Longitudinal functional brain network reconfiguration in healthy aging
Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross‐sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions...
Saved in:
Published in | Human brain mapping Vol. 41; no. 17; pp. 4829 - 4845 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross‐sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions of resting‐state‐fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph‐theoretic analysis to investigate the time‐evolving modular structure of the whole‐brain network, by maximizing the multilayer modularity across four time points. Global flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in healthy elderly than in a temporal null model. Further, global flexibility, as well as network‐specific flexibility of the default mode, frontoparietal control, and somatomotor networks, were significantly associated with age at baseline. These results indicate that older age is related to higher variability in modular organization. The temporal metrics were not associated with simultaneous changes in processing speed or learning performance in the context of memory encoding. Finally, this approach provides global indices for longitudinal change across a given time span and it may contribute to uncovering patterns of modular variability in healthy and clinical aging populations.
In this research paper, we used a longitudinal dataset consisting of four occasions of resting‐state‐fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph‐theoretic analysis to investigate the time‐evolving modular structure of the whole‐brain network, by maximizing the multilayer modularity across four time points. Network flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in older adults than in a null model and with increasing age, indicating that older age is related to increased variability in modular organization. |
---|---|
AbstractList | Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross‐sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions of resting‐state‐fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph‐theoretic analysis to investigate the time‐evolving modular structure of the whole‐brain network, by maximizing the multilayer modularity across four time points. Global flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in healthy elderly than in a temporal null model. Further, global flexibility, as well as network‐specific flexibility of the default mode, frontoparietal control, and somatomotor networks, were significantly associated with age at baseline. These results indicate that older age is related to higher variability in modular organization. The temporal metrics were not associated with simultaneous changes in processing speed or learning performance in the context of memory encoding. Finally, this approach provides global indices for longitudinal change across a given time span and it may contribute to uncovering patterns of modular variability in healthy and clinical aging populations. Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross‐sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions of resting‐state‐fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph‐theoretic analysis to investigate the time‐evolving modular structure of the whole‐brain network, by maximizing the multilayer modularity across four time points. Global flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in healthy elderly than in a temporal null model. Further, global flexibility, as well as network‐specific flexibility of the default mode, frontoparietal control, and somatomotor networks, were significantly associated with age at baseline. These results indicate that older age is related to higher variability in modular organization. The temporal metrics were not associated with simultaneous changes in processing speed or learning performance in the context of memory encoding. Finally, this approach provides global indices for longitudinal change across a given time span and it may contribute to uncovering patterns of modular variability in healthy and clinical aging populations. In this research paper, we used a longitudinal dataset consisting of four occasions of resting‐state‐fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph‐theoretic analysis to investigate the time‐evolving modular structure of the whole‐brain network, by maximizing the multilayer modularity across four time points. Network flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in older adults than in a null model and with increasing age, indicating that older age is related to increased variability in modular organization. Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross-sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions of resting-state-fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph-theoretic analysis to investigate the time-evolving modular structure of the whole-brain network, by maximizing the multilayer modularity across four time points. Global flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in healthy elderly than in a temporal null model. Further, global flexibility, as well as network-specific flexibility of the default mode, frontoparietal control, and somatomotor networks, were significantly associated with age at baseline. These results indicate that older age is related to higher variability in modular organization. The temporal metrics were not associated with simultaneous changes in processing speed or learning performance in the context of memory encoding. Finally, this approach provides global indices for longitudinal change across a given time span and it may contribute to uncovering patterns of modular variability in healthy and clinical aging populations.Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross-sectional studies imply lower modularity and significant heterogeneity in modular architecture across older subjects. Here, we used a longitudinal dataset consisting of four occasions of resting-state-fMRI and cognitive testing (spanning 4 years) in 150 healthy older adults. We applied a graph-theoretic analysis to investigate the time-evolving modular structure of the whole-brain network, by maximizing the multilayer modularity across four time points. Global flexibility, which reflects the tendency of brain nodes to switch between modules across time, was significantly higher in healthy elderly than in a temporal null model. Further, global flexibility, as well as network-specific flexibility of the default mode, frontoparietal control, and somatomotor networks, were significantly associated with age at baseline. These results indicate that older age is related to higher variability in modular organization. The temporal metrics were not associated with simultaneous changes in processing speed or learning performance in the context of memory encoding. Finally, this approach provides global indices for longitudinal change across a given time span and it may contribute to uncovering patterns of modular variability in healthy and clinical aging populations. |
Author | Mérillat, Susan Jäncke, Lutz Malagurski, Brigitta Oschwald, Jessica Liem, Franziskus |
AuthorAffiliation | 2 Division of Neuropsychology, Institute of Psychology University of Zurich Zurich Switzerland 1 University Research Priority Program “Dynamics of Healthy Aging” University of Zurich Zurich Switzerland |
AuthorAffiliation_xml | – name: 1 University Research Priority Program “Dynamics of Healthy Aging” University of Zurich Zurich Switzerland – name: 2 Division of Neuropsychology, Institute of Psychology University of Zurich Zurich Switzerland |
Author_xml | – sequence: 1 givenname: Brigitta orcidid: 0000-0002-7510-5187 surname: Malagurski fullname: Malagurski, Brigitta email: brigitta.malagurski@uzh.ch organization: University of Zurich – sequence: 2 givenname: Franziskus surname: Liem fullname: Liem, Franziskus organization: University of Zurich – sequence: 3 givenname: Jessica surname: Oschwald fullname: Oschwald, Jessica organization: University of Zurich – sequence: 4 givenname: Susan surname: Mérillat fullname: Mérillat, Susan organization: University of Zurich – sequence: 5 givenname: Lutz surname: Jäncke fullname: Jäncke, Lutz organization: University of Zurich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32857461$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLxDAUhYMovhf-ASm40UU1N0mTdCOo-IIRN7oOmTTtRDuJpq3D_HtbZxQVXeXC_e7J4ZwttOqDtwjtAT4GjMnJZDw9JhlwWEGbgHORYsjp6jDzLM2ZgA201TRPGANkGNbRBiUyE4zDJroaBV-5tiuc13VSdt60LgzjOGrnE2_bWYjPSbQm-NJVXdTDPulXE6vrdjJPdOV8tYPWSl03dnf5bqPHq8uHi5t0dH99e3E2Sg1jFFJCCBVW23HBoCTYaGKKnEhblIJLy7KSSImlYFgznkvOCkOpzg0UOQWZY0K30elC96UbT21hrG-jrtVLdFMd5ypop35uvJuoKrwpwRmlEvcCh0uBGF4727Rq6hpj61p7G7pGEUYllxT48NfBL_QpdLHPZqAykTEqgPfU_ndHX1Y-I-6BkwVgYmiaaEtlXPuRYm_Q1QqwGkpUfYnqo8T-4ujXxafoX-xSfeZqO_8fVDfnd4uLd5qxqx4 |
CitedBy_id | crossref_primary_10_1016_j_cortex_2024_12_004 crossref_primary_10_3389_fnhum_2021_623766 crossref_primary_10_3390_brainsci13071098 crossref_primary_10_1016_j_ibneur_2024_06_005 crossref_primary_10_1016_j_neubiorev_2024_105846 crossref_primary_10_1007_s11357_021_00367_5 crossref_primary_10_1109_TCSS_2023_3289995 crossref_primary_10_1162_netn_a_00225 crossref_primary_10_3390_cells12030432 crossref_primary_10_1016_j_clinph_2021_12_002 crossref_primary_10_1080_15524256_2022_2042459 crossref_primary_10_1162_imag_a_00127 crossref_primary_10_1016_j_brainres_2024_149418 crossref_primary_10_1016_j_neulet_2022_136618 crossref_primary_10_1093_cercor_bhad542 crossref_primary_10_1016_j_neuroimage_2021_118370 crossref_primary_10_1186_s13195_022_01061_0 crossref_primary_10_3389_fnagi_2022_807971 crossref_primary_10_1007_s11357_024_01366_y crossref_primary_10_1002_hbm_26299 crossref_primary_10_1016_j_neuroimage_2023_120461 crossref_primary_10_2337_db21_0600 crossref_primary_10_1103_RevModPhys_94_031002 crossref_primary_10_1097_WNR_0000000000001976 crossref_primary_10_3389_fnins_2023_1113695 crossref_primary_10_1093_cercor_bhad439 crossref_primary_10_1016_j_neuroimage_2021_118188 crossref_primary_10_1016_j_neuroimage_2022_119291 crossref_primary_10_3389_fnins_2022_1046562 crossref_primary_10_1002_hbm_25714 |
Cites_doi | 10.3389/fnhum.2017.00420 10.1177/1971400917697342 10.1137/15M1009615 10.1037/a0023910 10.1371/journal.pcbi.1000381 10.1016/j.neuroimage.2016.09.001 10.1126/science.1184819 10.1109/42.906424 10.1073/pnas.1422487112 10.1016/j.media.2007.06.004 10.1017/S1355617710000706 10.3389/fnins.2010.00200 10.1089/brain.2012.0073 10.1016/j.tics.2017.09.006 10.1371/journal.pcbi.1004533 10.1016/j.dcn.2013.11.004 10.3389/fpsyg.2012.00295 10.1093/brain/awu132 10.1162/netn_a_00071 10.1093/cercor/bhw238 10.1006/cbmr.1996.0014 10.1016/j.neuroimage.2016.11.052 10.1371/journal.pcbi.1005209 10.1016/j.neuroimage.2009.06.060 10.1073/pnas.1415122111 10.1038/s41592-018-0235-4 10.1073/pnas.1604898113 10.1016/j.neuron.2017.11.007 10.1002/hbm.23699 10.18637/jss.v067.i01 10.1207/s15427617rhd0203_4 10.1093/comnet/cnu016 10.3233/JAD-150637 10.1098/rstb.2013.0521 10.1073/pnas.1608819113 10.18637/jss.v082.i13 10.1103/PhysRevE.94.032908 10.1093/brain/awx224 10.1093/gigascience/gix004 10.1006/nimg.2002.1132 10.1016/j.neuroimage.2017.01.077 10.1371/journal.pone.0169015 10.1093/cercor/bhu012 10.1016/j.neuroimage.2020.116680 10.1016/S0887-6177(03)00042-8 10.1016/0022-3956(75)90026-6 10.1523/JNEUROSCI.2084-17.2018 10.1103/PhysRevE.69.026113 10.3389/fnhum.2019.00006 10.1073/pnas.1018985108 10.1093/geronb/57.6.P474 10.1038/nn.3993 10.1016/j.neuroimage.2017.06.081 10.1016/j.neuroimage.2016.03.029 10.1016/j.euroneuro.2010.03.008 10.1016/j.neuroimage.2013.05.116 10.1007/s11065-014-9270-9 10.1159/000324307 10.1038/nrn3901 10.1038/nrn3801 10.1016/j.neuroimage.2017.03.020 10.1073/pnas.1502829112 10.1002/hbm.24036 10.3389/fnagi.2016.00086 10.1109/TMI.2010.2046908 10.1523/JNEUROSCI.1451-18.2019 10.1016/S1053-8119(09)70884-5 10.1093/cercor/bhx179 10.1089/brain.2014.0286 10.1523/JNEUROSCI.3067-17.2018 10.1016/j.neuroimage.2019.07.003 10.1088/1742-5468/2008/10/P10008 10.3389/fpsyg.2015.00663 10.1016/j.cub.2017.04.051 10.1152/jn.00338.2011 10.1073/pnas.1714021115 10.1038/s41598-017-00425-z 10.3389/fnagi.2017.00419 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals LLC. 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC. – notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
DOI | 10.1002/hbm.25161 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Malagurski et al |
EISSN | 1097-0193 |
EndPage | 4845 |
ExternalDocumentID | PMC7643380 32857461 10_1002_hbm_25161 HBM25161 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: University Research Priority Program “Dynamics of Healthy Aging” at the University of Zurich – fundername: Velux Stiftung funderid: 369 – fundername: University Research Priority Program "Dynamics of Healthy Aging" at the University of Zurich – fundername: Velux Stiftung grantid: 369 – fundername: ; grantid: 369 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c4431-22237eaebd41f20ca2cd928edf768e45f28808740a469864dc33a9c1d93189023 |
IEDL.DBID | DR2 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 18:25:07 EDT 2025 Fri Jul 11 13:50:32 EDT 2025 Sat Jul 26 02:18:18 EDT 2025 Mon Jul 21 05:56:33 EDT 2025 Tue Jul 01 01:10:59 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Wed Jan 22 16:33:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | network flexibility brain networks healthy aging resting-state fMRI multilayer modularity |
Language | English |
License | Attribution 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4431-22237eaebd41f20ca2cd928edf768e45f28808740a469864dc33a9c1d93189023 |
Notes | Funding information University Research Priority Program “Dynamics of Healthy Aging” at the University of Zurich; Velux Stiftung, Grant/Award Number: 369 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information University Research Priority Program “Dynamics of Healthy Aging” at the University of Zurich; Velux Stiftung, Grant/Award Number: 369 |
ORCID | 0000-0002-7510-5187 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25161 |
PMID | 32857461 |
PQID | 2457543716 |
PQPubID | 996345 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7643380 proquest_miscellaneous_2438683162 proquest_journals_2457543716 pubmed_primary_32857461 crossref_citationtrail_10_1002_hbm_25161 crossref_primary_10_1002_hbm_25161 wiley_primary_10_1002_hbm_25161_HBM25161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 6 2002; 17 2017; 7 2009; 47 2010; 16 2017; 82 2019; 13 2004; 69 1976 2019; 16 1975; 12 2019; 202 2014; 24 2011; 57 2017; 154 1938 2008; 2008 1990; 141 2014; 137 2009; 48 2014; 369 2018; 9 2018; 39 2017; 30 2010; 20 1996; 29 2014; 4 2014; 2 2001 2010; 29 2017; 38 2016; 113 2020; 214 2014; 15 2017; 160 1983 2011; 26 2014; 7 2010; 4 2018; 38 1988 2018; 28 2015; 6 2015; 16 2019; 3 2015; 18 2010; 328 2017; 27 2017; 21 2015; 11 2019; 39 2008; 12 2006 2016; 50 2016; 94 2014; 111 2002; 57B 2016; 14 2001; 20 2015; 67 2011; 2011 2015; 25 2012; 2 2011; 108 2012; 3 2011; 106 2004; 19 2017; 11 2015; 112 2018; 115 2017; 13 2017; 180 2013; 82 2016; 133 2018 2017; 140 2016 2015 2009; 5 2005; 2 2017; 146 2018; 97 2016; 26 2016; 8 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Horn W. (e_1_2_10_47_1) 1983 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_11_1 e_1_2_10_32_1 Peraza L. R. (e_1_2_10_65_1) 2018 e_1_2_10_30_1 e_1_2_10_51_1 Sala‐Llonch R. (e_1_2_10_69_1) 2015; 6 Fornito A. (e_1_2_10_34_1) 2016 e_1_2_10_80_1 Weidlich S. (e_1_2_10_85_1) 2001 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_27_1 e_1_2_10_88_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 Bazzi M. (e_1_2_10_7_1) 2016; 14 e_1_2_10_20_1 e_1_2_10_41_1 Betzel R. F. (e_1_2_10_9_1) 2015 Harlalka V. (e_1_2_10_43_1) 2019; 13 Helmstaedter C. (e_1_2_10_45_1) 1990; 141 Gorgolewski K. (e_1_2_10_38_1) 2011; 2011 e_1_2_10_90_1 Cohen J. (e_1_2_10_22_1) 1988 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 Müller A. M. (e_1_2_10_59_1) 2016; 8 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Ekstrom R. B. (e_1_2_10_28_1) 1976 Aster M. (e_1_2_10_84_1) 2006 Gallen C. L. (e_1_2_10_35_1) 2017; 11 Thurstone L. L. (e_1_2_10_81_1) 1938 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_89_1 |
References_xml | – volume: 16 start-page: 111 issue: 1 year: 2019 end-page: 116 article-title: fMRIPrep: A robust preprocessing pipeline for functional MRI publication-title: Nature Methods – volume: 160 start-page: 32 year: 2017 end-page: 40 article-title: Effects of aging on functional and structural brain connectivity publication-title: NeuroImage – volume: 141 start-page: 21 issue: 1 year: 1990 end-page: 30 article-title: The verbal learning and retention test. A useful and differentiated tool in evaluating verbal memory performance publication-title: Schweizer Archiv Fur Neurologie Und Psychiatrie – volume: 57B start-page: 474 issue: 6 year: 2002 end-page: 482 article-title: Longitudinal selectivity in aging populations: Separating mortality‐associated versus experimental components in the Berlin aging study (BASE) publication-title: Journals of Gerontology ‐ Series B Psychological Sciences and Social Sciences – volume: 8 start-page: 1 issue: MAY year: 2016 end-page: 20 article-title: Small changes, but huge impact? The right anterior insula's loss of connection strength during the transition of old to very old age publication-title: Frontiers in Aging Neuroscience – year: 2018 article-title: The functional brain favours segregated modular connectivity at old age unless targeted by neurodegeneration publication-title: bioRxiv – volume: 4 start-page: 662 issue: 9 year: 2014 end-page: 676 article-title: Age‐related reorganizational changes in modularity and functional connectivity of human brain networks publication-title: Brain Connectivity – volume: 27 start-page: 1561 issue: 11 year: 2017 end-page: 1572.e8 article-title: Modular segregation of structural brain networks supports the development of executive function in youth publication-title: Current Biology – volume: 2008 start-page: P10008 issue: 10 year: 2008 article-title: Fast unfolding of communities in large networks publication-title: Journal of Statistical Mechanics: Theory and Experiment – volume: 2 start-page: 203 issue: 3 year: 2014 end-page: 271 article-title: Multilayer networks publication-title: Journal of Complex Networks – volume: 214 year: 2020 article-title: Functional dedifferentiation of associative resting state networks in older adults—A longitudinal study publication-title: NeuroImage – year: 2001 – volume: 11 start-page: 420 year: 2017 article-title: Static and dynamic measures of human brain connectivity predict complementary aspects of human cognitive performance publication-title: Frontiers in Human Neuroscience – volume: 11 issue: 12 year: 2017 article-title: Modular brain network organization predicts response to cognitive training in older adults publication-title: PLoS One – volume: 108 start-page: 7641 issue: 18 year: 2011 end-page: 7646 article-title: Dynamic reconfiguration of human brain networks during learning publication-title: PNAS – volume: 50 start-page: 709 year: 2016 end-page: 718 article-title: Distinctive resting state network disruptions among Alzheimer's disease, subcortical vascular dementia, and mixed dementia patients publication-title: Journal of Alzheimer's Disease – volume: 16 start-page: 754 issue: 5 year: 2010 end-page: 760 article-title: Selective review of cognitive aging publication-title: Journal of the International Neuropsychological Society – volume: 2 start-page: 125 issue: 3 year: 2012 end-page: 141 article-title: Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks publication-title: Brain Connectivity – volume: 28 start-page: 3095 issue: 9 year: 2018 end-page: 3114 article-title: Local‐global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI publication-title: Cerebral Cortex – volume: 26 start-page: 4148 issue: 11 year: 2016 end-page: 4159 article-title: Functional network dynamics of the language system publication-title: Cerebral Cortex – volume: 38 start-page: 4744 issue: 9 year: 2017 end-page: 4759 article-title: Cohesive network reconfiguration accompanies extended training publication-title: Human Brain Mapping – year: 1938 – volume: 11 issue: 12 year: 2015 article-title: A functional cartography of cognitive systems publication-title: PLoS Computational Biology – volume: 3 start-page: 295 year: 2012 article-title: Resting state networks and consciousness: Alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness states publication-title: Frontiers in Psychology – volume: 180 start-page: 417 year: 2017 end-page: 427 article-title: Dynamic graph metrics: Tutorial, toolbox, and tale publication-title: Neuroimage – volume: 137 start-page: 2382 issue: Pt 8 year: 2014 end-page: 2395 article-title: The hubs of the human connectome are generally implicated in the anatomy of brain disorders publication-title: Brain – volume: 30 start-page: 305 issue: 4 year: 2017 end-page: 317 article-title: Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks publication-title: The Neuroradiology Journal – volume: 21 start-page: 981 issue: 12 year: 2017 end-page: 996 article-title: Segregated systems of human brain networks publication-title: Trends in Cognitive Sciences – volume: 140 start-page: 3012 issue: 11 year: 2017 end-page: 3022 article-title: Influence of cerebrovascular disease on brain networks in prodromal and clinical Alzheimer's disease publication-title: Brain – volume: 38 start-page: 2809 issue: 11 year: 2018 end-page: 2817 article-title: The longitudinal trajectory of default mode network connectivity in healthy older adults varies as a function of age and is associated with changes in episodic memory and processing speed publication-title: The Journal of Neuroscience – volume: 25 start-page: 1987 issue: 7 year: 2015 end-page: 1999 article-title: A brain‐wide study of age‐related changes in functional connectivity publication-title: Cerebral Cortex – volume: 146 start-page: 741 issue: May 2016 year: 2017 end-page: 762 article-title: Age‐dependent changes in task‐based modular organization of the human brain publication-title: NeuroImage – volume: 29 start-page: 162 issue: 3 year: 1996 end-page: 173 article-title: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages publication-title: Computers and Biomedical Research – volume: 67 start-page: 1 issue: 1 year: 2015 end-page: 48 article-title: Fitting linear mixed‐effects models using lme4 publication-title: Journal of Statistical Software – year: 1976 – volume: 13 issue: 3 year: 2017 article-title: BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods publication-title: PLoS Computational Biology – volume: 112 start-page: 11678 issue: 37 year: 2015 end-page: 11683 article-title: Dynamic reconfiguration of frontal brain networks during executive cognition in humans publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 369 issue: 1653 year: 2014 article-title: Graph analysis of functional brain networks: Practical issues in translational neuroscience publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 6 start-page: 1 issue: 5 year: 2017 end-page: 8 article-title: Multilayer modeling and analysis of human brain networks publication-title: GigaScience – year: 1983 – volume: 20 start-page: 519 issue: 8 year: 2010 end-page: 534 article-title: Exploring the brain network: A review on resting‐state fMRI functional connectivity publication-title: European Neuropsychopharmacology – volume: 57 start-page: 190 issue: 2 year: 2011 end-page: 192 article-title: Plasticity and imaging research in healthy aging: Core ideas and profile of the international normal aging and plasticity imaging center (INAPIC) publication-title: Gerontology – volume: 12 start-page: 189 issue: 3 year: 1975 end-page: 198 article-title: “Mini‐mental state”. A practical method for grading the cognitive state of patients for the clinician publication-title: Journal of Psychiatric Research – volume: 154 start-page: 169 issue: November 2016 year: 2017 end-page: 173 article-title: Towards a consensus regarding global signal regression for resting state functional connectivity MRI publication-title: NeuroImage – volume: 24 start-page: 355 issue: 3 year: 2014 end-page: 370 article-title: How does it STAC up? Revisiting the scaffolding theory of aging and cognition publication-title: Neuropsychology Review – volume: 7 start-page: 1 issue: 1 year: 2017 end-page: 10 article-title: Positive affect, surprise, and fatigue are correlates of network flexibility publication-title: Scientific Reports – volume: 20 start-page: 45 issue: 1 year: 2001 end-page: 57 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation‐maximization algorithm publication-title: IEEE Transactions on Medical Imaging – volume: 47 start-page: S102 year: 2009 article-title: Unbiased nonlinear average age‐appropriate brain templates from birth to adulthood publication-title: NeuroImage – volume: 3 start-page: 427 issue: 2 year: 2019 end-page: 454 article-title: Evaluation of confound regression strategies for the mitigation of micromovement artifact in studies of dynamic resting‐state functional connectivity and multilayer network modularity publication-title: Network Neuroscience – volume: 13 start-page: 1 issue: February year: 2019 end-page: 13 article-title: Atypical flexibility in dynamic functional connectivity quantifies the severity in autism spectrum disorder publication-title: Frontiers in Human Neuroscience – volume: 2 start-page: 133 issue: 3 year: 2005 end-page: 158 article-title: What can we learn from longitudinal studies of adult development? publication-title: Research in Human Development – year: 2015 article-title: Functional brain modules reconfigure at multiple scales across the human lifespan publication-title: arXiv – volume: 82 start-page: 208 year: 2013 end-page: 225 article-title: The nuisance of nuisance regression: Spectral misspecification in a common approach to resting‐state fMRI preprocessing reintroduces noise and obscures functional connectivity publication-title: NeuroImage – volume: 38 start-page: 2442 issue: 10 year: 2018 end-page: 2453 article-title: Dynamic flexibility in striatal‐cortical circuits supports reinforcement learning publication-title: The Journal of Neuroscience – volume: 6 start-page: 1 issue: May year: 2015 end-page: 11 article-title: Reorganization of brain networks in aging: A review of functional connectivity studies publication-title: Frontiers in Psychology – volume: 9 start-page: 419 year: 2018 article-title: Aging and network properties: Stability over time and links with learning during working memory training publication-title: Frontiers in Aging Neuroscience – volume: 4 start-page: 200 year: 2010 article-title: Modular and hierarchically modular organization of brain networks publication-title: Frontiers in Neuroscience – volume: 48 start-page: 63 issue: 1 year: 2009 end-page: 72 article-title: Accurate and robust brain image alignment using boundary‐based registration publication-title: NeuroImage – year: 2016 – volume: 106 start-page: 1125 issue: 3 year: 2011 end-page: 1165 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: Journal of Neurophysiology – volume: 113 start-page: 12568 issue: 44 year: 2016 end-page: 12573 article-title: Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 113 start-page: 9888 issue: 35 year: 2016 end-page: 9891 article-title: Temporal metastates are associated with differential patterns of time‐resolved connectivity, network topology, and attention publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 2011 start-page: 5 year: 2011 end-page: 13 article-title: Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Frontiers in Neuroinformatics – volume: 17 start-page: 825 issue: 2 year: 2002 end-page: 841 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – volume: 94 issue: 3–1 year: 2016 article-title: Evolution of network architecture in a granular material under compression publication-title: Physical Review E – volume: 112 start-page: 13681 issue: 44 year: 2015 end-page: 13686 article-title: Emergence of system roles in normative neurodevelopment publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 111 start-page: E4997 issue: 46 year: 2014 end-page: E5006 article-title: Decreased segregation of brain systems across the healthy adult lifespan publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 29 start-page: 1310 issue: 6 year: 2010 end-page: 1320 article-title: N4ITK: Improved N3 bias correction publication-title: IEEE Transactions on Medical Imaging – volume: 15 start-page: 683 issue: 10 year: 2014 end-page: 695 article-title: Modern network science of neurological disorders publication-title: Nature Reviews Neuroscience – volume: 26 start-page: 778 issue: 4 year: 2011 end-page: 791 article-title: On the confounds among retest gains and age cohort differences in the estimation of within‐person change in longitudinal studies: A simulation study publication-title: Psychology and Aging – volume: 69 issue: 2 Pt 2 year: 2004 article-title: Finding and evaluating community structure in networks publication-title: Physical Review E ‐ Statistical, Nonlinear, and Soft Matter Physics – volume: 133 start-page: 321 year: 2016 end-page: 330 article-title: Reduced functional segregation between the default mode network and the executive control network in healthy older adults: A longitudinal study publication-title: NeuroImage – volume: 97 start-page: 14 issue: 1 year: 2018 end-page: 31 article-title: From maps to multi‐dimensional network mechanisms of mental disorders publication-title: Neuron – volume: 202 start-page: 115990 year: 2019 article-title: The community structure of functional brain networks exhibits scale‐specific patterns of inter‐ and intra‐subject variability publication-title: Neuroimage – volume: 115 start-page: E5144 issue: 22 year: 2018 end-page: E5153 article-title: Socioeconomic status moderates age‐related differences in the brain's functional network organization and anatomy across the adult lifespan publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 1988 – year: 2006 – volume: 5 start-page: 14 issue: 5 year: 2009 end-page: 23 article-title: Functional brain networks develop from a “local to distributed” organization publication-title: PLoS Computational Biology – volume: 7 start-page: 76 issue: 16 year: 2014 end-page: 93 article-title: Topological organization of the human brain functional connectome across the lifespan publication-title: Developmental Cognitive Neuroscience – volume: 12 start-page: 26 issue: 1 year: 2008 end-page: 41 article-title: Symmetric diffeomorphic image registration with cross‐correlation: Evaluating automated labeling of elderly and neurodegenerative brain publication-title: Medical Image Analysis – volume: 154 start-page: 174 year: 2017 end-page: 187 article-title: Benchmarking of participant‐level confound regression strategies for the control of motion artifact in studies of functional connectivity publication-title: NeuroImage – volume: 39 start-page: 2742 issue: 7 year: 2018 end-page: 2752 article-title: Functional segregation loss over time is moderated by APOE genotype in healthy elderly publication-title: Human Brain Mapping – volume: 39 start-page: 5534 issue: 28 year: 2019 end-page: 5550 article-title: Longitudinal changes in the cerebral cortex functional Organization of Healthy Elderly publication-title: The Journal of Neuroscience – volume: 16 start-page: 159 issue: 3 year: 2015 end-page: 172 article-title: The connectomics of brain disorders publication-title: Nature Reviews Neuroscience – volume: 19 start-page: 281 issue: 2 year: 2004 end-page: 288 article-title: The trail making test as an initial screening procedure for neuropsychological impairment in older children publication-title: Archives of Clinical Neuropsychology – volume: 14 start-page: 1 year: 2016 end-page: 41 article-title: Community detection in temporal multilayer networks, with an application to correlation networks publication-title: MMS: A SIAM Interdisciplinary Journal – volume: 82 start-page: 1 issue: 13 year: 2017 end-page: 26 article-title: lmerTest package: Tests in linear mixed effects models publication-title: Journal of Statistical Software – volume: 18 start-page: 744 issue: 5 year: 2015 end-page: 751 article-title: Learning‐induced autonomy of sensorimotor systems publication-title: Nature Neuroscience – volume: 328 start-page: 876 issue: 5980 year: 2010 end-page: 878 article-title: Community structure in time‐dependent, multiscale, and multiplex networks publication-title: Science – ident: e_1_2_10_66_1 doi: 10.3389/fnhum.2017.00420 – ident: e_1_2_10_76_1 doi: 10.1177/1971400917697342 – volume: 14 start-page: 1 year: 2016 ident: e_1_2_10_7_1 article-title: Community detection in temporal multilayer networks, with an application to correlation networks publication-title: MMS: A SIAM Interdisciplinary Journal doi: 10.1137/15M1009615 – ident: e_1_2_10_46_1 doi: 10.1037/a0023910 – ident: e_1_2_10_30_1 doi: 10.1371/journal.pcbi.1000381 – ident: e_1_2_10_73_1 doi: 10.1016/j.neuroimage.2016.09.001 – ident: e_1_2_10_58_1 doi: 10.1126/science.1184819 – ident: e_1_2_10_89_1 doi: 10.1109/42.906424 – ident: e_1_2_10_13_1 doi: 10.1073/pnas.1422487112 – ident: e_1_2_10_2_1 doi: 10.1016/j.media.2007.06.004 – ident: e_1_2_10_70_1 doi: 10.1017/S1355617710000706 – ident: e_1_2_10_57_1 doi: 10.3389/fnins.2010.00200 – ident: e_1_2_10_86_1 doi: 10.1089/brain.2012.0073 – volume: 141 start-page: 21 issue: 1 year: 1990 ident: e_1_2_10_45_1 article-title: The verbal learning and retention test. A useful and differentiated tool in evaluating verbal memory performance publication-title: Schweizer Archiv Fur Neurologie Und Psychiatrie – ident: e_1_2_10_87_1 doi: 10.1016/j.tics.2017.09.006 – ident: e_1_2_10_56_1 doi: 10.1371/journal.pcbi.1004533 – ident: e_1_2_10_15_1 doi: 10.1016/j.dcn.2013.11.004 – ident: e_1_2_10_44_1 doi: 10.3389/fpsyg.2012.00295 – ident: e_1_2_10_24_1 doi: 10.1093/brain/awu132 – ident: e_1_2_10_54_1 doi: 10.1162/netn_a_00071 – ident: e_1_2_10_16_1 doi: 10.1093/cercor/bhw238 – ident: e_1_2_10_23_1 doi: 10.1006/cbmr.1996.0014 – ident: e_1_2_10_60_1 doi: 10.1016/j.neuroimage.2016.11.052 – ident: e_1_2_10_39_1 doi: 10.1371/journal.pcbi.1005209 – ident: e_1_2_10_40_1 doi: 10.1016/j.neuroimage.2009.06.060 – ident: e_1_2_10_18_1 doi: 10.1073/pnas.1415122111 – ident: e_1_2_10_29_1 doi: 10.1038/s41592-018-0235-4 – ident: e_1_2_10_74_1 doi: 10.1073/pnas.1604898113 – ident: e_1_2_10_14_1 doi: 10.1016/j.neuron.2017.11.007 – ident: e_1_2_10_80_1 doi: 10.1002/hbm.23699 – ident: e_1_2_10_5_1 doi: 10.18637/jss.v067.i01 – volume-title: Leistungsprüfsystem L‐P‐S year: 1983 ident: e_1_2_10_47_1 – ident: e_1_2_10_72_1 doi: 10.1207/s15427617rhd0203_4 – volume-title: Fundamentals of brain network analysis. Fundamentals of brain network analysis year: 2016 ident: e_1_2_10_34_1 – ident: e_1_2_10_51_1 doi: 10.1093/comnet/cnu016 – ident: e_1_2_10_50_1 doi: 10.3233/JAD-150637 – ident: e_1_2_10_27_1 doi: 10.1098/rstb.2013.0521 – ident: e_1_2_10_12_1 doi: 10.1073/pnas.1608819113 – ident: e_1_2_10_52_1 doi: 10.18637/jss.v082.i13 – ident: e_1_2_10_64_1 doi: 10.1103/PhysRevE.94.032908 – ident: e_1_2_10_19_1 doi: 10.1093/brain/awx224 – ident: e_1_2_10_26_1 doi: 10.1093/gigascience/gix004 – ident: e_1_2_10_49_1 doi: 10.1006/nimg.2002.1132 – ident: e_1_2_10_25_1 doi: 10.1016/j.neuroimage.2017.01.077 – volume: 11 start-page: e0169015 issue: 12 year: 2017 ident: e_1_2_10_35_1 article-title: Modular brain network organization predicts response to cognitive training in older adults publication-title: PLoS One doi: 10.1371/journal.pone.0169015 – ident: e_1_2_10_36_1 doi: 10.1093/cercor/bhu012 – ident: e_1_2_10_55_1 doi: 10.1016/j.neuroimage.2020.116680 – ident: e_1_2_10_67_1 doi: 10.1016/S0887-6177(03)00042-8 – ident: e_1_2_10_31_1 doi: 10.1016/0022-3956(75)90026-6 – ident: e_1_2_10_37_1 doi: 10.1523/JNEUROSCI.2084-17.2018 – ident: e_1_2_10_61_1 doi: 10.1103/PhysRevE.69.026113 – volume: 13 start-page: 1 year: 2019 ident: e_1_2_10_43_1 article-title: Atypical flexibility in dynamic functional connectivity quantifies the severity in autism spectrum disorder publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2019.00006 – ident: e_1_2_10_3_1 doi: 10.1073/pnas.1018985108 – ident: e_1_2_10_53_1 doi: 10.1093/geronb/57.6.P474 – ident: e_1_2_10_4_1 doi: 10.1038/nn.3993 – year: 2018 ident: e_1_2_10_65_1 article-title: The functional brain favours segregated modular connectivity at old age unless targeted by neurodegeneration publication-title: bioRxiv – ident: e_1_2_10_75_1 doi: 10.1016/j.neuroimage.2017.06.081 – ident: e_1_2_10_62_1 doi: 10.1016/j.neuroimage.2016.03.029 – ident: e_1_2_10_83_1 doi: 10.1016/j.euroneuro.2010.03.008 – ident: e_1_2_10_42_1 doi: 10.1016/j.neuroimage.2013.05.116 – ident: e_1_2_10_68_1 doi: 10.1007/s11065-014-9270-9 – ident: e_1_2_10_90_1 doi: 10.1159/000324307 – ident: e_1_2_10_33_1 doi: 10.1038/nrn3901 – volume-title: Wechsler‐Intelligenztest für Erwachsene (WIE). Deutschsprachige Bearbeitung und Adaptation des WAIS‐III von David Wechsler year: 2006 ident: e_1_2_10_84_1 – ident: e_1_2_10_79_1 doi: 10.1038/nrn3801 – volume: 2011 start-page: 5 year: 2011 ident: e_1_2_10_38_1 article-title: Nipype: A flexible, lightweight and extensible neuroimaging data processing framework in python publication-title: Frontiers in Neuroinformatics – ident: e_1_2_10_21_1 doi: 10.1016/j.neuroimage.2017.03.020 – year: 2015 ident: e_1_2_10_9_1 article-title: Functional brain modules reconfigure at multiple scales across the human lifespan publication-title: arXiv – volume-title: Statistical Power analysis for the behavioral sciences year: 1988 ident: e_1_2_10_22_1 – ident: e_1_2_10_41_1 doi: 10.1073/pnas.1502829112 – ident: e_1_2_10_63_1 doi: 10.1002/hbm.24036 – volume: 8 start-page: 1 year: 2016 ident: e_1_2_10_59_1 article-title: Small changes, but huge impact? The right anterior insula's loss of connection strength during the transition of old to very old age publication-title: Frontiers in Aging Neuroscience doi: 10.3389/fnagi.2016.00086 – ident: e_1_2_10_82_1 doi: 10.1109/TMI.2010.2046908 – ident: e_1_2_10_20_1 doi: 10.1523/JNEUROSCI.1451-18.2019 – ident: e_1_2_10_32_1 doi: 10.1016/S1053-8119(09)70884-5 – ident: e_1_2_10_71_1 doi: 10.1093/cercor/bhx179 – ident: e_1_2_10_77_1 doi: 10.1089/brain.2014.0286 – ident: e_1_2_10_78_1 doi: 10.1523/JNEUROSCI.3067-17.2018 – ident: e_1_2_10_8_1 doi: 10.1016/j.neuroimage.2019.07.003 – ident: e_1_2_10_11_1 doi: 10.1088/1742-5468/2008/10/P10008 – volume-title: Manual for kit of factor referenced cognitive tests year: 1976 ident: e_1_2_10_28_1 – volume: 6 start-page: 1 year: 2015 ident: e_1_2_10_69_1 article-title: Reorganization of brain networks in aging: A review of functional connectivity studies publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2015.00663 – ident: e_1_2_10_6_1 doi: 10.1016/j.cub.2017.04.051 – ident: e_1_2_10_88_1 doi: 10.1152/jn.00338.2011 – volume-title: Primary mental abilities year: 1938 ident: e_1_2_10_81_1 – ident: e_1_2_10_17_1 doi: 10.1073/pnas.1714021115 – volume-title: Diagnosticum für Cebebralschädigung (DCS). Ein visueller Lern‐ und Gedächtnistestnach F. Hiller year: 2001 ident: e_1_2_10_85_1 – ident: e_1_2_10_10_1 doi: 10.1038/s41598-017-00425-z – ident: e_1_2_10_48_1 doi: 10.3389/fnagi.2017.00419 |
SSID | ssj0011501 |
Score | 2.4733727 |
Snippet | Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross‐sectional studies imply lower modularity... Healthy aging is associated with changes in cognitive performance and functional brain organization. In fact, cross-sectional studies imply lower modularity... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4829 |
SubjectTerms | Aging Brain Brain architecture Brain mapping brain networks Cognitive ability Cognitive tasks Cross-sectional studies Flexibility Functional magnetic resonance imaging Functional morphology Geriatrics healthy aging Heterogeneity Modular structures Modularity multilayer modularity Multilayers network flexibility Older people Reconfiguration resting‐state fMRI Variability |
Title | Longitudinal functional brain network reconfiguration in healthy aging |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25161 https://www.ncbi.nlm.nih.gov/pubmed/32857461 https://www.proquest.com/docview/2457543716 https://www.proquest.com/docview/2438683162 https://pubmed.ncbi.nlm.nih.gov/PMC7643380 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9te0C8bLAN6BiVh9DES9rGdr7E00BU1bQihJjUB6TIdhxWQdNpax62v353dpJRBhLiLZKvzYfvfL87n38H8MZgUCEQBgemyGib0caBEhp1WWWhLoUypaSzw9NP8eRcns6i2Qa8a8_CeH6ILuFGluHWazJwpa-H96ShF3oxQOfsQh-q1SJA9KWjjiKg44ItdLFBhitwyyo04sPul-u-6AHAfFgn-St-dQ5ovAPf2kf3dSc_BvVKD8ztb6yO__luT2C7AabsxGvSU9iw1S7snVQYlC9u2DFzpaIuB78Lj6bNjvwejM-W1PGoLqi7FiMv6ZOLTFPvCVb5KnPm4u5y_r32CsdwyJ_AvGGuTdI-nI8_fv0wCZreDIGRiDkCghWJVVYXMiz5yCiOk81TW5QYv1gZlRwXBmr3p6hFZSwLI3D6TVhkuIhkCBSewVa1rOwLYNKYRBMLFvWeiYoktTziKpSlEaMitlkP3razlJuGuJz6Z_zMPeUyz_Fz5e5z9eB1J3rp2Tr-JHTYTnXeGOx1ziXiVikweuzBUTeMpkb7J6qyy5pkRBqnIox5D557zejuIngaJZL-PFnTmU6AaLzXR6r5haPzThAUinSEr-lU4u8Pnk_eT93Fwb-LvoTHnDIErgDnELZWV7V9hTBqpfuwyeXnvktC9J3t3AEymhqV |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4hKkEvlEdbQkNZEKq4OMS765fEhVZEARIOCCQuyLLX64IAB0F8SH89M7u2IaWVEDdLO4kfO7PzzezsNwDbCoMKgTDYUVlE24zadxKRoi4nkZvmIlG5pLPDwxO_fy6PLryLGdirz8JYfogm4UaWYdZrMnBKSO8-s4ZepXcd9M4U-3ygjt4moDptyKMI6phwC52sE-EaXPMKdflu89Npb_QKYr6ulHyJYI0L6n2Cy_rhbeXJTaccpx315y9ex_e-3SIsVNiU7VtlWoIZXSzDyn6BcfndhP1gplrUpOGXYW5YbcqvQG8woqZHZUYNthg5SptfZCm1n2CFLTRnJvTOr3-XVucYDtlDmBNmOiV9hvPewdmvvlO1Z3CURNjhELIIdKLTTLo576qE43zzUGc5hjBaejnHtYE6_iXUpdKXmRKoAcrNIlxHIsQKX2C2GBV6FZhUKkiJCIvaz3hZEGru8cSVuRLdzNdRC3bqaYpVxV1OLTRuY8u6zGP8XLH5XC3YakTvLWHHv4Ta9VzHlc0-xlwidJUCA8gWbDbDaG20hZIUelSSjAj9ULg-b8FXqxrNXQQPvUDSnwdTStMIEJP39EhxfWUYvQPEhSLs4msanfj_g8f9n0NzsfZ20Q2Y758NB_Hg8OT4G3zklDAw9ThtmB0_lHodUdU4_W6M5wlzpBzk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkFAvtIUCS4G6VVVxyZLYzkucaOlq27KoQiBxQIoS2ykIyCLYHOiv74ydhG4BCfUWyZOH4xnPN_b4G4CPCoMKgTDYUzqlbUYTebkoUJfzNChKkatS0tnh0UE0PJbfT8KTGdhpz8I4fohuwY0sw87XZODXuty-Jw09K6766Jwp9JmTkZ-QSu8ddtxRhHRstIU-1ktxCm5phXy-3d067YweIMyHiZJ_A1jrgQYv4bT9dpd4ctGvJ0Vf_f6H1vE_O_cKFhpkynadKr2GGVMtwtJuhVH51R37xGyuqF2EX4T5UbMlvwSD_TGVPKo1lddi5Cbd6iIrqPgEq1yaObOBd3n-q3Yax7DJHcG8Y7ZO0hs4Hnw9-jL0muIMnpIIOjzCFbHJTaFlUHJf5RxHmydGlxjAGBmWHGcGqveXU43KSGolcPxVoFOcRVJECsswW40rswpMKhUXRINFxWdCHSeGhzwPZKmEryOT9mCrHaVMNczlVEDjMnOcyzzD35XZ39WDD53otaPreExovR3qrLHY24xLBK5SYPjYg_ddM9oabaDklRnXJCOSKBFBxHuw4jSje4vgSRhLeng8pTOdAPF4T7dU52eWzztGVCgSH7tpVeLpD8-Gn0f2Yu35ou9g_ufeINv_dvDjLbzgtFpgk3HWYXZyU5sNhFSTYtOazh8ptBuc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+functional+brain+network+reconfiguration+in+healthy+aging&rft.jtitle=Human+brain+mapping&rft.au=Malagurski%2C+Brigitta&rft.au=Liem%2C+Franziskus&rft.au=Oschwald%2C+Jessica&rft.au=M%C3%A9rillat%2C+Susan&rft.date=2020-12-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=41&rft.issue=17&rft.spage=4829&rft.epage=4845&rft_id=info:doi/10.1002%2Fhbm.25161&rft_id=info%3Apmid%2F32857461&rft.externalDocID=PMC7643380 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |