Interictal intracranial electroencephalography for predicting surgical success: The importance of space and time
Objective Predicting postoperative seizure freedom using functional correlation networks derived from interictal intracranial electroencephalography (EEG) has shown some success. However, there are important challenges to consider: (1) electrodes physically closer to each other naturally tend to be...
Saved in:
Published in | Epilepsia (Copenhagen) Vol. 61; no. 7; pp. 1417 - 1426 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0013-9580 1528-1167 1528-1167 |
DOI | 10.1111/epi.16580 |
Cover
Loading…
Abstract | Objective
Predicting postoperative seizure freedom using functional correlation networks derived from interictal intracranial electroencephalography (EEG) has shown some success. However, there are important challenges to consider: (1) electrodes physically closer to each other naturally tend to be more correlated, causing a spatial bias; (2) implantation location and number of electrodes differ between patients, making cross‐subject comparisons difficult; and (3) functional correlation networks can vary over time but are currently assumed to be static.
Methods
In this study, we address these three challenges using intracranial EEG data from 55 patients with intractable focal epilepsy. Patients additionally underwent preoperative magnetic resonance imaging (MRI), intraoperative computed tomography, and postoperative MRI, allowing accurate localization of electrodes and delineation of the removed tissue.
Results
We show that normalizing for spatial proximity between nearby electrodes improves prediction of postsurgery seizure outcomes. Moreover, patients with more extensive electrode coverage were more likely to have their outcome predicted correctly (area under the receiver operating characteristic curve > 0.9, P « 0.05) but not necessarily more likely to have a better outcome. Finally, our predictions are robust regardless of the time segment analyzed.
Significance
Future studies should account for the spatial proximity of electrodes in functional network construction to improve prediction of postsurgical seizure outcomes. Greater coverage of both removed and spared tissue allows for predictions with higher accuracy. |
---|---|
AbstractList | Predicting postoperative seizure freedom using functional correlation networks derived from interictal intracranial electroencephalography (EEG) has shown some success. However, there are important challenges to consider: (1) electrodes physically closer to each other naturally tend to be more correlated, causing a spatial bias; (2) implantation location and number of electrodes differ between patients, making cross-subject comparisons difficult; and (3) functional correlation networks can vary over time but are currently assumed to be static.OBJECTIVEPredicting postoperative seizure freedom using functional correlation networks derived from interictal intracranial electroencephalography (EEG) has shown some success. However, there are important challenges to consider: (1) electrodes physically closer to each other naturally tend to be more correlated, causing a spatial bias; (2) implantation location and number of electrodes differ between patients, making cross-subject comparisons difficult; and (3) functional correlation networks can vary over time but are currently assumed to be static.In this study, we address these three challenges using intracranial EEG data from 55 patients with intractable focal epilepsy. Patients additionally underwent preoperative magnetic resonance imaging (MRI), intraoperative computed tomography, and postoperative MRI, allowing accurate localization of electrodes and delineation of the removed tissue.METHODSIn this study, we address these three challenges using intracranial EEG data from 55 patients with intractable focal epilepsy. Patients additionally underwent preoperative magnetic resonance imaging (MRI), intraoperative computed tomography, and postoperative MRI, allowing accurate localization of electrodes and delineation of the removed tissue.We show that normalizing for spatial proximity between nearby electrodes improves prediction of postsurgery seizure outcomes. Moreover, patients with more extensive electrode coverage were more likely to have their outcome predicted correctly (area under the receiver operating characteristic curve > 0.9, P « 0.05) but not necessarily more likely to have a better outcome. Finally, our predictions are robust regardless of the time segment analyzed.RESULTSWe show that normalizing for spatial proximity between nearby electrodes improves prediction of postsurgery seizure outcomes. Moreover, patients with more extensive electrode coverage were more likely to have their outcome predicted correctly (area under the receiver operating characteristic curve > 0.9, P « 0.05) but not necessarily more likely to have a better outcome. Finally, our predictions are robust regardless of the time segment analyzed.Future studies should account for the spatial proximity of electrodes in functional network construction to improve prediction of postsurgical seizure outcomes. Greater coverage of both removed and spared tissue allows for predictions with higher accuracy.SIGNIFICANCEFuture studies should account for the spatial proximity of electrodes in functional network construction to improve prediction of postsurgical seizure outcomes. Greater coverage of both removed and spared tissue allows for predictions with higher accuracy. Objective Predicting postoperative seizure freedom using functional correlation networks derived from interictal intracranial electroencephalography (EEG) has shown some success. However, there are important challenges to consider: (1) electrodes physically closer to each other naturally tend to be more correlated, causing a spatial bias; (2) implantation location and number of electrodes differ between patients, making cross‐subject comparisons difficult; and (3) functional correlation networks can vary over time but are currently assumed to be static. Methods In this study, we address these three challenges using intracranial EEG data from 55 patients with intractable focal epilepsy. Patients additionally underwent preoperative magnetic resonance imaging (MRI), intraoperative computed tomography, and postoperative MRI, allowing accurate localization of electrodes and delineation of the removed tissue. Results We show that normalizing for spatial proximity between nearby electrodes improves prediction of postsurgery seizure outcomes. Moreover, patients with more extensive electrode coverage were more likely to have their outcome predicted correctly (area under the receiver operating characteristic curve > 0.9, P « 0.05) but not necessarily more likely to have a better outcome. Finally, our predictions are robust regardless of the time segment analyzed. Significance Future studies should account for the spatial proximity of electrodes in functional network construction to improve prediction of postsurgical seizure outcomes. Greater coverage of both removed and spared tissue allows for predictions with higher accuracy. ObjectivePredicting postoperative seizure freedom using functional correlation networks derived from interictal intracranial electroencephalography (EEG) has shown some success. However, there are important challenges to consider: (1) electrodes physically closer to each other naturally tend to be more correlated, causing a spatial bias; (2) implantation location and number of electrodes differ between patients, making cross‐subject comparisons difficult; and (3) functional correlation networks can vary over time but are currently assumed to be static.MethodsIn this study, we address these three challenges using intracranial EEG data from 55 patients with intractable focal epilepsy. Patients additionally underwent preoperative magnetic resonance imaging (MRI), intraoperative computed tomography, and postoperative MRI, allowing accurate localization of electrodes and delineation of the removed tissue.ResultsWe show that normalizing for spatial proximity between nearby electrodes improves prediction of postsurgery seizure outcomes. Moreover, patients with more extensive electrode coverage were more likely to have their outcome predicted correctly (area under the receiver operating characteristic curve > 0.9, P « 0.05) but not necessarily more likely to have a better outcome. Finally, our predictions are robust regardless of the time segment analyzed.SignificanceFuture studies should account for the spatial proximity of electrodes in functional network construction to improve prediction of postsurgical seizure outcomes. Greater coverage of both removed and spared tissue allows for predictions with higher accuracy. Predicting postoperative seizure freedom using functional correlation networks derived from interictal intracranial electroencephalography (EEG) has shown some success. However, there are important challenges to consider: (1) electrodes physically closer to each other naturally tend to be more correlated, causing a spatial bias; (2) implantation location and number of electrodes differ between patients, making cross-subject comparisons difficult; and (3) functional correlation networks can vary over time but are currently assumed to be static. In this study, we address these three challenges using intracranial EEG data from 55 patients with intractable focal epilepsy. Patients additionally underwent preoperative magnetic resonance imaging (MRI), intraoperative computed tomography, and postoperative MRI, allowing accurate localization of electrodes and delineation of the removed tissue. We show that normalizing for spatial proximity between nearby electrodes improves prediction of postsurgery seizure outcomes. Moreover, patients with more extensive electrode coverage were more likely to have their outcome predicted correctly (area under the receiver operating characteristic curve > 0.9, P « 0.05) but not necessarily more likely to have a better outcome. Finally, our predictions are robust regardless of the time segment analyzed. Future studies should account for the spatial proximity of electrodes in functional network construction to improve prediction of postsurgical seizure outcomes. Greater coverage of both removed and spared tissue allows for predictions with higher accuracy. |
Author | Wang, Yujiang Ramaraju, Sriharsha McEvoy, Andrew W. Miserocchi, Anna Taylor, Peter N. Tisi, Jane Diehl, Beate Sinha, Nishant Schroeder, Gabrielle M. Chowdhury, Fahmida A. Duncan, John S. |
AuthorAffiliation | 1 CNNP lab ( https://www.cnnp-lab.com ), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK 2 Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK 3 Institute of Neurology, University College London, London, UK |
AuthorAffiliation_xml | – name: 1 CNNP lab ( https://www.cnnp-lab.com ), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle Upon Tyne, UK – name: 3 Institute of Neurology, University College London, London, UK – name: 2 Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK |
Author_xml | – sequence: 1 givenname: Yujiang orcidid: 0000-0002-4847-6273 surname: Wang fullname: Wang, Yujiang email: yujiang.wang@newcastle.ac.uk organization: University College London – sequence: 2 givenname: Nishant surname: Sinha fullname: Sinha, Nishant organization: Newcastle University – sequence: 3 givenname: Gabrielle M. surname: Schroeder fullname: Schroeder, Gabrielle M. organization: Newcastle University – sequence: 4 givenname: Sriharsha surname: Ramaraju fullname: Ramaraju, Sriharsha organization: Newcastle University – sequence: 5 givenname: Andrew W. surname: McEvoy fullname: McEvoy, Andrew W. organization: University College London – sequence: 6 givenname: Anna surname: Miserocchi fullname: Miserocchi, Anna organization: University College London – sequence: 7 givenname: Jane surname: Tisi fullname: Tisi, Jane organization: University College London – sequence: 8 givenname: Fahmida A. surname: Chowdhury fullname: Chowdhury, Fahmida A. organization: University College London – sequence: 9 givenname: Beate orcidid: 0000-0002-6896-854X surname: Diehl fullname: Diehl, Beate organization: University College London – sequence: 10 givenname: John S. orcidid: 0000-0002-1373-0681 surname: Duncan fullname: Duncan, John S. organization: University College London – sequence: 11 givenname: Peter N. orcidid: 0000-0003-2144-9838 surname: Taylor fullname: Taylor, Peter N. email: peter.taylor@newcastle.ac.uk organization: University College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32589284$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9vFCEYxompsdvqwS9gSLzYw7QwMDDjoYlpqm7SRA_1TBh4Z5dmBkZgNPvty7q10SbKhX-_5-F9eU7QkQ8eEHpNyTkt4wJmd05F05JnaEWbuq0oFfIIrQihrOrK-TE6SemOECKFZC_QMaubtqtbvkLz2meIzmQ9Yudz1CZq78oGRjA5BvAG5q0ewybqebvDQ4h4jmCLwvkNTkvcOFPwtBgDKb3Ht1vAbppDzLpIcRhwmnVZaG9xdhO8RM8HPSZ49TCfom8fr2-vPlc3Xz6trz7cVIZzRiojuO1k02nWM2GJpUTIVghiLZesPNVDR1nHetvIgXeD7KHlhktRE9sMDenYKbo8-M5LP4E1sG9uVHN0k447FbRTf994t1Wb8ENJUb5U8GLw7sEghu8LpKwmlwyMo_YQlqRqTlvKOOFtQd8-Qe_CEn1pr1C1kE3Lmz315s-KHkv5HUYBzg6AiSGlCMMjQonaB61K0OpX0IW9eMIal3V2Yd-MG_-n-OlG2P3bWl1_XR8U94Iju2k |
CitedBy_id | crossref_primary_10_1093_braincomms_fcad292 crossref_primary_10_1111_epi_17503 crossref_primary_10_1093_braincomms_fcae284 crossref_primary_10_1162_netn_a_00305 crossref_primary_10_3389_fneur_2020_569699 crossref_primary_10_3389_fneur_2021_741450 crossref_primary_10_3389_fneur_2020_563847 crossref_primary_10_1038_s41598_023_36551_0 crossref_primary_10_1088_1741_2552_ac90ed crossref_primary_10_1093_braincomms_fcae165 crossref_primary_10_1093_braincomms_fcae320 crossref_primary_10_1093_braincomms_fcab156 crossref_primary_10_1212_WNL_0000000000207661 crossref_primary_10_1093_brain_awab480 crossref_primary_10_1093_brain_awab380 crossref_primary_10_1016_j_seizure_2021_06_006 crossref_primary_10_1088_1741_2552_ac5568 crossref_primary_10_1016_j_ebiom_2023_104848 crossref_primary_10_3389_fnetp_2022_868092 crossref_primary_10_1111_epi_17578 crossref_primary_10_1111_epi_18128 crossref_primary_10_1016_j_jneumeth_2024_110180 crossref_primary_10_1016_j_jneumeth_2023_109839 crossref_primary_10_1097_WCO_0000000000001008 crossref_primary_10_1212_WNL_0000000000200386 |
Cites_doi | 10.1016/j.neuroimage.2014.06.078 10.1371/journal.pbio.2002580 10.1016/j.neuroimage.2015.06.008 10.1111/epi.13791 10.1063/1.3504998 10.1177/0962280207087173 10.1162/netn_a_00131 10.1038/s41582-019-0224-y 10.1073/pnas.1922084117 10.1093/brain/aww337 10.1007/s10548-017-0551-5 10.1523/JNEUROSCI.2287-11.2011 10.1111/epi.13762 10.1111/epi.13657 10.1038/srep29215 10.1046/j.1528-1157.2002.26901.x 10.1093/brain/awv130 10.1371/journal.pone.0041799 10.1093/brain/awy214 10.3389/fneur.2018.00143 10.1093/brain/aww299 10.1016/j.nicl.2019.101908 10.1111/j.1528-1167.2010.02785.x 10.1038/s41551-019-0404-5 10.1073/pnas.1401752111 10.1016/j.nicl.2016.09.014 10.3389/fnhum.2015.00462 10.1136/jnnp-2011-301944 10.1093/neuros/nyx195 10.1016/S0140-6736(11)60890-8 10.1093/brain/124.9.1683 10.3389/fninf.2017.00062 10.1016/j.nicl.2018.01.028 10.1093/brain/awy035 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals LLC on behalf of International League Against Epilepsy 2020 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy. 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals LLC on behalf of International League Against Epilepsy – notice: 2020 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy. – notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1111/epi.16580 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1528-1167 |
EndPage | 1426 |
ExternalDocumentID | PMC7611164 32589284 10_1111_epi_16580 EPI16580 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust funderid: 208940/Z/17/Z; 210109/Z/18/Z – fundername: National Institute of Neurological Disorders and Stroke funderid: U01‐NS090407 – fundername: Wellcome Trust grantid: 210109/Z/18/Z – fundername: Wellcome Trust grantid: 210109 – fundername: Wellcome Trust grantid: 208940 – fundername: Wellcome Trust grantid: 208940/Z/17/Z – fundername: NINDS NIH HHS grantid: U01 NS090407 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29G 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAGKA AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIVO ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FYBCS G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K V9Y VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAFWJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c4430-c64d9759a3b36d0d10678660dd473ccebe91393bd57f49f7be84c47620d5f5093 |
IEDL.DBID | DR2 |
ISSN | 0013-9580 1528-1167 |
IngestDate | Thu Aug 21 17:52:46 EDT 2025 Fri Jul 11 01:43:02 EDT 2025 Wed Aug 13 06:14:32 EDT 2025 Mon Jul 21 06:06:35 EDT 2025 Tue Jul 01 03:17:55 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 Wed Jan 22 16:32:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | epilepsy surgery epileptogenic zone EEG cortical localization intracranial electrodes |
Language | English |
License | Attribution 2020 The Authors. Epilepsia published by Wiley Periodicals LLC on behalf of International League Against Epilepsy. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4430-c64d9759a3b36d0d10678660dd473ccebe91393bd57f49f7be84c47620d5f5093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1373-0681 0000-0003-2144-9838 0000-0002-6896-854X 0000-0002-4847-6273 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.16580 |
PMID | 32589284 |
PQID | 2426758458 |
PQPubID | 1066359 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611164 proquest_miscellaneous_2418134048 proquest_journals_2426758458 pubmed_primary_32589284 crossref_primary_10_1111_epi_16580 crossref_citationtrail_10_1111_epi_16580 wiley_primary_10_1111_epi_16580_EPI16580 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Epilepsia (Copenhagen) |
PublicationTitleAlternate | Epilepsia |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012; 83 2018; 141 2011; 378 2001; 124 2019; 3 2019; 15 2008; 17 2011; 31 2011; 52 2014; 2014 2018; 82 2014; 111 2015; 9 2016; 12 2018; 18 2016; 6 2018; 9 2010; 20 2017; 30 2020; 4 2017; 58 2015; 138 2017; 11 2019; 23 2002; 43 2020; 117 2017; 140 2015; 118 2012; 7 2018; 16 2014; 101 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 Sinha N (e_1_2_9_17_1) 2014; 2014 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 58 start-page: 1131 year: 2017 end-page: 47 article-title: Defining epileptogenic networks: contribution of SEEG and signal analysis publication-title: Epilepsia – volume: 101 start-page: 96 year: 2014 end-page: 113 article-title: Ictal propagation of high frequency activity is recapitulated in interictal recordings: effective connectivity of epileptogenic networks recorded with intracranial EEG publication-title: Neuroimage – volume: 17 start-page: 207 year: 2008 end-page: 21 article-title: Comparison of non‐parametric confidence intervals for the area under the ROC curve of a continuous‐scale diagnostic test publication-title: Stat Methods Med Res – volume: 83 start-page: 1238 year: 2012 end-page: 48 article-title: Large scale brain models of epilepsy: dynamics meets connectomics publication-title: J Neurol Neurosurg Psychiatry – volume: 18 start-page: 202 year: 2018 end-page: 14 article-title: The impact of epilepsy surgery on the structural connectome and its relation to outcome publication-title: Neuroimage Clin – volume: 43 start-page: 219 year: 2002 end-page: 27 article-title: Neural networks in human epilepsy: evidence of and implications for treatment publication-title: Epilepsia – volume: 23 start-page: 101908 year: 2019 article-title: High interictal connectivity within the resection zone is associated with favorable post‐surgical outcomes in focal epilepsy patients publication-title: Neuroimage – volume: 9 start-page: 143 year: 2018 article-title: Localization of epileptogenic zone with the correction of pathological networks publication-title: Front Neurol – volume: 124 start-page: 1683 year: 2001 end-page: 700 article-title: Presurgical evaluation of epilepsy publication-title: Brain – volume: 6 start-page: 29215 year: 2016 article-title: Estimation of brain network ictogenicity predicts outcome from epilepsy surgery publication-title: Sci Rep – volume: 58 start-page: 402 year: 2017 end-page: 11 article-title: Interictal network synchrony and local heterogeneity predict epilepsy surgery outcome among pediatric patients publication-title: Epilepsia – volume: 111 start-page: E5321 year: 2014 end-page: E5330 article-title: Network dynamics of the brain and influence of the epileptic seizure onset zone publication-title: Proc Natl Acad Sci U S A – volume: 117 start-page: 11048 issue: 20 year: 2020 end-page: 58 article-title: Seizure pathways change on circadian and slower timescales in individual patients with focal epilepsy publication-title: Proc Natl Acad Sci U S A – volume: 7 year: 2012 article-title: Stability of synchronization clusters and seizurability in temporal lobe epilepsy publication-title: PLoS One – volume: 82 start-page: 99 year: 2018 end-page: 109 article-title: Granger causality analysis of interictal iEEG predicts seizure focus and ultimate resection publication-title: Neurosurgery – volume: 2014 start-page: 4884 year: 2014 end-page: 7 article-title: An in silico approach for pre‐surgical evaluation of an epileptic cortex publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 52 start-page: 84 year: 2011 end-page: 93 article-title: Graph analysis of epileptogenic networks in human partial epilepsy publication-title: Epilepsia – volume: 20 start-page: 43126 year: 2010 article-title: Long‐term variability of global statistical properties of epileptic brain networks publication-title: Chaos – volume: 11 start-page: 62 year: 2017 article-title: Semi‐automated anatomical labeling and inter‐subject warping of high‐density intracranial recording electrodes in electrocorticography publication-title: Front Neuroinform – volume: 4 start-page: 484 issue: 2 year: 2020 end-page: 506 article-title: The sensitivity of network statistics to incomplete electrode sampling on intracranial EEG publication-title: Network Neurosci – volume: 16 year: 2018 article-title: Degenerate time‐dependent network dynamics anticipate seizures in human epileptic brain publication-title: PLoS Biol – volume: 138 start-page: 2249 issue: 8 year: 2015 end-page: 62 article-title: Global and regional functional connectivity maps of neural oscillations in focal epilepsy publication-title: Brain – volume: 12 start-page: 928 year: 2016 end-page: 39 article-title: High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy publication-title: Neuroimage – volume: 15 start-page: 594 issue: 10 year: 2019 end-page: 606 article-title: Changing concepts in presurgical assessment for epilepsy surgery publication-title: Nat Rev Neurol – volume: 140 start-page: 319 year: 2017 end-page: 32 article-title: Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling publication-title: Brain – volume: 31 start-page: 15757 year: 2011 end-page: 67 article-title: Emergence of persistent networks in long‐term intracranial EEG recordings publication-title: J Neurosci – volume: 141 start-page: 2966 year: 2018 end-page: 80 article-title: Interictal stereotactic‐EEG functional connectivity in refractory focal epilepsies publication-title: Brain – volume: 30 start-page: 639 year: 2017 end-page: 55 article-title: Simultaneous intracranial EEG‐fMRI shows inter‐modality correlation in time‐resolved connectivity within normal areas but not within epileptic regions publication-title: Brain Topogr – volume: 118 start-page: 219 year: 2015 end-page: 30 article-title: Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data publication-title: Neuroimage – volume: 58 start-page: 1251 year: 2017 end-page: 60 article-title: Magnetic resonance imaging connectivity for the prediction of seizure outcome in temporal lobe epilepsy publication-title: Epilepsia – volume: 140 start-page: 628 year: 2017 end-page: 40 article-title: Stable functional networks exhibit consistent timing in the human brain publication-title: Brain – volume: 378 start-page: 1388 year: 2011 end-page: 95 article-title: The long‐term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study publication-title: Lancet – volume: 3 start-page: 902 issue: 11 year: 2019 end-page: 16 article-title: Structural, geometric and genetic factors predict interregional brain connectivity patterns probed by electrocorticography publication-title: Nat Biomed Eng – volume: 9 start-page: 462 year: 2015 article-title: Time‐dependent degree‐degree correlations in epileptic brain networks: from assortative to dissortative mixing publication-title: Front Hum Neurosci – volume: 141 start-page: 1130 year: 2018 end-page: 44 article-title: Atlas of the normal intracranial electroencephalogram: neurophysiological awake activity in different cortical areas publication-title: Brain – ident: e_1_2_9_22_1 doi: 10.1016/j.neuroimage.2014.06.078 – ident: e_1_2_9_32_1 doi: 10.1371/journal.pbio.2002580 – ident: e_1_2_9_8_1 doi: 10.1016/j.neuroimage.2015.06.008 – ident: e_1_2_9_4_1 doi: 10.1111/epi.13791 – ident: e_1_2_9_25_1 doi: 10.1063/1.3504998 – ident: e_1_2_9_28_1 doi: 10.1177/0962280207087173 – ident: e_1_2_9_29_1 doi: 10.1162/netn_a_00131 – ident: e_1_2_9_31_1 doi: 10.1038/s41582-019-0224-y – ident: e_1_2_9_33_1 doi: 10.1073/pnas.1922084117 – ident: e_1_2_9_35_1 doi: 10.1093/brain/aww337 – ident: e_1_2_9_36_1 doi: 10.1007/s10548-017-0551-5 – ident: e_1_2_9_34_1 doi: 10.1523/JNEUROSCI.2287-11.2011 – ident: e_1_2_9_9_1 doi: 10.1111/epi.13762 – ident: e_1_2_9_20_1 doi: 10.1111/epi.13657 – ident: e_1_2_9_13_1 doi: 10.1038/srep29215 – ident: e_1_2_9_5_1 doi: 10.1046/j.1528-1157.2002.26901.x – ident: e_1_2_9_7_1 doi: 10.1093/brain/awv130 – ident: e_1_2_9_16_1 doi: 10.1371/journal.pone.0041799 – ident: e_1_2_9_23_1 doi: 10.1093/brain/awy214 – ident: e_1_2_9_15_1 doi: 10.3389/fneur.2018.00143 – ident: e_1_2_9_19_1 doi: 10.1093/brain/aww299 – ident: e_1_2_9_21_1 doi: 10.1016/j.nicl.2019.101908 – ident: e_1_2_9_11_1 doi: 10.1111/j.1528-1167.2010.02785.x – ident: e_1_2_9_24_1 doi: 10.1038/s41551-019-0404-5 – ident: e_1_2_9_12_1 doi: 10.1073/pnas.1401752111 – ident: e_1_2_9_18_1 doi: 10.1016/j.nicl.2016.09.014 – ident: e_1_2_9_26_1 doi: 10.3389/fnhum.2015.00462 – ident: e_1_2_9_6_1 doi: 10.1136/jnnp-2011-301944 – ident: e_1_2_9_14_1 doi: 10.1093/neuros/nyx195 – volume: 2014 start-page: 4884 year: 2014 ident: e_1_2_9_17_1 article-title: An in silico approach for pre‐surgical evaluation of an epileptic cortex publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: e_1_2_9_2_1 doi: 10.1016/S0140-6736(11)60890-8 – ident: e_1_2_9_3_1 doi: 10.1093/brain/124.9.1683 – ident: e_1_2_9_27_1 doi: 10.3389/fninf.2017.00062 – ident: e_1_2_9_10_1 doi: 10.1016/j.nicl.2018.01.028 – ident: e_1_2_9_30_1 doi: 10.1093/brain/awy035 |
SSID | ssj0007673 |
Score | 2.4745708 |
Snippet | Objective
Predicting postoperative seizure freedom using functional correlation networks derived from interictal intracranial electroencephalography (EEG) has... Predicting postoperative seizure freedom using functional correlation networks derived from interictal intracranial electroencephalography (EEG) has shown some... ObjectivePredicting postoperative seizure freedom using functional correlation networks derived from interictal intracranial electroencephalography (EEG) has... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1417 |
SubjectTerms | Computed tomography Convulsions & seizures cortical localization Drug Resistant Epilepsy - diagnostic imaging Drug Resistant Epilepsy - physiopathology Drug Resistant Epilepsy - surgery EEG Electrodes Electrodes, Implanted Electroencephalography Electroencephalography - methods Epilepsy epilepsy surgery epileptogenic zone Humans intracranial electrodes Localization Magnetic resonance imaging Magnetic Resonance Imaging - methods Nerve Net - diagnostic imaging Nerve Net - physiopathology Nerve Net - surgery Predictions Predictive Value of Tests Retrospective Studies Seizures Time Factors Treatment Outcome |
Title | Interictal intracranial electroencephalography for predicting surgical success: The importance of space and time |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.16580 https://www.ncbi.nlm.nih.gov/pubmed/32589284 https://www.proquest.com/docview/2426758458 https://www.proquest.com/docview/2418134048 https://pubmed.ncbi.nlm.nih.gov/PMC7611164 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9UwEB6VHhAXWtamLZVBHHrJUxI7tgMnhFoVpKIKUakHpMixHTWC5kVvufDrmXEW-ihIiJuljBPHmeWzPfkG4LWRyhih81hoV8UiS6tYo2jscmu1ttaqmv53Pv8kzy7Fx6v8agvejv_C9PwQ04YbWUbw12TgplreMnLfNbMU4yet1ylXiwDR51_UUUoOp8spjwuUGliFKItn6rkZi-4AzLt5krfxawhApzvwdRx6n3fybbZeVTP74zdWx_98t114OABT9q7XpEew5dvHcP98OHp_Al3YO2wsgnXW0EAtRjlUXjYU0iEP0V2bkQKbIRhm3YK6U2I1W64XwcdiI5RofMNQQVlzE-A_dmXzmqFzw4ZpHaOK90_h8vTky_uzeCjXEFsheBJbKVyh8sLwikuXOCKn01ImzgnF8daVJwpSXrlc1aKoVeW1sAKdceLyGnELfwbb7bz1e8AQFyapLtAB-lxIU5ssK0wi0sIjQvKKR3A8frjSDlzmVFLjezmuaXAGyzCDEbyaRLuewONPQofj1y8HG16WBF5wNSVyHcHL6TJaHx2pmNbP1ySDCIkLdIMRPO-VZXoKz3JdYPSPQG2o0SRAzN6bV9rmOjB8K4nDk9jzOGjJ3wdenlx8CI39fxc9gAcZbRqEnOND2F4t1v4FIqtVdQT3MnFxFAzpJxIqIpQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VRQIu5RsCBQzi0EtWSezYDuKCUKstdCuEWqkXFDm2o0bQbLTdvfDrmfEmoUtBQtwsZZw4zsz4jT15A_DGSGWM0HkstKtikaVVrFE0drm1WltrVU3_O8-O5fRUfDzLz7bg3fAvzJofYtxwI8sI_poMnDakr1i575pJigsoBuw3qKJ3CKi-_CKPUrI_X055XKBYzytEeTxj183V6BrEvJ4peRXBhiXo4A58HQa_zjz5Nlktq4n98Ruv4_--3V3Y6bEpe79Wpnuw5dv7cHPWn74_gC5sHzYW8TpraKQWFzrUX9bX0iEn0Z2bgQWbIR5m3YK6U241u1wtgpvFRqjS-JahjrLmIkQA2JXNa4b-DRumdYyK3j-E04P9kw_TuK_YEFsheBJbKVyh8sLwikuXOOKn01ImzgnF8daVJxZSXrlc1aKoVeW1sAL9ceLyGqELfwTb7bz1T4AhNExSXaAP9LmQpjZZVphEpIVHkOQVj2Bv-HKl7enMqarG93IIa3AGyzCDEbweRbs1h8efhHaHz1_2ZnxZEn7BgErkOoJX42U0QDpVMa2fr0gGQRIX6AkjeLzWlvEpPMt1gQAgArWhR6MAkXtvXmmb80DyrSQOT2LPvaAmfx94uf_5MDSe_rvoS7g1PZkdlUeHx5-ewe2M9hBCCvIubC8XK_8cgdayehHs6Sc-gCXY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrVRxgZZX0xYwiEMvWSXxM3BCbVct0KpCVOoBKXJsR42AbLTdvfDrGTsPuhQkxM1SxonjzOOzPfkG4LUWUmumeMyULWOWpWWsUDS23BiljDGy8v87n52Lk0v2_opfrcHb4V-Yjh9i3HDzlhH8tTfw1la3jNy19STF-Inr9Q0mEuVV-ujTL-4oKfrj5ZTGOYr1tEI-jWfsuhqM7iDMu4mStwFsiEDTB_BlGHuXePJ1slyUE_PjN1rH_3y5LbjfI1PyrlOlbVhzzUPYPOvP3h9BGzYPa4NondR-oAbDHGov6SvpeBfRXuuBA5sgGibt3Hf3mdXkZjkPThYboUbjG4IaSurvAf9jVzKrCHo3bOjGEl_y_jFcTo8_H57Efb2G2DBGk9gIZnPJc01LKmxiPTudEiKxlkmKty6d5yClpeWyYnklS6eYYeiNE8srBC70Caw3s8btAEFgmKQqRw_oOBO60lmW64SluUOI5CSN4GD4cIXpycx9TY1vxbCowRkswgxG8GoUbTsGjz8J7Q9fv-iN-Kbw6AWXU4yrCF6Ol9H8_JmKbtxs6WUQIlGGfjCCp52yjE-hGVc5hv8I5IoajQKe2nv1SlNfB4pvKXB4AnseBC35-8CL44vT0Nj9d9EXsHlxNC0-np5_2IN7md9ACPnH-7C-mC_dM0RZi_J5sKaf2EskkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interictal+intracranial+electroencephalography+for+predicting+surgical+success%3A+The+importance+of+space+and+time&rft.jtitle=Epilepsia+%28Copenhagen%29&rft.au=Wang%2C+Yujiang&rft.au=Sinha%2C+Nishant&rft.au=Schroeder%2C+Gabrielle+M.&rft.au=Ramaraju%2C+Sriharsha&rft.date=2020-07-01&rft.issn=0013-9580&rft.eissn=1528-1167&rft.volume=61&rft.issue=7&rft.spage=1417&rft.epage=1426&rft_id=info:doi/10.1111%2Fepi.16580&rft_id=info%3Apmid%2F32589284&rft.externalDocID=PMC7611164 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9580&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9580&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9580&client=summon |