Hippocampal‐amygdalo‐ventricular atrophy score: Alzheimer disease detection using normative and pathological lifespan models

In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumet...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 43; no. 10; pp. 3270 - 3282
Main Authors Coupé, Pierrick, Manjón, José V., Mansencal, Boris, Tourdias, Thomas, Catheline, Gwenaëlle, Planche, Vincent
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal‐Amygdalo‐Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3‐year follow‐up). Compared to normative modeling, classical machine learning methods and recent state‐of‐the‐art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well‐suited for clinical practice or future pharmaceutical trials. In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. Compared to normative modeling and recent state‐of‐the‐art deep learning methods, our method demonstrated better classification performance. Moreover, it simplicity makes it fully understandable and thus well‐suited for clinical practice or future pharmaceutical trials.
AbstractList In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal‐Amygdalo‐Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3‐year follow‐up). Compared to normative modeling, classical machine learning methods and recent state‐of‐the‐art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well‐suited for clinical practice or future pharmaceutical trials. In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. Compared to normative modeling and recent state‐of‐the‐art deep learning methods, our method demonstrated better classification performance. Moreover, it simplicity makes it fully understandable and thus well‐suited for clinical practice or future pharmaceutical trials.
In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal‐Amygdalo‐Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3‐year follow‐up). Compared to normative modeling, classical machine learning methods and recent state‐of‐the‐art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well‐suited for clinical practice or future pharmaceutical trials.
In this article, we present an innovative MRI-based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal-Amygdalo-Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3-year follow-up). Compared to normative modeling, classical machine learning methods and recent state-of-the-art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well-suited for clinical practice or future pharmaceutical trials.
In this article, we present an innovative MRI-based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal-Amygdalo-Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3-year follow-up). Compared to normative modeling, classical machine learning methods and recent state-of-the-art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well-suited for clinical practice or future pharmaceutical trials.In this article, we present an innovative MRI-based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal-Amygdalo-Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3-year follow-up). Compared to normative modeling, classical machine learning methods and recent state-of-the-art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well-suited for clinical practice or future pharmaceutical trials.
Author Manjón, José V.
Mansencal, Boris
Planche, Vincent
Coupé, Pierrick
Tourdias, Thomas
Catheline, Gwenaëlle
AuthorAffiliation 2 ITACA, Universitat Politècnica de València Valencia Spain
6 Univ. Bordeaux, CNRS, UMR 5293 Institut des Maladies Neurodégénératives, and Centre Mémoire Ressources Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux Bordeaux France
1 CNRS, Univ. Bordeaux, Bordeaux INP Talence France
4 Service de neuroimagerie, CHU de Bordeaux Bordeaux France
3 Inserm U1215 ‐ Neurocentre Magendie Bordeaux France
5 INCIA, EPHE, Université PSL, Univ Bordeaux, CNRS Bordeaux France
AuthorAffiliation_xml – name: 5 INCIA, EPHE, Université PSL, Univ Bordeaux, CNRS Bordeaux France
– name: 1 CNRS, Univ. Bordeaux, Bordeaux INP Talence France
– name: 2 ITACA, Universitat Politècnica de València Valencia Spain
– name: 3 Inserm U1215 ‐ Neurocentre Magendie Bordeaux France
– name: 4 Service de neuroimagerie, CHU de Bordeaux Bordeaux France
– name: 6 Univ. Bordeaux, CNRS, UMR 5293 Institut des Maladies Neurodégénératives, and Centre Mémoire Ressources Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux Bordeaux France
Author_xml – sequence: 1
  givenname: Pierrick
  orcidid: 0000-0003-2709-3350
  surname: Coupé
  fullname: Coupé, Pierrick
  email: pierrick.coupe@labri.fr
  organization: CNRS, Univ. Bordeaux, Bordeaux INP
– sequence: 2
  givenname: José V.
  surname: Manjón
  fullname: Manjón, José V.
  organization: ITACA, Universitat Politècnica de València
– sequence: 3
  givenname: Boris
  surname: Mansencal
  fullname: Mansencal, Boris
  organization: CNRS, Univ. Bordeaux, Bordeaux INP
– sequence: 4
  givenname: Thomas
  surname: Tourdias
  fullname: Tourdias, Thomas
  organization: Service de neuroimagerie, CHU de Bordeaux
– sequence: 5
  givenname: Gwenaëlle
  surname: Catheline
  fullname: Catheline, Gwenaëlle
  organization: INCIA, EPHE, Université PSL, Univ Bordeaux, CNRS
– sequence: 6
  givenname: Vincent
  surname: Planche
  fullname: Planche, Vincent
  organization: Institut des Maladies Neurodégénératives, and Centre Mémoire Ressources Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35388950$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1uFDEQhS0URH5gwQWQJTZk0Ynd_80iUoiAQQpiA2ur2i7POHLbjd09aFjlCDkjJ8HDTBBEsLFLqq-eXtU7JgfOOyTkOWdnnLH8fNUPZ3nVVuwROeKsazLGu-JgW9dV1pUNPyTHMd4wxnnF-BNyWFRF23YVOyK3CzOOXsIwgv1xewfDZqnA-lSu0U3ByNlCoDAFP642NEof8DW9tN9XaAYMVJmIEJEqnFBOxjs6R-OW1PkwwGTWSMEpOsK08tYvjQRLrdEYR3B08AptfEoea7ARn-3_E_Ll3dvPV4vs-tP7D1eX15ksy4JlTa-U7nupgcu80l1bNCUyYCUD3dcagRdQl1wp6LoaFUiNXGMuOQC2irHihFzsdMe5H1DJ7XZgxRjMAGEjPBjxd8eZlVj6teh4OlVTJoFXe4Hgv84YJzGYKNFacOjnKPK6bFldtEWX0JcP0Bs_B5fWS1RTlelpeKJe_Onot5X7cBJwvgNk8DEG1EKaCbZXTgaNFZyJbfwixS9-xZ8mTh9M3Iv-i92rfzMWN_8HxeLNx93ET9bOxlE
CitedBy_id crossref_primary_10_1002_hbm_26464
crossref_primary_10_1016_j_biopsych_2024_12_009
crossref_primary_10_1212_NXI_0000000000200222
crossref_primary_10_1002_alz_12975
crossref_primary_10_1038_s41562_023_01722_6
crossref_primary_10_1186_s12883_024_03745_6
crossref_primary_10_3390_biologics3010003
crossref_primary_10_1002_hbm_26558
crossref_primary_10_1038_s41598_024_76313_0
crossref_primary_10_1093_braincomms_fcae055
crossref_primary_10_1007_s40120_023_00526_0
crossref_primary_10_1109_JTEHM_2024_3510429
Cites_doi 10.1002/alz.040259
10.1016/j.nicl.2021.102712
10.1214/aos/1176344136
10.1016/j.neuroimage.2019.116108
10.1016/j.neuroimage.2005.02.018
10.1109/TMI.2010.2046908
10.1109/RBME.2018.2796598
10.2174/1567205017666200303105016
10.3389/fnins.2012.00171
10.1176/appi.neuropsych.11120377
10.3389/fnagi.2019.00220
10.1038/s41380-019-0441-1
10.1002/hbm.23743
10.3389/fninf.2016.00030
10.1155/2014/820205
10.1016/j.neuroimage.2009.01.013
10.1038/s41598-021-95098-0
10.1002/jmri.22003
10.1016/j.media.2020.101694
10.1038/s41598-019-39809-8
10.1002/hbm.22926
10.1016/j.neuroimage.2020.117026
10.1007/s00330‐020‐07455‐8
10.3233/JAD-180532
10.1016/j.pscychresns.2011.06.014
10.1016/j.pscychresns.2019.01.014
10.1212/WNL.0000000000002923
10.1038/nrneurol.2009.215
10.1088/1361-6560/abb6be
10.1093/brain/awn146
10.1016/j.neuroimage.2017.03.057
10.1017/S0033291719000084
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
– notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7X7
7XB
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
K9.
M0S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1002/hbm.25850
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Chemoreception Abstracts
ProQuest Central (New)
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Coupé et al
EISSN 1097-0193
EndPage 3282
ExternalDocumentID PMC9188974
35388950
10_1002_hbm_25850
HBM25850
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute on Drug Abuse
– fundername: ABIDE
– fundername: Common‐wealth Scientific Industrial Research Organization
– fundername: National Institute of Neurological Disorders and Stroke
– fundername: UK Alzheimer's Society
  funderid: RF116
– fundername: OASIS Brains Datasets
  funderid: P50 AG05681; P01 AG03991; R01 AG021910; P50 MH071616; U24 RR021382; R01 MH56584
– fundername: NIMH
  funderid: R03MH096321; K23MH087770
– fundername: GlaxoSmithKline
  funderid: 6GKC
– fundername: Human Brain Project
  funderid: PO1MHO52176‐11
– fundername: National Institutes of Health
  funderid: U01 AG024904
– fundername: NIMH NIH HHS
  grantid: K23MH087770
– fundername: NIA NIH HHS
  grantid: P01 AG003991
– fundername: NIMH NIH HHS
  grantid: R03MH096321
– fundername: NIMH NIH HHS
  grantid: R03 MH096321
– fundername: NIH HHS
  grantid: U01 AG024904
– fundername: NIMH NIH HHS
  grantid: P50 MH071616
– fundername: NIH HHS
  grantid: P30AG010129
– fundername: CIHR
  grantid: MOP-34996
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: NIA NIH HHS
  grantid: K01 AG030514
– fundername: ;
– fundername: ;
  grantid: 6GKC
– fundername: ;
  grantid: MOP‐34996
– fundername: ;
  grantid: R03MH096321; K23MH087770
– fundername: ;
  grantid: U01 AG024904
– fundername: ;
  grantid: PID2020‐118608RB‐I00
– fundername: UK Alzheimer's Society
  grantid: RF116
– fundername: Human Brain Project
  grantid: PO1MHO52176‐11
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AANHP
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AFPKN
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7TK
7U7
7XB
8FD
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c4430-7bddfbbcfa1c25f98374e0a040afb6fea13a641dda996edacfe1fe2c1aae8d003
IEDL.DBID 7X7
ISSN 1065-9471
1097-0193
IngestDate Thu Aug 21 13:52:28 EDT 2025
Fri Jul 11 02:39:45 EDT 2025
Wed Aug 13 06:26:44 EDT 2025
Thu Apr 03 06:57:23 EDT 2025
Tue Jul 01 01:11:07 EDT 2025
Thu Apr 24 23:06:49 EDT 2025
Wed Jan 22 16:23:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4430-7bddfbbcfa1c25f98374e0a040afb6fea13a641dda996edacfe1fe2c1aae8d003
Notes Funding information
UK Alzheimer's Society, Grant/Award Number: RF116; GlaxoSmithKline, Grant/Award Number: 6GKC; Leon Levy Foundation; NIMH, Grant/Award Numbers: R03MH096321, K23MH087770; ABIDE; U.K. Engineering and Physical Sciences Research Council, Grant/Award Number: GR/S21533/02; Canadian Institutes of Health Research, Grant/Award Number: MOP‐34996; Human Brain Project, Grant/Award Number: PO1MHO52176‐11; Alzheimer Drug Discovery Foundation; Alzheimer Association; National Health and Medical Research Council of Australia, Grant/Award Number: 1011689; Science Industry Endowment Fund; Common‐wealth Scientific Industrial Research Organization; OASIS Brains Datasets, Grant/Award Numbers: P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01 MH56584; NIH, Grant/Award Numbers: K01 AG030514, P30AG010129; National Institute of Biomedical Imaging and Bioengineering; National Institute on Aging; National Institutes of Health, Grant/Award Number: U01 AG024904; National Institute of Neurological Disorders and Stroke; National Institute of Mental Health; National Institute on Drug Abuse; National Institute of Child Health and Human Development, Grant/Award Number: HHSN275200900018C; Ministerio de Ciencia e Innovación, Grant/Award Number: PID2020‐118608RB‐I00; French National Research Agency, Grant/Award Number: ANR‐18‐CE45‐0013
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information UK Alzheimer's Society, Grant/Award Number: RF116; GlaxoSmithKline, Grant/Award Number: 6GKC; Leon Levy Foundation; NIMH, Grant/Award Numbers: R03MH096321, K23MH087770; ABIDE; U.K. Engineering and Physical Sciences Research Council, Grant/Award Number: GR/S21533/02; Canadian Institutes of Health Research, Grant/Award Number: MOP‐34996; Human Brain Project, Grant/Award Number: PO1MHO52176‐11; Alzheimer Drug Discovery Foundation; Alzheimer Association; National Health and Medical Research Council of Australia, Grant/Award Number: 1011689; Science Industry Endowment Fund; Common‐wealth Scientific Industrial Research Organization; OASIS Brains Datasets, Grant/Award Numbers: P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01 MH56584; NIH, Grant/Award Numbers: K01 AG030514, P30AG010129; National Institute of Biomedical Imaging and Bioengineering; National Institute on Aging; National Institutes of Health, Grant/Award Number: U01 AG024904; National Institute of Neurological Disorders and Stroke; National Institute of Mental Health; National Institute on Drug Abuse; National Institute of Child Health and Human Development, Grant/Award Number: HHSN275200900018C; Ministerio de Ciencia e Innovación, Grant/Award Number: PID2020‐118608RB‐I00; French National Research Agency, Grant/Award Number: ANR‐18‐CE45‐0013
ORCID 0000-0003-2709-3350
OpenAccessLink https://www.proquest.com/docview/2675426771?pq-origsite=%requestingapplication%
PMID 35388950
PQID 2675426771
PQPubID 996345
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9188974
proquest_miscellaneous_2648063839
proquest_journals_2675426771
pubmed_primary_35388950
crossref_citationtrail_10_1002_hbm_25850
crossref_primary_10_1002_hbm_25850
wiley_primary_10_1002_hbm_25850_HBM25850
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2009; 45
2015; 36
2019; 9
2010; 31
2013; 25
2020; 63
2019; 11
2020; 17
2016; 10
2019; 203
2020; 16
1999; 20
2014; 2014
2005; 26
2017; 155
2018; 65
2011; 194
2019; 287
1978; 6
2021; 31
2021; 11
2010; 29
2017; 38
2020; 50
2019; 24
2016; 87
2020; 65
2012; 6
2018; 11
2008; 131
2020; 219
2010; 6
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
Mu Q. (e_1_2_8_22_1) 1999; 20
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 6
  start-page: 171
  year: 2012
  article-title: 101 labeled brain images and a consistent human cortical labeling protocol
  publication-title: Frontiers in Neuroscience
– volume: 203
  year: 2019
  article-title: The hippocampal‐to‐ventricle ratio (HVR): Presentation of a manual segmentation protocol and preliminary evidence
  publication-title: NeuroImage
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  end-page: 464
  article-title: Estimating the dimension of a model
  publication-title: The Annals of Statistics
– volume: 31
  year: 2021
  article-title: Cross‐cohort generalizability of deep and conventional machine learning for MRI‐based diagnosis and prediction of Alzheimer's disease
  publication-title: NeuroImage: Clinical
– volume: 9
  start-page: 3998
  issue: 1
  year: 2019
  article-title: Lifespan changes of the human brain in Alzheimer's Disease
  publication-title: Scientific Reports
– volume: 10
  start-page: 30
  year: 2016
  article-title: volBrain: An online MRI brain Volumetry system
  publication-title: Frontiers in Neuroinformatics
– volume: 87
  start-page: 539
  issue: 5
  year: 2016
  end-page: 547
  article-title: A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers
  publication-title: Neurology
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 11
  article-title: Nonlocal intracranial cavity extraction
  publication-title: International Journal of Biomedical Imaging
– volume: 45
  start-page: 656
  issue: 3
  year: 2009
  end-page: 661
  article-title: Regional shape abnormalities in mild cognitive impairment and Alzheimer's disease
  publication-title: NeuroImage
– volume: 11
  start-page: 15746
  issue: 1
  year: 2021
  article-title: Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer's disease in a cross‐sectional multi‐cohort study
  publication-title: Scientific Reports
– volume: 194
  start-page: 7
  issue: 1
  year: 2011
  end-page: 13
  article-title: Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity
  publication-title: Psychiatry Research: Neuroimaging
– volume: 63
  year: 2020
  article-title: Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation
  publication-title: Medical Image Analysis
– volume: 26
  start-page: 839
  issue: 3
  year: 2005
  end-page: 851
  article-title: Unified segmentation
  publication-title: NeuroImage
– volume: 65
  start-page: 1459
  issue: 4
  year: 2018
  end-page: 1467
  article-title: Increasing diagnostic accuracy of mild cognitive impairment due to Alzheimer's Disease by user‐independent, web‐based whole‐brain Volumetry
  publication-title: Journal of Alzheimer's Disease
– volume: 38
  start-page: 5501
  issue: 11
  year: 2017
  end-page: 5518
  article-title: Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis: Towards a unified analysis of brain
  publication-title: Human Brain Mapping
– volume: 16
  start-page: e040259
  issue: S5
  year: 2020
  article-title: Validation of an automatic tool for the measurement of brain atrophy and white matter hyperintensity in clinical routine: QyScore®: Neuroimaging / optimal neuroimaging measures for early detection
  publication-title: Alzheimer's & Dementia
– volume: 155
  start-page: 530
  year: 2017
  end-page: 548
  article-title: A review on neuroimaging‐based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages
  publication-title: NeuroImage
– volume: 29
  start-page: 1310
  issue: 6
  year: 2010
  end-page: 1320
  article-title: N4ITK: Improved N3 bias correction
  publication-title: IEEE Transactions on Medical Imaging
– volume: 131
  start-page: 2443
  issue: 9
  year: 2008
  end-page: 2454
  article-title: Ventricular enlargement as a possible measure of Alzheimer's disease progression validated using the Alzheimer's disease neuroimaging initiative database
  publication-title: Brain
– volume: 6
  start-page: 67
  issue: 2
  year: 2010
  end-page: 77
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nature Reviews Neurology
– volume: 31
  start-page: 5312
  issue: 7
  year: 2021
  end-page: 5323
  article-title: Automated quantitative MRI volumetry reports support diagnostic interpretation in dementia: A multi‐rater, clinical accuracy study
  publication-title: European Radiology
– volume: 287
  start-page: 70
  year: 2019
  end-page: 74
  article-title: Brain volumes and their ratios in Alzheimer's disease on magnetic resonance imaging segmented using Freesurfer 6.0
  publication-title: Psychiatry Research: Neuroimaging
– volume: 17
  start-page: 297
  issue: 3
  year: 2020
  end-page: 309
  article-title: MRI Radiomics classification and prediction in Alzheimer's Disease and mild cognitive impairment: A review
  publication-title: Current Alzheimer Research
– volume: 65
  issue: 22
  year: 2020
  article-title: RegQCNET: Deep quality control for image‐to‐template brain MRI affine registration
  publication-title: Physics in Medicine & Biology
– volume: 11
  year: 2019
  article-title: Deep learning in Alzheimer's Disease: Diagnostic classification and prognostic prediction using Neuroimaging data
  publication-title: Frontiers in Aging Neuroscience
– volume: 31
  start-page: 192
  issue: 1
  year: 2010
  end-page: 203
  article-title: Adaptive non‐local means denoising of MR images with spatially varying noise levels: Spatially adaptive nonlocal Denoising
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 25
  start-page: 32
  issue: 1
  year: 2013
  end-page: 39
  article-title: Man versus machine: Comparison of radiologists' interpretations and NeuroQuant® volumetric analyses of brain MRIs in patients with traumatic brain injury
  publication-title: The Journal of Neuropsychiatry and Clinical Neurosciences
– volume: 219
  year: 2020
  article-title: AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation
  publication-title: NeuroImage
– volume: 20
  start-page: 207
  issue: 2
  year: 1999
  end-page: 211
  article-title: A quantitative MR study of the hippocampal formation, the amygdala, and the temporal horn of the lateral ventricle in healthy subjects 40 to 90 years of age
  publication-title: American Journal of Neuroradiology
– volume: 36
  start-page: 4758
  issue: 12
  year: 2015
  end-page: 4770
  article-title: Detection of Alzheimer's disease signature in MR images seven years before conversion to dementia: Toward an early individual prognosis
  publication-title: Human Brain Mapping
– volume: 11
  start-page: 97
  year: 2018
  end-page: 111
  article-title: Quantitative MRI brain studies in mild cognitive impairment and Alzheimer's Disease: A methodological review
  publication-title: IEEE Reviews in Biomedical Engineering
– volume: 24
  start-page: 1415
  issue: 10
  year: 2019
  end-page: 1424
  article-title: Conceptualizing mental disorders as deviations from normative functioning
  publication-title: Molecular Psychiatry
– volume: 50
  start-page: 314
  issue: 2
  year: 2020
  end-page: 323
  article-title: Individual differences . the average patient: Mapping the heterogeneity in ADHD using normative models
  publication-title: Psychological Medicine
– ident: e_1_2_8_5_1
  doi: 10.1002/alz.040259
– ident: e_1_2_8_4_1
  doi: 10.1016/j.nicl.2021.102712
– ident: e_1_2_8_31_1
  doi: 10.1214/aos/1176344136
– ident: e_1_2_8_30_1
  doi: 10.1016/j.neuroimage.2019.116108
– ident: e_1_2_8_2_1
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 20
  start-page: 207
  issue: 2
  year: 1999
  ident: e_1_2_8_22_1
  article-title: A quantitative MR study of the hippocampal formation, the amygdala, and the temporal horn of the lateral ventricle in healthy subjects 40 to 90 years of age
  publication-title: American Journal of Neuroradiology
– ident: e_1_2_8_32_1
  doi: 10.1109/TMI.2010.2046908
– ident: e_1_2_8_17_1
  doi: 10.1109/RBME.2018.2796598
– ident: e_1_2_8_11_1
  doi: 10.2174/1567205017666200303105016
– ident: e_1_2_8_16_1
  doi: 10.3389/fnins.2012.00171
– ident: e_1_2_8_29_1
  doi: 10.1176/appi.neuropsych.11120377
– ident: e_1_2_8_15_1
  doi: 10.3389/fnagi.2019.00220
– ident: e_1_2_8_21_1
  doi: 10.1038/s41380-019-0441-1
– ident: e_1_2_8_6_1
  doi: 10.1002/hbm.23743
– ident: e_1_2_8_18_1
  doi: 10.3389/fninf.2016.00030
– ident: e_1_2_8_20_1
  doi: 10.1155/2014/820205
– ident: e_1_2_8_27_1
  doi: 10.1016/j.neuroimage.2009.01.013
– ident: e_1_2_8_25_1
  doi: 10.1038/s41598-021-95098-0
– ident: e_1_2_8_19_1
  doi: 10.1002/jmri.22003
– ident: e_1_2_8_33_1
  doi: 10.1016/j.media.2020.101694
– ident: e_1_2_8_8_1
  doi: 10.1038/s41598-019-39809-8
– ident: e_1_2_8_7_1
  doi: 10.1002/hbm.22926
– ident: e_1_2_8_9_1
  doi: 10.1016/j.neuroimage.2020.117026
– ident: e_1_2_8_24_1
  doi: 10.1007/s00330‐020‐07455‐8
– ident: e_1_2_8_13_1
  doi: 10.3233/JAD-180532
– ident: e_1_2_8_26_1
  doi: 10.1016/j.pscychresns.2011.06.014
– ident: e_1_2_8_3_1
  doi: 10.1016/j.pscychresns.2019.01.014
– ident: e_1_2_8_14_1
  doi: 10.1212/WNL.0000000000002923
– ident: e_1_2_8_12_1
  doi: 10.1038/nrneurol.2009.215
– ident: e_1_2_8_10_1
  doi: 10.1088/1361-6560/abb6be
– ident: e_1_2_8_23_1
  doi: 10.1093/brain/awn146
– ident: e_1_2_8_28_1
  doi: 10.1016/j.neuroimage.2017.03.057
– ident: e_1_2_8_34_1
  doi: 10.1017/S0033291719000084
SSID ssj0011501
Score 2.4616108
Snippet In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan...
In this article, we present an innovative MRI-based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3270
SubjectTerms Age
Aging
Alzheimer Disease - pathology
Alzheimer's disease
Artificial intelligence
Atrophy
Atrophy - diagnostic imaging
Atrophy - pathology
Biomarkers
Clinical trials
Cognitive ability
Cognitive Dysfunction - pathology
Datasets
Decision making
Deep learning
Disease detection
Disease Progression
Gender
Hippocampus
Hippocampus - pathology
Humans
Life span
Longevity
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Neurodegeneration
Neurodegenerative diseases
Open access
Pathology
Quality control
Ventricle
Volumetric analysis
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5VPSAuLC1LaEEDQoiLU3s8sT1wCogqQgoHRKUekKxZm6jOJMpSqT31J_Ab-SW8N14gFCTEzZKfl7Hf8r2ZN98j5KUGkFDECjJVbnTEdcrBD3IVMcV0royMhcL9zuNP2eiEfzwdnO6Qt-1emJofoptwQ8sI_hoNXKrV0U_S0Ima9RmAXczXsVYLAdHnjjoKgU5ItiDERgI8cMsqFLOj7srtWHQDYN6sk_wVv4YAdHyXfG1fva47Oe9v1qqvr35jdfzPsd0jdxpgSoe1Jt0nO9bvkf2hh6R8dklf0VAqGubg98itcbMiv0-uR9PFAuIheJXq-_U3Obs8M7KawyEWUobZRbmkOOEO_5OukDTzDR1WVxM7ndklbdaHqLHrUBPmKRbin1FfQ-kLS6U3FNsmt06aVlNnwQ16Gpr4rB6Qk-MPX96PoqarQ6Q5T-MINMA4pbSTiWYDJyBD5jaW4EykU5mzMkllxhNjJKRi1kjtbOIs04mUtjDghB6SXT_39jGhvLCpEVYXUqGqceGM0c4Jx3IBEWDQI6_b_1vqhvIcO29UZU3WzEr40GX40D3yohNd1DwffxI6bJWkbEx9VbIMmwhneZ70yPPuNBgprrxIb-cblOEFYsNU9MijWqe6p6QQcgqBN8-3tK0TQALw7TN-OglE4CKBK3MOwwzK9PcXL0fvxuHgyb-LHpDbDLd6hNLkQ7K7Xm7sUwBga_UsWNoP89o03Q
  priority: 102
  providerName: Wiley-Blackwell
Title Hippocampal‐amygdalo‐ventricular atrophy score: Alzheimer disease detection using normative and pathological lifespan models
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25850
https://www.ncbi.nlm.nih.gov/pubmed/35388950
https://www.proquest.com/docview/2675426771
https://www.proquest.com/docview/2648063839
https://pubmed.ncbi.nlm.nih.gov/PMC9188974
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxNBEF9sC-KLaKs2tYZVRHw5e7e3ubv1RVJpCUJKKRbyduxnE7hsYpIW6lP_BP9G_xJn9u6ioerLsbB7n_P1m9m5GULeagAJRazAU-VGR1ynHPQgVxFTTOfKyFgo_N95eJYNLvmXUW_UBNyWTVplqxODojYzjTHyI5Zhr9Ysz5NP828Rdo3C3dWmhcYW2cHSZcjV-WjtcCHYCQ4XmNlIgBZuKwvF7Gisph8YQOV40x7dA5n3cyX_xLDBCJ0-IY8b9Ej7NbmfkgfW75K9vgfPeXpL39GQzxkC5bvk4bDZNt8jd4PJfA5GC0S_-nn3Q05vr4ysZjDEbMcQApQLilFx-Oh0iZUtP9J-9X1sJ1O7oM0mDjV2FRK3PMVs-Svqa7x7Y6n0hmJv41aT0mriLOgqT0OnneUzcnl68vXzIGpaL0Sa8zSOgEzGKaWdTDTrOQFuLLexBImXTmXOyiSVGU-MkeAvWSO1s4mzTCdS2sKApnhOtv3M231CeWFTI6wupEJ-4MIZo50TjuUC1HSvQ963BCh1U5cc22NUZV1RmZVAqzLQqkPerJfO62Icf1t02FKxbORxWf7mng55vZ4GScLtEent7BrX8AIBXCo65EVN9PVdUrALhcCL5xvssF6AVbo3Z_xkHKp1iwTOzDm8ZmCcfz94OTgehsHB_9_gJXnE8B-MkDN8SLZXi2v7CpDRSnXJFuPn3SAEXbJzfHJ2ftENUQY8XrBf7RwZQg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYBLBS2PQAGDAHFZuut19oGEUHhUW9r01Eq5LX42kTabNElB4dSfwC_hR_FLmPE-ICpw682SvV5b8_rGHs8Q8kwBSEh8CZ4q18rjKuSgB7n0mGQqllr4qcT3zv3DKDvmnwbdwRr50byFwbDKRic6Ra0nCs_Id1iEtVqjOA7eTk89rBqFt6tNCY2KLfbN8iu4bPM3ex-Avs8Z2_149D7z6qoCnuI89D1YgbZSKisCxbo2BQ-NG18AMwsrI2tEEIqIB1oLcAWMFsqawBqmAiFMokEIYN4r5CoYXh-dvXjQOngIrpyDB2bdS0HrN5mMfLYzlONXDKC5v2r_LoDai7GZf2JmZ_R2b5KNGq3SXsVet8iaKTfJVq8ET328pC-oix91B_Ob5Fq_vqbfIufZaDoFIwmqpvh5_l2MlydaFBNoYnSlO3IUM4qn8EBkOsdMmq9pr_g2NKOxmdH60ohqs3CBYiXF6PwTWlb4-ouhotQUayk3mpsWI2tAN5bUVfaZ3ybHl0KUO2S9nJTmHqE8MaFOjUqERP7jqdVaWZtaFqdgFrod8rIhQK7qPOhYjqPIqwzOLAda5Y5WHfK0HTqtkn_8bdB2Q8W8lv95_ptbO-RJ2w2Si9cxojSTMxzDEwSMYdohdyuit38JwQ4lKU4er7BDOwCzgq_2lKOhyw6eBvBlzGGbjnH-vfA8e9d3jfv_38Fjcj076h_kB3uH-w_IDYbvP1y88jZZX8zOzENAZQv5yIkCJZ8vW_Z-Af16VU4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKq4oNLyCC2wIEBc3NjrjR9ICKW0UUpJVCEq9Wb22URKnJCkoHDqT-D38HP4Jcyu7UBU4NbbSl7bu5rXNzuzMwDPJIKExBfoqTIlPSZDhnqQCY8KKmOhuJ8Ke9-524s6p-zdWfNsDX5Ud2FsWmWlE52iVmNpz8gbNLK9WqM4DhqmTIs4OWi_mXz2bAcpG2mt2mkULHKsF1_RfZu9PjpAWj-ntH348W3HKzsMeJKx0PdwNcoIIQ0PJG2aFL01pn2OjM2NiIzmQcgjFijF0S3QikujA6OpDDjXiUKBwO_egPXYekU1WN8_7J18WMYwEGo5dw-NvJeiDajqGvm00RejPYpA3V-1hlcg7tVMzT8RtDOB7U24VWJX0iqY7Tas6XwLtls5-u2jBXlBXDapO6bfgo1uGbTfhsvOYDJBk4mKZ_jz8jsfLc4VH45xaHMt3QEknxJ7Jo8kJzNbV_MVaQ2_9fVgpKekDCERpecubSwnNlf_nOQF2v6iCc8VsZ2VKz1OhgOjUVPmxPX5md2B02shy12o5eNc3wfCEh2qVMuEC8uNLDVKSWNSQ-MUjUSzDi8rAmSyrIpum3MMs6KeM82QVpmjVR2eLqdOilIgf5u0W1ExK7XBLPvNu3V4snyMcmyDMzzX4ws7hyUWPoZpHe4VRF_-JUSrlKT24_EKOywn2Brhq0_yQd_VCk8DfDNmuE3HOP9eeNbZ77rBg__v4DFsoNxl7496xztwk9rLIC55eRdq8-mFfogQbS4elbJA4NN1i98vBPha6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hippocampal-amygdalo-ventricular+atrophy+score%3A+Alzheimer+disease+detection+using+normative+and+pathological+lifespan+models&rft.jtitle=Human+brain+mapping&rft.au=Coup%C3%A9%2C+Pierrick&rft.au=Manj%C3%B3n%2C+Jos%C3%A9+V&rft.au=Mansencal%2C+Boris&rft.au=Tourdias%2C+Thomas&rft.date=2022-07-01&rft.issn=1097-0193&rft.eissn=1097-0193&rft.volume=43&rft.issue=10&rft.spage=3270&rft_id=info:doi/10.1002%2Fhbm.25850&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon