Longitudinal functional brain network reconfiguration in healthy aging

Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross‐sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 41; no. 17; pp. 4829 - 4845
Main Authors Malagurski, Brigitta, Liem, Franziskus, Oschwald, Jessica, Mérillat, Susan, Jäncke, Lutz
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross‐sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions of resting‐state‐fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph‐theoretic analysis to investigate the time‐evolving modular structure of the whole‐brain network, by maximizing the multilayer modularity across four time points. Global flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in healthy elderly than in a temporal null model. Further, global flexibility, as well as network‐specific flexibility of the default mode, frontoparietal control, and somatomotor networks, were significantly associated with age at baseline. These results indicate that older age is related to higher variability in modular organization. The temporal metrics were not associated with simultaneous changes in processing speed or learning performance in the context of memory encoding. Finally, this approach provides global indices for longitudinal change across a given time span and it may contribute to uncovering patterns of modular variability in healthy and clinical aging populations. In this research paper, we used a longitudinal dataset consisting of four occasions of resting‐state‐fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph‐theoretic analysis to investigate the time‐evolving modular structure of the whole‐brain network, by maximizing the multilayer modularity across four time points. Network flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in older adults than in a null model and with increasing age, indicating that older age is related to increased variability in modular organization.
AbstractList Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross‐sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions of resting‐state‐fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph‐theoretic analysis to investigate the time‐evolving modular structure of the whole‐brain network, by maximizing the multilayer modularity across four time points. Global flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in healthy elderly than in a temporal null model. Further, global flexibility, as well as network‐specific flexibility of the default mode, frontoparietal control, and somatomotor networks, were significantly associated with age at baseline. These results indicate that older age is related to higher variability in modular organization. The temporal metrics were not associated with simultaneous changes in processing speed or learning performance in the context of memory encoding. Finally, this approach provides global indices for longitudinal change across a given time span and it may contribute to uncovering patterns of modular variability in healthy and clinical aging populations.
Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross‐sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions of resting‐state‐fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph‐theoretic analysis to investigate the time‐evolving modular structure of the whole‐brain network, by maximizing the multilayer modularity across four time points. Global flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in healthy elderly than in a temporal null model. Further, global flexibility, as well as network‐specific flexibility of the default mode, frontoparietal control, and somatomotor networks, were significantly associated with age at baseline. These results indicate that older age is related to higher variability in modular organization. The temporal metrics were not associated with simultaneous changes in processing speed or learning performance in the context of memory encoding. Finally, this approach provides global indices for longitudinal change across a given time span and it may contribute to uncovering patterns of modular variability in healthy and clinical aging populations. In this research paper, we used a longitudinal dataset consisting of four occasions of resting‐state‐fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph‐theoretic analysis to investigate the time‐evolving modular structure of the whole‐brain network, by maximizing the multilayer modularity across four time points. Network flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in older adults than in a null model and with increasing age, indicating that older age is related to increased variability in modular organization.
Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross-sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions of resting-state-fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph-theoretic analysis to investigate the time-evolving modular structure of the whole-brain network, by maximizing the multilayer modularity across four time points. Global flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in healthy elderly than in a temporal null model. Further, global flexibility, as well as network-specific flexibility of the default mode, frontoparietal control, and somatomotor networks, were significantly associated with age at baseline. These results indicate that older age is related to higher variability in modular organization. The temporal metrics were not associated with simultaneous changes in processing speed or learning performance in the context of memory encoding. Finally, this approach provides global indices for longitudinal change across a given time span and it may contribute to uncovering patterns of modular variability in healthy and clinical aging populations.Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross-sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions of resting-state-fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph-theoretic analysis to investigate the time-evolving modular structure of the whole-brain network, by maximizing the multilayer modularity across four time points. Global flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in healthy elderly than in a temporal null model. Further, global flexibility, as well as network-specific flexibility of the default mode, frontoparietal control, and somatomotor networks, were significantly associated with age at baseline. These results indicate that older age is related to higher variability in modular organization. The temporal metrics were not associated with simultaneous changes in processing speed or learning performance in the context of memory encoding. Finally, this approach provides global indices for longitudinal change across a given time span and it may contribute to uncovering patterns of modular variability in healthy and clinical aging populations.
Author Mérillat, Susan
Jäncke, Lutz
Malagurski, Brigitta
Oschwald, Jessica
Liem, Franziskus
AuthorAffiliation 2 Division of Neuropsychology, Institute of Psychology University of Zurich Zurich Switzerland
1 University Research Priority Program “Dynamics of Healthy Aging” University of Zurich Zurich Switzerland
AuthorAffiliation_xml – name: 1 University Research Priority Program “Dynamics of Healthy Aging” University of Zurich Zurich Switzerland
– name: 2 Division of Neuropsychology, Institute of Psychology University of Zurich Zurich Switzerland
Author_xml – sequence: 1
  givenname: Brigitta
  orcidid: 0000-0002-7510-5187
  surname: Malagurski
  fullname: Malagurski, Brigitta
  email: brigitta.malagurski@uzh.ch
  organization: University of Zurich
– sequence: 2
  givenname: Franziskus
  surname: Liem
  fullname: Liem, Franziskus
  organization: University of Zurich
– sequence: 3
  givenname: Jessica
  surname: Oschwald
  fullname: Oschwald, Jessica
  organization: University of Zurich
– sequence: 4
  givenname: Susan
  surname: Mérillat
  fullname: Mérillat, Susan
  organization: University of Zurich
– sequence: 5
  givenname: Lutz
  surname: Jäncke
  fullname: Jäncke, Lutz
  organization: University of Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32857461$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLxDAUhYMovhf-ASm40UU1N0mTdCOo-IIRN7oOmTTtRDuJpq3D_HtbZxQVXeXC_e7J4ZwttOqDtwjtAT4GjMnJZDw9JhlwWEGbgHORYsjp6jDzLM2ZgA201TRPGANkGNbRBiUyE4zDJroaBV-5tiuc13VSdt60LgzjOGrnE2_bWYjPSbQm-NJVXdTDPulXE6vrdjJPdOV8tYPWSl03dnf5bqPHq8uHi5t0dH99e3E2Sg1jFFJCCBVW23HBoCTYaGKKnEhblIJLy7KSSImlYFgznkvOCkOpzg0UOQWZY0K30elC96UbT21hrG-jrtVLdFMd5ypop35uvJuoKrwpwRmlEvcCh0uBGF4727Rq6hpj61p7G7pGEUYllxT48NfBL_QpdLHPZqAykTEqgPfU_ndHX1Y-I-6BkwVgYmiaaEtlXPuRYm_Q1QqwGkpUfYnqo8T-4ujXxafoX-xSfeZqO_8fVDfnd4uLd5qxqx4
CitedBy_id crossref_primary_10_1016_j_cortex_2024_12_004
crossref_primary_10_3389_fnhum_2021_623766
crossref_primary_10_3390_brainsci13071098
crossref_primary_10_1016_j_ibneur_2024_06_005
crossref_primary_10_1016_j_neubiorev_2024_105846
crossref_primary_10_1007_s11357_021_00367_5
crossref_primary_10_1109_TCSS_2023_3289995
crossref_primary_10_1162_netn_a_00225
crossref_primary_10_3390_cells12030432
crossref_primary_10_1016_j_clinph_2021_12_002
crossref_primary_10_1080_15524256_2022_2042459
crossref_primary_10_1162_imag_a_00127
crossref_primary_10_1016_j_brainres_2024_149418
crossref_primary_10_1016_j_neulet_2022_136618
crossref_primary_10_1093_cercor_bhad542
crossref_primary_10_1016_j_neuroimage_2021_118370
crossref_primary_10_1186_s13195_022_01061_0
crossref_primary_10_3389_fnagi_2022_807971
crossref_primary_10_1007_s11357_024_01366_y
crossref_primary_10_1002_hbm_26299
crossref_primary_10_1016_j_neuroimage_2023_120461
crossref_primary_10_2337_db21_0600
crossref_primary_10_1103_RevModPhys_94_031002
crossref_primary_10_1097_WNR_0000000000001976
crossref_primary_10_3389_fnins_2023_1113695
crossref_primary_10_1093_cercor_bhad439
crossref_primary_10_1016_j_neuroimage_2021_118188
crossref_primary_10_1016_j_neuroimage_2022_119291
crossref_primary_10_3389_fnins_2022_1046562
crossref_primary_10_1002_hbm_25714
Cites_doi 10.3389/fnhum.2017.00420
10.1177/1971400917697342
10.1137/15M1009615
10.1037/a0023910
10.1371/journal.pcbi.1000381
10.1016/j.neuroimage.2016.09.001
10.1126/science.1184819
10.1109/42.906424
10.1073/pnas.1422487112
10.1016/j.media.2007.06.004
10.1017/S1355617710000706
10.3389/fnins.2010.00200
10.1089/brain.2012.0073
10.1016/j.tics.2017.09.006
10.1371/journal.pcbi.1004533
10.1016/j.dcn.2013.11.004
10.3389/fpsyg.2012.00295
10.1093/brain/awu132
10.1162/netn_a_00071
10.1093/cercor/bhw238
10.1006/cbmr.1996.0014
10.1016/j.neuroimage.2016.11.052
10.1371/journal.pcbi.1005209
10.1016/j.neuroimage.2009.06.060
10.1073/pnas.1415122111
10.1038/s41592-018-0235-4
10.1073/pnas.1604898113
10.1016/j.neuron.2017.11.007
10.1002/hbm.23699
10.18637/jss.v067.i01
10.1207/s15427617rhd0203_4
10.1093/comnet/cnu016
10.3233/JAD-150637
10.1098/rstb.2013.0521
10.1073/pnas.1608819113
10.18637/jss.v082.i13
10.1103/PhysRevE.94.032908
10.1093/brain/awx224
10.1093/gigascience/gix004
10.1006/nimg.2002.1132
10.1016/j.neuroimage.2017.01.077
10.1371/journal.pone.0169015
10.1093/cercor/bhu012
10.1016/j.neuroimage.2020.116680
10.1016/S0887-6177(03)00042-8
10.1016/0022-3956(75)90026-6
10.1523/JNEUROSCI.2084-17.2018
10.1103/PhysRevE.69.026113
10.3389/fnhum.2019.00006
10.1073/pnas.1018985108
10.1093/geronb/57.6.P474
10.1038/nn.3993
10.1016/j.neuroimage.2017.06.081
10.1016/j.neuroimage.2016.03.029
10.1016/j.euroneuro.2010.03.008
10.1016/j.neuroimage.2013.05.116
10.1007/s11065-014-9270-9
10.1159/000324307
10.1038/nrn3901
10.1038/nrn3801
10.1016/j.neuroimage.2017.03.020
10.1073/pnas.1502829112
10.1002/hbm.24036
10.3389/fnagi.2016.00086
10.1109/TMI.2010.2046908
10.1523/JNEUROSCI.1451-18.2019
10.1016/S1053-8119(09)70884-5
10.1093/cercor/bhx179
10.1089/brain.2014.0286
10.1523/JNEUROSCI.3067-17.2018
10.1016/j.neuroimage.2019.07.003
10.1088/1742-5468/2008/10/P10008
10.3389/fpsyg.2015.00663
10.1016/j.cub.2017.04.051
10.1152/jn.00338.2011
10.1073/pnas.1714021115
10.1038/s41598-017-00425-z
10.3389/fnagi.2017.00419
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC.
2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC.
– notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.25161
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic
Technology Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Malagurski et al
EISSN 1097-0193
EndPage 4845
ExternalDocumentID PMC7643380
32857461
10_1002_hbm_25161
HBM25161
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: University Research Priority Program “Dynamics of Healthy Aging” at the University of Zurich
– fundername: Velux Stiftung
  funderid: 369
– fundername: University Research Priority Program "Dynamics of Healthy Aging" at the University of Zurich
– fundername: Velux Stiftung
  grantid: 369
– fundername: ;
  grantid: 369
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4431-22237eaebd41f20ca2cd928edf768e45f28808740a469864dc33a9c1d93189023
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:25:07 EDT 2025
Fri Jul 11 13:50:32 EDT 2025
Sat Jul 26 02:18:18 EDT 2025
Mon Jul 21 05:56:33 EDT 2025
Tue Jul 01 01:10:59 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Wed Jan 22 16:33:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords network flexibility
brain networks
healthy aging
resting-state fMRI
multilayer modularity
Language English
License Attribution
2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4431-22237eaebd41f20ca2cd928edf768e45f28808740a469864dc33a9c1d93189023
Notes Funding information
University Research Priority Program “Dynamics of Healthy Aging” at the University of Zurich; Velux Stiftung, Grant/Award Number: 369
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information University Research Priority Program “Dynamics of Healthy Aging” at the University of Zurich; Velux Stiftung, Grant/Award Number: 369
ORCID 0000-0002-7510-5187
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25161
PMID 32857461
PQID 2457543716
PQPubID 996345
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7643380
proquest_miscellaneous_2438683162
proquest_journals_2457543716
pubmed_primary_32857461
crossref_citationtrail_10_1002_hbm_25161
crossref_primary_10_1002_hbm_25161
wiley_primary_10_1002_hbm_25161_HBM25161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 6
2002; 17
2017; 7
2009; 47
2010; 16
2017; 82
2019; 13
2004; 69
1976
2019; 16
1975; 12
2019; 202
2014; 24
2011; 57
2017; 154
1938
2008; 2008
1990; 141
2014; 137
2009; 48
2014; 369
2018; 9
2018; 39
2017; 30
2010; 20
1996; 29
2014; 4
2014; 2
2001
2010; 29
2017; 38
2016; 113
2020; 214
2014; 15
2017; 160
1983
2011; 26
2014; 7
2010; 4
2018; 38
1988
2018; 28
2015; 6
2015; 16
2019; 3
2015; 18
2010; 328
2017; 27
2017; 21
2015; 11
2019; 39
2008; 12
2006
2016; 50
2016; 94
2014; 111
2002; 57B
2016; 14
2001; 20
2015; 67
2011; 2011
2015; 25
2012; 2
2011; 108
2012; 3
2011; 106
2004; 19
2017; 11
2015; 112
2018; 115
2017; 13
2017; 180
2013; 82
2016; 133
2018
2017; 140
2016
2015
2009; 5
2005; 2
2017; 146
2018; 97
2016; 26
2016; 8
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Horn W. (e_1_2_10_47_1) 1983
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_32_1
Peraza L. R. (e_1_2_10_65_1) 2018
e_1_2_10_30_1
e_1_2_10_51_1
Sala‐Llonch R. (e_1_2_10_69_1) 2015; 6
Fornito A. (e_1_2_10_34_1) 2016
e_1_2_10_80_1
Weidlich S. (e_1_2_10_85_1) 2001
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_88_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
Bazzi M. (e_1_2_10_7_1) 2016; 14
e_1_2_10_20_1
e_1_2_10_41_1
Betzel R. F. (e_1_2_10_9_1) 2015
Harlalka V. (e_1_2_10_43_1) 2019; 13
Helmstaedter C. (e_1_2_10_45_1) 1990; 141
Gorgolewski K. (e_1_2_10_38_1) 2011; 2011
e_1_2_10_90_1
Cohen J. (e_1_2_10_22_1) 1988
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
Müller A. M. (e_1_2_10_59_1) 2016; 8
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Ekstrom R. B. (e_1_2_10_28_1) 1976
Aster M. (e_1_2_10_84_1) 2006
Gallen C. L. (e_1_2_10_35_1) 2017; 11
Thurstone L. L. (e_1_2_10_81_1) 1938
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_89_1
References_xml – volume: 16
  start-page: 111
  issue: 1
  year: 2019
  end-page: 116
  article-title: fMRIPrep: A robust preprocessing pipeline for functional MRI
  publication-title: Nature Methods
– volume: 160
  start-page: 32
  year: 2017
  end-page: 40
  article-title: Effects of aging on functional and structural brain connectivity
  publication-title: NeuroImage
– volume: 141
  start-page: 21
  issue: 1
  year: 1990
  end-page: 30
  article-title: The verbal learning and retention test. A useful and differentiated tool in evaluating verbal memory performance
  publication-title: Schweizer Archiv Fur Neurologie Und Psychiatrie
– volume: 57B
  start-page: 474
  issue: 6
  year: 2002
  end-page: 482
  article-title: Longitudinal selectivity in aging populations: Separating mortality‐associated versus experimental components in the Berlin aging study (BASE)
  publication-title: Journals of Gerontology ‐ Series B Psychological Sciences and Social Sciences
– volume: 8
  start-page: 1
  issue: MAY
  year: 2016
  end-page: 20
  article-title: Small changes, but huge impact? The right anterior insula's loss of connection strength during the transition of old to very old age
  publication-title: Frontiers in Aging Neuroscience
– year: 2018
  article-title: The functional brain favours segregated modular connectivity at old age unless targeted by neurodegeneration
  publication-title: bioRxiv
– volume: 4
  start-page: 662
  issue: 9
  year: 2014
  end-page: 676
  article-title: Age‐related reorganizational changes in modularity and functional connectivity of human brain networks
  publication-title: Brain Connectivity
– volume: 27
  start-page: 1561
  issue: 11
  year: 2017
  end-page: 1572.e8
  article-title: Modular segregation of structural brain networks supports the development of executive function in youth
  publication-title: Current Biology
– volume: 2008
  start-page: P10008
  issue: 10
  year: 2008
  article-title: Fast unfolding of communities in large networks
  publication-title: Journal of Statistical Mechanics: Theory and Experiment
– volume: 2
  start-page: 203
  issue: 3
  year: 2014
  end-page: 271
  article-title: Multilayer networks
  publication-title: Journal of Complex Networks
– volume: 214
  year: 2020
  article-title: Functional dedifferentiation of associative resting state networks in older adults—A longitudinal study
  publication-title: NeuroImage
– year: 2001
– volume: 11
  start-page: 420
  year: 2017
  article-title: Static and dynamic measures of human brain connectivity predict complementary aspects of human cognitive performance
  publication-title: Frontiers in Human Neuroscience
– volume: 11
  issue: 12
  year: 2017
  article-title: Modular brain network organization predicts response to cognitive training in older adults
  publication-title: PLoS One
– volume: 108
  start-page: 7641
  issue: 18
  year: 2011
  end-page: 7646
  article-title: Dynamic reconfiguration of human brain networks during learning
  publication-title: PNAS
– volume: 50
  start-page: 709
  year: 2016
  end-page: 718
  article-title: Distinctive resting state network disruptions among Alzheimer's disease, subcortical vascular dementia, and mixed dementia patients
  publication-title: Journal of Alzheimer's Disease
– volume: 16
  start-page: 754
  issue: 5
  year: 2010
  end-page: 760
  article-title: Selective review of cognitive aging
  publication-title: Journal of the International Neuropsychological Society
– volume: 2
  start-page: 125
  issue: 3
  year: 2012
  end-page: 141
  article-title: Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks
  publication-title: Brain Connectivity
– volume: 28
  start-page: 3095
  issue: 9
  year: 2018
  end-page: 3114
  article-title: Local‐global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI
  publication-title: Cerebral Cortex
– volume: 26
  start-page: 4148
  issue: 11
  year: 2016
  end-page: 4159
  article-title: Functional network dynamics of the language system
  publication-title: Cerebral Cortex
– volume: 38
  start-page: 4744
  issue: 9
  year: 2017
  end-page: 4759
  article-title: Cohesive network reconfiguration accompanies extended training
  publication-title: Human Brain Mapping
– year: 1938
– volume: 11
  issue: 12
  year: 2015
  article-title: A functional cartography of cognitive systems
  publication-title: PLoS Computational Biology
– volume: 3
  start-page: 295
  year: 2012
  article-title: Resting state networks and consciousness: Alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness states
  publication-title: Frontiers in Psychology
– volume: 180
  start-page: 417
  year: 2017
  end-page: 427
  article-title: Dynamic graph metrics: Tutorial, toolbox, and tale
  publication-title: Neuroimage
– volume: 137
  start-page: 2382
  issue: Pt 8
  year: 2014
  end-page: 2395
  article-title: The hubs of the human connectome are generally implicated in the anatomy of brain disorders
  publication-title: Brain
– volume: 30
  start-page: 305
  issue: 4
  year: 2017
  end-page: 317
  article-title: Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks
  publication-title: The Neuroradiology Journal
– volume: 21
  start-page: 981
  issue: 12
  year: 2017
  end-page: 996
  article-title: Segregated systems of human brain networks
  publication-title: Trends in Cognitive Sciences
– volume: 140
  start-page: 3012
  issue: 11
  year: 2017
  end-page: 3022
  article-title: Influence of cerebrovascular disease on brain networks in prodromal and clinical Alzheimer's disease
  publication-title: Brain
– volume: 38
  start-page: 2809
  issue: 11
  year: 2018
  end-page: 2817
  article-title: The longitudinal trajectory of default mode network connectivity in healthy older adults varies as a function of age and is associated with changes in episodic memory and processing speed
  publication-title: The Journal of Neuroscience
– volume: 25
  start-page: 1987
  issue: 7
  year: 2015
  end-page: 1999
  article-title: A brain‐wide study of age‐related changes in functional connectivity
  publication-title: Cerebral Cortex
– volume: 146
  start-page: 741
  issue: May 2016
  year: 2017
  end-page: 762
  article-title: Age‐dependent changes in task‐based modular organization of the human brain
  publication-title: NeuroImage
– volume: 29
  start-page: 162
  issue: 3
  year: 1996
  end-page: 173
  article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages
  publication-title: Computers and Biomedical Research
– volume: 67
  start-page: 1
  issue: 1
  year: 2015
  end-page: 48
  article-title: Fitting linear mixed‐effects models using lme4
  publication-title: Journal of Statistical Software
– year: 1976
– volume: 13
  issue: 3
  year: 2017
  article-title: BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods
  publication-title: PLoS Computational Biology
– volume: 112
  start-page: 11678
  issue: 37
  year: 2015
  end-page: 11683
  article-title: Dynamic reconfiguration of frontal brain networks during executive cognition in humans
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 369
  issue: 1653
  year: 2014
  article-title: Graph analysis of functional brain networks: Practical issues in translational neuroscience
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 6
  start-page: 1
  issue: 5
  year: 2017
  end-page: 8
  article-title: Multilayer modeling and analysis of human brain networks
  publication-title: GigaScience
– year: 1983
– volume: 20
  start-page: 519
  issue: 8
  year: 2010
  end-page: 534
  article-title: Exploring the brain network: A review on resting‐state fMRI functional connectivity
  publication-title: European Neuropsychopharmacology
– volume: 57
  start-page: 190
  issue: 2
  year: 2011
  end-page: 192
  article-title: Plasticity and imaging research in healthy aging: Core ideas and profile of the international normal aging and plasticity imaging center (INAPIC)
  publication-title: Gerontology
– volume: 12
  start-page: 189
  issue: 3
  year: 1975
  end-page: 198
  article-title: “Mini‐mental state”. A practical method for grading the cognitive state of patients for the clinician
  publication-title: Journal of Psychiatric Research
– volume: 154
  start-page: 169
  issue: November 2016
  year: 2017
  end-page: 173
  article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI
  publication-title: NeuroImage
– volume: 24
  start-page: 355
  issue: 3
  year: 2014
  end-page: 370
  article-title: How does it STAC up? Revisiting the scaffolding theory of aging and cognition
  publication-title: Neuropsychology Review
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  end-page: 10
  article-title: Positive affect, surprise, and fatigue are correlates of network flexibility
  publication-title: Scientific Reports
– volume: 20
  start-page: 45
  issue: 1
  year: 2001
  end-page: 57
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm
  publication-title: IEEE Transactions on Medical Imaging
– volume: 47
  start-page: S102
  year: 2009
  article-title: Unbiased nonlinear average age‐appropriate brain templates from birth to adulthood
  publication-title: NeuroImage
– volume: 3
  start-page: 427
  issue: 2
  year: 2019
  end-page: 454
  article-title: Evaluation of confound regression strategies for the mitigation of micromovement artifact in studies of dynamic resting‐state functional connectivity and multilayer network modularity
  publication-title: Network Neuroscience
– volume: 13
  start-page: 1
  issue: February
  year: 2019
  end-page: 13
  article-title: Atypical flexibility in dynamic functional connectivity quantifies the severity in autism spectrum disorder
  publication-title: Frontiers in Human Neuroscience
– volume: 2
  start-page: 133
  issue: 3
  year: 2005
  end-page: 158
  article-title: What can we learn from longitudinal studies of adult development?
  publication-title: Research in Human Development
– year: 2015
  article-title: Functional brain modules reconfigure at multiple scales across the human lifespan
  publication-title: arXiv
– volume: 82
  start-page: 208
  year: 2013
  end-page: 225
  article-title: The nuisance of nuisance regression: Spectral misspecification in a common approach to resting‐state fMRI preprocessing reintroduces noise and obscures functional connectivity
  publication-title: NeuroImage
– volume: 38
  start-page: 2442
  issue: 10
  year: 2018
  end-page: 2453
  article-title: Dynamic flexibility in striatal‐cortical circuits supports reinforcement learning
  publication-title: The Journal of Neuroscience
– volume: 6
  start-page: 1
  issue: May
  year: 2015
  end-page: 11
  article-title: Reorganization of brain networks in aging: A review of functional connectivity studies
  publication-title: Frontiers in Psychology
– volume: 9
  start-page: 419
  year: 2018
  article-title: Aging and network properties: Stability over time and links with learning during working memory training
  publication-title: Frontiers in Aging Neuroscience
– volume: 4
  start-page: 200
  year: 2010
  article-title: Modular and hierarchically modular organization of brain networks
  publication-title: Frontiers in Neuroscience
– volume: 48
  start-page: 63
  issue: 1
  year: 2009
  end-page: 72
  article-title: Accurate and robust brain image alignment using boundary‐based registration
  publication-title: NeuroImage
– year: 2016
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  end-page: 1165
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
– volume: 113
  start-page: 12568
  issue: 44
  year: 2016
  end-page: 12573
  article-title: Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 113
  start-page: 9888
  issue: 35
  year: 2016
  end-page: 9891
  article-title: Temporal metastates are associated with differential patterns of time‐resolved connectivity, network topology, and attention
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 2011
  start-page: 5
  year: 2011
  end-page: 13
  article-title: Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Frontiers in Neuroinformatics
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  end-page: 841
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– volume: 94
  issue: 3–1
  year: 2016
  article-title: Evolution of network architecture in a granular material under compression
  publication-title: Physical Review E
– volume: 112
  start-page: 13681
  issue: 44
  year: 2015
  end-page: 13686
  article-title: Emergence of system roles in normative neurodevelopment
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 111
  start-page: E4997
  issue: 46
  year: 2014
  end-page: E5006
  article-title: Decreased segregation of brain systems across the healthy adult lifespan
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  end-page: 1320
  article-title: N4ITK: Improved N3 bias correction
  publication-title: IEEE Transactions on Medical Imaging
– volume: 15
  start-page: 683
  issue: 10
  year: 2014
  end-page: 695
  article-title: Modern network science of neurological disorders
  publication-title: Nature Reviews Neuroscience
– volume: 26
  start-page: 778
  issue: 4
  year: 2011
  end-page: 791
  article-title: On the confounds among retest gains and age cohort differences in the estimation of within‐person change in longitudinal studies: A simulation study
  publication-title: Psychology and Aging
– volume: 69
  issue: 2 Pt 2
  year: 2004
  article-title: Finding and evaluating community structure in networks
  publication-title: Physical Review E ‐ Statistical, Nonlinear, and Soft Matter Physics
– volume: 133
  start-page: 321
  year: 2016
  end-page: 330
  article-title: Reduced functional segregation between the default mode network and the executive control network in healthy older adults: A longitudinal study
  publication-title: NeuroImage
– volume: 97
  start-page: 14
  issue: 1
  year: 2018
  end-page: 31
  article-title: From maps to multi‐dimensional network mechanisms of mental disorders
  publication-title: Neuron
– volume: 202
  start-page: 115990
  year: 2019
  article-title: The community structure of functional brain networks exhibits scale‐specific patterns of inter‐ and intra‐subject variability
  publication-title: Neuroimage
– volume: 115
  start-page: E5144
  issue: 22
  year: 2018
  end-page: E5153
  article-title: Socioeconomic status moderates age‐related differences in the brain's functional network organization and anatomy across the adult lifespan
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 1988
– year: 2006
– volume: 5
  start-page: 14
  issue: 5
  year: 2009
  end-page: 23
  article-title: Functional brain networks develop from a “local to distributed” organization
  publication-title: PLoS Computational Biology
– volume: 7
  start-page: 76
  issue: 16
  year: 2014
  end-page: 93
  article-title: Topological organization of the human brain functional connectome across the lifespan
  publication-title: Developmental Cognitive Neuroscience
– volume: 12
  start-page: 26
  issue: 1
  year: 2008
  end-page: 41
  article-title: Symmetric diffeomorphic image registration with cross‐correlation: Evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Medical Image Analysis
– volume: 154
  start-page: 174
  year: 2017
  end-page: 187
  article-title: Benchmarking of participant‐level confound regression strategies for the control of motion artifact in studies of functional connectivity
  publication-title: NeuroImage
– volume: 39
  start-page: 2742
  issue: 7
  year: 2018
  end-page: 2752
  article-title: Functional segregation loss over time is moderated by APOE genotype in healthy elderly
  publication-title: Human Brain Mapping
– volume: 39
  start-page: 5534
  issue: 28
  year: 2019
  end-page: 5550
  article-title: Longitudinal changes in the cerebral cortex functional Organization of Healthy Elderly
  publication-title: The Journal of Neuroscience
– volume: 16
  start-page: 159
  issue: 3
  year: 2015
  end-page: 172
  article-title: The connectomics of brain disorders
  publication-title: Nature Reviews Neuroscience
– volume: 19
  start-page: 281
  issue: 2
  year: 2004
  end-page: 288
  article-title: The trail making test as an initial screening procedure for neuropsychological impairment in older children
  publication-title: Archives of Clinical Neuropsychology
– volume: 14
  start-page: 1
  year: 2016
  end-page: 41
  article-title: Community detection in temporal multilayer networks, with an application to correlation networks
  publication-title: MMS: A SIAM Interdisciplinary Journal
– volume: 82
  start-page: 1
  issue: 13
  year: 2017
  end-page: 26
  article-title: lmerTest package: Tests in linear mixed effects models
  publication-title: Journal of Statistical Software
– volume: 18
  start-page: 744
  issue: 5
  year: 2015
  end-page: 751
  article-title: Learning‐induced autonomy of sensorimotor systems
  publication-title: Nature Neuroscience
– volume: 328
  start-page: 876
  issue: 5980
  year: 2010
  end-page: 878
  article-title: Community structure in time‐dependent, multiscale, and multiplex networks
  publication-title: Science
– ident: e_1_2_10_66_1
  doi: 10.3389/fnhum.2017.00420
– ident: e_1_2_10_76_1
  doi: 10.1177/1971400917697342
– volume: 14
  start-page: 1
  year: 2016
  ident: e_1_2_10_7_1
  article-title: Community detection in temporal multilayer networks, with an application to correlation networks
  publication-title: MMS: A SIAM Interdisciplinary Journal
  doi: 10.1137/15M1009615
– ident: e_1_2_10_46_1
  doi: 10.1037/a0023910
– ident: e_1_2_10_30_1
  doi: 10.1371/journal.pcbi.1000381
– ident: e_1_2_10_73_1
  doi: 10.1016/j.neuroimage.2016.09.001
– ident: e_1_2_10_58_1
  doi: 10.1126/science.1184819
– ident: e_1_2_10_89_1
  doi: 10.1109/42.906424
– ident: e_1_2_10_13_1
  doi: 10.1073/pnas.1422487112
– ident: e_1_2_10_2_1
  doi: 10.1016/j.media.2007.06.004
– ident: e_1_2_10_70_1
  doi: 10.1017/S1355617710000706
– ident: e_1_2_10_57_1
  doi: 10.3389/fnins.2010.00200
– ident: e_1_2_10_86_1
  doi: 10.1089/brain.2012.0073
– volume: 141
  start-page: 21
  issue: 1
  year: 1990
  ident: e_1_2_10_45_1
  article-title: The verbal learning and retention test. A useful and differentiated tool in evaluating verbal memory performance
  publication-title: Schweizer Archiv Fur Neurologie Und Psychiatrie
– ident: e_1_2_10_87_1
  doi: 10.1016/j.tics.2017.09.006
– ident: e_1_2_10_56_1
  doi: 10.1371/journal.pcbi.1004533
– ident: e_1_2_10_15_1
  doi: 10.1016/j.dcn.2013.11.004
– ident: e_1_2_10_44_1
  doi: 10.3389/fpsyg.2012.00295
– ident: e_1_2_10_24_1
  doi: 10.1093/brain/awu132
– ident: e_1_2_10_54_1
  doi: 10.1162/netn_a_00071
– ident: e_1_2_10_16_1
  doi: 10.1093/cercor/bhw238
– ident: e_1_2_10_23_1
  doi: 10.1006/cbmr.1996.0014
– ident: e_1_2_10_60_1
  doi: 10.1016/j.neuroimage.2016.11.052
– ident: e_1_2_10_39_1
  doi: 10.1371/journal.pcbi.1005209
– ident: e_1_2_10_40_1
  doi: 10.1016/j.neuroimage.2009.06.060
– ident: e_1_2_10_18_1
  doi: 10.1073/pnas.1415122111
– ident: e_1_2_10_29_1
  doi: 10.1038/s41592-018-0235-4
– ident: e_1_2_10_74_1
  doi: 10.1073/pnas.1604898113
– ident: e_1_2_10_14_1
  doi: 10.1016/j.neuron.2017.11.007
– ident: e_1_2_10_80_1
  doi: 10.1002/hbm.23699
– ident: e_1_2_10_5_1
  doi: 10.18637/jss.v067.i01
– volume-title: Leistungsprüfsystem L‐P‐S
  year: 1983
  ident: e_1_2_10_47_1
– ident: e_1_2_10_72_1
  doi: 10.1207/s15427617rhd0203_4
– volume-title: Fundamentals of brain network analysis. Fundamentals of brain network analysis
  year: 2016
  ident: e_1_2_10_34_1
– ident: e_1_2_10_51_1
  doi: 10.1093/comnet/cnu016
– ident: e_1_2_10_50_1
  doi: 10.3233/JAD-150637
– ident: e_1_2_10_27_1
  doi: 10.1098/rstb.2013.0521
– ident: e_1_2_10_12_1
  doi: 10.1073/pnas.1608819113
– ident: e_1_2_10_52_1
  doi: 10.18637/jss.v082.i13
– ident: e_1_2_10_64_1
  doi: 10.1103/PhysRevE.94.032908
– ident: e_1_2_10_19_1
  doi: 10.1093/brain/awx224
– ident: e_1_2_10_26_1
  doi: 10.1093/gigascience/gix004
– ident: e_1_2_10_49_1
  doi: 10.1006/nimg.2002.1132
– ident: e_1_2_10_25_1
  doi: 10.1016/j.neuroimage.2017.01.077
– volume: 11
  start-page: e0169015
  issue: 12
  year: 2017
  ident: e_1_2_10_35_1
  article-title: Modular brain network organization predicts response to cognitive training in older adults
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169015
– ident: e_1_2_10_36_1
  doi: 10.1093/cercor/bhu012
– ident: e_1_2_10_55_1
  doi: 10.1016/j.neuroimage.2020.116680
– ident: e_1_2_10_67_1
  doi: 10.1016/S0887-6177(03)00042-8
– ident: e_1_2_10_31_1
  doi: 10.1016/0022-3956(75)90026-6
– ident: e_1_2_10_37_1
  doi: 10.1523/JNEUROSCI.2084-17.2018
– ident: e_1_2_10_61_1
  doi: 10.1103/PhysRevE.69.026113
– volume: 13
  start-page: 1
  year: 2019
  ident: e_1_2_10_43_1
  article-title: Atypical flexibility in dynamic functional connectivity quantifies the severity in autism spectrum disorder
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2019.00006
– ident: e_1_2_10_3_1
  doi: 10.1073/pnas.1018985108
– ident: e_1_2_10_53_1
  doi: 10.1093/geronb/57.6.P474
– ident: e_1_2_10_4_1
  doi: 10.1038/nn.3993
– year: 2018
  ident: e_1_2_10_65_1
  article-title: The functional brain favours segregated modular connectivity at old age unless targeted by neurodegeneration
  publication-title: bioRxiv
– ident: e_1_2_10_75_1
  doi: 10.1016/j.neuroimage.2017.06.081
– ident: e_1_2_10_62_1
  doi: 10.1016/j.neuroimage.2016.03.029
– ident: e_1_2_10_83_1
  doi: 10.1016/j.euroneuro.2010.03.008
– ident: e_1_2_10_42_1
  doi: 10.1016/j.neuroimage.2013.05.116
– ident: e_1_2_10_68_1
  doi: 10.1007/s11065-014-9270-9
– ident: e_1_2_10_90_1
  doi: 10.1159/000324307
– ident: e_1_2_10_33_1
  doi: 10.1038/nrn3901
– volume-title: Wechsler‐Intelligenztest für Erwachsene (WIE). Deutschsprachige Bearbeitung und Adaptation des WAIS‐III von David Wechsler
  year: 2006
  ident: e_1_2_10_84_1
– ident: e_1_2_10_79_1
  doi: 10.1038/nrn3801
– volume: 2011
  start-page: 5
  year: 2011
  ident: e_1_2_10_38_1
  article-title: Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python
  publication-title: Frontiers in Neuroinformatics
– ident: e_1_2_10_21_1
  doi: 10.1016/j.neuroimage.2017.03.020
– year: 2015
  ident: e_1_2_10_9_1
  article-title: Functional brain modules reconfigure at multiple scales across the human lifespan
  publication-title: arXiv
– volume-title: Statistical Power analysis for the behavioral sciences
  year: 1988
  ident: e_1_2_10_22_1
– ident: e_1_2_10_41_1
  doi: 10.1073/pnas.1502829112
– ident: e_1_2_10_63_1
  doi: 10.1002/hbm.24036
– volume: 8
  start-page: 1
  year: 2016
  ident: e_1_2_10_59_1
  article-title: Small changes, but huge impact? The right anterior insula's loss of connection strength during the transition of old to very old age
  publication-title: Frontiers in Aging Neuroscience
  doi: 10.3389/fnagi.2016.00086
– ident: e_1_2_10_82_1
  doi: 10.1109/TMI.2010.2046908
– ident: e_1_2_10_20_1
  doi: 10.1523/JNEUROSCI.1451-18.2019
– ident: e_1_2_10_32_1
  doi: 10.1016/S1053-8119(09)70884-5
– ident: e_1_2_10_71_1
  doi: 10.1093/cercor/bhx179
– ident: e_1_2_10_77_1
  doi: 10.1089/brain.2014.0286
– ident: e_1_2_10_78_1
  doi: 10.1523/JNEUROSCI.3067-17.2018
– ident: e_1_2_10_8_1
  doi: 10.1016/j.neuroimage.2019.07.003
– ident: e_1_2_10_11_1
  doi: 10.1088/1742-5468/2008/10/P10008
– volume-title: Manual for kit of factor referenced cognitive tests
  year: 1976
  ident: e_1_2_10_28_1
– volume: 6
  start-page: 1
  year: 2015
  ident: e_1_2_10_69_1
  article-title: Reorganization of brain networks in aging: A review of functional connectivity studies
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2015.00663
– ident: e_1_2_10_6_1
  doi: 10.1016/j.cub.2017.04.051
– ident: e_1_2_10_88_1
  doi: 10.1152/jn.00338.2011
– volume-title: Primary mental abilities
  year: 1938
  ident: e_1_2_10_81_1
– ident: e_1_2_10_17_1
  doi: 10.1073/pnas.1714021115
– volume-title: Diagnosticum für Cebebralschädigung (DCS). Ein visueller Lern‐ und Gedächtnistestnach F. Hiller
  year: 2001
  ident: e_1_2_10_85_1
– ident: e_1_2_10_10_1
  doi: 10.1038/s41598-017-00425-z
– ident: e_1_2_10_48_1
  doi: 10.3389/fnagi.2017.00419
SSID ssj0011501
Score 2.4733727
Snippet Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross‐sectional studies imply lower modularity...
Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross-sectional studies imply lower modularity...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4829
SubjectTerms Aging
Brain
Brain architecture
Brain mapping
brain networks
Cognitive ability
Cognitive tasks
Cross-sectional studies
Flexibility
Functional magnetic resonance imaging
Functional morphology
Geriatrics
healthy aging
Heterogeneity
Modular structures
Modularity
multilayer modularity
Multilayers
network flexibility
Older people
Reconfiguration
resting‐state fMRI
Variability
Title Longitudinal functional brain network reconfiguration in healthy aging
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25161
https://www.ncbi.nlm.nih.gov/pubmed/32857461
https://www.proquest.com/docview/2457543716
https://www.proquest.com/docview/2438683162
https://pubmed.ncbi.nlm.nih.gov/PMC7643380
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9te0C8bLAN6BiVh9DES9rGdr7E00BU1bQihJjUB6TIdhxWQdNpax62v353dpJRBhLiLZKvzYfvfL87n38H8MZgUCEQBgemyGib0caBEhp1WWWhLoUypaSzw9NP8eRcns6i2Qa8a8_CeH6ILuFGluHWazJwpa-H96ShF3oxQOfsQh-q1SJA9KWjjiKg44ItdLFBhitwyyo04sPul-u-6AHAfFgn-St-dQ5ovAPf2kf3dSc_BvVKD8ztb6yO__luT2C7AabsxGvSU9iw1S7snVQYlC9u2DFzpaIuB78Lj6bNjvwejM-W1PGoLqi7FiMv6ZOLTFPvCVb5KnPm4u5y_r32CsdwyJ_AvGGuTdI-nI8_fv0wCZreDIGRiDkCghWJVVYXMiz5yCiOk81TW5QYv1gZlRwXBmr3p6hFZSwLI3D6TVhkuIhkCBSewVa1rOwLYNKYRBMLFvWeiYoktTziKpSlEaMitlkP3razlJuGuJz6Z_zMPeUyz_Fz5e5z9eB1J3rp2Tr-JHTYTnXeGOx1ziXiVikweuzBUTeMpkb7J6qyy5pkRBqnIox5D557zejuIngaJZL-PFnTmU6AaLzXR6r5haPzThAUinSEr-lU4u8Pnk_eT93Fwb-LvoTHnDIErgDnELZWV7V9hTBqpfuwyeXnvktC9J3t3AEymhqV
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hKkEvlEdbQkNZEKq4OMS765fEhVZEARIOCCQuyLLX64IAB0F8SH89M7u2IaWVEDdLO4kfO7PzzezsNwDbCoMKgTDYUVlE24zadxKRoi4nkZvmIlG5pLPDwxO_fy6PLryLGdirz8JYfogm4UaWYdZrMnBKSO8-s4ZepXcd9M4U-3ygjt4moDptyKMI6phwC52sE-EaXPMKdflu89Npb_QKYr6ulHyJYI0L6n2Cy_rhbeXJTaccpx315y9ex_e-3SIsVNiU7VtlWoIZXSzDyn6BcfndhP1gplrUpOGXYW5YbcqvQG8woqZHZUYNthg5SptfZCm1n2CFLTRnJvTOr3-XVucYDtlDmBNmOiV9hvPewdmvvlO1Z3CURNjhELIIdKLTTLo576qE43zzUGc5hjBaejnHtYE6_iXUpdKXmRKoAcrNIlxHIsQKX2C2GBV6FZhUKkiJCIvaz3hZEGru8cSVuRLdzNdRC3bqaYpVxV1OLTRuY8u6zGP8XLH5XC3YakTvLWHHv4Ta9VzHlc0-xlwidJUCA8gWbDbDaG20hZIUelSSjAj9ULg-b8FXqxrNXQQPvUDSnwdTStMIEJP39EhxfWUYvQPEhSLs4msanfj_g8f9n0NzsfZ20Q2Y758NB_Hg8OT4G3zklDAw9ThtmB0_lHodUdU4_W6M5wlzpBzk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkFAvtIUCS4G6VVVxyZLYzkucaOlq27KoQiBxQIoS2ykIyCLYHOiv74ydhG4BCfUWyZOH4xnPN_b4G4CPCoMKgTDYUzqlbUYTebkoUJfzNChKkatS0tnh0UE0PJbfT8KTGdhpz8I4fohuwY0sw87XZODXuty-Jw09K6766Jwp9JmTkZ-QSu8ddtxRhHRstIU-1ktxCm5phXy-3d067YweIMyHiZJ_A1jrgQYv4bT9dpd4ctGvJ0Vf_f6H1vE_O_cKFhpkynadKr2GGVMtwtJuhVH51R37xGyuqF2EX4T5UbMlvwSD_TGVPKo1lddi5Cbd6iIrqPgEq1yaObOBd3n-q3Yax7DJHcG8Y7ZO0hs4Hnw9-jL0muIMnpIIOjzCFbHJTaFlUHJf5RxHmydGlxjAGBmWHGcGqveXU43KSGolcPxVoFOcRVJECsswW40rswpMKhUXRINFxWdCHSeGhzwPZKmEryOT9mCrHaVMNczlVEDjMnOcyzzD35XZ39WDD53otaPreExovR3qrLHY24xLBK5SYPjYg_ddM9oabaDklRnXJCOSKBFBxHuw4jSje4vgSRhLeng8pTOdAPF4T7dU52eWzztGVCgSH7tpVeLpD8-Gn0f2Yu35ou9g_ufeINv_dvDjLbzgtFpgk3HWYXZyU5sNhFSTYtOazh8ptBuc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+functional+brain+network+reconfiguration+in+healthy+aging&rft.jtitle=Human+brain+mapping&rft.au=Malagurski%2C+Brigitta&rft.au=Liem%2C+Franziskus&rft.au=Oschwald%2C+Jessica&rft.au=M%C3%A9rillat%2C+Susan&rft.date=2020-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=41&rft.issue=17&rft.spage=4829&rft.epage=4845&rft_id=info:doi/10.1002%2Fhbm.25161&rft_id=info%3Apmid%2F32857461&rft.externalDocID=PMC7643380
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon