Parkinson's Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by 2‐Hydroxypropyl‐β‐Cyclodextrin Treatment

ABSTRACT Background The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are contributors to the disease. Biallelic mutations in the phosphatase and tensin homolog (PTEN)‐induced putative kina...

Full description

Saved in:
Bibliographic Details
Published inMovement disorders Vol. 37; no. 1; pp. 80 - 94
Main Authors Jarazo, Javier, Barmpa, Kyriaki, Modamio, Jennifer, Saraiva, Cláudia, Sabaté‐Soler, Sònia, Rosety, Isabel, Griesbeck, Anne, Skwirblies, Florian, Zaffaroni, Gaia, Smits, Lisa M., Su, Jihui, Arias‐Fuenzalida, Jonathan, Walter, Jonas, Gomez‐Giro, Gemma, Monzel, Anna S., Qing, Xiaobing, Vitali, Armelle, Cruciani, Gerald, Boussaad, Ibrahim, Brunelli, Francesco, Jäger, Christian, Rakovic, Aleksandar, Li, Wen, Yuan, Lin, Berger, Emanuel, Arena, Giuseppe, Bolognin, Silvia, Schmidt, Ronny, Schröder, Christoph, Antony, Paul M.A., Klein, Christine, Krüger, Rejko, Seibler, Philip, Schwamborn, Jens C.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Background The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are contributors to the disease. Biallelic mutations in the phosphatase and tensin homolog (PTEN)‐induced putative kinase 1 (PINK1) gene involved in mitochondrial homeostasis, vesicle trafficking, and autophagy are sufficient to cause PD. Objectives We sought to evaluate the difference between controls' and PINK1 patients' derived neurons in their transition from neuroepithelial stem cells to neurons, allowing us to identify potential pathways to target with repurposed compounds. Methods Using two‐dimensional and three‐dimensional models of patients' derived neurons we recapitulated PD‐related phenotypes. We introduced the usage of midbrain organoids for testing compounds. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR‐associated protein 9 (Cas9), we corrected the point mutations of three patients' derived cells. We evaluated the effect of the selected compound in a mouse model. Results PD patient‐derived cells presented differences in their energetic profile, imbalanced proliferation, apoptosis, mitophagy, and a reduced differentiation efficiency to tyrosine hydroxylase positive (TH+) neurons compared to controls' cells. Correction of a patient's point mutation ameliorated the metabolic properties and neuronal firing rates as well as reversing the differentiation phenotype, and reducing the increased astrocytic levels. Treatment with 2‐hydroxypropyl‐β‐cyclodextrin increased the autophagy and mitophagy capacity of neurons concomitant with an improved dopaminergic differentiation of patient‐specific neurons in midbrain organoids and ameliorated neurotoxicity in a mouse model. Conclusion We show that treatment with a repurposed compound is sufficient for restoring the impaired dopaminergic differentiation of PD patient‐derived cells. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
AbstractList ABSTRACT Background The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are contributors to the disease. Biallelic mutations in the phosphatase and tensin homolog (PTEN)‐induced putative kinase 1 ( PINK1 ) gene involved in mitochondrial homeostasis, vesicle trafficking, and autophagy are sufficient to cause PD. Objectives We sought to evaluate the difference between controls' and PINK1 patients' derived neurons in their transition from neuroepithelial stem cells to neurons, allowing us to identify potential pathways to target with repurposed compounds. Methods Using two‐dimensional and three‐dimensional models of patients' derived neurons we recapitulated PD‐related phenotypes. We introduced the usage of midbrain organoids for testing compounds. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR‐associated protein 9 (Cas9), we corrected the point mutations of three patients' derived cells. We evaluated the effect of the selected compound in a mouse model. Results PD patient‐derived cells presented differences in their energetic profile, imbalanced proliferation, apoptosis, mitophagy, and a reduced differentiation efficiency to tyrosine hydroxylase positive (TH+) neurons compared to controls' cells. Correction of a patient's point mutation ameliorated the metabolic properties and neuronal firing rates as well as reversing the differentiation phenotype, and reducing the increased astrocytic levels. Treatment with 2‐hydroxypropyl‐β‐cyclodextrin increased the autophagy and mitophagy capacity of neurons concomitant with an improved dopaminergic differentiation of patient‐specific neurons in midbrain organoids and ameliorated neurotoxicity in a mouse model. Conclusion We show that treatment with a repurposed compound is sufficient for restoring the impaired dopaminergic differentiation of PD patient‐derived cells. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are contributors to the disease. Biallelic mutations in the phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) gene involved in mitochondrial homeostasis, vesicle trafficking, and autophagy are sufficient to cause PD. We sought to evaluate the difference between controls' and PINK1 patients' derived neurons in their transition from neuroepithelial stem cells to neurons, allowing us to identify potential pathways to target with repurposed compounds. Using two-dimensional and three-dimensional models of patients' derived neurons we recapitulated PD-related phenotypes. We introduced the usage of midbrain organoids for testing compounds. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), we corrected the point mutations of three patients' derived cells. We evaluated the effect of the selected compound in a mouse model. PD patient-derived cells presented differences in their energetic profile, imbalanced proliferation, apoptosis, mitophagy, and a reduced differentiation efficiency to tyrosine hydroxylase positive (TH+) neurons compared to controls' cells. Correction of a patient's point mutation ameliorated the metabolic properties and neuronal firing rates as well as reversing the differentiation phenotype, and reducing the increased astrocytic levels. Treatment with 2-hydroxypropyl-β-cyclodextrin increased the autophagy and mitophagy capacity of neurons concomitant with an improved dopaminergic differentiation of patient-specific neurons in midbrain organoids and ameliorated neurotoxicity in a mouse model. We show that treatment with a repurposed compound is sufficient for restoring the impaired dopaminergic differentiation of PD patient-derived cells. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
BackgroundThe etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are contributors to the disease. Biallelic mutations in the phosphatase and tensin homolog (PTEN)‐induced putative kinase 1 (PINK1) gene involved in mitochondrial homeostasis, vesicle trafficking, and autophagy are sufficient to cause PD.ObjectivesWe sought to evaluate the difference between controls' and PINK1 patients' derived neurons in their transition from neuroepithelial stem cells to neurons, allowing us to identify potential pathways to target with repurposed compounds.MethodsUsing two‐dimensional and three‐dimensional models of patients' derived neurons we recapitulated PD‐related phenotypes. We introduced the usage of midbrain organoids for testing compounds. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR‐associated protein 9 (Cas9), we corrected the point mutations of three patients' derived cells. We evaluated the effect of the selected compound in a mouse model.ResultsPD patient‐derived cells presented differences in their energetic profile, imbalanced proliferation, apoptosis, mitophagy, and a reduced differentiation efficiency to tyrosine hydroxylase positive (TH+) neurons compared to controls' cells. Correction of a patient's point mutation ameliorated the metabolic properties and neuronal firing rates as well as reversing the differentiation phenotype, and reducing the increased astrocytic levels. Treatment with 2‐hydroxypropyl‐β‐cyclodextrin increased the autophagy and mitophagy capacity of neurons concomitant with an improved dopaminergic differentiation of patient‐specific neurons in midbrain organoids and ameliorated neurotoxicity in a mouse model.ConclusionWe show that treatment with a repurposed compound is sufficient for restoring the impaired dopaminergic differentiation of PD patient‐derived cells. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
ABSTRACT Background The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are contributors to the disease. Biallelic mutations in the phosphatase and tensin homolog (PTEN)‐induced putative kinase 1 (PINK1) gene involved in mitochondrial homeostasis, vesicle trafficking, and autophagy are sufficient to cause PD. Objectives We sought to evaluate the difference between controls' and PINK1 patients' derived neurons in their transition from neuroepithelial stem cells to neurons, allowing us to identify potential pathways to target with repurposed compounds. Methods Using two‐dimensional and three‐dimensional models of patients' derived neurons we recapitulated PD‐related phenotypes. We introduced the usage of midbrain organoids for testing compounds. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR‐associated protein 9 (Cas9), we corrected the point mutations of three patients' derived cells. We evaluated the effect of the selected compound in a mouse model. Results PD patient‐derived cells presented differences in their energetic profile, imbalanced proliferation, apoptosis, mitophagy, and a reduced differentiation efficiency to tyrosine hydroxylase positive (TH+) neurons compared to controls' cells. Correction of a patient's point mutation ameliorated the metabolic properties and neuronal firing rates as well as reversing the differentiation phenotype, and reducing the increased astrocytic levels. Treatment with 2‐hydroxypropyl‐β‐cyclodextrin increased the autophagy and mitophagy capacity of neurons concomitant with an improved dopaminergic differentiation of patient‐specific neurons in midbrain organoids and ameliorated neurotoxicity in a mouse model. Conclusion We show that treatment with a repurposed compound is sufficient for restoring the impaired dopaminergic differentiation of PD patient‐derived cells. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Author Boussaad, Ibrahim
Schmidt, Ronny
Schröder, Christoph
Brunelli, Francesco
Skwirblies, Florian
Vitali, Armelle
Rakovic, Aleksandar
Su, Jihui
Li, Wen
Schwamborn, Jens C.
Gomez‐Giro, Gemma
Yuan, Lin
Jäger, Christian
Klein, Christine
Antony, Paul M.A.
Griesbeck, Anne
Zaffaroni, Gaia
Jarazo, Javier
Rosety, Isabel
Smits, Lisa M.
Sabaté‐Soler, Sònia
Monzel, Anna S.
Qing, Xiaobing
Arias‐Fuenzalida, Jonathan
Bolognin, Silvia
Saraiva, Cláudia
Modamio, Jennifer
Arena, Giuseppe
Krüger, Rejko
Berger, Emanuel
Walter, Jonas
Barmpa, Kyriaki
Cruciani, Gerald
Seibler, Philip
AuthorAffiliation 12 Transversal Translational Medicine Luxembourg Institute of Health Strassen Luxembourg
2 OrganoTherapeutics société à responsabilité limitée simplifiée (SARL‐S) Esch‐sur‐Alzette Luxembourg
6 Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
1 Developmental and Cellular Biology Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
4 Institute for Globally Distributed Open Research and Education Gothenburg Sweden
10 Institute of Neurogenetics University of Lübeck Lübeck Germany
5 Institute of Health Sciences China Medical University Shenyang China
3 Sciomics GmbH Heidelberg Germany
7 Disease Modeling and Screening Platform Luxembourg Institute of Systems Biomedicine, University of Luxembourg and Luxembourg Institute of Health Belvaux Luxembourg
9 Metabolomics Platform, Enzymology and Metabolism Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxem
AuthorAffiliation_xml – name: 6 Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
– name: 7 Disease Modeling and Screening Platform Luxembourg Institute of Systems Biomedicine, University of Luxembourg and Luxembourg Institute of Health Belvaux Luxembourg
– name: 3 Sciomics GmbH Heidelberg Germany
– name: 9 Metabolomics Platform, Enzymology and Metabolism Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
– name: 4 Institute for Globally Distributed Open Research and Education Gothenburg Sweden
– name: 5 Institute of Health Sciences China Medical University Shenyang China
– name: 1 Developmental and Cellular Biology Luxembourg Centre for Systems Biomedicine University of Luxembourg Esch‐sur‐Alzette Luxembourg
– name: 8 Department of Molecular Medicine University of Pavia Pavia Italy
– name: 12 Transversal Translational Medicine Luxembourg Institute of Health Strassen Luxembourg
– name: 11 Centre Hospitalier de Luxembourg Parkinson Research Clinic Luxembourg Luxembourg
– name: 2 OrganoTherapeutics société à responsabilité limitée simplifiée (SARL‐S) Esch‐sur‐Alzette Luxembourg
– name: 10 Institute of Neurogenetics University of Lübeck Lübeck Germany
Author_xml – sequence: 1
  givenname: Javier
  orcidid: 0000-0001-9652-3620
  surname: Jarazo
  fullname: Jarazo, Javier
  organization: OrganoTherapeutics société à responsabilité limitée simplifiée (SARL‐S)
– sequence: 2
  givenname: Kyriaki
  orcidid: 0000-0003-3938-4745
  surname: Barmpa
  fullname: Barmpa, Kyriaki
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 3
  givenname: Jennifer
  orcidid: 0000-0002-8126-0490
  surname: Modamio
  fullname: Modamio, Jennifer
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 4
  givenname: Cláudia
  orcidid: 0000-0003-4866-8790
  surname: Saraiva
  fullname: Saraiva, Cláudia
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 5
  givenname: Sònia
  orcidid: 0000-0001-6430-6357
  surname: Sabaté‐Soler
  fullname: Sabaté‐Soler, Sònia
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 6
  givenname: Isabel
  orcidid: 0000-0001-9118-6995
  surname: Rosety
  fullname: Rosety, Isabel
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 7
  givenname: Anne
  surname: Griesbeck
  fullname: Griesbeck, Anne
  organization: Sciomics GmbH
– sequence: 8
  givenname: Florian
  surname: Skwirblies
  fullname: Skwirblies, Florian
  organization: Sciomics GmbH
– sequence: 9
  givenname: Gaia
  orcidid: 0000-0002-1020-861X
  surname: Zaffaroni
  fullname: Zaffaroni, Gaia
  organization: Institute for Globally Distributed Open Research and Education
– sequence: 10
  givenname: Lisa M.
  surname: Smits
  fullname: Smits, Lisa M.
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 11
  givenname: Jihui
  surname: Su
  fullname: Su, Jihui
  organization: China Medical University
– sequence: 12
  givenname: Jonathan
  surname: Arias‐Fuenzalida
  fullname: Arias‐Fuenzalida, Jonathan
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 13
  givenname: Jonas
  orcidid: 0000-0002-9618-0928
  surname: Walter
  fullname: Walter, Jonas
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 14
  givenname: Gemma
  orcidid: 0000-0002-7259-5002
  surname: Gomez‐Giro
  fullname: Gomez‐Giro, Gemma
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 15
  givenname: Anna S.
  orcidid: 0000-0001-8687-6019
  surname: Monzel
  fullname: Monzel, Anna S.
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 16
  givenname: Xiaobing
  surname: Qing
  fullname: Qing, Xiaobing
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 17
  givenname: Armelle
  surname: Vitali
  fullname: Vitali, Armelle
  organization: Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 18
  givenname: Gerald
  surname: Cruciani
  fullname: Cruciani, Gerald
  organization: Luxembourg Institute of Systems Biomedicine, University of Luxembourg and Luxembourg Institute of Health
– sequence: 19
  givenname: Ibrahim
  orcidid: 0000-0002-3512-3364
  surname: Boussaad
  fullname: Boussaad, Ibrahim
  organization: Luxembourg Institute of Systems Biomedicine, University of Luxembourg and Luxembourg Institute of Health
– sequence: 20
  givenname: Francesco
  orcidid: 0000-0003-3159-051X
  surname: Brunelli
  fullname: Brunelli, Francesco
  organization: University of Pavia
– sequence: 21
  givenname: Christian
  orcidid: 0000-0003-4235-7430
  surname: Jäger
  fullname: Jäger, Christian
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 22
  givenname: Aleksandar
  orcidid: 0000-0002-8127-7911
  surname: Rakovic
  fullname: Rakovic, Aleksandar
  organization: University of Lübeck
– sequence: 23
  givenname: Wen
  surname: Li
  fullname: Li, Wen
  organization: China Medical University
– sequence: 24
  givenname: Lin
  surname: Yuan
  fullname: Yuan, Lin
  organization: China Medical University
– sequence: 25
  givenname: Emanuel
  surname: Berger
  fullname: Berger, Emanuel
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 26
  givenname: Giuseppe
  orcidid: 0000-0003-2398-5503
  surname: Arena
  fullname: Arena, Giuseppe
  organization: Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 27
  givenname: Silvia
  orcidid: 0000-0002-1399-2999
  surname: Bolognin
  fullname: Bolognin, Silvia
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 28
  givenname: Ronny
  surname: Schmidt
  fullname: Schmidt, Ronny
  organization: Sciomics GmbH
– sequence: 29
  givenname: Christoph
  orcidid: 0000-0001-6177-1042
  surname: Schröder
  fullname: Schröder, Christoph
  organization: Sciomics GmbH
– sequence: 30
  givenname: Paul M.A.
  orcidid: 0000-0002-0450-9301
  surname: Antony
  fullname: Antony, Paul M.A.
  organization: Translational Neuroscience, Luxembourg Centre for Systems Biomedicine University of Luxembourg
– sequence: 31
  givenname: Christine
  orcidid: 0000-0003-2102-3431
  surname: Klein
  fullname: Klein, Christine
  organization: University of Lübeck
– sequence: 32
  givenname: Rejko
  orcidid: 0000-0003-4258-6241
  surname: Krüger
  fullname: Krüger, Rejko
  organization: Luxembourg Institute of Health
– sequence: 33
  givenname: Philip
  surname: Seibler
  fullname: Seibler, Philip
  organization: University of Lübeck
– sequence: 34
  givenname: Jens C.
  orcidid: 0000-0003-4496-0559
  surname: Schwamborn
  fullname: Schwamborn, Jens C.
  email: jens.schwamborn@uni.lu
  organization: Luxembourg Centre for Systems Biomedicine University of Luxembourg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34637165$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1O3DAUha0KVAbaRV-gstQF6iLgn4njbCqVoRQkCiOVri1nfAOmiZ3aCSW77tn0WXgQHoInwXQAlQWyZMv3fj7nymcdrTjvAKF3lGxRQth2a-IWk5KSV2hCc04zyfJiBU2IlHnGqczX0HqM54RQmlPxGq3xqeAFFfkEXc11-Gld9G4z4l0bQUfA8zNwvh87iNg6PNe9BdfjIxiCd7rBs6Hph5Ca2hm8E3RijsOpdt6aiA_aLvgLMLgaMbv983d_NMFfjqnYjU2631ynbTYuGm_gsg_p7UkA3bfJ4Q1arXUT4e3DuYF-7H05me1nh8dfD2afD7PFdMpJxlkFsipNbkzNCxAV5RrygpWVFpIxUxelYQWpDTVaFIIYqATQtDgpaiprvoE-LXW7oWrBLJJ10I3qgm11GJXXVj3vOHumTv2FKllJZUmSwIcHgeB_DRB7de6HkL4mKiYYKblgpUjUxyW1CD7GAPWTAyXqPjeVclP_ckvs-_9HeiIfg0rA9hL4bRsYX1ZS33a_LyXvAAAtq98
CitedBy_id crossref_primary_10_3390_ijms24076645
crossref_primary_10_1038_s41598_022_24580_0
crossref_primary_10_3390_biom13040666
crossref_primary_10_1016_j_bios_2023_115579
crossref_primary_10_1016_j_brainresbull_2024_111024
crossref_primary_10_1016_j_biopsych_2022_12_015
crossref_primary_10_1002_ana_26949
crossref_primary_10_1002_bit_28606
crossref_primary_10_3390_ijms24032523
crossref_primary_10_1016_j_csbj_2023_01_028
crossref_primary_10_2139_ssrn_4111370
crossref_primary_10_1016_j_elecom_2024_107732
crossref_primary_10_1002_adhm_202303041
crossref_primary_10_3390_cells13060511
crossref_primary_10_1155_2022_2150680
crossref_primary_10_3389_fnagi_2023_1125739
crossref_primary_10_3390_cancers15041253
crossref_primary_10_1002_adhm_202303872
crossref_primary_10_3390_ijms24032171
crossref_primary_10_1360_SSV_2023_0116
crossref_primary_10_1016_j_lfs_2024_122610
crossref_primary_10_1093_oons_kvad009
crossref_primary_10_1002_anbr_202300126
crossref_primary_10_1002_btm2_10604
crossref_primary_10_1016_j_cophys_2022_100532
crossref_primary_10_1177_20417314221113391
crossref_primary_10_3389_fnins_2022_882316
crossref_primary_10_1002_glia_24474
crossref_primary_10_1088_2516_1091_ac8dcf
crossref_primary_10_1016_j_mcn_2024_103919
crossref_primary_10_1038_s41531_023_00616_8
crossref_primary_10_2174_0113816128266398231027100119
crossref_primary_10_1039_D3FO03667G
crossref_primary_10_4252_wjsc_v15_i6_530
crossref_primary_10_1515_mr_2023_0047
crossref_primary_10_3390_cells12212565
Cites_doi 10.1016/j.stemcr.2016.08.012
10.1002/stem.2511
10.1523/JNEUROSCI.1317-11.2011
10.1101/gr.1239303
10.1016/j.tins.2016.02.002
10.1038/nm.3232
10.1016/j.stemcr.2017.03.010
10.1093/bioinformatics/btw313
10.1016/j.celrep.2016.11.068
10.1242/dev.037556
10.1093/nar/gky1131
10.1371/journal.pone.0120819
10.1089/dna.2014.2738
10.1038/nn.2646
10.1016/j.stem.2012.10.005
10.1038/cddis.2017.286
10.1080/15548627.2018.1491489
10.1093/hmg/ddv297
10.1523/JNEUROSCI.2952-16.2017
10.1038/nature12517
10.1073/pnas.1107332108
10.1038/nj7526-299a
10.1016/j.cmet.2014.01.001
10.1523/JNEUROSCI.4441-10.2011
10.1242/dev.00808
10.1007/s00441-017-2768-8
10.1016/j.nbd.2006.11.012
10.1074/jbc.M113.506246
10.1038/cdd.2012.81
10.1016/j.brainres.2018.01.016
10.1016/j.cell.2016.05.082
10.1002/advs.201800927
10.1038/s41598-019-45917-2
10.1038/s41598-018-35376-6
10.1080/15548627.2015.1100356
10.1038/s41531-019-0078-4
10.1016/j.cell.2015.01.019
10.1016/j.celrep.2018.01.089
10.1038/s41598-019-47952-5
10.1016/j.cmet.2017.12.008
10.1128/MCB.00489-17
10.1111/j.1471-4159.2008.05697.x
10.1016/j.neuron.2016.03.038
10.1038/nrneurol.2012.242
10.1080/15548627.2019.1569928
10.1093/hmg/ddt216
10.1523/JNEUROSCI.0979-08.2008
10.3389/fgene.2019.00190
10.1038/s41598-021-84278-7
10.1016/j.stemcr.2015.02.019
10.1242/dev.071704
10.1038/s41467-017-01871-z
10.1074/jbc.M111.326405
10.1371/journal.pone.0175478
10.1038/cdd.2010.118
10.1007/s10048-006-0072-y
10.1194/jlr.M013789
10.1038/srep12397
10.1371/journal.pone.0059252
10.1158/0008-5472.CAN-15-3079
10.1016/j.stemcr.2017.08.026
10.1111/bpa.12545
10.1016/j.parkreldis.2020.07.023
10.1523/JNEUROSCI.23-12-05178.2003
10.1002/mds.26141
10.1093/brain/awt131
10.1038/ncb2012
10.1039/C5LC00180C
10.1002/mds.27228
10.1186/s40478-019-0736-0
10.1111/cpr.12781
10.1038/s41531-017-0022-4
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
– notice: 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
5PM
DOI 10.1002/mds.28810
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList CrossRef
MEDLINE
Nursing & Allied Health Premium

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate PINK1 ORGANOIDS FOR DRUG SCREENING
EISSN 1531-8257
EndPage 94
ExternalDocumentID 10_1002_mds_28810
34637165
MDS28810
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NCL Stiftung
– fundername: Horizon 2020 Framework Programme
  funderid: 668738
– fundername: Deutsche Forschungsgemeinschaft
  funderid: FOR2488
– fundername: Fondation du Pelican de Mie et Pierre Hippert‐Faber
  funderid: Pelican award
– fundername: Fonds National de la Recherche Luxembourg
  funderid: AFR; C13/BM/5791363; C17/BM/11676395; FNR/P13/6682797; INTER/JPND/14/02; INTER/JPND/15/11092422
– fundername: Fondation du Pelican de Mie et Pierre Hippert‐Faber
  grantid: Pelican award
– fundername: ;
  grantid: AFR; C13/BM/5791363; C17/BM/11676395; FNR/P13/6682797; INTER/JPND/14/02; INTER/JPND/15/11092422
– fundername: ;
  grantid: 668738
– fundername: ;
  grantid: FOR2488
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1CY
1L6
1OB
1OC
1ZS
24P
31~
33P
3PY
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
YCJ
ZGI
ZZTAW
~IA
~WT
ACXME
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
5PM
ID FETCH-LOGICAL-c4430-32be8b9d5ddf37e6b13ae5729ba6822df79d270fd1da6760deb6e1e1e307f18f3
IEDL.DBID DR2
ISSN 0885-3185
IngestDate Tue Sep 17 20:47:14 EDT 2024
Fri Sep 13 02:55:31 EDT 2024
Fri Aug 23 03:27:44 EDT 2024
Thu May 23 23:36:29 EDT 2024
Sat Aug 24 01:09:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords PINK1
Parkinson's disease
isogenics
organoids
cyclodextrin
Language English
License Attribution
2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4430-32be8b9d5ddf37e6b13ae5729ba6822df79d270fd1da6760deb6e1e1e307f18f3
Notes This project was funded by the Fonds National de la Recherche (FNR) Luxembourg (CORE, C13/BM/5791363). This is a European Union Joint Program–Neurodegenerative Disease Research (JPND) project (INTER/JPND/14/02; INTER/JPND/15/11092422). This project is also supported by the European Union's Horizon 2020 research and innovation program under grant agreement no. 668738, Systems Medicine of Mitochondrial Parkinson's Disease (SysMedPD). The automated screening platform was supported by a PEARL grant of the FNR to R.K. (FNR/P13/6682797). G.A. is supported by the FNR Mitochondrial Risk factors in Parkinson's Disease (MiRisk‐PD) (C17/BM/11676395). J.J. is supported by a Pelican award from the Fondation du Pelican de Mie et Pierre Hippert‐Faber. J.J., L.M.S., A.S.M., J.W., and X.Q. were supported by FNR Aides à la Formation‐Recherche. G.G.G. was funded by the Neuronal ceroid lipofuscinosis (NCL)‐Stiftung (Hamburg, Germany). A.R., C.K., and P.S. are supported by the Deutsche Forschungs Gemeinschaft (DFG) (FOR2488).
The copyright line for this article was changed on 27 October 2021, after original online publication.
J.J., S.B., and J.C.S. are cofounders and shareholders of OrganoTherapeutics société à responsabilité limitée simplifiée (SARL‐S). C.S. is founder of Sciomics GmbH.
Relevant conflicts of interest/financial disclosures
Funding agencies
Relevant conflicts of interest/financial disclosures: J.J., S.B., and J.C.S. are cofounders and shareholders of OrganoTherapeutics société à responsabilité limitée simplifiée (SARL‐S). C.S. is founder of Sciomics GmbH.
Funding agencies: This project was funded by the Fonds National de la Recherche (FNR) Luxembourg (CORE, C13/BM/5791363). This is a European Union Joint Program–Neurodegenerative Disease Research (JPND) project (INTER/JPND/14/02; INTER/JPND/15/11092422). This project is also supported by the European Union's Horizon 2020 research and innovation program under grant agreement no. 668738, Systems Medicine of Mitochondrial Parkinson's Disease (SysMedPD). The automated screening platform was supported by a PEARL grant of the FNR to R.K. (FNR/P13/6682797). G.A. is supported by the FNR Mitochondrial Risk factors in Parkinson's Disease (MiRisk‐PD) (C17/BM/11676395). J.J. is supported by a Pelican award from the Fondation du Pelican de Mie et Pierre Hippert‐Faber. J.J., L.M.S., A.S.M., J.W., and X.Q. were supported by FNR Aides à la Formation‐Recherche. G.G.G. was funded by the Neuronal ceroid lipofuscinosis (NCL)‐Stiftung (Hamburg, Germany). A.R., C.K., and P.S. are supported by the Deutsche Forschungs Gemeinschaft (DFG) (FOR2488).
ORCID 0000-0002-1020-861X
0000-0003-4235-7430
0000-0003-3938-4745
0000-0001-9652-3620
0000-0003-4866-8790
0000-0001-8687-6019
0000-0003-2398-5503
0000-0002-7259-5002
0000-0002-3512-3364
0000-0002-8127-7911
0000-0001-9118-6995
0000-0001-6430-6357
0000-0002-1399-2999
0000-0003-4258-6241
0000-0003-4496-0559
0000-0002-0450-9301
0000-0001-6177-1042
0000-0003-2102-3431
0000-0002-9618-0928
0000-0002-8126-0490
0000-0003-3159-051X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.28810
PMID 34637165
PQID 2620936296
PQPubID 1016421
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9291890
proquest_journals_2620936296
crossref_primary_10_1002_mds_28810
pubmed_primary_34637165
wiley_primary_10_1002_mds_28810_MDS28810
PublicationCentury 2000
PublicationDate January 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Movement disorders
PublicationTitleAlternate Mov Disord
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2010; 12
2015; 34
2017; 8
2012; 287
2017; 3
2010; 13
2013; 22
2019; 10
2015; 30
2019; 15
2016; 32
2003; 13
2016; 76
2011; 52
2008; 107
2020; 10
2013; 8
2016; 39
2012; 11
2011; 18
2017; 9
2018; 373
2013; 19
2018; 6
2018; 8
2014; 5
2020; 53
2017; 37
2016; 90
2017; 35
2008; 28
2007; 8
2014; 19
2018; 33
2018; 38
2012; 20
2007; 26
2014; 289
2011; 138
2014; 515
2019; 7
2015; 160
2015; 15
2019; 9
2018; 28
2015; 5
2015; 4
2019; 5
2013; 501
2015; 10
2011; 31
2016; 165
2020; 78
2016; 17
2018; 22
2018; 27
2009; 136
2016; 12
2003; 130
2015; 24
2018; 1683
2016; 7
2011; 108
2021; 11
2019; 47
2017; 12
2013; 136
2018; 14
2012; 9
2003; 23
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
Requejo‐Aguilar R (e_1_2_7_42_1) 2014; 5
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Liu K (e_1_2_7_65_1) 2020; 10
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 8
  start-page: 103
  issue: 2
  year: 2007
  end-page: 109
  article-title: Biological effects of the PINK1 c.1366C>T mutation: implications in Parkinson disease pathogenesis
  publication-title: Neurogenetics
– volume: 52
  start-page: 688
  issue: 4
  year: 2011
  end-page: 698
  article-title: Quantitative role of LAL, NPC2, and NPC1 in lysosomal cholesterol processing defined by genetic and pharmacological manipulations
  publication-title: J Lipid Res
– volume: 160
  start-page: 570
  issue: 3
  year: 2015
  article-title: SnapShot: genetics of Parkinson's disease
  publication-title: Cell
– volume: 8
  issue: 6
  year: 2017
  article-title: Necroptosis in neurodegenerative diseases: a potential therapeutic target
  publication-title: Cell Death Dis
– volume: 10
  start-page: 190
  issue: 190
  year: 2019
  article-title: Guidelines for fluorescent guided biallelic HDR targeting selection with PiggyBac system removal for gene editing
  publication-title: Front Genet
– volume: 9
  start-page: 9455
  issue: 1
  year: 2019
  article-title: Automated high‐throughput high‐content autophagy and mitophagy analysis platform
  publication-title: Sci Rep
– volume: 11
  start-page: 589
  issue: 5
  year: 2012
  end-page: 595
  article-title: Metabolic regulation in pluripotent stem cells during reprogramming and self‐renewal
  publication-title: Cell Stem Cell
– volume: 20
  start-page: 31
  issue: 1
  year: 2012
  end-page: 42
  article-title: The pathways of mitophagy for quality control and clearance of mitochondria
  publication-title: Cell Death Differ
– volume: 31
  start-page: 5970
  issue: 16
  year: 2011
  end-page: 5976
  article-title: Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells
  publication-title: J Neurosci
– volume: 39
  start-page: 221
  issue: 4
  year: 2016
  end-page: 234
  article-title: The autophagy–lysosomal pathway in neurodegeneration: a TFEB perspective
  publication-title: Trends Neurosci
– volume: 34
  start-page: 661
  issue: 11
  year: 2015
  end-page: 668
  article-title: TFEB participates in the Aβ‐induced pathogenesis of Alzheimer's disease by regulating the autophagy‐lysosome pathway
  publication-title: DNA Cell Biol
– volume: 130
  start-page: 5681
  issue: 23
  year: 2003
  article-title: Neural crest development is regulated by the transcription factor Sox9
  publication-title: Development
– volume: 3
  start-page: 21
  issue: 1
  year: 2017
  article-title: Embryonic development of selectively vulnerable neurons in Parkinson's disease
  publication-title: NPJ Parkinsons Dis
– volume: 138
  start-page: 5213
  issue: 23
  year: 2011
  article-title: Retinoic acid‐dependent and ‐independent gene‐regulatory pathways of Pitx3 in meso‐diencephalic dopaminergic neurons
  publication-title: Development
– volume: 27
  start-page: 439
  issue: 2
  year: 2018
  end-page: 449
  article-title: Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand
  publication-title: Cell Metab
– volume: 8
  start-page: 1144
  issue: 5
  year: 2017
  end-page: 1154
  article-title: Derivation of human midbrain‐specific organoids from neuroepithelial stem cells
  publication-title: Stem Cell Reports
– volume: 6
  issue: 1
  year: 2018
  article-title: 3D cultures of Parkinson's disease‐specific dopaminergic neurons for high content phenotyping and drug testing
  publication-title: Adv Sci (Weinh)
– volume: 15
  start-page: 1017
  issue: 6
  year: 2019
  end-page: 1030
  article-title: YWHA/14‐3‐3 proteins recognize phosphorylated TFEB by a noncanonical mode for controlling TFEB cytoplasmic localization
  publication-title: Autophagy
– volume: 31
  start-page: 9404
  issue: 25
  year: 2011
  end-page: 9413
  article-title: Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment
  publication-title: J Neurosci
– volume: 53
  issue: 3
  year: 2020
  article-title: The role of astrocytes in oxidative stress of central nervous system: a mixed blessing
  publication-title: Cell Prolif
– volume: 165
  start-page: 1586
  issue: 7
  year: 2016
  end-page: 1597
  article-title: Modeling development and disease with organoids
  publication-title: Cell
– volume: 10
  issue: 3
  year: 2015
  article-title: Genetic and chemical activation of TFEB mediates clearance of aggregated α‐synuclein
  publication-title: PLoS One
– volume: 76
  start-page: 4708
  issue: 16
  year: 2016
  end-page: 4719
  article-title: PINK1 is a negative regulator of growth and the Warburg effect in glioblastoma
  publication-title: Cancer Res
– volume: 19
  start-page: 983
  issue: 8
  year: 2013
  end-page: 997
  article-title: The role of autophagy in neurodegenerative disease
  publication-title: Nat Med
– volume: 1683
  start-page: 12
  year: 2018
  end-page: 16
  article-title: CSF lamp2 concentrations are decreased in female Parkinson's disease patients with LRRK2 mutations
  publication-title: Brain Res
– volume: 9
  start-page: 13
  issue: 1
  year: 2012
  end-page: 24
  article-title: 100 years of Lewy pathology
  publication-title: Nat Rev Neurol
– volume: 9
  start-page: 11682
  issue: 1
  year: 2019
  article-title: Stress‐induced phospho‐ubiquitin formation causes parkin degradation
  publication-title: Sci Rep
– volume: 30
  start-page: 1639
  issue: 12
  year: 2015
  end-page: 1647
  article-title: Lysosomal‐associated membrane protein 2 isoforms are differentially affected in early Parkinson's disease
  publication-title: Mov Disord
– volume: 10
  start-page: 78
  issue: 1
  year: 2020
  end-page: 94
  article-title: BIRC7 promotes epithelial‐mesenchymal transition and metastasis in papillary thyroid carcinoma through restraining autophagy
  publication-title: Am J Cancer Res
– volume: 28
  start-page: 8199
  issue: 33
  year: 2008
  end-page: 8207
  article-title: Loss of PINK1 function affects development and results in neurodegeneration in zebrafish
  publication-title: J Neurosci
– volume: 11
  start-page: 6617
  issue: 1
  year: 2021
  article-title: PINK1 deficiency impairs adult neurogenesis of dopaminergic neurons
  publication-title: Sci Rep
– volume: 5
  start-page: 5514
  issue: 4514
  year: 2014
  article-title: PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1
  publication-title: Nat Commun
– volume: 28
  start-page: 3
  issue: 1
  year: 2018
  end-page: 13
  article-title: Autophagy in neurodegenerative diseases: pathogenesis and therapy
  publication-title: Brain Pathol
– volume: 4
  start-page: 847
  issue: 5
  year: 2015
  end-page: 859
  article-title: Mitochondrial alterations by PARKIN in dopaminergic neurons using PARK2 patient‐specific and PARK2 knockout isogenic iPSC lines
  publication-title: Stem Cell Reports
– volume: 33
  start-page: 36
  issue: 1
  year: 2018
  end-page: 47
  article-title: The changing landscape of surgery for Parkinson's disease
  publication-title: Mov Disord
– volume: 37
  start-page: 4584
  issue: 17
  year: 2017
  end-page: 4592
  article-title: Deficiency in neuronal TGF‐β signaling leads to nigrostriatal degeneration and activation of TGF‐β signaling protects against MPTP neurotoxicity in mice
  publication-title: J Neurosci
– volume: 24
  start-page: 5775
  issue: 20
  year: 2015
  end-page: 5788
  article-title: Altered TFEB‐mediated lysosomal biogenesis in Gaucher disease iPSC‐derived neuronal cells
  publication-title: Hum Mol Genet
– volume: 136
  start-page: 2363
  issue: 14
  year: 2009
  article-title: Identification of Dlk1, Ptpru; and Klhl1 as novel Nurr1 target genes in meso‐diencephalic dopamine neurons
  publication-title: Development
– volume: 15
  start-page: 2419
  issue: 11
  year: 2015
  end-page: 2428
  article-title: Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture
  publication-title: Lab Chip
– volume: 47
  start-page: D607
  issue: D1
  year: 2019
  end-page: D613
  article-title: STRING v11: protein‐protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets
  publication-title: Nucleic Acids Res
– volume: 22
  start-page: 2066
  issue: 8
  year: 2018
  end-page: 2079
  article-title: Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson's disease models
  publication-title: Cell Rep
– volume: 5
  start-page: 12397
  year: 2015
  article-title: Rapid parallel measurements of macroautophagy and mitophagy in mammalian cells using a single fluorescent biosensor
  publication-title: Sci Rep
– volume: 35
  start-page: 557
  issue: 3
  year: 2017
  end-page: 571
  article-title: Neurotrophic factor‐α1: a key Wnt‐β‐catenin dependent anti‐proliferation factor and ERK‐Sox9 activated inducer of embryonic neural stem cell differentiation to astrocytes in neurodevelopment
  publication-title: Stem Cells
– volume: 19
  start-page: 373
  issue: 3
  year: 2014
  end-page: 379
  article-title: Rapamycin: one drug, many effects
  publication-title: Cell Metab
– volume: 136
  start-page: 2130
  issue: Pt 7
  year: 2013
  end-page: 2146
  article-title: Boosting chaperone‐mediated autophagy in vivo mitigates α‐synuclein‐induced neurodegeneration
  publication-title: Brain
– volume: 78
  start-page: 105
  year: 2020
  end-page: 108
  article-title: Neuropathological findings in PINK1‐associated Parkinson's disease
  publication-title: Parkinsonism Relat Disord
– volume: 90
  start-page: 675
  issue: 4
  year: 2016
  end-page: 691
  article-title: Understanding dopaminergic cell death pathways in Parkinson disease
  publication-title: Neuron
– volume: 9
  start-page: 1423
  issue: 5
  year: 2017
  end-page: 1431
  article-title: FACS‐assisted CRISPR‐Cas9 genome editing facilitates Parkinson's disease modeling
  publication-title: Stem Cell Reports
– volume: 13
  start-page: 2498
  issue: 11
  year: 2003
  end-page: 2504
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res
– volume: 8
  start-page: 1580
  issue: 1
  year: 2017
  article-title: TFEB regulates lysosomal positioning by modulating TMEM55B expression and JIP4 recruitment to lysosomes
  publication-title: Nat Commun
– volume: 5
  start-page: 1
  issue: 1
  year: 2019
  end-page: 8
  article-title: Modeling Parkinson's disease in midbrain‐like organoids
  publication-title: NPJ Parkinsons Dis
– volume: 32
  start-page: 2847
  issue: 18
  year: 2016
  end-page: 2849
  article-title: Complex heatmaps reveal patterns and correlations in multidimensional genomic data
  publication-title: Bioinformatics
– volume: 7
  start-page: 84
  issue: 1
  year: 2019
  article-title: Transcriptome and proteome profiling of neural stem cells from the human subventricular zone in Parkinson's disease
  publication-title: Acta Neuropathol Commun
– volume: 8
  issue: 3
  year: 2013
  article-title: Derivation and expansion using only small molecules of human neural progenitors for neurodegenerative disease modeling
  publication-title: PLoS One
– volume: 12
  start-page: 1
  issue: 1
  year: 2016
  end-page: 222
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
  publication-title: Autophagy
– volume: 13
  start-page: 1181
  issue: 10
  year: 2010
  end-page: 1189
  article-title: SOX9 induces and maintains neural stem cells
  publication-title: Nat Neurosci
– volume: 26
  start-page: 36
  issue: 1
  year: 2007
  end-page: 46
  article-title: TNF‐alpha knockout and minocycline treatment attenuates blood‐brain barrier leakage in MPTP‐treated mice
  publication-title: Neurobiol Dis
– volume: 38
  issue: 3
  year: 2018
  article-title: RAD51C/XRCC3 facilitates mitochondrial DNA replication and maintains integrity of the mitochondrial genome
  publication-title: Mol Cell Biol
– volume: 107
  start-page: 1147
  issue: 4
  year: 2008
  end-page: 1157
  article-title: Caffeine protects against MPTP‐induced blood‐brain barrier dysfunction in mouse striatum
  publication-title: J Neurochem
– volume: 501
  start-page: 373
  issue: 7467
  year: 2013
  end-page: 379
  article-title: Cerebral organoids model human brain development and microcephaly
  publication-title: Nature
– volume: 108
  start-page: 12920
  issue: 31
  year: 2011
  end-page: 12924
  article-title: Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission
  publication-title: Proc Natl Acad Sci U S A
– volume: 18
  start-page: 479
  issue: 3
  year: 2011
  end-page: 492
  article-title: Regulation of autophagic activity by 14‐3‐3ζ proteins associated with class III phosphatidylinositol‐3‐kinase
  publication-title: Cell Death Differ
– volume: 289
  start-page: 10211
  issue: 14
  year: 2014
  end-page: 10222
  article-title: 2‐Hydroxypropyl‐β‐cyclodextrin promotes transcription factor EB‐mediated activation of autophagy
  publication-title: J Biol Chem
– volume: 287
  start-page: 9290
  issue: 12
  year: 2012
  end-page: 9298
  article-title: Normalization of cholesterol homeostasis by 2‐hydroxypropyl‐β‐cyclodextrin in neurons and glia from Niemann‐pick C1 (NPC1)‐deficient mice
  publication-title: J Biol Chem
– volume: 373
  start-page: 21
  issue: 1
  year: 2018
  end-page: 37
  article-title: The genetic architecture of mitochondrial dysfunction in Parkinson's disease
  publication-title: Cell Tissue Res
– volume: 14
  start-page: 1898
  issue: 11
  year: 2018
  end-page: 1910
  article-title: The lysosomal membrane protein LAMP2A promotes autophagic flux and prevents SNCA‐induced Parkinson disease‐like symptoms in the Drosophila brain
  publication-title: Autophagy
– volume: 17
  start-page: 3233
  issue: 12
  year: 2016
  end-page: 3245
  article-title: TGF‐β signaling in dopaminergic neurons regulates dendritic growth, excitatory‐inhibitory synaptic balance, and reversal learning
  publication-title: Cell Rep
– volume: 12
  issue: 4
  year: 2017
  article-title: Characterization of hydroxypropyl‐beta‐cyclodextrins used in the treatment of Niemann‐Pick Disease type C1
  publication-title: PLoS One
– volume: 23
  start-page: 5178
  issue: 12
  year: 2003
  end-page: 5186
  article-title: Transforming growth factor‐beta(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo
  publication-title: J Neurosci
– volume: 515
  start-page: 299
  issue: 7526
  year: 2014
  end-page: 300
  article-title: Neurodegenerative disease: brain windfall
  publication-title: Nature
– volume: 22
  start-page: 3667
  issue: 18
  year: 2013
  end-page: 3679
  article-title: The lysosomal inhibitor, chloroquine, increases cell surface BMPR‐II levels and restores BMP9 signalling in endothelial cells harbouring BMPR‐II mutations
  publication-title: Hum Mol Genet
– volume: 7
  start-page: 664
  issue: 4
  year: 2016
  end-page: 677
  article-title: Parkin and PINK1 patient iPSC‐derived midbrain dopamine neurons exhibit mitochondrial dysfunction and α‐synuclein accumulation
  publication-title: Stem Cell Reports
– volume: 12
  start-page: 119
  issue: 2
  year: 2010
  end-page: 131
  article-title: PINK1/Parkin‐mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
  publication-title: Nat Cell Biol
– volume: 8
  start-page: 16866
  issue: 1
  year: 2018
  article-title: Cerebrospinal fluid levels of autophagy‐related proteins represent potentially novel biomarkers of early‐stage Parkinson's disease
  publication-title: Sci Rep
– ident: e_1_2_7_41_1
  doi: 10.1016/j.stemcr.2016.08.012
– ident: e_1_2_7_53_1
  doi: 10.1002/stem.2511
– ident: e_1_2_7_71_1
  doi: 10.1523/JNEUROSCI.1317-11.2011
– ident: e_1_2_7_28_1
  doi: 10.1101/gr.1239303
– ident: e_1_2_7_30_1
  doi: 10.1016/j.tins.2016.02.002
– ident: e_1_2_7_48_1
  doi: 10.1038/nm.3232
– ident: e_1_2_7_15_1
  doi: 10.1016/j.stemcr.2017.03.010
– ident: e_1_2_7_22_1
  doi: 10.1093/bioinformatics/btw313
– ident: e_1_2_7_34_1
  doi: 10.1016/j.celrep.2016.11.068
– ident: e_1_2_7_56_1
  doi: 10.1242/dev.037556
– ident: e_1_2_7_27_1
  doi: 10.1093/nar/gky1131
– ident: e_1_2_7_37_1
  doi: 10.1371/journal.pone.0120819
– ident: e_1_2_7_69_1
  doi: 10.1089/dna.2014.2738
– ident: e_1_2_7_54_1
  doi: 10.1038/nn.2646
– ident: e_1_2_7_47_1
  doi: 10.1016/j.stem.2012.10.005
– ident: e_1_2_7_45_1
  doi: 10.1038/cddis.2017.286
– ident: e_1_2_7_63_1
  doi: 10.1080/15548627.2018.1491489
– ident: e_1_2_7_68_1
  doi: 10.1093/hmg/ddv297
– ident: e_1_2_7_35_1
  doi: 10.1523/JNEUROSCI.2952-16.2017
– ident: e_1_2_7_11_1
  doi: 10.1038/nature12517
– ident: e_1_2_7_50_1
  doi: 10.1073/pnas.1107332108
– ident: e_1_2_7_2_1
  doi: 10.1038/nj7526-299a
– ident: e_1_2_7_51_1
  doi: 10.1016/j.cmet.2014.01.001
– ident: e_1_2_7_23_1
  doi: 10.1523/JNEUROSCI.4441-10.2011
– ident: e_1_2_7_52_1
  doi: 10.1242/dev.00808
– ident: e_1_2_7_6_1
  doi: 10.1007/s00441-017-2768-8
– ident: e_1_2_7_74_1
  doi: 10.1016/j.nbd.2006.11.012
– ident: e_1_2_7_36_1
  doi: 10.1074/jbc.M113.506246
– ident: e_1_2_7_5_1
  doi: 10.1038/cdd.2012.81
– volume: 5
  start-page: 5514
  issue: 4514
  year: 2014
  ident: e_1_2_7_42_1
  article-title: PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1
  publication-title: Nat Commun
  contributor:
    fullname: Requejo‐Aguilar R
– ident: e_1_2_7_60_1
  doi: 10.1016/j.brainres.2018.01.016
– ident: e_1_2_7_13_1
  doi: 10.1016/j.cell.2016.05.082
– ident: e_1_2_7_20_1
  doi: 10.1002/advs.201800927
– ident: e_1_2_7_17_1
  doi: 10.1038/s41598-019-45917-2
– ident: e_1_2_7_61_1
  doi: 10.1038/s41598-018-35376-6
– ident: e_1_2_7_31_1
  doi: 10.1080/15548627.2015.1100356
– ident: e_1_2_7_12_1
  doi: 10.1038/s41531-019-0078-4
– ident: e_1_2_7_4_1
  doi: 10.1016/j.cell.2015.01.019
– ident: e_1_2_7_46_1
  doi: 10.1016/j.celrep.2018.01.089
– ident: e_1_2_7_26_1
  doi: 10.1038/s41598-019-47952-5
– ident: e_1_2_7_29_1
  doi: 10.1016/j.cmet.2017.12.008
– ident: e_1_2_7_59_1
  doi: 10.1128/MCB.00489-17
– ident: e_1_2_7_75_1
  doi: 10.1111/j.1471-4159.2008.05697.x
– ident: e_1_2_7_44_1
  doi: 10.1016/j.neuron.2016.03.038
– ident: e_1_2_7_7_1
  doi: 10.1038/nrneurol.2012.242
– ident: e_1_2_7_67_1
  doi: 10.1080/15548627.2019.1569928
– ident: e_1_2_7_32_1
  doi: 10.1093/hmg/ddt216
– ident: e_1_2_7_9_1
  doi: 10.1523/JNEUROSCI.0979-08.2008
– ident: e_1_2_7_18_1
  doi: 10.3389/fgene.2019.00190
– ident: e_1_2_7_10_1
  doi: 10.1038/s41598-021-84278-7
– ident: e_1_2_7_38_1
  doi: 10.1016/j.stemcr.2015.02.019
– ident: e_1_2_7_55_1
  doi: 10.1242/dev.071704
– ident: e_1_2_7_70_1
  doi: 10.1038/s41467-017-01871-z
– ident: e_1_2_7_72_1
  doi: 10.1074/jbc.M111.326405
– ident: e_1_2_7_39_1
  doi: 10.1371/journal.pone.0175478
– ident: e_1_2_7_66_1
  doi: 10.1038/cdd.2010.118
– ident: e_1_2_7_40_1
  doi: 10.1007/s10048-006-0072-y
– ident: e_1_2_7_73_1
  doi: 10.1194/jlr.M013789
– volume: 10
  start-page: 78
  issue: 1
  year: 2020
  ident: e_1_2_7_65_1
  article-title: BIRC7 promotes epithelial‐mesenchymal transition and metastasis in papillary thyroid carcinoma through restraining autophagy
  publication-title: Am J Cancer Res
  contributor:
    fullname: Liu K
– ident: e_1_2_7_16_1
  doi: 10.1038/srep12397
– ident: e_1_2_7_14_1
  doi: 10.1371/journal.pone.0059252
– ident: e_1_2_7_43_1
  doi: 10.1158/0008-5472.CAN-15-3079
– ident: e_1_2_7_19_1
  doi: 10.1016/j.stemcr.2017.08.026
– ident: e_1_2_7_49_1
  doi: 10.1111/bpa.12545
– ident: e_1_2_7_8_1
  doi: 10.1016/j.parkreldis.2020.07.023
– ident: e_1_2_7_33_1
  doi: 10.1523/JNEUROSCI.23-12-05178.2003
– ident: e_1_2_7_62_1
  doi: 10.1002/mds.26141
– ident: e_1_2_7_64_1
  doi: 10.1093/brain/awt131
– ident: e_1_2_7_25_1
  doi: 10.1038/ncb2012
– ident: e_1_2_7_21_1
  doi: 10.1039/C5LC00180C
– ident: e_1_2_7_3_1
  doi: 10.1002/mds.27228
– ident: e_1_2_7_58_1
  doi: 10.1186/s40478-019-0736-0
– ident: e_1_2_7_24_1
  doi: 10.1111/cpr.12781
– ident: e_1_2_7_57_1
  doi: 10.1038/s41531-017-0022-4
SSID ssj0011516
Score 2.5409923
Snippet ABSTRACT Background The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and...
The etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene mutations are...
BackgroundThe etiology of Parkinson's disease (PD) is only partially understood despite the fact that environmental causes, risk factors, and specific gene...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 80
SubjectTerms 2-Hydroxypropyl-beta-cyclodextrin - metabolism
Animal models
Animals
Apoptosis
Autophagy
Brain - metabolism
Cell differentiation
Cell proliferation
CRISPR
cyclodextrin
Dopamine receptors
Dopaminergic Neurons - metabolism
Etiology
Homeostasis
Humans
Hydroxylase
isogenics
Kinases
Mesencephalon
Mice
Mitochondria
Movement disorders
Mutation
Neurodegenerative diseases
Neurons
Neurons - metabolism
Neurotoxicity
organoids
Organoids - metabolism
Parkinson Disease - drug therapy
Parkinson Disease - genetics
Parkinson Disease - metabolism
Parkinson's disease
Patients
Phagocytosis
Phenotype
Phenotypes
PINK1
Point mutation
PTEN protein
PTEN-induced putative kinase
Regular Issue
Stem cells
β-Cyclodextrin
Title Parkinson's Disease Phenotypes in Patient Neuronal Cultures and Brain Organoids Improved by 2‐Hydroxypropyl‐β‐Cyclodextrin Treatment
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.28810
https://www.ncbi.nlm.nih.gov/pubmed/34637165
https://www.proquest.com/docview/2620936296/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC9291890
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qXSA2vKEDpbIQEmwyTWzHScSqtFQjpEEjaKUukCI711FHlEzVTBfDij0bvoUP6Uf0S3ptTwJDhYRQpCiJH_Hr-h4_7jHACy1rJJwgIyN4FUltk0hrrSKnO2n8gEaiW9Edv1ejQ_nuKD1ag9edLUzgh-gn3Jxk-P7aCbg27fYv0tAv2A55nnvzKkek5wDRh546ioCOP_aUhCj1FsIdq1DMt_uQq7roGsC8vk_yd_zqFdD-HfjUJT3sO_k8PJ-bYfX1D1bH_8zbXbi9BKZsJ7Ske7Bmm_twc7xcen8A3519tDcVe9myvbCswybHtpm5WdyWTRs2CRytzBN-uMgCXyc56gbZG3cYBfO2n7MptixMZ1hkZsH45bcfowW6rNHH08UJvV_8pNvuojpxRvfzMwp70G2KfwiH-28PdkfR8iSHqJJSUEfPjc1NgSliLTKrTCK0TQnXG60IoWCdFcizuMYEtcpUjNYom9BFPVCd5LV4BOvNrLEbwHJeKSRMK2qtZSwKGuEKVGjzpBaVxHQAz7s6LU8DYUcZqJl5ScVa-mIdwGZX2-VSZslF8bggfV6oATwOFd_HIKQSNLKk2LOVJtF7cCzdqy7N9NizdRP-TPKCfvnK1_jfE1WO9z76hyf_7vUp3OLOHsPPCW3C-vzs3D4jlDQ3W3CDy8mWF4orlPIWhQ
link.rule.ids 230,315,786,790,891,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5VRQIulN-ypYCFkOCSbWI7TiJxgZZqgW5VwVbqBUV2xlFXlGzV3R6WE3cuPAsPwkPwJIztTWCpkBCKFCXxT_w39uex5zPAYy1rJJwgIyN4FUltk0hrrSI3dtL8AY1Et6I73FeDQ_n6KD1agWetLUzgh-gUbk4yfH_tBNwppLd-sYZ-xGmf57mzr7pE4p76CdXbjjyKoI4_-JTEKPU2wi2vUMy3uqDLo9EFiHlxp-TvCNYPQbtr8L5NfNh58qF_PjP96tMfvI7_m7vrcG2BTdnz0JhuwIptbsLl4WL1_RZ8cSbS3lrsyZTthJUddnBsm4lT5E7ZuGEHgaaVec4PF1mg7CRH3SB74c6jYN78czLGKQsaDYvMzBn_8fnrYI4ub_TxdH5C79-_0W17Xp04u_vZGYUdtfvib8Ph7svR9iBaHOYQVVIK6uu5sbkpMEWsRWaVSYS2KUF7oxWBFKyzAnkW15igVpmK0RplE7qoE6qTvBZ3YLWZNPYusJxXCgnWilprGYuCJrkCFdo8qUUlMe3Bo7ZSy9PA2VEGdmZeUrGWvlh7sNlWd7kQW3JRPC5oSC9UD9ZDzXcxCKkETS4p9mypTXQeHFH3skszPvaE3QRBk7ygXz71Vf73RJXDnXf-YePfvT6EK4PRcK_ce7X_5h5c5c48w6uINmF1dnZu7xNompkHXjZ-Ak6oGdA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIU28cBm3bgMshAQv6RLbcRLxBCtVuXSqYJP2gBTZObZWbUurtXsoT7zzwm_hh_Aj-CUc201GmZAQihQl8SW-HZ_Pl_OZkKdKWECcICLNWRUJZZJIKSUjpztx_ABagFvRHe7LwaF4e5QerZEXjS1M4IdoJ9ycZPj-2gn4FOzuJWnoGcy6LM-dedU1ITlzTbr3oeWOQqTjzz1FKUq9iXBDKxSz3TboqjK6gjCvbpT8HcB6DdS_ST41aQ8bT066F3PdrT7_Qev4n5m7RW4skSl9GZrSbbJm6k2yMVyuvd8hX52BtLcVezajvbCuQ0fHpp64adwZHdd0FEhaqWf8cJEFwk50VDXQV-40CuqNPydjmNEwn2GA6gVlP798GyzAZQ0_Then-P7jO972FtWps7qfn2PYg2ZX_F1y2H99sDeIlkc5RJUQHHt6pk2uC0gBLM-M1AlXJkVgr5VEiAI2K4BlsYUElMxkDEZLk-CFXZBNcsvvkfV6UpsHhOaskoCgllulRMwLHOJykGDyxPJKQNohT5o6LaeBsaMM3MysxGItfbF2yE5T2-VSaNFFsrhAhV7IDrkfKr6NgWMTw6Elxp6tNInWg6PpXnWpx8eerhsBaJIX-Mvnvsb_nqhy2PvoH7b-3etjsjHq9cv3b_bfbZPrzNlm-PmhHbI-P78wDxExzfUjLxm_AAnmGH8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parkinson%27s+Disease+Phenotypes+in+Patient+Neuronal+Cultures+and+Brain+Organoids+Improved+by+2%E2%80%90Hydroxypropyl%E2%80%90%CE%B2%E2%80%90Cyclodextrin+Treatment&rft.jtitle=Movement+disorders&rft.au=Jarazo%2C+Javier&rft.au=Barmpa%2C+Kyriaki&rft.au=Modamio%2C+Jennifer&rft.au=Saraiva%2C+Cl%C3%A1udia&rft.date=2022-01-01&rft.issn=0885-3185&rft.eissn=1531-8257&rft.volume=37&rft.issue=1&rft.spage=80&rft.epage=94&rft_id=info:doi/10.1002%2Fmds.28810&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mds_28810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3185&client=summon