Hippocampal‐amygdalo‐ventricular atrophy score: Alzheimer disease detection using normative and pathological lifespan models
In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumet...
Saved in:
Published in | Human brain mapping Vol. 43; no. 10; pp. 3270 - 3282 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal‐Amygdalo‐Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3‐year follow‐up). Compared to normative modeling, classical machine learning methods and recent state‐of‐the‐art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well‐suited for clinical practice or future pharmaceutical trials.
In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. Compared to normative modeling and recent state‐of‐the‐art deep learning methods, our method demonstrated better classification performance. Moreover, it simplicity makes it fully understandable and thus well‐suited for clinical practice or future pharmaceutical trials. |
---|---|
AbstractList | In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal‐Amygdalo‐Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3‐year follow‐up). Compared to normative modeling, classical machine learning methods and recent state‐of‐the‐art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well‐suited for clinical practice or future pharmaceutical trials.
In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. Compared to normative modeling and recent state‐of‐the‐art deep learning methods, our method demonstrated better classification performance. Moreover, it simplicity makes it fully understandable and thus well‐suited for clinical practice or future pharmaceutical trials. In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal‐Amygdalo‐Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3‐year follow‐up). Compared to normative modeling, classical machine learning methods and recent state‐of‐the‐art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well‐suited for clinical practice or future pharmaceutical trials. In this article, we present an innovative MRI-based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal-Amygdalo-Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3-year follow-up). Compared to normative modeling, classical machine learning methods and recent state-of-the-art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well-suited for clinical practice or future pharmaceutical trials. In this article, we present an innovative MRI-based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal-Amygdalo-Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3-year follow-up). Compared to normative modeling, classical machine learning methods and recent state-of-the-art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well-suited for clinical practice or future pharmaceutical trials.In this article, we present an innovative MRI-based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan trajectories of brain structures. After a full screening of the most discriminant structures between AD and normal aging based on MRI volumetric analysis of 3,032 subjects, we propose a novel Hippocampal-Amygdalo-Ventricular Atrophy score (HAVAs) based on normative lifespan models and AD lifespan models. During a validation on three external datasets on 1,039 subjects, our approach showed very accurate detection (AUC ≥ 94%) of patients with AD compared to control subjects and accurate discrimination (AUC = 78%) between progressive MCI and stable MCI (during a 3-year follow-up). Compared to normative modeling, classical machine learning methods and recent state-of-the-art deep learning methods, our method demonstrated better classification performance. Moreover, HAVAs simplicity makes it fully understandable and thus well-suited for clinical practice or future pharmaceutical trials. |
Author | Manjón, José V. Mansencal, Boris Planche, Vincent Coupé, Pierrick Tourdias, Thomas Catheline, Gwenaëlle |
AuthorAffiliation | 2 ITACA, Universitat Politècnica de València Valencia Spain 6 Univ. Bordeaux, CNRS, UMR 5293 Institut des Maladies Neurodégénératives, and Centre Mémoire Ressources Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux Bordeaux France 1 CNRS, Univ. Bordeaux, Bordeaux INP Talence France 4 Service de neuroimagerie, CHU de Bordeaux Bordeaux France 3 Inserm U1215 ‐ Neurocentre Magendie Bordeaux France 5 INCIA, EPHE, Université PSL, Univ Bordeaux, CNRS Bordeaux France |
AuthorAffiliation_xml | – name: 5 INCIA, EPHE, Université PSL, Univ Bordeaux, CNRS Bordeaux France – name: 1 CNRS, Univ. Bordeaux, Bordeaux INP Talence France – name: 2 ITACA, Universitat Politècnica de València Valencia Spain – name: 3 Inserm U1215 ‐ Neurocentre Magendie Bordeaux France – name: 4 Service de neuroimagerie, CHU de Bordeaux Bordeaux France – name: 6 Univ. Bordeaux, CNRS, UMR 5293 Institut des Maladies Neurodégénératives, and Centre Mémoire Ressources Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux Bordeaux France |
Author_xml | – sequence: 1 givenname: Pierrick orcidid: 0000-0003-2709-3350 surname: Coupé fullname: Coupé, Pierrick email: pierrick.coupe@labri.fr organization: CNRS, Univ. Bordeaux, Bordeaux INP – sequence: 2 givenname: José V. surname: Manjón fullname: Manjón, José V. organization: ITACA, Universitat Politècnica de València – sequence: 3 givenname: Boris surname: Mansencal fullname: Mansencal, Boris organization: CNRS, Univ. Bordeaux, Bordeaux INP – sequence: 4 givenname: Thomas surname: Tourdias fullname: Tourdias, Thomas organization: Service de neuroimagerie, CHU de Bordeaux – sequence: 5 givenname: Gwenaëlle surname: Catheline fullname: Catheline, Gwenaëlle organization: INCIA, EPHE, Université PSL, Univ Bordeaux, CNRS – sequence: 6 givenname: Vincent surname: Planche fullname: Planche, Vincent organization: Institut des Maladies Neurodégénératives, and Centre Mémoire Ressources Recherches, Pôle de Neurosciences Cliniques, CHU de Bordeaux |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35388950$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1uFDEQhS0URH5gwQWQJTZk0Ynd_80iUoiAQQpiA2ur2i7POHLbjd09aFjlCDkjJ8HDTBBEsLFLqq-eXtU7JgfOOyTkOWdnnLH8fNUPZ3nVVuwROeKsazLGu-JgW9dV1pUNPyTHMd4wxnnF-BNyWFRF23YVOyK3CzOOXsIwgv1xewfDZqnA-lSu0U3ByNlCoDAFP642NEof8DW9tN9XaAYMVJmIEJEqnFBOxjs6R-OW1PkwwGTWSMEpOsK08tYvjQRLrdEYR3B08AptfEoea7ARn-3_E_Ll3dvPV4vs-tP7D1eX15ksy4JlTa-U7nupgcu80l1bNCUyYCUD3dcagRdQl1wp6LoaFUiNXGMuOQC2irHihFzsdMe5H1DJ7XZgxRjMAGEjPBjxd8eZlVj6teh4OlVTJoFXe4Hgv84YJzGYKNFacOjnKPK6bFldtEWX0JcP0Bs_B5fWS1RTlelpeKJe_Onot5X7cBJwvgNk8DEG1EKaCbZXTgaNFZyJbfwixS9-xZ8mTh9M3Iv-i92rfzMWN_8HxeLNx93ET9bOxlE |
CitedBy_id | crossref_primary_10_1002_hbm_26464 crossref_primary_10_1016_j_biopsych_2024_12_009 crossref_primary_10_1212_NXI_0000000000200222 crossref_primary_10_1002_alz_12975 crossref_primary_10_1038_s41562_023_01722_6 crossref_primary_10_1186_s12883_024_03745_6 crossref_primary_10_3390_biologics3010003 crossref_primary_10_1002_hbm_26558 crossref_primary_10_1038_s41598_024_76313_0 crossref_primary_10_1093_braincomms_fcae055 crossref_primary_10_1007_s40120_023_00526_0 crossref_primary_10_1109_JTEHM_2024_3510429 |
Cites_doi | 10.1002/alz.040259 10.1016/j.nicl.2021.102712 10.1214/aos/1176344136 10.1016/j.neuroimage.2019.116108 10.1016/j.neuroimage.2005.02.018 10.1109/TMI.2010.2046908 10.1109/RBME.2018.2796598 10.2174/1567205017666200303105016 10.3389/fnins.2012.00171 10.1176/appi.neuropsych.11120377 10.3389/fnagi.2019.00220 10.1038/s41380-019-0441-1 10.1002/hbm.23743 10.3389/fninf.2016.00030 10.1155/2014/820205 10.1016/j.neuroimage.2009.01.013 10.1038/s41598-021-95098-0 10.1002/jmri.22003 10.1016/j.media.2020.101694 10.1038/s41598-019-39809-8 10.1002/hbm.22926 10.1016/j.neuroimage.2020.117026 10.1007/s00330‐020‐07455‐8 10.3233/JAD-180532 10.1016/j.pscychresns.2011.06.014 10.1016/j.pscychresns.2019.01.014 10.1212/WNL.0000000000002923 10.1038/nrneurol.2009.215 10.1088/1361-6560/abb6be 10.1093/brain/awn146 10.1016/j.neuroimage.2017.03.057 10.1017/S0033291719000084 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Wiley Periodicals LLC. 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC. – notice: 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7X7 7XB 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 FYUFA GHDGH K9. M0S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1002/hbm.25850 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Chemoreception Abstracts ProQuest Central (New) Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Coupé et al |
EISSN | 1097-0193 |
EndPage | 3282 |
ExternalDocumentID | PMC9188974 35388950 10_1002_hbm_25850 HBM25850 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute on Drug Abuse – fundername: ABIDE – fundername: Common‐wealth Scientific Industrial Research Organization – fundername: National Institute of Neurological Disorders and Stroke – fundername: UK Alzheimer's Society funderid: RF116 – fundername: OASIS Brains Datasets funderid: P50 AG05681; P01 AG03991; R01 AG021910; P50 MH071616; U24 RR021382; R01 MH56584 – fundername: NIMH funderid: R03MH096321; K23MH087770 – fundername: GlaxoSmithKline funderid: 6GKC – fundername: Human Brain Project funderid: PO1MHO52176‐11 – fundername: National Institutes of Health funderid: U01 AG024904 – fundername: NIMH NIH HHS grantid: K23MH087770 – fundername: NIA NIH HHS grantid: P01 AG003991 – fundername: NIMH NIH HHS grantid: R03MH096321 – fundername: NIMH NIH HHS grantid: R03 MH096321 – fundername: NIH HHS grantid: U01 AG024904 – fundername: NIMH NIH HHS grantid: P50 MH071616 – fundername: NIH HHS grantid: P30AG010129 – fundername: CIHR grantid: MOP-34996 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: NIA NIH HHS grantid: K01 AG030514 – fundername: ; – fundername: ; grantid: 6GKC – fundername: ; grantid: MOP‐34996 – fundername: ; grantid: R03MH096321; K23MH087770 – fundername: ; grantid: U01 AG024904 – fundername: ; grantid: PID2020‐118608RB‐I00 – fundername: UK Alzheimer's Society grantid: RF116 – fundername: Human Brain Project grantid: PO1MHO52176‐11 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AANHP AAONW AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACCMX ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAFWJ AAYXX AFPKN AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7QR 7TK 7U7 7XB 8FD 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO FR3 K9. P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c4430-7bddfbbcfa1c25f98374e0a040afb6fea13a641dda996edacfe1fe2c1aae8d003 |
IEDL.DBID | 7X7 |
ISSN | 1065-9471 1097-0193 |
IngestDate | Thu Aug 21 13:52:28 EDT 2025 Fri Jul 11 02:39:45 EDT 2025 Wed Aug 13 06:26:44 EDT 2025 Thu Apr 03 06:57:23 EDT 2025 Tue Jul 01 01:11:07 EDT 2025 Thu Apr 24 23:06:49 EDT 2025 Wed Jan 22 16:23:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4430-7bddfbbcfa1c25f98374e0a040afb6fea13a641dda996edacfe1fe2c1aae8d003 |
Notes | Funding information UK Alzheimer's Society, Grant/Award Number: RF116; GlaxoSmithKline, Grant/Award Number: 6GKC; Leon Levy Foundation; NIMH, Grant/Award Numbers: R03MH096321, K23MH087770; ABIDE; U.K. Engineering and Physical Sciences Research Council, Grant/Award Number: GR/S21533/02; Canadian Institutes of Health Research, Grant/Award Number: MOP‐34996; Human Brain Project, Grant/Award Number: PO1MHO52176‐11; Alzheimer Drug Discovery Foundation; Alzheimer Association; National Health and Medical Research Council of Australia, Grant/Award Number: 1011689; Science Industry Endowment Fund; Common‐wealth Scientific Industrial Research Organization; OASIS Brains Datasets, Grant/Award Numbers: P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01 MH56584; NIH, Grant/Award Numbers: K01 AG030514, P30AG010129; National Institute of Biomedical Imaging and Bioengineering; National Institute on Aging; National Institutes of Health, Grant/Award Number: U01 AG024904; National Institute of Neurological Disorders and Stroke; National Institute of Mental Health; National Institute on Drug Abuse; National Institute of Child Health and Human Development, Grant/Award Number: HHSN275200900018C; Ministerio de Ciencia e Innovación, Grant/Award Number: PID2020‐118608RB‐I00; French National Research Agency, Grant/Award Number: ANR‐18‐CE45‐0013 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information UK Alzheimer's Society, Grant/Award Number: RF116; GlaxoSmithKline, Grant/Award Number: 6GKC; Leon Levy Foundation; NIMH, Grant/Award Numbers: R03MH096321, K23MH087770; ABIDE; U.K. Engineering and Physical Sciences Research Council, Grant/Award Number: GR/S21533/02; Canadian Institutes of Health Research, Grant/Award Number: MOP‐34996; Human Brain Project, Grant/Award Number: PO1MHO52176‐11; Alzheimer Drug Discovery Foundation; Alzheimer Association; National Health and Medical Research Council of Australia, Grant/Award Number: 1011689; Science Industry Endowment Fund; Common‐wealth Scientific Industrial Research Organization; OASIS Brains Datasets, Grant/Award Numbers: P50 AG05681, P01 AG03991, R01 AG021910, P50 MH071616, U24 RR021382, R01 MH56584; NIH, Grant/Award Numbers: K01 AG030514, P30AG010129; National Institute of Biomedical Imaging and Bioengineering; National Institute on Aging; National Institutes of Health, Grant/Award Number: U01 AG024904; National Institute of Neurological Disorders and Stroke; National Institute of Mental Health; National Institute on Drug Abuse; National Institute of Child Health and Human Development, Grant/Award Number: HHSN275200900018C; Ministerio de Ciencia e Innovación, Grant/Award Number: PID2020‐118608RB‐I00; French National Research Agency, Grant/Award Number: ANR‐18‐CE45‐0013 |
ORCID | 0000-0003-2709-3350 |
OpenAccessLink | https://www.proquest.com/docview/2675426771?pq-origsite=%requestingapplication% |
PMID | 35388950 |
PQID | 2675426771 |
PQPubID | 996345 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9188974 proquest_miscellaneous_2648063839 proquest_journals_2675426771 pubmed_primary_35388950 crossref_citationtrail_10_1002_hbm_25850 crossref_primary_10_1002_hbm_25850 wiley_primary_10_1002_hbm_25850_HBM25850 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum Brain Mapp |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2009; 45 2015; 36 2019; 9 2010; 31 2013; 25 2020; 63 2019; 11 2020; 17 2016; 10 2019; 203 2020; 16 1999; 20 2014; 2014 2005; 26 2017; 155 2018; 65 2011; 194 2019; 287 1978; 6 2021; 31 2021; 11 2010; 29 2017; 38 2020; 50 2019; 24 2016; 87 2020; 65 2012; 6 2018; 11 2008; 131 2020; 219 2010; 6 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 Mu Q. (e_1_2_8_22_1) 1999; 20 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 6 start-page: 171 year: 2012 article-title: 101 labeled brain images and a consistent human cortical labeling protocol publication-title: Frontiers in Neuroscience – volume: 203 year: 2019 article-title: The hippocampal‐to‐ventricle ratio (HVR): Presentation of a manual segmentation protocol and preliminary evidence publication-title: NeuroImage – volume: 6 start-page: 461 issue: 2 year: 1978 end-page: 464 article-title: Estimating the dimension of a model publication-title: The Annals of Statistics – volume: 31 year: 2021 article-title: Cross‐cohort generalizability of deep and conventional machine learning for MRI‐based diagnosis and prediction of Alzheimer's disease publication-title: NeuroImage: Clinical – volume: 9 start-page: 3998 issue: 1 year: 2019 article-title: Lifespan changes of the human brain in Alzheimer's Disease publication-title: Scientific Reports – volume: 10 start-page: 30 year: 2016 article-title: volBrain: An online MRI brain Volumetry system publication-title: Frontiers in Neuroinformatics – volume: 87 start-page: 539 issue: 5 year: 2016 end-page: 547 article-title: A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers publication-title: Neurology – volume: 2014 start-page: 1 year: 2014 end-page: 11 article-title: Nonlocal intracranial cavity extraction publication-title: International Journal of Biomedical Imaging – volume: 45 start-page: 656 issue: 3 year: 2009 end-page: 661 article-title: Regional shape abnormalities in mild cognitive impairment and Alzheimer's disease publication-title: NeuroImage – volume: 11 start-page: 15746 issue: 1 year: 2021 article-title: Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer's disease in a cross‐sectional multi‐cohort study publication-title: Scientific Reports – volume: 194 start-page: 7 issue: 1 year: 2011 end-page: 13 article-title: Amygdala atrophy is prominent in early Alzheimer's disease and relates to symptom severity publication-title: Psychiatry Research: Neuroimaging – volume: 63 year: 2020 article-title: Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation publication-title: Medical Image Analysis – volume: 26 start-page: 839 issue: 3 year: 2005 end-page: 851 article-title: Unified segmentation publication-title: NeuroImage – volume: 65 start-page: 1459 issue: 4 year: 2018 end-page: 1467 article-title: Increasing diagnostic accuracy of mild cognitive impairment due to Alzheimer's Disease by user‐independent, web‐based whole‐brain Volumetry publication-title: Journal of Alzheimer's Disease – volume: 38 start-page: 5501 issue: 11 year: 2017 end-page: 5518 article-title: Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis: Towards a unified analysis of brain publication-title: Human Brain Mapping – volume: 16 start-page: e040259 issue: S5 year: 2020 article-title: Validation of an automatic tool for the measurement of brain atrophy and white matter hyperintensity in clinical routine: QyScore®: Neuroimaging / optimal neuroimaging measures for early detection publication-title: Alzheimer's & Dementia – volume: 155 start-page: 530 year: 2017 end-page: 548 article-title: A review on neuroimaging‐based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages publication-title: NeuroImage – volume: 29 start-page: 1310 issue: 6 year: 2010 end-page: 1320 article-title: N4ITK: Improved N3 bias correction publication-title: IEEE Transactions on Medical Imaging – volume: 131 start-page: 2443 issue: 9 year: 2008 end-page: 2454 article-title: Ventricular enlargement as a possible measure of Alzheimer's disease progression validated using the Alzheimer's disease neuroimaging initiative database publication-title: Brain – volume: 6 start-page: 67 issue: 2 year: 2010 end-page: 77 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nature Reviews Neurology – volume: 31 start-page: 5312 issue: 7 year: 2021 end-page: 5323 article-title: Automated quantitative MRI volumetry reports support diagnostic interpretation in dementia: A multi‐rater, clinical accuracy study publication-title: European Radiology – volume: 287 start-page: 70 year: 2019 end-page: 74 article-title: Brain volumes and their ratios in Alzheimer's disease on magnetic resonance imaging segmented using Freesurfer 6.0 publication-title: Psychiatry Research: Neuroimaging – volume: 17 start-page: 297 issue: 3 year: 2020 end-page: 309 article-title: MRI Radiomics classification and prediction in Alzheimer's Disease and mild cognitive impairment: A review publication-title: Current Alzheimer Research – volume: 65 issue: 22 year: 2020 article-title: RegQCNET: Deep quality control for image‐to‐template brain MRI affine registration publication-title: Physics in Medicine & Biology – volume: 11 year: 2019 article-title: Deep learning in Alzheimer's Disease: Diagnostic classification and prognostic prediction using Neuroimaging data publication-title: Frontiers in Aging Neuroscience – volume: 31 start-page: 192 issue: 1 year: 2010 end-page: 203 article-title: Adaptive non‐local means denoising of MR images with spatially varying noise levels: Spatially adaptive nonlocal Denoising publication-title: Journal of Magnetic Resonance Imaging – volume: 25 start-page: 32 issue: 1 year: 2013 end-page: 39 article-title: Man versus machine: Comparison of radiologists' interpretations and NeuroQuant® volumetric analyses of brain MRIs in patients with traumatic brain injury publication-title: The Journal of Neuropsychiatry and Clinical Neurosciences – volume: 219 year: 2020 article-title: AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation publication-title: NeuroImage – volume: 20 start-page: 207 issue: 2 year: 1999 end-page: 211 article-title: A quantitative MR study of the hippocampal formation, the amygdala, and the temporal horn of the lateral ventricle in healthy subjects 40 to 90 years of age publication-title: American Journal of Neuroradiology – volume: 36 start-page: 4758 issue: 12 year: 2015 end-page: 4770 article-title: Detection of Alzheimer's disease signature in MR images seven years before conversion to dementia: Toward an early individual prognosis publication-title: Human Brain Mapping – volume: 11 start-page: 97 year: 2018 end-page: 111 article-title: Quantitative MRI brain studies in mild cognitive impairment and Alzheimer's Disease: A methodological review publication-title: IEEE Reviews in Biomedical Engineering – volume: 24 start-page: 1415 issue: 10 year: 2019 end-page: 1424 article-title: Conceptualizing mental disorders as deviations from normative functioning publication-title: Molecular Psychiatry – volume: 50 start-page: 314 issue: 2 year: 2020 end-page: 323 article-title: Individual differences . the average patient: Mapping the heterogeneity in ADHD using normative models publication-title: Psychological Medicine – ident: e_1_2_8_5_1 doi: 10.1002/alz.040259 – ident: e_1_2_8_4_1 doi: 10.1016/j.nicl.2021.102712 – ident: e_1_2_8_31_1 doi: 10.1214/aos/1176344136 – ident: e_1_2_8_30_1 doi: 10.1016/j.neuroimage.2019.116108 – ident: e_1_2_8_2_1 doi: 10.1016/j.neuroimage.2005.02.018 – volume: 20 start-page: 207 issue: 2 year: 1999 ident: e_1_2_8_22_1 article-title: A quantitative MR study of the hippocampal formation, the amygdala, and the temporal horn of the lateral ventricle in healthy subjects 40 to 90 years of age publication-title: American Journal of Neuroradiology – ident: e_1_2_8_32_1 doi: 10.1109/TMI.2010.2046908 – ident: e_1_2_8_17_1 doi: 10.1109/RBME.2018.2796598 – ident: e_1_2_8_11_1 doi: 10.2174/1567205017666200303105016 – ident: e_1_2_8_16_1 doi: 10.3389/fnins.2012.00171 – ident: e_1_2_8_29_1 doi: 10.1176/appi.neuropsych.11120377 – ident: e_1_2_8_15_1 doi: 10.3389/fnagi.2019.00220 – ident: e_1_2_8_21_1 doi: 10.1038/s41380-019-0441-1 – ident: e_1_2_8_6_1 doi: 10.1002/hbm.23743 – ident: e_1_2_8_18_1 doi: 10.3389/fninf.2016.00030 – ident: e_1_2_8_20_1 doi: 10.1155/2014/820205 – ident: e_1_2_8_27_1 doi: 10.1016/j.neuroimage.2009.01.013 – ident: e_1_2_8_25_1 doi: 10.1038/s41598-021-95098-0 – ident: e_1_2_8_19_1 doi: 10.1002/jmri.22003 – ident: e_1_2_8_33_1 doi: 10.1016/j.media.2020.101694 – ident: e_1_2_8_8_1 doi: 10.1038/s41598-019-39809-8 – ident: e_1_2_8_7_1 doi: 10.1002/hbm.22926 – ident: e_1_2_8_9_1 doi: 10.1016/j.neuroimage.2020.117026 – ident: e_1_2_8_24_1 doi: 10.1007/s00330‐020‐07455‐8 – ident: e_1_2_8_13_1 doi: 10.3233/JAD-180532 – ident: e_1_2_8_26_1 doi: 10.1016/j.pscychresns.2011.06.014 – ident: e_1_2_8_3_1 doi: 10.1016/j.pscychresns.2019.01.014 – ident: e_1_2_8_14_1 doi: 10.1212/WNL.0000000000002923 – ident: e_1_2_8_12_1 doi: 10.1038/nrneurol.2009.215 – ident: e_1_2_8_10_1 doi: 10.1088/1361-6560/abb6be – ident: e_1_2_8_23_1 doi: 10.1093/brain/awn146 – ident: e_1_2_8_28_1 doi: 10.1016/j.neuroimage.2017.03.057 – ident: e_1_2_8_34_1 doi: 10.1017/S0033291719000084 |
SSID | ssj0011501 |
Score | 2.4616108 |
Snippet | In this article, we present an innovative MRI‐based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan... In this article, we present an innovative MRI-based method for Alzheimer disease (AD) detection and mild cognitive impairment (MCI) prognostic, using lifespan... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3270 |
SubjectTerms | Age Aging Alzheimer Disease - pathology Alzheimer's disease Artificial intelligence Atrophy Atrophy - diagnostic imaging Atrophy - pathology Biomarkers Clinical trials Cognitive ability Cognitive Dysfunction - pathology Datasets Decision making Deep learning Disease detection Disease Progression Gender Hippocampus Hippocampus - pathology Humans Life span Longevity Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Neurodegeneration Neurodegenerative diseases Open access Pathology Quality control Ventricle Volumetric analysis |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5VPSAuLC1LaEEDQoiLU3s8sT1wCogqQgoHRKUekKxZm6jOJMpSqT31J_Ab-SW8N14gFCTEzZKfl7Hf8r2ZN98j5KUGkFDECjJVbnTEdcrBD3IVMcV0royMhcL9zuNP2eiEfzwdnO6Qt-1emJofoptwQ8sI_hoNXKrV0U_S0Ima9RmAXczXsVYLAdHnjjoKgU5ItiDERgI8cMsqFLOj7srtWHQDYN6sk_wVv4YAdHyXfG1fva47Oe9v1qqvr35jdfzPsd0jdxpgSoe1Jt0nO9bvkf2hh6R8dklf0VAqGubg98itcbMiv0-uR9PFAuIheJXq-_U3Obs8M7KawyEWUobZRbmkOOEO_5OukDTzDR1WVxM7ndklbdaHqLHrUBPmKRbin1FfQ-kLS6U3FNsmt06aVlNnwQ16Gpr4rB6Qk-MPX96PoqarQ6Q5T-MINMA4pbSTiWYDJyBD5jaW4EykU5mzMkllxhNjJKRi1kjtbOIs04mUtjDghB6SXT_39jGhvLCpEVYXUqGqceGM0c4Jx3IBEWDQI6_b_1vqhvIcO29UZU3WzEr40GX40D3yohNd1DwffxI6bJWkbEx9VbIMmwhneZ70yPPuNBgprrxIb-cblOEFYsNU9MijWqe6p6QQcgqBN8-3tK0TQALw7TN-OglE4CKBK3MOwwzK9PcXL0fvxuHgyb-LHpDbDLd6hNLkQ7K7Xm7sUwBga_UsWNoP89o03Q priority: 102 providerName: Wiley-Blackwell |
Title | Hippocampal‐amygdalo‐ventricular atrophy score: Alzheimer disease detection using normative and pathological lifespan models |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.25850 https://www.ncbi.nlm.nih.gov/pubmed/35388950 https://www.proquest.com/docview/2675426771 https://www.proquest.com/docview/2648063839 https://pubmed.ncbi.nlm.nih.gov/PMC9188974 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxNBEF9sC-KLaKs2tYZVRHw5e7e3ubv1RVJpCUJKKRbyduxnE7hsYpIW6lP_BP9G_xJn9u6ioerLsbB7n_P1m9m5GULeagAJRazAU-VGR1ynHPQgVxFTTOfKyFgo_N95eJYNLvmXUW_UBNyWTVplqxODojYzjTHyI5Zhr9Ysz5NP828Rdo3C3dWmhcYW2cHSZcjV-WjtcCHYCQ4XmNlIgBZuKwvF7Gisph8YQOV40x7dA5n3cyX_xLDBCJ0-IY8b9Ej7NbmfkgfW75K9vgfPeXpL39GQzxkC5bvk4bDZNt8jd4PJfA5GC0S_-nn3Q05vr4ysZjDEbMcQApQLilFx-Oh0iZUtP9J-9X1sJ1O7oM0mDjV2FRK3PMVs-Svqa7x7Y6n0hmJv41aT0mriLOgqT0OnneUzcnl68vXzIGpaL0Sa8zSOgEzGKaWdTDTrOQFuLLexBImXTmXOyiSVGU-MkeAvWSO1s4mzTCdS2sKApnhOtv3M231CeWFTI6wupEJ-4MIZo50TjuUC1HSvQ963BCh1U5cc22NUZV1RmZVAqzLQqkPerJfO62Icf1t02FKxbORxWf7mng55vZ4GScLtEent7BrX8AIBXCo65EVN9PVdUrALhcCL5xvssF6AVbo3Z_xkHKp1iwTOzDm8ZmCcfz94OTgehsHB_9_gJXnE8B-MkDN8SLZXi2v7CpDRSnXJFuPn3SAEXbJzfHJ2ftENUQY8XrBf7RwZQg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKkYBLBS2PQAGDAHFZuut19oGEUHhUW9r01Eq5LX42kTabNElB4dSfwC_hR_FLmPE-ICpw682SvV5b8_rGHs8Q8kwBSEh8CZ4q18rjKuSgB7n0mGQqllr4qcT3zv3DKDvmnwbdwRr50byFwbDKRic6Ra0nCs_Id1iEtVqjOA7eTk89rBqFt6tNCY2KLfbN8iu4bPM3ex-Avs8Z2_149D7z6qoCnuI89D1YgbZSKisCxbo2BQ-NG18AMwsrI2tEEIqIB1oLcAWMFsqawBqmAiFMokEIYN4r5CoYXh-dvXjQOngIrpyDB2bdS0HrN5mMfLYzlONXDKC5v2r_LoDai7GZf2JmZ_R2b5KNGq3SXsVet8iaKTfJVq8ET328pC-oix91B_Ob5Fq_vqbfIufZaDoFIwmqpvh5_l2MlydaFBNoYnSlO3IUM4qn8EBkOsdMmq9pr_g2NKOxmdH60ohqs3CBYiXF6PwTWlb4-ouhotQUayk3mpsWI2tAN5bUVfaZ3ybHl0KUO2S9nJTmHqE8MaFOjUqERP7jqdVaWZtaFqdgFrod8rIhQK7qPOhYjqPIqwzOLAda5Y5WHfK0HTqtkn_8bdB2Q8W8lv95_ptbO-RJ2w2Si9cxojSTMxzDEwSMYdohdyuit38JwQ4lKU4er7BDOwCzgq_2lKOhyw6eBvBlzGGbjnH-vfA8e9d3jfv_38Fjcj076h_kB3uH-w_IDYbvP1y88jZZX8zOzENAZQv5yIkCJZ8vW_Z-Af16VU4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKq4oNLyCC2wIEBc3NjrjR9ICKW0UUpJVCEq9Wb22URKnJCkoHDqT-D38HP4Jcyu7UBU4NbbSl7bu5rXNzuzMwDPJIKExBfoqTIlPSZDhnqQCY8KKmOhuJ8Ke9-524s6p-zdWfNsDX5Ud2FsWmWlE52iVmNpz8gbNLK9WqM4DhqmTIs4OWi_mXz2bAcpG2mt2mkULHKsF1_RfZu9PjpAWj-ntH348W3HKzsMeJKx0PdwNcoIIQ0PJG2aFL01pn2OjM2NiIzmQcgjFijF0S3QikujA6OpDDjXiUKBwO_egPXYekU1WN8_7J18WMYwEGo5dw-NvJeiDajqGvm00RejPYpA3V-1hlcg7tVMzT8RtDOB7U24VWJX0iqY7Tas6XwLtls5-u2jBXlBXDapO6bfgo1uGbTfhsvOYDJBk4mKZ_jz8jsfLc4VH45xaHMt3QEknxJ7Jo8kJzNbV_MVaQ2_9fVgpKekDCERpecubSwnNlf_nOQF2v6iCc8VsZ2VKz1OhgOjUVPmxPX5md2B02shy12o5eNc3wfCEh2qVMuEC8uNLDVKSWNSQ-MUjUSzDi8rAmSyrIpum3MMs6KeM82QVpmjVR2eLqdOilIgf5u0W1ExK7XBLPvNu3V4snyMcmyDMzzX4ws7hyUWPoZpHe4VRF_-JUSrlKT24_EKOywn2Brhq0_yQd_VCk8DfDNmuE3HOP9eeNbZ77rBg__v4DFsoNxl7496xztwk9rLIC55eRdq8-mFfogQbS4elbJA4NN1i98vBPha6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hippocampal-amygdalo-ventricular+atrophy+score%3A+Alzheimer+disease+detection+using+normative+and+pathological+lifespan+models&rft.jtitle=Human+brain+mapping&rft.au=Coup%C3%A9%2C+Pierrick&rft.au=Manj%C3%B3n%2C+Jos%C3%A9+V&rft.au=Mansencal%2C+Boris&rft.au=Tourdias%2C+Thomas&rft.date=2022-07-01&rft.issn=1097-0193&rft.eissn=1097-0193&rft.volume=43&rft.issue=10&rft.spage=3270&rft_id=info:doi/10.1002%2Fhbm.25850&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |