Testing a convolutional neural network‐based hippocampal segmentation method in a stroke population

As stroke mortality rates decrease, there has been a surge of effort to study poststroke dementia (PSD) to improve long‐term quality of life for stroke survivors. Hippocampal volume may be an important neuroimaging biomarker in poststroke dementia, as it has been associated with many other forms of...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 43; no. 1; pp. 234 - 243
Main Authors Zavaliangos‐Petropulu, Artemis, Tubi, Meral A., Haddad, Elizabeth, Zhu, Alyssa, Braskie, Meredith N., Jahanshad, Neda, Thompson, Paul M., Liew, Sook‐Lei
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As stroke mortality rates decrease, there has been a surge of effort to study poststroke dementia (PSD) to improve long‐term quality of life for stroke survivors. Hippocampal volume may be an important neuroimaging biomarker in poststroke dementia, as it has been associated with many other forms of dementia. However, studying hippocampal volume using MRI requires hippocampal segmentation. Advances in automated segmentation methods have allowed for studying the hippocampus on a large scale, which is important for robust results in the heterogeneous stroke population. However, most of these automated methods use a single atlas‐based approach and may fail in the presence of severe structural abnormalities common in stroke. Hippodeep, a new convolutional neural network‐based hippocampal segmentation method, does not rely solely on a single atlas‐based approach and thus may be better suited for stroke populations. Here, we compared quality control and the accuracy of segmentations generated by Hippodeep and two well‐accepted hippocampal segmentation methods on stroke MRIs (FreeSurfer 6.0 whole hippocampus and FreeSurfer 6.0 sum of hippocampal subfields). Quality control was performed using a stringent protocol for visual inspection of the segmentations, and accuracy was measured as volumetric correlation with manual segmentations. Hippodeep performed significantly better than both FreeSurfer methods in terms of quality control. All three automated segmentation methods had good correlation with manual segmentations and no one method was significantly more correlated than the others. Overall, this study suggests that both Hippodeep and FreeSurfer may be useful for hippocampal segmentation in stroke rehabilitation research, but Hippodeep may be more robust to stroke lesion anatomy. In this study, we compared three automated hippocampal segmentation methods in a large stroke population in terms of quality control and segmentation accuracy compared to manual segmentations. While all three methods yielded similar volumes, new convolutional neural network based segmentation method Hippodeep had the lowest method‐wise quality control fail rate, suggesting it may be the most robust to post‐stroke anatomical distortions.
AbstractList As stroke mortality rates decrease, there has been a surge of effort to study poststroke dementia (PSD) to improve long‐term quality of life for stroke survivors. Hippocampal volume may be an important neuroimaging biomarker in poststroke dementia, as it has been associated with many other forms of dementia. However, studying hippocampal volume using MRI requires hippocampal segmentation. Advances in automated segmentation methods have allowed for studying the hippocampus on a large scale, which is important for robust results in the heterogeneous stroke population. However, most of these automated methods use a single atlas‐based approach and may fail in the presence of severe structural abnormalities common in stroke. Hippodeep, a new convolutional neural network‐based hippocampal segmentation method, does not rely solely on a single atlas‐based approach and thus may be better suited for stroke populations. Here, we compared quality control and the accuracy of segmentations generated by Hippodeep and two well‐accepted hippocampal segmentation methods on stroke MRIs (FreeSurfer 6.0 whole hippocampus and FreeSurfer 6.0 sum of hippocampal subfields). Quality control was performed using a stringent protocol for visual inspection of the segmentations, and accuracy was measured as volumetric correlation with manual segmentations. Hippodeep performed significantly better than both FreeSurfer methods in terms of quality control. All three automated segmentation methods had good correlation with manual segmentations and no one method was significantly more correlated than the others. Overall, this study suggests that both Hippodeep and FreeSurfer may be useful for hippocampal segmentation in stroke rehabilitation research, but Hippodeep may be more robust to stroke lesion anatomy. In this study, we compared three automated hippocampal segmentation methods in a large stroke population in terms of quality control and segmentation accuracy compared to manual segmentations. While all three methods yielded similar volumes, new convolutional neural network based segmentation method Hippodeep had the lowest method‐wise quality control fail rate, suggesting it may be the most robust to post‐stroke anatomical distortions.
As stroke mortality rates decrease, there has been a surge of effort to study poststroke dementia (PSD) to improve long-term quality of life for stroke survivors. Hippocampal volume may be an important neuroimaging biomarker in poststroke dementia, as it has been associated with many other forms of dementia. However, studying hippocampal volume using MRI requires hippocampal segmentation. Advances in automated segmentation methods have allowed for studying the hippocampus on a large scale, which is important for robust results in the heterogeneous stroke population. However, most of these automated methods use a single atlas-based approach and may fail in the presence of severe structural abnormalities common in stroke. Hippodeep, a new convolutional neural network-based hippocampal segmentation method, does not rely solely on a single atlas-based approach and thus may be better suited for stroke populations. Here, we compared quality control and the accuracy of segmentations generated by Hippodeep and two well-accepted hippocampal segmentation methods on stroke MRIs (FreeSurfer 6.0 whole hippocampus and FreeSurfer 6.0 sum of hippocampal subfields). Quality control was performed using a stringent protocol for visual inspection of the segmentations, and accuracy was measured as volumetric correlation with manual segmentations. Hippodeep performed significantly better than both FreeSurfer methods in terms of quality control. All three automated segmentation methods had good correlation with manual segmentations and no one method was significantly more correlated than the others. Overall, this study suggests that both Hippodeep and FreeSurfer may be useful for hippocampal segmentation in stroke rehabilitation research, but Hippodeep may be more robust to stroke lesion anatomy.
As stroke mortality rates decrease, there has been a surge of effort to study poststroke dementia (PSD) to improve long-term quality of life for stroke survivors. Hippocampal volume may be an important neuroimaging biomarker in poststroke dementia, as it has been associated with many other forms of dementia. However, studying hippocampal volume using MRI requires hippocampal segmentation. Advances in automated segmentation methods have allowed for studying the hippocampus on a large scale, which is important for robust results in the heterogeneous stroke population. However, most of these automated methods use a single atlas-based approach and may fail in the presence of severe structural abnormalities common in stroke. Hippodeep, a new convolutional neural network-based hippocampal segmentation method, does not rely solely on a single atlas-based approach and thus may be better suited for stroke populations. Here, we compared quality control and the accuracy of segmentations generated by Hippodeep and two well-accepted hippocampal segmentation methods on stroke MRIs (FreeSurfer 6.0 whole hippocampus and FreeSurfer 6.0 sum of hippocampal subfields). Quality control was performed using a stringent protocol for visual inspection of the segmentations, and accuracy was measured as volumetric correlation with manual segmentations. Hippodeep performed significantly better than both FreeSurfer methods in terms of quality control. All three automated segmentation methods had good correlation with manual segmentations and no one method was significantly more correlated than the others. Overall, this study suggests that both Hippodeep and FreeSurfer may be useful for hippocampal segmentation in stroke rehabilitation research, but Hippodeep may be more robust to stroke lesion anatomy.As stroke mortality rates decrease, there has been a surge of effort to study poststroke dementia (PSD) to improve long-term quality of life for stroke survivors. Hippocampal volume may be an important neuroimaging biomarker in poststroke dementia, as it has been associated with many other forms of dementia. However, studying hippocampal volume using MRI requires hippocampal segmentation. Advances in automated segmentation methods have allowed for studying the hippocampus on a large scale, which is important for robust results in the heterogeneous stroke population. However, most of these automated methods use a single atlas-based approach and may fail in the presence of severe structural abnormalities common in stroke. Hippodeep, a new convolutional neural network-based hippocampal segmentation method, does not rely solely on a single atlas-based approach and thus may be better suited for stroke populations. Here, we compared quality control and the accuracy of segmentations generated by Hippodeep and two well-accepted hippocampal segmentation methods on stroke MRIs (FreeSurfer 6.0 whole hippocampus and FreeSurfer 6.0 sum of hippocampal subfields). Quality control was performed using a stringent protocol for visual inspection of the segmentations, and accuracy was measured as volumetric correlation with manual segmentations. Hippodeep performed significantly better than both FreeSurfer methods in terms of quality control. All three automated segmentation methods had good correlation with manual segmentations and no one method was significantly more correlated than the others. Overall, this study suggests that both Hippodeep and FreeSurfer may be useful for hippocampal segmentation in stroke rehabilitation research, but Hippodeep may be more robust to stroke lesion anatomy.
Author Tubi, Meral A.
Jahanshad, Neda
Braskie, Meredith N.
Liew, Sook‐Lei
Zavaliangos‐Petropulu, Artemis
Zhu, Alyssa
Thompson, Paul M.
Haddad, Elizabeth
AuthorAffiliation 2 Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics Keck School of Medicine of USC Marina del Rey California USA
1 Neural Plasticity and Neurorehabilitation Laboratory University of Southern California Los Angeles California USA
3 Chan Division of Occupational Science and Occupational Therapy Ostrow School of Dentistry, University of Southern California Los Angeles California USA
AuthorAffiliation_xml – name: 1 Neural Plasticity and Neurorehabilitation Laboratory University of Southern California Los Angeles California USA
– name: 3 Chan Division of Occupational Science and Occupational Therapy Ostrow School of Dentistry, University of Southern California Los Angeles California USA
– name: 2 Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics Keck School of Medicine of USC Marina del Rey California USA
Author_xml – sequence: 1
  givenname: Artemis
  orcidid: 0000-0003-1953-8663
  surname: Zavaliangos‐Petropulu
  fullname: Zavaliangos‐Petropulu, Artemis
  organization: Keck School of Medicine of USC
– sequence: 2
  givenname: Meral A.
  surname: Tubi
  fullname: Tubi, Meral A.
  organization: Keck School of Medicine of USC
– sequence: 3
  givenname: Elizabeth
  surname: Haddad
  fullname: Haddad, Elizabeth
  organization: Keck School of Medicine of USC
– sequence: 4
  givenname: Alyssa
  surname: Zhu
  fullname: Zhu, Alyssa
  organization: Keck School of Medicine of USC
– sequence: 5
  givenname: Meredith N.
  surname: Braskie
  fullname: Braskie, Meredith N.
  organization: Keck School of Medicine of USC
– sequence: 6
  givenname: Neda
  surname: Jahanshad
  fullname: Jahanshad, Neda
  organization: Keck School of Medicine of USC
– sequence: 7
  givenname: Paul M.
  surname: Thompson
  fullname: Thompson, Paul M.
  organization: Keck School of Medicine of USC
– sequence: 8
  givenname: Sook‐Lei
  orcidid: 0000-0001-5935-4215
  surname: Liew
  fullname: Liew, Sook‐Lei
  email: sliew@chan.usc.edu
  organization: Ostrow School of Dentistry, University of Southern California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33067842$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3TAQhS1ExV-76AtUkdiURcD_cTZILWpLJapu6NpynMm9hsQOdgJi10foM_Ik9b2XohaJrmak-ebozJx9tO2DB4TeEnxMMKYny2Y4poISvIX2CK6rEpOaba96KcqaV2QX7ad0hTEhApMdtMsYlpXidA_BJaTJ-UVhChv8bejnyQVv-sLDHNdlugvx-uHnr8YkaIulG8dgzTDmWYLFAH4yq41igGkZ2sL5rJSmGK6hGMM49-vpa_SqM32CN4_1AP34_Ony7Ly8-P7l69mHi9JyznBZg5WYcdkSpYTCHbOCcwDWKl4rybhorepIg7umrQnvgFWS163gigLBvKHsAJ1udMe5GaC12V0-Qo_RDSbe62Cc_nfi3VIvwq1WshKcsizw_lEghps5v0YPLlnoe-MhzElTLoiSVPEVevgMvQpzzK_LlMx2MCO1ytS7vx09WfmTQAaONoCNIaUI3RNCsF6lq3O6ep1uZk-esdZt3p-Pcf3_Nu5cD_cvS-vzj982G78Bf7K3rQ
CitedBy_id crossref_primary_10_1002_hbm_25672
crossref_primary_10_1038_s41598_023_38833_z
crossref_primary_10_1162_imag_a_00293
crossref_primary_10_1002_hbm_26147
crossref_primary_10_1161_JAHA_121_025109
crossref_primary_10_3389_fnins_2023_1162096
crossref_primary_10_1177_13872877241300278
crossref_primary_10_1002_hbm_25858
crossref_primary_10_1038_s43856_024_00541_8
Cites_doi 10.1002/hipo.22717
10.1016/j.media.2017.11.004
10.1038/mp.2015.69
10.1016/S1474-4422(05)70221-0
10.1007/BF00308809
10.1016/j.neuroimage.2010.09.025
10.1038/ncomms13624
10.1002/hbm.25015
10.1093/cercor/bhy109
10.1161/STROKEAHA.108.536144
10.1161/CIRCRESAHA.116.308413
10.1016/j.jalz.2014.05.1756
10.1037/0033-2909.86.2.420
10.1177/1545968316662708
10.1016/j.biopsych.2013.11.020
10.1016/j.neuroimage.2006.01.021
10.1016/j.neuroimage.2019.116485
10.1097/NEN.0000000000000054
10.18632/aging.101931
10.1016/j.nicl.2019.102008
10.1161/STROKEAHA.111.636498
10.1212/WNL.0000000000004086
10.1038/mp.2015.63
10.1016/j.jcm.2016.02.012
10.1111/ijs.12301
10.1038/sdata.2018.11
10.1016/S1474-4422(18)30497-6
10.1016/j.neuroimage.2019.05.017
10.1016/j.nicl.2018.10.019
10.3389/fninf.2019.00013
10.1016/S0896-6273(02)00569-X
10.1016/S1474-4422(17)30343-5
10.1016/j.dadm.2019.04.001
10.3233/JAD-180676
10.1016/j.jalz.2013.03.001
10.1016/j.nicl.2019.101904
10.1037/a0032837
10.1016/j.neuroimage.2006.01.015
10.1016/j.neuroimage.2015.04.042
10.1016/j.dadm.2016.10.006
10.1155/2018/4303161
10.1038/nrneurol.2017.16
10.1002/hbm.23559
10.1016/j.nicl.2012.08.002
10.1016/j.neuroimage.2012.01.021
10.1093/oso/9780195125894.001.0001
ContentType Journal Article
Copyright 2020 The Authors. published by Wiley Periodicals LLC.
2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wiley Periodicals LLC.
– notice: 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/hbm.25210
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Zavaliangos‐Petropulu et al
EISSN 1097-0193
EndPage 243
ExternalDocumentID PMC8675423
33067842
10_1002_hbm_25210
HBM25210
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Center for Medical Rehabilitation Research
  funderid: 1K01HD091283
– fundername: Foundation for the National Institutes of Health
  funderid: F31 AG059356; K01 HD091283; P41 EB015922; R01 AG059874; U54 EB020403 U01 AG068057 R01 NS115845
– fundername: Biogen, Inc
– fundername: NIA NIH HHS
  grantid: R01 AG059874
– fundername: NIBIB NIH HHS
  grantid: U54 EB020403
– fundername: NINDS NIH HHS
  grantid: R01 NS115845
– fundername: NIA NIH HHS
  grantid: U01 AG068057
– fundername: NIH HHS
  grantid: 1K01HD091283
– fundername: NIA NIH HHS
  grantid: F31 AG059356
– fundername: NINDS NIH HHS
  grantid: L30 NS093611
– fundername: NIBIB NIH HHS
  grantid: P41 EB015922
– fundername: NIH HHS
  grantid: U54 EB020403 U01 AG068057 R01 NS115845
– fundername: NICHD NIH HHS
  grantid: K01 HD091283
– fundername: ;
  grantid: F31 AG059356; K01 HD091283; P41 EB015922; R01 AG059874; U54 EB020403 U01 AG068057 R01 NS115845
– fundername: ;
  grantid: 1K01HD091283
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c4430-9ec60346d188580f3c544ee3d84986345dc8f1b0fbd914fe37649d5482e104b23
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 18:10:54 EDT 2025
Fri Jul 11 02:51:06 EDT 2025
Sat Jul 26 02:19:42 EDT 2025
Mon Jul 21 06:04:58 EDT 2025
Tue Jul 01 01:11:00 EDT 2025
Thu Apr 24 22:56:56 EDT 2025
Wed Jan 22 16:26:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords hippocampus
MRI
image segmentation
stroke
convolutional neural network
lesion
Language English
License Attribution-NonCommercial
2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4430-9ec60346d188580f3c544ee3d84986345dc8f1b0fbd914fe37649d5482e104b23
Notes Funding information
Foundation for the National Institutes of Health, Grant/Award Numbers: F31 AG059356, K01 HD091283, P41 EB015922, R01 AG059874, U54 EB020403 U01 AG068057 R01 NS115845; National Center for Medical Rehabilitation Research, Grant/Award Number: 1K01HD091283; Biogen, Inc
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Foundation for the National Institutes of Health, Grant/Award Numbers: F31 AG059356, K01 HD091283, P41 EB015922, R01 AG059874, U54 EB020403 U01 AG068057 R01 NS115845; National Center for Medical Rehabilitation Research, Grant/Award Number: 1K01HD091283; Biogen, Inc
ORCID 0000-0003-1953-8663
0000-0001-5935-4215
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25210
PMID 33067842
PQID 2610403198
PQPubID 996345
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8675423
proquest_miscellaneous_2451862843
proquest_journals_2610403198
pubmed_primary_33067842
crossref_primary_10_1002_hbm_25210
crossref_citationtrail_10_1002_hbm_25210
wiley_primary_10_1002_hbm_25210_HBM25210
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 7
2017; 8
2018; 28
2006; 31
2009; 40
2013; 27
2019; 11
2017; 27
2019; 13
2015; 11
2002; 33
2017; 89
1991; 82
2011; 54
2019; 18
2003
2018; 66
2018; 43
2016; 15
2020; 208
2019a; 21
2017; 31
2018; 2018
2018; 5
2012; 1
2015; 115
2019b; 24
2016; 9968
2017; 16
2020
2017; 38
2019; 23
2017; 13
2016; 21
2005; 4
2017; 120
2014; 9
1979; 86
2014; 73
2012; 43
2019; 197
2014; 75
2012; 62
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_33_1
Yang X. (e_1_2_9_45_1) 2016; 9968
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
Nelson J. S. (e_1_2_9_32_1) 2003
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 54
  start-page: 2033
  issue: 3
  year: 2011
  end-page: 2044
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: NeuroImage
– volume: 23
  year: 2019
  article-title: Hippocampal volume across age: Nomograms derived from over 19,700 people in UKBiobank
  publication-title: NeuroImage: Clinical
– volume: 31
  start-page: 3
  issue: 1
  year: 2017
  end-page: 24
  article-title: Can neurological biomarkers of brain impairment be used to predict poststroke motor recovery? A systematic review
  publication-title: Neurorehabilitation and Neural Repair
– volume: 11
  start-page: 184
  issue: 2
  year: 2015
  end-page: 194
  article-title: Operationalizing protocol differences for EADC‐ADNI manual hippocampal segmentation
  publication-title: Alzheimer's and Dementia
– volume: 1
  start-page: 1
  issue: 1
  year: 2012
  end-page: 17
  article-title: Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction
  publication-title: NeuroImage: Clinical
– volume: 9968
  start-page: 97
  year: 2016
  end-page: 107
  article-title: Registration of pathological images
  publication-title: Synthesis in Medical Imaging
– volume: 8
  year: 2017
  article-title: Novel genetic loci associated with hippocampal volume
  publication-title: Nature Communications
– volume: 21
  start-page: 547
  issue: 4
  year: 2016
  end-page: 553
  article-title: Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium
  publication-title: Molecular Psychiatry
– volume: 7
  start-page: 11
  year: 2017
  end-page: 23
  article-title: STROKOG (stroke and cognition consortium): An international consortium to examine the epidemiology, diagnosis, and treatment of neurocognitive disorders in relation to cerebrovascular disease
  publication-title: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring
– year: 2003
– volume: 27
  start-page: 481
  issue: 5
  year: 2017
  end-page: 494
  article-title: Hippocampal subfields at ultra high field MRI: An overview of segmentation and measurement methods
  publication-title: Hippocampus
– volume: 13
  year: 2019
  article-title: Trajectories of the hippocampal subfields atrophy in the Alzheimer's disease: A structural imaging study
  publication-title: Frontiers in Neuroinformatics
– volume: 18
  start-page: 223
  issue: 3
  year: 2019
  end-page: 225
  article-title: Dementia risk after transient ischaemic attack and stroke
  publication-title: The Lancet Neurology
– volume: 208
  start-page: 116485
  year: 2020
  article-title: Hippocampal diaschisis contributes to anosognosia for hemiplegia: Evidence from lesion network‐symptom‐mapping
  publication-title: NeuroImage
– volume: 75
  start-page: 527
  issue: 7
  year: 2014
  end-page: 533
  article-title: A focus on structural brain imaging in the Alzheimer's disease Neuroimaging Initiative
  publication-title: Biological Psychiatry
– volume: 120
  start-page: 439
  issue: 3
  year: 2017
  end-page: 448
  article-title: Stroke compendium global burden of stroke effects of neurologic injury on cardiovascular function vascular cognitive impairment
  publication-title: Circulation Research
– volume: 24
  year: 2019b
  article-title: Assessment of longitudinal hippocampal atrophy in the first year after ischemic stroke using automate segmentation techniques
  publication-title: Neuroimage: Clinical
– volume: 73
  start-page: 305
  issue: 4
  year: 2014
  end-page: 311
  article-title: Neuron volumes in hippocampal subfields in delayed poststroke and aging‐related dementias
  publication-title: Journal of Neuropathology & Experimental Neurology
– volume: 82
  start-page: 239
  issue: 4
  year: 1991
  end-page: 259
  article-title: Neuropathological stageing of Alzheimer‐related changes
  publication-title: Acta Neuropathologica
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  article-title: FreeSurfer
  publication-title: NeuroImage
– volume: 86
  start-page: 420
  issue: 2
  year: 1979
  end-page: 428
  article-title: Intraclass correlations: Uses in assessing rater reliability
  publication-title: Psychological Bulletin
– volume: 40
  start-page: 2042
  issue: 6
  year: 2009
  end-page: 2045
  article-title: Hippocampal lesion patterns in acute posterior cerebral artery stroke: Clinical and MRI findings
  publication-title: Stroke
– volume: 11
  start-page: 2542
  issue: 9
  year: 2019
  end-page: 2544
  article-title: Aging and ischemic stroke
  publication-title: Aging
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 13
  article-title: Brain midline shift measurement and its automation: A review of techniques and algorithms
  publication-title: International Journal of Biomedical Imaging
– volume: 43
  start-page: 808
  issue: 3
  year: 2012
  end-page: 814
  article-title: Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging‐related dementias
  publication-title: Stroke
– volume: 15
  start-page: 155
  issue: 2
  year: 2016
  end-page: 163
  article-title: A guideline of selecting and reporting intraclass correlation coefficients for reliability research
  publication-title: Journal of Chiropractic Medicine
– volume: 197
  start-page: 589
  year: 2019
  end-page: 597
  article-title: Testing a deep convolutional neural network for automated hippocampus segmentation in a longitudinal sample of healthy participants
  publication-title: NeuroImage
– volume: 9
  start-page: 824
  issue: 6
  year: 2014
  end-page: 828
  article-title: Charting cognitive and volumetric trajectories after stroke: Protocol for the cognition and neocortical volume after stroke (CANVAS) study
  publication-title: International Journal of Stroke
– volume: 11
  start-page: 439
  year: 2019
  end-page: 449
  article-title: Progress update from the hippocampal subfields group
  publication-title: Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring
– year: 2020
  article-title: The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain‐behavior relationships after stroke
  publication-title: Human Brain Mapping
– volume: 5
  year: 2018
  article-title: A large, open source dataset of stroke anatomical brain images and manual lesion segmentations
  publication-title: Scientific Data
– volume: 38
  start-page: 2875
  issue: 6
  year: 2017
  end-page: 2896
  article-title: Your algorithm might think the hippocampus grows in Alzheimer's disease: Caveats of longitudinal automated hippocampal volumetry
  publication-title: Human Brain Mapping
– volume: 4
  start-page: 752
  issue: 11
  year: 2005
  end-page: 759
  article-title: Poststroke dementia
  publication-title: The Lancet Neurology
– volume: 11
  start-page: 111
  issue: 2
  year: 2015
  end-page: 125
  article-title: The EADC‐ADNI harmonized protocol for manual hippocampal segmentation on magnetic resonance: Evidence of validity
  publication-title: Alzheimer's and Dementia
– volume: 115
  start-page: 117
  year: 2015
  end-page: 137
  article-title: A computational atlas of the hippocampal formation using ex vivo, ultra‐high resolution MRI: Application to adaptive segmentation of in vivo MRI
  publication-title: NeuroImage
– volume: 66
  start-page: 811
  issue: 2
  year: 2018
  end-page: 823
  article-title: Alzheimer's disease biomarkers have distinct associations with specific hippocampal subfield volumes
  publication-title: Journal of Alzheimer's Disease
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  end-page: 980
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
– volume: 21
  start-page: 806
  issue: 6
  year: 2016
  end-page: 812
  article-title: Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder working group
  publication-title: Molecular Psychiatry
– volume: 33
  start-page: 341
  issue: 3
  year: 2002
  end-page: 355
  article-title: Whole brain segmentation: Neurotechnique automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 13
  start-page: 148
  issue: 3
  year: 2017
  end-page: 159
  article-title: Early‐onset and delayed‐onset poststroke dementia‐revisiting the mechanisms
  publication-title: Nature Reviews Neurology
– volume: 89
  start-page: 116
  issue: 2
  year: 2017
  end-page: 124
  article-title: Structural MRI markers of brain aging early after ischemic stroke
  publication-title: Neurology
– volume: 28
  start-page: 2959
  issue: 8
  year: 2018
  end-page: 2975
  article-title: Sex differences in the adult human brain: Evidence from 5216 UKbiobank participants
  publication-title: Cerebral Cortex
– volume: 21
  year: 2019a
  article-title: A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants
  publication-title: NeuroImage: Clinical
– volume: 27
  start-page: 438
  issue: 4
  year: 2013
  end-page: 451
  article-title: Heterogeneity of brain lesions in pediatric traumatic brain injury
  publication-title: Neuropsychology
– volume: 43
  start-page: 214
  year: 2018
  end-page: 228
  article-title: Segmentation of the hippocampus by transferring algorithmic knowledge for large cohort processing
  publication-title: Medical Image Analysis
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  end-page: 1128
  article-title: User‐guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability
  publication-title: NeuroImage
– volume: 16
  start-page: 862
  issue: 11
  year: 2017
  end-page: 864
  article-title: Pathology and hippocampal atrophy in Alzheimer's disease
  publication-title: The Lancet Neurology
– ident: e_1_2_9_16_1
  doi: 10.1002/hipo.22717
– ident: e_1_2_9_42_1
  doi: 10.1016/j.media.2017.11.004
– ident: e_1_2_9_39_1
  doi: 10.1038/mp.2015.69
– ident: e_1_2_9_26_1
  doi: 10.1016/S1474-4422(05)70221-0
– ident: e_1_2_9_5_1
  doi: 10.1007/BF00308809
– ident: e_1_2_9_2_1
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: e_1_2_9_18_1
  doi: 10.1038/ncomms13624
– ident: e_1_2_9_29_1
  doi: 10.1002/hbm.25015
– ident: e_1_2_9_36_1
  doi: 10.1093/cercor/bhy109
– ident: e_1_2_9_41_1
  doi: 10.1161/STROKEAHA.108.536144
– ident: e_1_2_9_10_1
  doi: 10.1161/CIRCRESAHA.116.308413
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jalz.2014.05.1756
– ident: e_1_2_9_40_1
  doi: 10.1037/0033-2909.86.2.420
– ident: e_1_2_9_23_1
  doi: 10.1177/1545968316662708
– ident: e_1_2_9_6_1
  doi: 10.1016/j.biopsych.2013.11.020
– ident: e_1_2_9_8_1
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: e_1_2_9_24_1
  doi: 10.1016/j.neuroimage.2019.116485
– ident: e_1_2_9_15_1
  doi: 10.1097/NEN.0000000000000054
– ident: e_1_2_9_46_1
  doi: 10.18632/aging.101931
– ident: e_1_2_9_22_1
  doi: 10.1016/j.nicl.2019.102008
– ident: e_1_2_9_14_1
  doi: 10.1161/STROKEAHA.111.636498
– ident: e_1_2_9_44_1
  doi: 10.1212/WNL.0000000000004086
– ident: e_1_2_9_43_1
  doi: 10.1038/mp.2015.63
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jcm.2016.02.012
– ident: e_1_2_9_7_1
  doi: 10.1111/ijs.12301
– ident: e_1_2_9_28_1
  doi: 10.1038/sdata.2018.11
– ident: e_1_2_9_9_1
  doi: 10.1016/S1474-4422(18)30497-6
– ident: e_1_2_9_34_1
  doi: 10.1016/j.neuroimage.2019.05.017
– ident: e_1_2_9_21_1
  doi: 10.1016/j.nicl.2018.10.019
– ident: e_1_2_9_48_1
  doi: 10.3389/fninf.2019.00013
– ident: e_1_2_9_12_1
  doi: 10.1016/S0896-6273(02)00569-X
– ident: e_1_2_9_17_1
  doi: 10.1016/S1474-4422(17)30343-5
– ident: e_1_2_9_35_1
  doi: 10.1016/j.dadm.2019.04.001
– ident: e_1_2_9_31_1
  doi: 10.3233/JAD-180676
– ident: e_1_2_9_4_1
  doi: 10.1016/j.jalz.2013.03.001
– ident: e_1_2_9_33_1
  doi: 10.1016/j.nicl.2019.101904
– ident: e_1_2_9_3_1
  doi: 10.1037/a0032837
– ident: e_1_2_9_47_1
  doi: 10.1016/j.neuroimage.2006.01.015
– ident: e_1_2_9_19_1
  doi: 10.1016/j.neuroimage.2015.04.042
– ident: e_1_2_9_37_1
  doi: 10.1016/j.dadm.2016.10.006
– volume: 9968
  start-page: 97
  year: 2016
  ident: e_1_2_9_45_1
  article-title: Registration of pathological images
  publication-title: Synthesis in Medical Imaging
– ident: e_1_2_9_27_1
  doi: 10.1155/2018/4303161
– ident: e_1_2_9_30_1
  doi: 10.1038/nrneurol.2017.16
– ident: e_1_2_9_38_1
  doi: 10.1002/hbm.23559
– ident: e_1_2_9_20_1
  doi: 10.1016/j.nicl.2012.08.002
– ident: e_1_2_9_11_1
  doi: 10.1016/j.neuroimage.2012.01.021
– volume-title: Principles and practice of neuropathology
  year: 2003
  ident: e_1_2_9_32_1
  doi: 10.1093/oso/9780195125894.001.0001
SSID ssj0011501
Score 2.4431605
Snippet As stroke mortality rates decrease, there has been a surge of effort to study poststroke dementia (PSD) to improve long‐term quality of life for stroke...
As stroke mortality rates decrease, there has been a surge of effort to study poststroke dementia (PSD) to improve long-term quality of life for stroke...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 234
SubjectTerms Abnormalities
Accuracy
Aging
Alzheimer's disease
Artificial neural networks
Atrophy
Automation
Biomarkers
Cognition & reasoning
Consortia
convolutional neural network
Datasets as Topic
Dementia
Dementia disorders
Hippocampus
Hippocampus - diagnostic imaging
Hippocampus - pathology
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Image segmentation
Inspection
lesion
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
Medical imaging
Methods
MRI
Neural networks
Neural Networks, Computer
Neuroimaging
Neuroimaging - methods
Neuroimaging - standards
Pathology
Quality Control
Quality of life
Rehabilitation
Robustness
Scanners
Stroke
Stroke - diagnostic imaging
Stroke - pathology
Title Testing a convolutional neural network‐based hippocampal segmentation method in a stroke population
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25210
https://www.ncbi.nlm.nih.gov/pubmed/33067842
https://www.proquest.com/docview/2610403198
https://www.proquest.com/docview/2451862843
https://pubmed.ncbi.nlm.nih.gov/PMC8675423
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD50HYy9rF27S7o2aGOMvji1LVmW6VM7WsIgpZQW8jAwliU1oY0SmuRhe9pP2G_cL9mRfOmybjD2Egd8rCj2uX3y0XcA3vOwEEqpLKBxVCJAUWGQaS0DWmYG9UebzLdvG5zx_hX7NEyGa3DY7IWp-CHaBTdnGd5fOwMv5PzgnjR0JCe9GIOPw-uuVsslRBctdZRLdDzYwhAbZOiBG1ahMD5or1yNRQ8SzId1kr_mrz4AnW7A52bqVd3JTW-5kL3y62-sjv_53zbhWZ2YkqNKk57DmrZbsH1kEZRPvpAPxJeK-jX4LXgyqN_Ib4O-dDQd9poUxBWw14qMAzmiTH_wZeY_vn138VKR0Xg2w_CJTuiWzPX1pN76ZEnVypqMLY40X9xNbzSZtc3FXsDV6cnlx35Qt24ISsaoe94lDynjKhIiEaGhZcKY1lQJlglOWaJKYSIZGqmyiBmNbo5lCtFTrBEfypi-hHU7tfo1kESkgpeGK5oWTKdCSl5EPE3DsGDGmLgD-81DzMua19y117jNK0bmOMe7mfu72YF3reisIvP4k9Buowl5bc_zHHEmejt0V6IDb9vTaInu9Uph9XSJMiyJEB8KRjvwqlKc9leoQ2aC4WTTFZVqBRzL9-oZOx55tm_BXZNiHHPfa8zfJ573jwf-y86_i76Bp7Hbz-HXlHZhfXG31HuYZS1kFx7F7Bw_02HahcfHJ2fnF12_YtH1hvYTrO4p3Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRQIuFFp-thQwCFAv2Sax4zgHDoVSbWm3B7SVeguJf7qrdrOrblaonHgEHoRX4SV4EsbODywFiUsPnBLJI8ex59cefwPwnPuZUEolHg0DiQGK8r1E69yjMjHIP9okrnxb_5D3jti74-h4Cb42d2EqfIh2w81KhtPXVsDthvTWT9TQYT7uhmh9_Dqlcl9ffMSAbfZqbwdX90UY7r4dvOl5dU0BTzJG7UAk9ynjKhAiEr6hMmJMa6oESwSnLFJSmCD3Ta6SgBmN8scShW59qDFwyS3MASr8a7aCuEXq33nfglVZ18qFd2jUvQR1foNj5Idb7VAXrd8ll_ZyZuavHrMzebsr8K2ZrCrT5bQ7L_Ou_PQbjuT_Mpu34Vbte5PtSljuwJIuVmFtu8jKyfiCvCQuG9YdM6zC9X6ddLAGemCRSIoTkhGbo1_LKnZksUDdw2XSf__8xboEigxH0yl6CKhnz8hMn4zr210Fqap1k1GBPc3K88mpJtO2ftpdOLqSf78Hy8Wk0A-ARCIWXBquaJwxHYs851nA49j3M2aMCTuw2XBNKmvodltB5CytQKfDFFcvdavXgWct6bTCK_kT0UbDemmtsmYphtKo0FEjiw48bZtR2dgTpKzQkznSsCjAEFgw2oH7Fae2X6E2-BQMBxsv8HBLYIHMF1uK0dABmgtu6zBjn5uORf8-8LT3uu9e1v-d9Anc6A36B-nB3uH-Q7gZ2usrbgttA5bL87l-hE5lmT92skzgw1Wz-w9QH4DJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VRaq4IGj52VLAIEC9hDq24zgHDoWy2lK26qGVegtJbHdXdL1RdyvUG4_Ae_BWPAljJxtYFSQuPSVSRo7l-bfH3wC8lLRQWuss4iyuMEHRNMqMKSNeZRblx9gstG8bHsrBifh4mpyuwI_FXZgGH6LbcPOaEey1V_Ba253foKGjcvKGofOhbUXlgbn6ivna7O3-HjL3FWP9D8fvB1HbUiCqhOB-HpWkXEgdK5UoanmVCGEM10pkSnKR6ErZuKS21FksrEH1E5nGqJ4ZzFtKj3KA9v6WP1z09WNMHHVHFhhZhewOfXqUoclfwBhRttNNddn5XYtorxdm_hkwB4_Xvwt32lCV7DaydQ9WjFuHjV2HafrkirwmoXg07Mqvw9qwPaPfAHPsgTvcGSmIL2lvRRsH8tCZ4REKz39---49qCajcV2jQ0WzdE5m5mzSXoZypGluTcYOR5rNL6ZfDKm7dmP34eRGVv4BrLqpM4-AJCpVsrJS87QQJlVlKYtYpimlhbDWsh5sL1Y5r1qkc99w4zxvMJpZjgzJA0N68KIjrRt4j78RbS1YlbcaPssx80T7hwZM9eB59xl10x-4FM5ML5FGJDFmjErwHjxsONv9hftcTQmcbLrE847A434vf3HjUcD_VtK3LcYxt4N0_Hvi-eDdMLxs_j_pM1g72uvnn_YPDx7DbeYve4QNpy1YnV9cmicYgs3Lp0H0CXy-aV37BeAMQDk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+a+convolutional+neural+network-based+hippocampal+segmentation+method+in+a+stroke+population&rft.jtitle=Human+brain+mapping&rft.au=Zavaliangos-Petropulu%2C+Artemis&rft.au=Tubi%2C+Meral+A&rft.au=Haddad%2C+Elizabeth&rft.au=Zhu%2C+Alyssa&rft.date=2022-01-01&rft.issn=1097-0193&rft.eissn=1097-0193&rft.volume=43&rft.issue=1&rft.spage=234&rft_id=info:doi/10.1002%2Fhbm.25210&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon