COVID‐19 Vaccine Response in People with Multiple Sclerosis

Objective The purpose of this study was to investigate the effect of disease modifying therapies on immune response to severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2) vaccines in people with multiple sclerosis (MS). Methods Four hundred seventy‐three people with MS provided one or more...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 91; no. 1; pp. 89 - 100
Main Authors Tallantyre, Emma C., Vickaryous, Nicola, Anderson, Valerie, Asardag, Aliye Nazli, Baker, David, Bestwick, Jonathan, Bramhall, Kath, Chance, Randy, Evangelou, Nikos, George, Katila, Giovannoni, Gavin, Godkin, Andrew, Grant, Leanne, Harding, Katharine E., Hibbert, Aimee, Ingram, Gillian, Jones, Meleri, Kang, Angray S., Loveless, Samantha, Moat, Stuart J., Robertson, Neil P., Schmierer, Klaus, Scurr, Martin J., Shah, Sita Navin, Simmons, Jessica, Upcott, Matthew, Willis, Mark, Jolles, Stephen, Dobson, Ruth
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective The purpose of this study was to investigate the effect of disease modifying therapies on immune response to severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2) vaccines in people with multiple sclerosis (MS). Methods Four hundred seventy‐three people with MS provided one or more dried blood spot samples. Information about coronavirus disease 2019 (COVID‐19) and vaccine history, medical, and drug history were extracted from questionnaires and medical records. Dried blood spots were eluted and tested for antibodies to SARS‐CoV‐2. Antibody titers were partitioned into tertiles with people on no disease modifying therapy as a reference. We calculated the odds ratio of seroconversion (univariate logistic regression) and compared quantitative vaccine response (Kruskal Wallis) following the SARS‐CoV‐2 vaccine according to disease modifying therapy. We used regression modeling to explore the effect of vaccine timing, treatment duration, age, vaccine type, and lymphocyte count on vaccine response. Results Compared to no disease modifying therapy, the use of anti‐CD20 monoclonal antibodies (odds ratio = 0.03, 95% confidence interval [CI] = 0.01–0.06, p < 0.001) and fingolimod (odds ratio = 0.04; 95% CI = 0.01–0.12) were associated with lower seroconversion following the SARS‐CoV‐2 vaccine. All other drugs did not differ significantly from the untreated cohort. Both time since last anti‐CD20 treatment and total time on treatment were significantly associated with the response to the vaccination. The vaccine type significantly predicted seroconversion, but not in those on anti‐CD20 medications. Preliminary data on cellular T‐cell immunity showed 40% of seronegative subjects had measurable anti‐SARS‐CoV‐2 T cell responses. Interpretation Some disease modifying therapies convey risk of attenuated serological response to SARS‐CoV‐2 vaccination in people with MS. We provide recommendations for the practical management of this patient group. ANN NEUROL 20219999:n/a–n/a
AbstractList The purpose of this study was to investigate the effect of disease modifying therapies on immune response to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccines in people with multiple sclerosis (MS). Four hundred seventy-three people with MS provided one or more dried blood spot samples. Information about coronavirus disease 2019 (COVID-19) and vaccine history, medical, and drug history were extracted from questionnaires and medical records. Dried blood spots were eluted and tested for antibodies to SARS-CoV-2. Antibody titers were partitioned into tertiles with people on no disease modifying therapy as a reference. We calculated the odds ratio of seroconversion (univariate logistic regression) and compared quantitative vaccine response (Kruskal Wallis) following the SARS-CoV-2 vaccine according to disease modifying therapy. We used regression modeling to explore the effect of vaccine timing, treatment duration, age, vaccine type, and lymphocyte count on vaccine response. Compared to no disease modifying therapy, the use of anti-CD20 monoclonal antibodies (odds ratio = 0.03, 95% confidence interval [CI] = 0.01-0.06, p < 0.001) and fingolimod (odds ratio = 0.04; 95% CI = 0.01-0.12) were associated with lower seroconversion following the SARS-CoV-2 vaccine. All other drugs did not differ significantly from the untreated cohort. Both time since last anti-CD20 treatment and total time on treatment were significantly associated with the response to the vaccination. The vaccine type significantly predicted seroconversion, but not in those on anti-CD20 medications. Preliminary data on cellular T-cell immunity showed 40% of seronegative subjects had measurable anti-SARS-CoV-2 T cell responses. Some disease modifying therapies convey risk of attenuated serological response to SARS-CoV-2 vaccination in people with MS. We provide recommendations for the practical management of this patient group. ANN NEUROL 20219999:n/a-n/a.
Objective The purpose of this study was to investigate the effect of disease modifying therapies on immune response to severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2) vaccines in people with multiple sclerosis (MS). Methods Four hundred seventy‐three people with MS provided one or more dried blood spot samples. Information about coronavirus disease 2019 (COVID‐19) and vaccine history, medical, and drug history were extracted from questionnaires and medical records. Dried blood spots were eluted and tested for antibodies to SARS‐CoV‐2. Antibody titers were partitioned into tertiles with people on no disease modifying therapy as a reference. We calculated the odds ratio of seroconversion (univariate logistic regression) and compared quantitative vaccine response (Kruskal Wallis) following the SARS‐CoV‐2 vaccine according to disease modifying therapy. We used regression modeling to explore the effect of vaccine timing, treatment duration, age, vaccine type, and lymphocyte count on vaccine response. Results Compared to no disease modifying therapy, the use of anti‐CD20 monoclonal antibodies (odds ratio = 0.03, 95% confidence interval [CI] = 0.01–0.06, p < 0.001) and fingolimod (odds ratio = 0.04; 95% CI = 0.01–0.12) were associated with lower seroconversion following the SARS‐CoV‐2 vaccine. All other drugs did not differ significantly from the untreated cohort. Both time since last anti‐CD20 treatment and total time on treatment were significantly associated with the response to the vaccination. The vaccine type significantly predicted seroconversion, but not in those on anti‐CD20 medications. Preliminary data on cellular T‐cell immunity showed 40% of seronegative subjects had measurable anti‐SARS‐CoV‐2 T cell responses. Interpretation Some disease modifying therapies convey risk of attenuated serological response to SARS‐CoV‐2 vaccination in people with MS. We provide recommendations for the practical management of this patient group. ANN NEUROL 20219999:n/a–n/a
Objective The purpose of this study was to investigate the effect of disease modifying therapies on immune response to severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2) vaccines in people with multiple sclerosis (MS). Methods Four hundred seventy‐three people with MS provided one or more dried blood spot samples. Information about coronavirus disease 2019 (COVID‐19) and vaccine history, medical, and drug history were extracted from questionnaires and medical records. Dried blood spots were eluted and tested for antibodies to SARS‐CoV‐2. Antibody titers were partitioned into tertiles with people on no disease modifying therapy as a reference. We calculated the odds ratio of seroconversion (univariate logistic regression) and compared quantitative vaccine response (Kruskal Wallis) following the SARS‐CoV‐2 vaccine according to disease modifying therapy. We used regression modeling to explore the effect of vaccine timing, treatment duration, age, vaccine type, and lymphocyte count on vaccine response. Results Compared to no disease modifying therapy, the use of anti‐CD20 monoclonal antibodies (odds ratio = 0.03, 95% confidence interval [CI] = 0.01–0.06, p < 0.001) and fingolimod (odds ratio = 0.04; 95% CI = 0.01–0.12) were associated with lower seroconversion following the SARS‐CoV‐2 vaccine. All other drugs did not differ significantly from the untreated cohort. Both time since last anti‐CD20 treatment and total time on treatment were significantly associated with the response to the vaccination. The vaccine type significantly predicted seroconversion, but not in those on anti‐CD20 medications. Preliminary data on cellular T‐cell immunity showed 40% of seronegative subjects had measurable anti‐SARS‐CoV‐2 T cell responses. Interpretation Some disease modifying therapies convey risk of attenuated serological response to SARS‐CoV‐2 vaccination in people with MS. We provide recommendations for the practical management of this patient group. ANN NEUROL 20219999:n/a–n/a
The purpose of this study was to investigate the effect of disease modifying therapies on immune response to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccines in people with multiple sclerosis (MS).OBJECTIVEThe purpose of this study was to investigate the effect of disease modifying therapies on immune response to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccines in people with multiple sclerosis (MS).Four hundred seventy-three people with MS provided one or more dried blood spot samples. Information about coronavirus disease 2019 (COVID-19) and vaccine history, medical, and drug history were extracted from questionnaires and medical records. Dried blood spots were eluted and tested for antibodies to SARS-CoV-2. Antibody titers were partitioned into tertiles with people on no disease modifying therapy as a reference. We calculated the odds ratio of seroconversion (univariate logistic regression) and compared quantitative vaccine response (Kruskal Wallis) following the SARS-CoV-2 vaccine according to disease modifying therapy. We used regression modeling to explore the effect of vaccine timing, treatment duration, age, vaccine type, and lymphocyte count on vaccine response.METHODSFour hundred seventy-three people with MS provided one or more dried blood spot samples. Information about coronavirus disease 2019 (COVID-19) and vaccine history, medical, and drug history were extracted from questionnaires and medical records. Dried blood spots were eluted and tested for antibodies to SARS-CoV-2. Antibody titers were partitioned into tertiles with people on no disease modifying therapy as a reference. We calculated the odds ratio of seroconversion (univariate logistic regression) and compared quantitative vaccine response (Kruskal Wallis) following the SARS-CoV-2 vaccine according to disease modifying therapy. We used regression modeling to explore the effect of vaccine timing, treatment duration, age, vaccine type, and lymphocyte count on vaccine response.Compared to no disease modifying therapy, the use of anti-CD20 monoclonal antibodies (odds ratio = 0.03, 95% confidence interval [CI] = 0.01-0.06, p < 0.001) and fingolimod (odds ratio = 0.04; 95% CI = 0.01-0.12) were associated with lower seroconversion following the SARS-CoV-2 vaccine. All other drugs did not differ significantly from the untreated cohort. Both time since last anti-CD20 treatment and total time on treatment were significantly associated with the response to the vaccination. The vaccine type significantly predicted seroconversion, but not in those on anti-CD20 medications. Preliminary data on cellular T-cell immunity showed 40% of seronegative subjects had measurable anti-SARS-CoV-2 T cell responses.RESULTSCompared to no disease modifying therapy, the use of anti-CD20 monoclonal antibodies (odds ratio = 0.03, 95% confidence interval [CI] = 0.01-0.06, p < 0.001) and fingolimod (odds ratio = 0.04; 95% CI = 0.01-0.12) were associated with lower seroconversion following the SARS-CoV-2 vaccine. All other drugs did not differ significantly from the untreated cohort. Both time since last anti-CD20 treatment and total time on treatment were significantly associated with the response to the vaccination. The vaccine type significantly predicted seroconversion, but not in those on anti-CD20 medications. Preliminary data on cellular T-cell immunity showed 40% of seronegative subjects had measurable anti-SARS-CoV-2 T cell responses.Some disease modifying therapies convey risk of attenuated serological response to SARS-CoV-2 vaccination in people with MS. We provide recommendations for the practical management of this patient group. ANN NEUROL 20219999:n/a-n/a.INTERPRETATIONSome disease modifying therapies convey risk of attenuated serological response to SARS-CoV-2 vaccination in people with MS. We provide recommendations for the practical management of this patient group. ANN NEUROL 20219999:n/a-n/a.
Author Kang, Angray S.
Godkin, Andrew
Harding, Katharine E.
Evangelou, Nikos
Chance, Randy
Baker, David
Anderson, Valerie
Asardag, Aliye Nazli
Bestwick, Jonathan
Bramhall, Kath
Dobson, Ruth
Loveless, Samantha
Schmierer, Klaus
Upcott, Matthew
Shah, Sita Navin
George, Katila
Hibbert, Aimee
Moat, Stuart J.
Robertson, Neil P.
Tallantyre, Emma C.
Jolles, Stephen
Ingram, Gillian
Jones, Meleri
Willis, Mark
Giovannoni, Gavin
Vickaryous, Nicola
Scurr, Martin J.
Grant, Leanne
Simmons, Jessica
AuthorAffiliation 2 Department of Neurology University Hospital of Wales Cardiff UK
8 Department of Neurology Barts Health NHS Trust London UK
13 Wales Newborn Screening Laboratory, Department of Medical Biochemistry, Immunology and Toxicology University Hospital of Wales Cardiff UK
4 Blizard Institute, Barts and the London School of Medicine and Dentistry Queen Mary University of London London UK
11 Department of Neurology Royal Gwent Hospital Newport UK
10 Department of Gastroenterology and Hepatology University Hospital of Wales Cardiff UK
14 School of Medicine Cardiff University Cardiff UK
6 Centre for Oral Immunobiology and Regenerative Medicine Barts and the London School of Medicine and Dentistry, Queen Mary University of London London UK
9 Division of Infection and Immunity School of Medicine, Cardiff University Cardiff UK
7 Department of Clinical Neurology University of Nottingham Nottingham UK
5 Immunodeficiency Centre for Wales University Hospital of Wales Cardiff UK
12 Department of Neurology Morriston
AuthorAffiliation_xml – name: 6 Centre for Oral Immunobiology and Regenerative Medicine Barts and the London School of Medicine and Dentistry, Queen Mary University of London London UK
– name: 1 Division of Psychological Medicine and Clinical Neuroscience School of Medicine, Cardiff University Cardiff UK
– name: 10 Department of Gastroenterology and Hepatology University Hospital of Wales Cardiff UK
– name: 11 Department of Neurology Royal Gwent Hospital Newport UK
– name: 3 Preventive Neurology Unit Wolfson Institute of Population Health, Queen Mary University London London UK
– name: 9 Division of Infection and Immunity School of Medicine, Cardiff University Cardiff UK
– name: 4 Blizard Institute, Barts and the London School of Medicine and Dentistry Queen Mary University of London London UK
– name: 5 Immunodeficiency Centre for Wales University Hospital of Wales Cardiff UK
– name: 7 Department of Clinical Neurology University of Nottingham Nottingham UK
– name: 12 Department of Neurology Morriston Hospital Swansea UK
– name: 2 Department of Neurology University Hospital of Wales Cardiff UK
– name: 13 Wales Newborn Screening Laboratory, Department of Medical Biochemistry, Immunology and Toxicology University Hospital of Wales Cardiff UK
– name: 14 School of Medicine Cardiff University Cardiff UK
– name: 8 Department of Neurology Barts Health NHS Trust London UK
– name: 15 ImmunoServ Ltd. Cardiff UK
Author_xml – sequence: 1
  givenname: Emma C.
  orcidid: 0000-0002-3760-6634
  surname: Tallantyre
  fullname: Tallantyre, Emma C.
  organization: University Hospital of Wales
– sequence: 2
  givenname: Nicola
  surname: Vickaryous
  fullname: Vickaryous, Nicola
  organization: Wolfson Institute of Population Health, Queen Mary University London
– sequence: 3
  givenname: Valerie
  surname: Anderson
  fullname: Anderson, Valerie
  organization: School of Medicine, Cardiff University
– sequence: 4
  givenname: Aliye Nazli
  surname: Asardag
  fullname: Asardag, Aliye Nazli
  organization: Queen Mary University of London
– sequence: 5
  givenname: David
  orcidid: 0000-0002-8872-8711
  surname: Baker
  fullname: Baker, David
  organization: Queen Mary University of London
– sequence: 6
  givenname: Jonathan
  surname: Bestwick
  fullname: Bestwick, Jonathan
  organization: Wolfson Institute of Population Health, Queen Mary University London
– sequence: 7
  givenname: Kath
  surname: Bramhall
  fullname: Bramhall, Kath
  organization: University Hospital of Wales
– sequence: 8
  givenname: Randy
  surname: Chance
  fullname: Chance, Randy
  organization: Barts and the London School of Medicine and Dentistry, Queen Mary University of London
– sequence: 9
  givenname: Nikos
  surname: Evangelou
  fullname: Evangelou, Nikos
  organization: University of Nottingham
– sequence: 10
  givenname: Katila
  surname: George
  fullname: George, Katila
  organization: Wolfson Institute of Population Health, Queen Mary University London
– sequence: 11
  givenname: Gavin
  surname: Giovannoni
  fullname: Giovannoni, Gavin
  organization: Barts Health NHS Trust
– sequence: 12
  givenname: Andrew
  surname: Godkin
  fullname: Godkin, Andrew
  organization: University Hospital of Wales
– sequence: 13
  givenname: Leanne
  surname: Grant
  fullname: Grant, Leanne
  organization: University Hospital of Wales
– sequence: 14
  givenname: Katharine E.
  surname: Harding
  fullname: Harding, Katharine E.
  organization: Royal Gwent Hospital
– sequence: 15
  givenname: Aimee
  surname: Hibbert
  fullname: Hibbert, Aimee
  organization: University of Nottingham
– sequence: 16
  givenname: Gillian
  surname: Ingram
  fullname: Ingram, Gillian
  organization: Morriston Hospital
– sequence: 17
  givenname: Meleri
  surname: Jones
  fullname: Jones, Meleri
  organization: Queen Mary University of London
– sequence: 18
  givenname: Angray S.
  surname: Kang
  fullname: Kang, Angray S.
  organization: Barts and the London School of Medicine and Dentistry, Queen Mary University of London
– sequence: 19
  givenname: Samantha
  surname: Loveless
  fullname: Loveless, Samantha
  organization: School of Medicine, Cardiff University
– sequence: 20
  givenname: Stuart J.
  surname: Moat
  fullname: Moat, Stuart J.
  organization: Cardiff University
– sequence: 21
  givenname: Neil P.
  surname: Robertson
  fullname: Robertson, Neil P.
  organization: University Hospital of Wales
– sequence: 22
  givenname: Klaus
  orcidid: 0000-0002-9293-8893
  surname: Schmierer
  fullname: Schmierer, Klaus
  organization: Barts Health NHS Trust
– sequence: 23
  givenname: Martin J.
  surname: Scurr
  fullname: Scurr, Martin J.
  organization: ImmunoServ Ltd
– sequence: 24
  givenname: Sita Navin
  surname: Shah
  fullname: Shah, Sita Navin
  organization: Wolfson Institute of Population Health, Queen Mary University London
– sequence: 25
  givenname: Jessica
  surname: Simmons
  fullname: Simmons, Jessica
  organization: School of Medicine, Cardiff University
– sequence: 26
  givenname: Matthew
  surname: Upcott
  fullname: Upcott, Matthew
  organization: School of Medicine, Cardiff University
– sequence: 27
  givenname: Mark
  surname: Willis
  fullname: Willis, Mark
  organization: University Hospital of Wales
– sequence: 28
  givenname: Stephen
  surname: Jolles
  fullname: Jolles, Stephen
  email: jollessr@cardiff.ac.uk
  organization: School of Medicine, Cardiff University
– sequence: 29
  givenname: Ruth
  orcidid: 0000-0002-2993-585X
  surname: Dobson
  fullname: Dobson, Ruth
  email: ruth.dobson@qmul.ac.uk
  organization: Barts Health NHS Trust
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34687063$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9OFEEQxjsGA8viwRcwk3jRw0L_m56egySbFZUEhaBy7fTW1EiT3u51egbCzUfwGX0Se10gSAKnSqV-9eWr-rbJRogBCXnJ6C6jlO_ZYHe54iV7RkasFGyiuaw3yIgKJSclE3KLbKd0QSmtFaObZEtIpSuqxIi8mx2fHb7_8-s3q4szC-ACFqeYljEkLFwoTjAuPRZXrj8vPg--d6vuK3jsYnJphzxvrU_44qaOyfcPB99mnyZHxx8PZ9OjCUiZ7agSFNdWUuBWSLBKWWBgGdRUzQEVbdE2JUqoqzkDaNtGCKsaipI1nOZuTPbXusthvsAGMPSd9WbZuYXtrk20zvw_Ce7c_IiXRquSV6LOAm9uBLr4c8DUm4VLgN7bgHFIhpdaVppSXWX09QP0Ig5dyOcZrhjTWq8kx-TVfUd3Vm4_m4G3awDyp1KH7R3CqFmlZnJq5l9qmd17wILrbe_i6hjnn9q4ch6vH5c20y_T9cZf5Iiodw
CitedBy_id crossref_primary_10_1177_20552173231165196
crossref_primary_10_1016_j_msard_2023_104574
crossref_primary_10_3390_ctn6010008
crossref_primary_10_1016_j_msard_2022_103524
crossref_primary_10_1172_jci_insight_156978
crossref_primary_10_1016_j_msard_2022_103803
crossref_primary_10_1111_bcp_16248
crossref_primary_10_47795_IRIH6781
crossref_primary_10_1038_s41582_022_00646_5
crossref_primary_10_1136_jnnp_2023_332224
crossref_primary_10_1016_j_ncl_2023_06_001
crossref_primary_10_1016_j_ncl_2023_06_006
crossref_primary_10_1038_s41467_022_32985_8
crossref_primary_10_3390_pathogens12070862
crossref_primary_10_1007_s40120_023_00520_6
crossref_primary_10_1016_j_msard_2022_104172
crossref_primary_10_1016_j_ebiom_2022_104102
crossref_primary_10_1016_j_jns_2023_122852
crossref_primary_10_1016_j_jneuroim_2024_578347
crossref_primary_10_1016_j_msard_2023_104865
crossref_primary_10_1080_14656566_2023_2178898
crossref_primary_10_3390_vaccines10050695
crossref_primary_10_2139_ssrn_4200732
crossref_primary_10_1016_j_msard_2022_103905
crossref_primary_10_1177_20552173231218117
crossref_primary_10_1093_brain_awae409
crossref_primary_10_1212_NXI_0000000000200031
crossref_primary_10_1186_s12883_024_03793_y
crossref_primary_10_1016_j_msard_2024_105770
crossref_primary_10_1007_s00115_022_01363_6
crossref_primary_10_3389_fimmu_2024_1431403
crossref_primary_10_1097_NAN_0000000000000519
crossref_primary_10_1093_cei_uxac080
crossref_primary_10_1261_rna_079137_122
crossref_primary_10_1016_j_ensci_2024_100511
crossref_primary_10_1136_jnnp_2022_330100
crossref_primary_10_1016_j_msard_2023_105085
crossref_primary_10_3390_biomedicines10123034
crossref_primary_10_3390_jcm12175551
crossref_primary_10_1016_j_banm_2022_01_031
crossref_primary_10_1080_1744666X_2022_2064845
crossref_primary_10_3390_ijms242115903
crossref_primary_10_1111_ene_16015
crossref_primary_10_1016_j_clineuro_2024_108378
crossref_primary_10_1016_j_msard_2022_104425
crossref_primary_10_1212_CON_0000000000001272
crossref_primary_10_3390_vaccines11040786
crossref_primary_10_3390_ijms24119231
crossref_primary_10_4049_immunohorizons_2300108
crossref_primary_10_17116_jnevro202312307229
crossref_primary_10_1016_j_jns_2022_120306
crossref_primary_10_1093_cei_uxab015
crossref_primary_10_1016_j_ebiom_2022_104042
crossref_primary_10_1007_s10072_022_06287_2
crossref_primary_10_1371_journal_pone_0283538
crossref_primary_10_33590_emjneurol_10029147
crossref_primary_10_1007_s10072_023_07282_x
crossref_primary_10_1177_13524585231200719
crossref_primary_10_1016_j_scib_2024_02_041
crossref_primary_10_1001_jamaneurol_2022_4251
crossref_primary_10_1002_acn3_51664
crossref_primary_10_1016_j_msard_2022_103719
crossref_primary_10_1016_j_heliyon_2024_e26173
crossref_primary_10_1186_s12865_024_00628_w
crossref_primary_10_1136_pn_2022_003426
crossref_primary_10_1093_cei_uxae116
crossref_primary_10_1016_j_msard_2022_104486
crossref_primary_10_3390_vaccines10020341
crossref_primary_10_3390_jcm12237243
crossref_primary_10_1016_j_msard_2022_104003
crossref_primary_10_1177_13524585231185249
crossref_primary_10_1016_j_msard_2023_104943
crossref_primary_10_1016_j_msard_2023_104548
crossref_primary_10_1177_13524585221091404
crossref_primary_10_1177_13524585231185247
crossref_primary_10_1016_j_clineuro_2024_108152
crossref_primary_10_1097_WCO_0000000000001067
crossref_primary_10_1136_jnnp_2022_329123
crossref_primary_10_1146_annurev_immunol_101320_020220
crossref_primary_10_1016_j_vaccine_2024_06_028
crossref_primary_10_1038_s41467_022_34180_1
crossref_primary_10_4103_1673_5374_346539
crossref_primary_10_1002_acn3_51688
crossref_primary_10_1136_practneurol_2022_003370
crossref_primary_10_3390_biomedicines13010153
crossref_primary_10_1016_j_jneuroim_2023_578215
crossref_primary_10_1002_ana_26309
crossref_primary_10_1177_13524585231168043
crossref_primary_10_1016_j_neurol_2022_11_003
crossref_primary_10_1177_13524585231218149
crossref_primary_10_1089_jir_2022_0078
crossref_primary_10_1177_13524585221109386
crossref_primary_10_3389_fimmu_2023_1254128
crossref_primary_10_1089_vim_2023_0035
crossref_primary_10_1177_13524585221102918
crossref_primary_10_1016_j_neurot_2023_e00307
crossref_primary_10_1007_s40120_023_00448_x
crossref_primary_10_1177_17562864221092092
crossref_primary_10_1212_NXI_0000000000200084
crossref_primary_10_1007_s00415_022_11142_7
crossref_primary_10_1016_S2665_9913_22_00034_0
crossref_primary_10_1007_s40120_024_00671_0
crossref_primary_10_1177_20552173231191170
crossref_primary_10_1177_13524585221089540
crossref_primary_10_1016_j_msard_2023_104761
crossref_primary_10_1111_bjh_18149
crossref_primary_10_3389_fneur_2023_1197212
crossref_primary_10_1016_j_msard_2022_103937
crossref_primary_10_1172_jci_insight_165111
crossref_primary_10_1111_ene_15492
crossref_primary_10_1177_20552173221099181
crossref_primary_10_3390_ctn7010002
crossref_primary_10_1016_j_msard_2024_105472
crossref_primary_10_1111_ene_15809
crossref_primary_10_1002_hsr2_70119
Cites_doi 10.1016/S0140-6736(20)32466-1
10.1038/s41598-020-58041-3
10.3390/ijns6020026
10.1101/2021.06.15.21258542
10.1016/j.cell.2020.09.038
10.1177/0091270011427908
10.1002/14651858.cd013652
10.1038/s41564-021-00947-3
10.1002/acn3.51408
10.1038/s41591-020-0913-5
10.1101/2021.06.01.21258172
10.1126/science.abc6284
10.1038/s41591-020-01179-4
10.1007/s40120-019-00160-9
10.1038/s41467-021-23893-4
10.1101/2020.11.02.20222778
10.1212/WNL.0000000000010380
10.1016/j.cell.2020.10.051
10.1177/0004563220981106
10.1016/S0140-6736(21)01642-1
10.1101/2021.05.19.21257334
10.1093/infdis/jiaa659
10.1038/s41591-021-01377-8
10.1016/S1473-3099(20)30196-1
10.1111/cei.13495
10.1126/science.abd7728
10.1177/13524585211028833
10.1177/17562864211012835
10.1038/s41586-020-2607-z
10.1212/WNL.0000000000001302
10.1097/ACI.0000000000000485
10.1016/j.jiph.2017.09.014
10.1101/2021.06.02.21258218
10.1016/S0140-6736(21)00502-X
10.1038/s41586-020-2814-7
10.1373/clinchem.2017.275966
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of American Neurological Association.
2021 The Authors. Annals of Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
2021. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of American Neurological Association.
– notice: 2021 The Authors. Annals of Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
– notice: 2021. This work is published under Creative Commons Attribution – Non-Commercial License~http://creativecommons.org/licenses/by-nc/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
5PM
DOI 10.1002/ana.26251
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Toxicology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate COVID‐19 Vaccine Response in MS
EISSN 1531-8249
EndPage 100
ExternalDocumentID PMC8652739
34687063
10_1002_ana_26251
ANA26251
Genre article
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/L010305/1
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
24P
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACRZS
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
5PM
ID FETCH-LOGICAL-c4431-65c628a40c2a34ca66ac1ca1c906bce60fead5e4c97b1ccffd33a6d0e41d20fd3
IEDL.DBID DR2
ISSN 0364-5134
1531-8249
IngestDate Thu Aug 21 18:36:22 EDT 2025
Fri Jul 11 10:14:53 EDT 2025
Sat Aug 23 13:22:04 EDT 2025
Mon Jul 21 06:03:15 EDT 2025
Thu Jul 03 08:25:06 EDT 2025
Thu Apr 24 22:56:22 EDT 2025
Wed Jan 22 16:28:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial
2021 The Authors. Annals of Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4431-65c628a40c2a34ca66ac1ca1c906bce60fead5e4c97b1ccffd33a6d0e41d20fd3
Notes These authors contributed equally and are joint first authors.
These authors contributed equally and are joint corresponding authors.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9293-8893
0000-0002-3760-6634
0000-0002-2993-585X
0000-0002-8872-8711
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.26251
PMID 34687063
PQID 2611888527
PQPubID 946345
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8652739
proquest_miscellaneous_2584780087
proquest_journals_2611888527
pubmed_primary_34687063
crossref_primary_10_1002_ana_26251
crossref_citationtrail_10_1002_ana_26251
wiley_primary_10_1002_ana_26251_ANA26251
PublicationCentury 2000
PublicationDate January 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Minneapolis
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2019; 8
2021; 8
2021; 27
2021; 6
2020; 20
2020; 183
2020; 369
2020; 202
2020; 10
2020; 223
2020; 586
2018; 64
2012; 52
2021; 58
2021; 14
2018; 18
2020; 6
2021; 12
2021; 398
2020; 95
2021
2015; 84
2020; 370
2020; 26
2021; 397
2021; 396
2018; 11
2021; (Epub ahead of print)
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 84
  start-page: 872
  year: 2015
  end-page: 879
  article-title: Randomized trial of vaccination in fingolimod‐treated patients with multiple sclerosis
  publication-title: Neurology
– volume: 586
  start-page: 594
  year: 2020
  end-page: 599
  article-title: COVID‐19 vaccine BNT162b1 elicits human antibody and T H 1 T cell responses
  publication-title: Nature
– volume: 52
  start-page: 1879
  year: 2012
  end-page: 1890
  article-title: Pharmacodynamic effects of steady‐state fingolimod on antibody response in healthy volunteers: a 4‐week, randomized, placebo‐controlled, parallel‐group, multiple‐dose study
  publication-title: J Clin Pharmacol
– volume: 26
  start-page: 1033
  year: 2020
  end-page: 1036
  article-title: A serological assay to detect SARS‐CoV‐2 seroconversion in humans
  publication-title: Nat Med
– volume: 223
  start-page: 389
  year: 2020
  end-page: 398
  article-title: Longitudinal serological analysis and neutralizing antibody levels in coronavirus disease 2019 convalescent patients
  publication-title: J Infect Dis
– article-title: Casirivimab and imdevimab in patients admitted to hospital with COVID‐19 (RECOVERY): a randomised, controlled, open‐label, platform trial
  publication-title: medRxiv
– volume: 183
  start-page: 1496
  year: 2020
  end-page: 1507
  article-title: Quick COVID‐19 healers sustain anti‐SARS‐CoV‐2 antibody production
  publication-title: Cell
– volume: 20
  start-page: 565
  year: 2020
  end-page: 574
  article-title: Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS‐CoV‐2: an observational cohort study
  publication-title: Lancet Infect Dis
– volume: 8
  start-page: 1738
  year: 2021
  end-page: 1744
  article-title: DMTs and Covid‐19 severity in MS: a pooled analysis from Italy and France
  publication-title: Ann Clin Transl Neurol
– volume: 398
  start-page: 385
  year: 2021
  end-page: 387
  article-title: Spike‐antibody waning after second dose of BNT162b2 or ChAdOx1
  publication-title: Lancet
– volume: 397
  start-page: 1178
  year: 2021
  end-page: 1181
  article-title: Effect of previous SARS‐CoV‐2 infection on humoral and T‐cell responses to single‐dose BNT162b2 vaccine
  publication-title: Lancet
– volume: 64
  start-page: 656
  year: 2018
  end-page: 679
  article-title: State of the science in dried blood spots
  publication-title: Clin Chem
– volume: 11
  start-page: 373
  year: 2018
  end-page: 376
  article-title: Dried blood spots: an evaluation of utility in the field
  publication-title: J Infect Public Health
– volume: 12
  start-page: 3695
  year: 2021
  article-title: Multianalyte serology in home‐sampled blood enables an unbiased assessment of the immune response against SARS‐CoV‐2
  publication-title: Nat Commun
– year: 2021
  article-title: Whole blood‐based measurement of SARS‐CoV‐2‐specific T cell responses reveals asymptomatic infection and vaccine efficacy in healthy subjects and patients with solid organ cancers
  publication-title: medRxiv
– year: 2021
  article-title: Safety, reactogenicity, and immunogenicity of homologous and heterologous prime‐boost immunisation with ChAdOx1‐nCoV19 and BNT162b2: a prospective cohort study
  publication-title: medRxiv
– volume: 27
  start-page: 1205
  year: 2021
  end-page: 1211
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS‐CoV‐2 infection
  publication-title: Nat Med
– volume: 6
  start-page: 26
  year: 2020
  article-title: Use of dried blood spot specimens to monitor patients with inherited metabolic disorders
  publication-title: Int J Neonatal Screen
– volume: (Epub ahead of print)
  year: 2021
  article-title: Personalized B‐cell tailored dosing of ocrelizumab in patients with multiple sclerosis during the COVID‐19 pandemic
  publication-title: Mult Scler
– volume: 58
  start-page: 123
  year: 2021
  end-page: 131
  article-title: Development of a high‐throughput SARS‐CoV‐2 antibody testing pathway using dried blood spot specimens
  publication-title: Ann Clin Biochem
– volume: 6
  start-page: 1140
  year: 2021
  end-page: 1149
  article-title: Antibody responses to SARS‐CoV‐2 vaccines in 45,965 adults from the general population of the United Kingdom
  publication-title: Nat Microbiol
– volume: 370
  start-page: 1227
  year: 2020
  end-page: 1230
  article-title: Robust neutralizing antibodies to SARS‐CoV‐2 infection persist for months
  publication-title: Science
– volume: 95
  start-page: e1999
  year: 2020
  end-page: e2008
  article-title: Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis: the VELOCE study
  publication-title: Neurology
– volume: 10
  start-page: 1860
  year: 2020
  article-title: GloBody technology: detecting anti‐drug antibody against VH/VL domains
  publication-title: Sci Rep
– volume: 14
  year: 2021
  article-title: Humoral immune response to COVID‐19 mRNA vaccine in patients with multiple sclerosis treated with high‐efficacy disease‐modifying therapies
  publication-title: Ther Adv Neurol Disord
– volume: 183
  start-page: 996
  year: 2020
  end-page: 1012
  article-title: Antigen‐specific adaptive immunity to SARS‐CoV‐2 in acute COVID‐19 and associations with age and disease severity
  publication-title: Cell
– volume: 27
  start-page: 279
  year: 2021
  end-page: 288
  article-title: Phase 1/2 trial of SARS‐CoV‐2 vaccine ChAdOx1 nCoV‐19 with a booster dose induces multifunctional antibody responses
  publication-title: Nat Med
– year: 2021
  article-title: Humoral and cellular immune response against SARS‐CoV‐2 variants following heterologous and homologous ChAdOx1 nCoV‐19/BNT162b2 vaccination
  publication-title: medRxiv
– volume: 6
  year: 2020
  article-title: Antibody tests for identification of current and past infection with SARS‐CoV‐2
  publication-title: Cochrane Database Syst Rev
– volume: 202
  start-page: 149
  year: 2020
  end-page: 161
  article-title: COVID‐19 vaccine‐readiness for anti‐CD20‐depleting therapy in autoimmune diseases
  publication-title: Clin Exp Immunol
– volume: 369
  start-page: 806
  year: 2020
  end-page: 811
  article-title: DNA vaccine protection against SARS‐CoV‐2 in rhesus macaques
  publication-title: Science
– volume: 8
  start-page: 241
  year: 2019
  end-page: 250
  article-title: Fingolimod rebound: a review of the clinical experience and management considerations
  publication-title: Neurol Ther
– volume: 586
  start-page: 583
  year: 2020
  end-page: 588
  article-title: Single‐shot Ad26 vaccine protects against SARS‐CoV‐2 in rhesus macaques
  publication-title: Nature
– volume: 18
  start-page: 481
  year: 2018
  end-page: 488
  article-title: Secondary antibody deficiency in neurology
  publication-title: Curr Opin Allergy Clin Immunol
– volume: 396
  start-page: 1979
  year: 2021
  end-page: 1993
  article-title: Safety and immunogenicity of ChAdOx1 nCoV‐19 vaccine administered in a prime‐boost regimen in young and old adults (COV002): a single‐blind, randomised, controlled, phase 2/3 trial
  publication-title: Lancet
– year: 2021
  article-title: SARS‐CoV‐2 responsive T cell numbers and anti‐Spike IgG levels are both associated with protection from COVID‐19: a prospective cohort study in keyworkers
  publication-title: medRxiv
– ident: e_1_2_8_32_1
  doi: 10.1016/S0140-6736(20)32466-1
– ident: e_1_2_8_10_1
  doi: 10.1038/s41598-020-58041-3
– ident: e_1_2_8_22_1
  doi: 10.3390/ijns6020026
– ident: e_1_2_8_18_1
  doi: 10.1101/2021.06.15.21258542
– ident: e_1_2_8_38_1
  doi: 10.1016/j.cell.2020.09.038
– ident: e_1_2_8_4_1
  doi: 10.1177/0091270011427908
– ident: e_1_2_8_28_1
  doi: 10.1002/14651858.cd013652
– ident: e_1_2_8_17_1
  doi: 10.1038/s41564-021-00947-3
– ident: e_1_2_8_2_1
  doi: 10.1002/acn3.51408
– ident: e_1_2_8_8_1
  doi: 10.1038/s41591-020-0913-5
– ident: e_1_2_8_21_1
  doi: 10.1101/2021.06.01.21258172
– ident: e_1_2_8_35_1
  doi: 10.1126/science.abc6284
– ident: e_1_2_8_36_1
  doi: 10.1038/s41591-020-01179-4
– ident: e_1_2_8_16_1
  doi: 10.1007/s40120-019-00160-9
– ident: e_1_2_8_25_1
  doi: 10.1038/s41467-021-23893-4
– ident: e_1_2_8_37_1
  doi: 10.1101/2020.11.02.20222778
– ident: e_1_2_8_3_1
  doi: 10.1212/WNL.0000000000010380
– ident: e_1_2_8_5_1
– ident: e_1_2_8_33_1
  doi: 10.1016/j.cell.2020.10.051
– ident: e_1_2_8_9_1
  doi: 10.1177/0004563220981106
– ident: e_1_2_8_19_1
  doi: 10.1016/S0140-6736(21)01642-1
– ident: e_1_2_8_20_1
  doi: 10.1101/2021.05.19.21257334
– ident: e_1_2_8_26_1
  doi: 10.1093/infdis/jiaa659
– ident: e_1_2_8_29_1
  doi: 10.1038/s41591-021-01377-8
– ident: e_1_2_8_31_1
  doi: 10.1016/S1473-3099(20)30196-1
– ident: e_1_2_8_13_1
  doi: 10.1111/cei.13495
– ident: e_1_2_8_7_1
  doi: 10.1126/science.abd7728
– ident: e_1_2_8_12_1
  doi: 10.1177/13524585211028833
– ident: e_1_2_8_11_1
  doi: 10.1177/17562864211012835
– ident: e_1_2_8_34_1
  doi: 10.1038/s41586-020-2607-z
– ident: e_1_2_8_15_1
  doi: 10.1212/WNL.0000000000001302
– ident: e_1_2_8_14_1
  doi: 10.1097/ACI.0000000000000485
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jiph.2017.09.014
– ident: e_1_2_8_6_1
  doi: 10.1101/2021.06.02.21258218
– ident: e_1_2_8_27_1
  doi: 10.1016/S0140-6736(21)00502-X
– ident: e_1_2_8_30_1
  doi: 10.1038/s41586-020-2814-7
– ident: e_1_2_8_23_1
  doi: 10.1373/clinchem.2017.275966
SSID ssj0009610
Score 2.6455505
Snippet Objective The purpose of this study was to investigate the effect of disease modifying therapies on immune response to severe acute respiratory...
The purpose of this study was to investigate the effect of disease modifying therapies on immune response to severe acute respiratory syndrome-coronavirus 2...
Objective The purpose of this study was to investigate the effect of disease modifying therapies on immune response to severe acute respiratory...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 89
SubjectTerms Adult
Antibodies, Viral - blood
Antibodies, Viral - drug effects
Antirheumatic Agents - therapeutic use
Blood
CD20 antigen
Cell number
Confidence intervals
Coronaviruses
COVID-19
COVID-19 - prevention & control
COVID-19 vaccines
COVID-19 Vaccines - immunology
Female
Health risks
Health services
Humans
Immune response
Immune system
Immunocompromised Host
Immunosuppressive agents
Lymphocytes
Lymphocytes T
Male
Medical records
Middle Aged
Monoclonal antibodies
Multiple sclerosis
Multiple Sclerosis - drug therapy
Multiple Sclerosis - immunology
Respiratory diseases
SARS-CoV-2
Seroconversion
Seroconversion - drug effects
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Statistical analysis
Therapy
United Kingdom
Vaccines
Viral diseases
Title COVID‐19 Vaccine Response in People with Multiple Sclerosis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.26251
https://www.ncbi.nlm.nih.gov/pubmed/34687063
https://www.proquest.com/docview/2611888527
https://www.proquest.com/docview/2584780087
https://pubmed.ncbi.nlm.nih.gov/PMC8652739
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFH6iHBCXsrYNm9yqh14yJLbjcYQ4jFhEK7GITRwqRfaLo45AATEzF078BH4jvwTbWWCASlVvSfwSL88v_uz3_Bnge85M0sU4D7XkachlqsNUGhMKxiNZsNzOMnyU74HYO-O_LpKLCdho9sJU_BDtgpuzDP-_dgau9GD9mTRUlapDLXp3Ux8Xq-UA0fEzdVQqPBOBc7OFScx4wyoU0fX2zfGx6A3AfBsn-RK_-gFodwZ-N0Wv4k4uO6Oh7uDdK1bH_6zbLHysgSnpVT1pDiZMOQ9T-7XrfQE2tw7Pf24_3j_EKTlX6B6S4yrA1pB-SY58KDpx67pkv45SJCf2U7bq_cEinO3unG7thfXZCyFyiylCkaCgUvEIqWIclRAKY1QxppHQaERU2C6YGI5pV8eIRZEzpkQeGR7nNLJ3n2CyvC7NFyAsZpInOhdK2aEwl5IZtGKFoiiVVkkAPxotZFgTk7vzMa6yilKZZrY5Mt8cAXxrRW8qNo73hFYaVWa1QQ5sip1JSZnQbgBf22RrSs4_okpzPbIyzmUsHUlfAJ8rzbe5MC6cR5gF0B3rE62Ao-keTyn7fzxdtxSO5C611fQq_3vBs95Bz18s_bvoMkxTtyHDLwqtwOTwdmRWLUwa6jX4QPnRmreKJy-DD1Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkGgvhb4DtHWrHnrJktiO15HoYUVBS8tuKwqIC4qciaOuWgUEu5ee-hP4jfySjp0H3dJKVW9JZpLYGU88L38GeF0Im_QxLsJcyzSUOs3DVFsbKiEjXYqCvAxf5TtWwyP5_iQ5WYCtdi1MjQ_RBdycZvj_tVNwF5DevEENNZXpcTLfyfdZcjt6e4fq4AY8KlUei8Al2kKiyhZXKOKb3a3zs9EtE_N2peSvFqyfgnZX4LRtfF158rU3m-Y9_P4bruP_9m4V7jW2KRvUg-k-LNjqASyPmuz7Q3i7_fF47931j6s4ZccG3UV2UNfYWjap2Cdfjc5caJeNmkJF9pkeRX2fXD6Co92dw-1h2Gy_EKIksyJUCSqujYyQGyHRKGUwRhNjGqkcrYpKGoWJlZj28xixLAshjCoiK-OCR3T2GBars8o-BSZioWWSF8oYmg0LrYVFYisNR21ykwTwphVDhg02udsi41tWoyrzjD5H5j9HAK861vMakONPTButLLNGJy-JQs6U1gnvB_CyI5M2uRSJqezZjHhc1lg7nL4AntSi794ipHJJYRFAf25QdAwOqXueUk2-eMRurRzOXUrd9DL_e8OzwXjgD9b-nfUF3Bkejvaz_b3xh3W4y936DB8j2oDF6cXMPiOraZo_98rxE6erEpg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRaq4AOUZaMEgDlyyTWzH66jisOqyaoEuVaFVD0iRM3bECpRWdPfCiZ_Ab-wvYew8ylKQELcknsSPmcmMPePPAM-tcNkQUxuXWuax1HkZ59q5WAmZ6EpYmmWELN-p2j2Sr0-ykxXY7vbCNPgQ_YKb14zwv_YKfmarrUvQUFObASfvnaY-16RKtBfp8eEldlSuAhSBj7PFWSpkByuU8K3-1WVjdMXDvJoo-asDGyzQ5CZ87NreJJ58Hizm5QC__Qbr-J-duwU3Ws-UjRpRWocVV9-Gtf029n4HXu68O94bX3z_kebs2KB_yA6bDFvHZjU7CLnozC_ssv02TZG9p09R12fnd-Fo8urDzm7cHr4QoySnIlYZKq6NTJAbIdEoZTBFk2KeqBKdSiqSwcxJzIdlilhVVgijbOJkanlCd_dgtT6t3QNgIhVaZqVVxpAttFoLh0RWGY7alCaL4EXHhQJbZHJ_QMaXosFU5gUNRxGGI4JnPelZA8fxJ6KNjpVFq5HnVEJTKa0zPozgaV9MuuQDJKZ2pwui8TFj7VH6IrjfcL6vRUjlQ8IiguGSTPQEHqd7uaSefQp43Vp5lLucuhlY_veGF6PpKFw8_HfSJ7B2MJ4Ub_embx7Bde43Z4QFog1YnX9duE1ymebl46AaPwGGehFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID%E2%80%9019+Vaccine+Response+in+People+with+Multiple+Sclerosis&rft.jtitle=Annals+of+neurology&rft.au=Tallantyre%2C+Emma+C.&rft.au=Vickaryous%2C+Nicola&rft.au=Anderson%2C+Valerie&rft.au=Asardag%2C+Aliye+Nazli&rft.date=2022-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=91&rft.issue=1&rft.spage=89&rft.epage=100&rft_id=info:doi/10.1002%2Fana.26251&rft.externalDBID=10.1002%252Fana.26251&rft.externalDocID=ANA26251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon