Pilus‐mediated adsorption of Pseudomonas syringae to the surface of host and non‐host plant leaves publication-title: Microbiology – ident: e_1_2_9_67_1 doi: 10.1093/pcp/pcs083 – ident: e_1_2_9_158_1 doi: 10.1016/j.plaphy.2013.11.028 – ident: e_1_2_9_5_1 doi: 10.1016/0098-8472(90)90013-T – ident: e_1_2_9_8_1 doi: 10.1104/pp.109.137497 – ident: e_1_2_9_99_1 doi: 10.1111/nyas.12540 – ident: e_1_2_9_111_1 doi: 10.1105/tpc.107.054858 – ident: e_1_2_9_124_1 doi: 10.1146/annurev.arplant.59.103006.093219 – ident: e_1_2_9_30_1 doi: 10.1111/nph.13608 – ident: e_1_2_9_105_1 doi: 10.1111/tpj.12060 – ident: e_1_2_9_97_1 doi: 10.1016/0022-1910(82)90114-7 – ident: e_1_2_9_91_1 doi: 10.1105/tpc.110.077974 – ident: e_1_2_9_34_1 doi: 10.1105/tpc.12.10.2001 – ident: e_1_2_9_20_1 doi: 10.1105/tpc.113.117648 – ident: e_1_2_9_101_1 doi: 10.1016/j.cell.2018.06.033 – ident: e_1_2_9_149_1 doi: 10.1016/j.chom.2009.01.001 – ident: e_1_2_9_122_1 doi: 10.1016/S0169-5347(96)10062-8 – ident: e_1_2_9_102_1 doi: 10.1016/0031-9422(75)85160-0 – ident: e_1_2_9_18_1 doi: 10.1104/pp.111.172320 – ident: e_1_2_9_110_1 doi: 10.1016/j.febslet.2006.05.027 – ident: e_1_2_9_35_1 doi: 10.1104/pp.104.053579 – ident: e_1_2_9_12_1 doi: 10.1016/j.plipres.2012.10.002 – ident: e_1_2_9_36_1 doi: 10.1105/tpc.114.123307 – ident: e_1_2_9_26_1 doi: 10.1016/j.molp.2016.04.001 – ident: e_1_2_9_88_1 doi: 10.1093/pcp/pcm152 – ident: e_1_2_9_114_1 doi: 10.1371/journal.pone.0078613 – ident: e_1_2_9_39_1 doi: 10.1242/jeb.01939 – ident: e_1_2_9_96_1 doi: 10.1105/tpc.11.5.825 – ident: e_1_2_9_38_1 doi: 10.1093/jxb/erx271 – ident: e_1_2_9_52_1 doi: 10.1046/j.1365-3040.2002.00779.x – volume: 7 start-page: 2115 year: 1995 ident: e_1_2_9_2_1 article-title: Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility publication-title: Plant Cell – ident: e_1_2_9_32_1 doi: 10.1007/s004420050303 – ident: e_1_2_9_51_1 doi: 10.1002/jsfa.2740200214 – ident: e_1_2_9_148_1 doi: 10.1603/0046-225X-29.4.773 – ident: e_1_2_9_55_1 doi: 10.4161/psb.26959 – ident: e_1_2_9_73_1 doi: 10.1104/pp.109.141911 – ident: e_1_2_9_74_1 doi: 10.1046/j.1365-313X.2003.01854.x – ident: e_1_2_9_136_1 doi: 10.1104/pp.105.070805 – ident: e_1_2_9_68_1 doi: 10.1105/tpc.19.00152 – ident: e_1_2_9_118_1 doi: 10.2307/1937427 – ident: e_1_2_9_77_1 doi: 10.1007/s00299-014-1636-1 – ident: e_1_2_9_58_1 doi: 10.1111/j.1469-8137.1975.tb01417.x – ident: e_1_2_9_11_1 doi: 10.1105/tpc.112.099796 – ident: e_1_2_9_98_1 doi: 10.1023/A:1010343205114 – ident: e_1_2_9_54_1 doi: 10.1007/s10327-011-0331-0 – ident: e_1_2_9_78_1 doi: 10.1093/pcp/pcw147 – volume: 85 start-page: 228 year: 1978 ident: e_1_2_9_70_1 article-title: Die Rolle peripherer Pflanzenwachse für den Befall durch phytophage Insekten/The role of cuticle waxes in insect infestation behaviour publication-title: Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection – ident: e_1_2_9_93_1 doi: 10.1007/s00299-014-1710-8 – ident: e_1_2_9_108_1 doi: 10.1126/science.1102331 – ident: e_1_2_9_132_1 doi: 10.1016/S0031-9422(97)00272-0 – ident: e_1_2_9_7_1 doi: 10.1111/j.1095-8339.1998.tb02529.x – ident: e_1_2_9_27_1 doi: 10.1105/tpc.108.064451 – ident: e_1_2_9_79_1 doi: 10.1093/pcp/pcu142 – ident: e_1_2_9_150_1 doi: 10.1104/pp.110.161646 – ident: e_1_2_9_48_1 doi: 10.1104/pp.114.253195 – ident: e_1_2_9_103_1 doi: 10.1104/pp.107.105676 – ident: e_1_2_9_45_1 doi: 10.1016/j.funbio.2012.05.006 – ident: e_1_2_9_151_1 doi: 10.1105/tpc.109.068874 – ident: e_1_2_9_64_1 doi: 10.1105/tpc.106.047076 – ident: e_1_2_9_142_1 doi: 10.1073/pnas.152047199 – ident: e_1_2_9_56_1 doi: 10.4141/cjps89-059 – ident: e_1_2_9_153_1 doi: 10.1007/s00425-008-0770-9 – ident: e_1_2_9_141_1 doi: 10.1105/tpc.111.093104 – ident: e_1_2_9_25_1 doi: 10.3389/fpls.2013.00442 – ident: e_1_2_9_84_1 doi: 10.1199/tab.0161 – ident: e_1_2_9_109_1 doi: 10.1104/pp.103.1.267 – ident: e_1_2_9_130_1 doi: 10.1104/pp.109.144220 – ident: e_1_2_9_71_1 doi: 10.1016/j.envexpbot.2004.09.013 – ident: e_1_2_9_13_1 doi: 10.1105/tpc.111.083121 – ident: e_1_2_9_137_1 doi: 10.1104/pp.106.094318 – ident: e_1_2_9_82_1 doi: 10.1002/9780470988718.ch11 – ident: e_1_2_9_61_1 doi: 10.1002/9780470988718.ch4 – ident: e_1_2_9_65_1 doi: 10.1038/37918 – ident: e_1_2_9_4_1 doi: 10.1071/BT9760309 – ident: e_1_2_9_117_1 doi: 10.1007/s00425-009-0924-4 – ident: e_1_2_9_63_1 doi: 10.3389/fpls.2017.01210 – ident: e_1_2_9_72_1 doi: 10.1093/oxfordjournals.jhered.a110808 – ident: e_1_2_9_9_1 doi: 10.1186/1471-2229-13-133 – ident: e_1_2_9_40_1 doi: 10.1007/s11829-008-9049-0 – ident: e_1_2_9_80_1 doi: 10.1007/s00299-015-1772-2 – ident: e_1_2_9_87_1 doi: 10.1111/j.1365-313X.2009.03892.x – ident: e_1_2_9_155_1 doi: 10.1093/jxb/err132 – ident: e_1_2_9_50_1 doi: 10.1111/pce.12981 – volume: 28 start-page: 1640 year: 2016 ident: e_1_2_9_75_1 article-title: Global regulation of plant immunity by histone lysine methyl transferases publication-title: Plant Cell – ident: e_1_2_9_53_1 doi: 10.1073/pnas.0703343104 – ident: e_1_2_9_107_1 doi: 10.1002/9780470988718.ch6 – ident: e_1_2_9_154_1 doi: 10.1111/j.1469-8137.2007.02233.x – ident: e_1_2_9_3_1 doi: 10.1105/tpc.104.022897 – ident: e_1_2_9_106_1 doi: 10.1111/tpj.14269 – ident: e_1_2_9_59_1 doi: 10.1199/tab.0016 – ident: e_1_2_9_125_1 doi: 10.1105/tpc.017608 – ident: e_1_2_9_134_1 doi: 10.1111/j.1570-7458.1980.tb02992.x – ident: e_1_2_9_43_1 doi: 10.1111/j.1469-8137.2010.03419.x – ident: e_1_2_9_46_1 doi: 10.1071/FP10058 – ident: e_1_2_9_131_1 doi: 10.1111/j.1469-8137.2006.01826.x – ident: e_1_2_9_23_1 doi: 10.1105/tpc.010926 – ident: e_1_2_9_145_1 doi: 10.1111/j.1744-7348.1965.tb01245.x – ident: e_1_2_9_22_1 doi: 10.1104/pp.105.069724 – ident: e_1_2_9_113_1 doi: 10.1007/s00425-003-1197-y – ident: e_1_2_9_41_1 doi: 10.1104/pp.107.107300 – ident: e_1_2_9_126_1 doi: 10.1006/pmpp.1996.0043 – volume-title: Epicuticular wax in Arabidopsis thaliana: a study of the genetics, chemistry, structure, and interactions with insects year: 1999 ident: e_1_2_9_112_1 – ident: e_1_2_9_31_1 doi: 10.1111/mpp.12740 – ident: e_1_2_9_83_1 doi: 10.1104/pp.108.123471 – ident: e_1_2_9_104_1 doi: 10.1104/pp.18.01075 – ident: e_1_2_9_24_1 doi: 10.1016/j.tplants.2016.09.005 – ident: e_1_2_9_92_1 doi: 10.1104/pp.113.234583 – ident: e_1_2_9_81_1 doi: 10.1111/nph.16311 – ident: e_1_2_9_17_1 doi: 10.1016/0098-8472(96)00128-1 – ident: e_1_2_9_85_1 doi: 10.1071/AR05062 – ident: e_1_2_9_143_1 doi: 10.1371/journal.pgen.1000703 – ident: e_1_2_9_90_1 doi: 10.1038/ncomms2479 – ident: e_1_2_9_157_1 doi: 10.1093/pcp/pcz019 – ident: e_1_2_9_123_1 doi: 10.3390/plants7010006 – ident: e_1_2_9_14_1 doi: 10.1038/sj.emboj.7601658 – ident: e_1_2_9_140_1 doi: 10.1093/pcp/pcm139 – ident: e_1_2_9_138_1 doi: 10.1006/pmpp.2002.0376 – ident: e_1_2_9_19_1 doi: 10.1073/pnas.0305574101 – ident: e_1_2_9_44_1 doi: 10.1111/j.1365-3059.2011.02467.x – ident: e_1_2_9_116_1 doi: 10.1038/ncomms14713 – ident: e_1_2_9_133_1 doi: 10.1007/BF00395975 – ident: e_1_2_9_16_1 doi: 10.1371/journal.pgen.1004283 – ident: e_1_2_9_120_1 doi: 10.1016/j.febslet.2007.06.065 – ident: e_1_2_9_135_1 doi: 10.4161/psb.29463 – volume: 78 start-page: 641 year: 1971 ident: e_1_2_9_69_1 article-title: Einfluß einiger Wachskomponenten von Vicia faba L. auf das Wirtswahlverhalten von Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) publication-title: Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection – ident: e_1_2_9_21_1 doi: 10.1093/aob/mcw131 – volume: 23 start-page: 11 year: 2007 ident: e_1_2_9_57_1 article-title: The fine structure of the plant cuticle publication-title: Annual Plant Reviews – ident: e_1_2_9_86_1 doi: 10.1104/pp.112.198697 – ident: e_1_2_9_37_1 doi: 10.1111/j.1399-3054.1996.tb06695.x – ident: e_1_2_9_10_1 doi: 10.1093/ee/20.2.470 – ident: e_1_2_9_95_1 doi: 10.1023/A:1015690702313 – ident: e_1_2_9_152_1 doi: 10.1105/tpc.11.11.2187 – ident: e_1_2_9_127_1 doi: 10.1371/journal.pone.0070146 – ident: e_1_2_9_66_1 doi: 10.1093/pcp/pcy033 – ident: e_1_2_9_89_1 doi: 10.1104/pp.109.142158 – ident: e_1_2_9_128_1 doi: 10.1105/tpc.111.083485 – ident: e_1_2_9_115_1 doi: 10.1016/j.pmpp.2006.05.006 – ident: e_1_2_9_33_1 doi: 10.1094/MPMI-22-12-1601 – ident: e_1_2_9_29_1 doi: 10.1093/icb/42.6.1091 – ident: e_1_2_9_47_1 doi: 10.3390/plants6020023 – ident: e_1_2_9_49_1 doi: 10.1006/pmpp.1997.0105 – ident: e_1_2_9_76_1 doi: 10.1104/pp.109.137745 – ident: e_1_2_9_6_1 doi: 10.1111/j.1469-8137.1974.tb01324.x – ident: e_1_2_9_121_1 doi: 10.1104/pp.106.086785 – ident: e_1_2_9_139_1 doi: 10.1303/aez.24.253 – ident: e_1_2_9_156_1 doi: 10.1007/s11103-007-9150-2 |
SSID | ssj0009562 |
Score | 2.6843016 |
SecondaryResourceType | review_article |
Snippet | The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin embedded and... Summary The plant cuticle is the first physical barrier between land plants and their terrestrial environment. It consists of the polyester scaffold cutin... |
SourceID | proquest pubmed crossref wiley jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 698 |
SubjectTerms | Abiotic factors abiotic stress Barriers Biosynthesis biotic stress Chemical composition Chemical compounds Cuticles Cuticular wax Cutin Desiccation Developmental stages Environmental stress Epicuticular wax Gene Expression Regulation, Plant Insects Microorganisms physiological state plant cuticle Plant Epidermis Plant Leaves Plant protection Plant species Plants plant–insect interactions plant–microbe interactions polyesters Stress response Stress, Physiological Stresses Tansley review Terrestrial environments Ultrastructure Ultraviolet radiation Water loss wax composition wax crystals Waxes |
Subtitle | its regulation upon abiotic and biotic stress |
Title | Wax biosynthesis in response to danger |
URI | https://www.jstor.org/stable/26928368 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.16571 https://www.ncbi.nlm.nih.gov/pubmed/32242934 https://www.proquest.com/docview/2418528450 https://www.proquest.com/docview/2386282688 https://www.proquest.com/docview/2561542210 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9W8cEX9Tz1qnsSDx986WLTNE3PJ-84WQRFjlvcB6EkTeotSiu2C-f99TdJP9BDRXwpoZ2UfMxkfpPMTAD2RWB4bHLlZyhqPqNS-yIXxkfuUoeZTriiNjj57JyPJ-x0Gk0HcNTFwjT5IfoNNysZbr22Ai5V9UjIi7vfo4BHLn7c-mpZQPSTPkq4y2mXgZkzPm2zClkvnr7mE13UuCM-BzSf4laneE5W4aprcuNvcjOa12qU_f0vm-M7-7QGKy0gJccNB32AgSnWYelbiaDx4SNMLuUfomZl9VAgUqxmFZkV5L7xqzWkLol2ccNfyayu8P11exkYmSMBkVgR_0pkoUlbbEJTNmBy8uPX97Hf3sTgZwwRBqoxigarDIykMjRZHCiuYi1iJjla5mhVJjzQEdM0F0qoMGHa6NAe2UaKJvgMN2GxKAvzCUjOtMqDPI7QDGYmyUWGawgNjEGkJEITeXDQzUmatWnK7W0Zt2lnruAgpW6QPPjSk941uTmeI9p0E9tTUJ4gpOLCg2E302krt1VKbS4f1NjRoQd7_WeUOHuMIgtTzpEmRCsQrTIhXqFBWBoxikPjwVbDRX0DcAlFEBAy7KnjhZfbnp5fjF1h--2kO7BM7ZaA81EcwmJ9PzefETfVahcWKLvYdWLyD2v6EnU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFgkuvEsDBQwCiUtWjeM4DlIPfVBtabtCqCv2FuzYoStQUjVZwfY39a_wnzp2HmpRQVx64BJZycRy7JnxN874M8BrERgem1z5GZqaz6jUvsiF8VG71FqmE66o3Zx8MOLDMfswiSYLcNbthWn4IfoFN2sZzl9bA7cL0hesvDg-GgQ8ioM2pXLPzH9gwFat727j6L6hdOf94dbQb88U8DOGcyU6ZIqhlwyMpDI0WRwormItYiY5xpgYHyU80BHTNBdKqDBh2ujQ_nyMFE3wGmK9N2DJniBumfq3P9ELFL-cdpzPnPFJy2Nk84b6pl6a_ZoEyKug7WWk7Ka6nbvwq-ukJsPl22BWq0F2-ht_5P_Si_fgTou5yUZjJPdhwRQP4OZmibh4_hDGn-VPoqZlNS8QDFfTikwLctKkDhtSl0S7rdHvyLSu8P7X9rwzMkMBIvFFrJXIQpO22Oy-eQTja_mkZVgsysKsAMmZVnmQxxFG-swkucjQTdLAGASDIjSRB287JUizlondHgjyPe0iMhyU1A2KB6960eOGfuQqoWWnSb0E5QmiRi48WO1UK21dU5VSS1eEoCRa8-Bl_xidiv1TJAtTzlAmxEAXA08h_iKDyDtiFLvGg8eN2vYNwFkCcU7I8Eud8v257eno49AVnvy76Au4NTw82E_3d0d7T-E2tSsgLiVzFRbrk5l5hjCxVs-ddRL4ct2KfA5U920Z |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61paq4oNIXgQJu1UpcghrHcRykHoCy2r5We-iqewt27JSVULJqdgX7m_iTjJ2HWqlUXHqJrGQSOTOe8Tf2zBjgQASGxyZXfoaq5jMqtS9yYXwcXeoo0wlX1CYnXw54f8TOxtF4Cf60uTB1fYhuwc1qhrPXVsGnOr-j5MX0x8eAR3HQRFSem8Uv9Neq49MTFO4hpb1vV1_7fnOkgJ8xnCrRHlP0vGRgJJWhyeJAcRVrETPJ0cVE9yjhgY6YprlQQoUJ00aHdu8xUjTBa4jfXYZndnPRxo9RNrxT4ZfTtuQzZ3zclDGyYUNdV-9NfnX840PI9j5QdjNdbx1eNBCVfK7H1EtYMsUGrH4pEUYuNmF0LX8TNSmrRYHYsZpUZFKQ2zrS1pBZSbTLJP5EJrMK7980x4ORORIQiS_iV4ksNGmadbLKFoyehJHbsFKUhXkFJGda5UEeR-gYM5PkIkOrQgNjEDuJ0EQefGiZlmZN4XJ7fsbPtHVgkL-p468H-x3ptK7W8RDRtuN8R0F5giCLCw92W1GkjSZXKbXVfXAOj4482Oseow7ajRVZmHKONCH6heinCfEIDQLViFFkjQc7tZi7DqBRRVgQMvxTJ_d_9z0dDPuu8fr_Sd_D2vCkl16cDs7fwHNq1wtcAOMurMxu5-YtgqqZeucGM4HvT609fwH40CxZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wax+biosynthesis+in+response+to+danger%3A+its+regulation+upon+abiotic+and+biotic+stress&rft.jtitle=The+New+phytologist&rft.au=Lewandowska%2C+Milena&rft.au=Keyl%2C+Alisa&rft.au=Feussner%2C+Ivo&rft.date=2020-08-01&rft.issn=1469-8137&rft.eissn=1469-8137&rft.volume=227&rft.issue=3&rft.spage=698&rft_id=info:doi/10.1111%2Fnph.16571&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |