Effect of the Microenvironment on Mesenchymal Stem Cell Paracrine Signaling: Opportunities to Engineer the Therapeutic Effect

Cues from the extracellular environment, including physical stimuli, are well known to affect mesenchymal stem cell (MSC) properties in terms of proliferation and differentiation. Many therapeutic strategies are now targeting this knowledge to increase the efficacy of cell therapies, typically emplo...

Full description

Saved in:
Bibliographic Details
Published inStem cells and development Vol. 26; no. 9; p. 617
Main Authors Kusuma, Gina D, Carthew, James, Lim, Rebecca, Frith, Jessica E
Format Journal Article
LanguageEnglish
Published United States 01.05.2017
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Cues from the extracellular environment, including physical stimuli, are well known to affect mesenchymal stem cell (MSC) properties in terms of proliferation and differentiation. Many therapeutic strategies are now targeting this knowledge to increase the efficacy of cell therapies, typically employed to repair tissue functions in the event of injury, either by direct engraftment into the target tissue or differentiation into mature tissues. However, it is now envisioned that harnessing the repertoire of factors secreted by MSCs (termed the secretome) may provide an alternate to these cell therapies. Of current interest are both direct protein secretions and two major subpopulations of bioactive extracellular vesicles (EVs), namely exosomes and microvesicles. EVs released by MSCs are reflective of their cells of origin, able to impact upon the activities of other cells in the local microenvironment, making the rational design of MSC paracrine activities an encouraging strategy to reproducibly modulate cell therapies. The precise mechanisms by which the secretome is modulated by the microenvironment, however, remain elusive. Controlling MSC growth conditions with oxygen tension, growth factor composition, and mechanical properties may serve to directly influence paracrine activity. Our growing understanding implicates components of the mechanotransduction machinery in translating both mechanical and chemical cues from the environment into alterations in gene regulation and varied paracrine activity. As technologies are developed to manufacture MSCs, advances in bioengineering and novel insight of how the extracellular environment affects MSC paracrine activity will play a pivotal role in the generation of widespread, successful, clinical MSC therapies.
AbstractList Cues from the extracellular environment, including physical stimuli, are well known to affect mesenchymal stem cell (MSC) properties in terms of proliferation and differentiation. Many therapeutic strategies are now targeting this knowledge to increase the efficacy of cell therapies, typically employed to repair tissue functions in the event of injury, either by direct engraftment into the target tissue or differentiation into mature tissues. However, it is now envisioned that harnessing the repertoire of factors secreted by MSCs (termed the secretome) may provide an alternate to these cell therapies. Of current interest are both direct protein secretions and two major subpopulations of bioactive extracellular vesicles (EVs), namely exosomes and microvesicles. EVs released by MSCs are reflective of their cells of origin, able to impact upon the activities of other cells in the local microenvironment, making the rational design of MSC paracrine activities an encouraging strategy to reproducibly modulate cell therapies. The precise mechanisms by which the secretome is modulated by the microenvironment, however, remain elusive. Controlling MSC growth conditions with oxygen tension, growth factor composition, and mechanical properties may serve to directly influence paracrine activity. Our growing understanding implicates components of the mechanotransduction machinery in translating both mechanical and chemical cues from the environment into alterations in gene regulation and varied paracrine activity. As technologies are developed to manufacture MSCs, advances in bioengineering and novel insight of how the extracellular environment affects MSC paracrine activity will play a pivotal role in the generation of widespread, successful, clinical MSC therapies.
Author Frith, Jessica E
Lim, Rebecca
Carthew, James
Kusuma, Gina D
Author_xml – sequence: 1
  givenname: Gina D
  surname: Kusuma
  fullname: Kusuma, Gina D
  organization: 1 Department of Materials Science and Engineering, Monash University , Clayton, Victoria, Australia
– sequence: 2
  givenname: James
  surname: Carthew
  fullname: Carthew, James
  organization: 1 Department of Materials Science and Engineering, Monash University , Clayton, Victoria, Australia
– sequence: 3
  givenname: Rebecca
  surname: Lim
  fullname: Lim, Rebecca
  organization: 3 The Ritchie Centre, Hudson Institute of Medical Research , Clayton, Victoria, Australia
– sequence: 4
  givenname: Jessica E
  surname: Frith
  fullname: Frith, Jessica E
  organization: 1 Department of Materials Science and Engineering, Monash University , Clayton, Victoria, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28186467$$D View this record in MEDLINE/PubMed
BookMark eNo1kM1KAzEYRYMo9keXbiUvMHUmk2QSd1LqD7RUaF2X9MuXNjKTGTKp0IXvbrG6unC4nAt3RC5DG5CQuyKfFLnSDz3YCcsLOclLri_IsBCiypQo-YCM-v4zz5lkil-TAVOFklxWQ_I9cw4h0dbRtEe68BBbDF8-tqHBcOKBLrDHAPtjY2q6StjQKdY1fTfRQPQB6crvgql92D3SZde1MR2CTx57mlo6C7tTBeOvfL3HaDo8JA_0PHtDrpype7z9yzH5eJ6tp6_ZfPnyNn2aZ8A5S5mDUjitAZxGK5kw1khpdJWXUHBmwQostiWAAatBG6E0WAnGVSA0mK1iY3J_9naHbYN200XfmHjc_P_AfgAwAWNb
CitedBy_id crossref_primary_10_1186_s40580_022_00349_z
crossref_primary_10_1016_j_ymeth_2025_03_004
crossref_primary_10_1038_s41598_019_50430_7
crossref_primary_10_3389_fcell_2021_717772
crossref_primary_10_1097_TP_0000000000003077
crossref_primary_10_1007_s11010_024_05082_1
crossref_primary_10_4252_wjsc_v11_i2_124
crossref_primary_10_1038_s41434_019_0102_7
crossref_primary_10_15283_ijsc22172
crossref_primary_10_3389_fcell_2022_819726
crossref_primary_10_3389_fphys_2023_1220555
crossref_primary_10_1021_acsami_1c09071
crossref_primary_10_1088_1758_5090_ab078a
crossref_primary_10_1186_s12931_021_01734_8
crossref_primary_10_1038_s41598_022_22478_5
crossref_primary_10_3390_ijms22084010
crossref_primary_10_1089_scd_2019_0131
crossref_primary_10_1136_archdischild_2019_317896
crossref_primary_10_4103_1673_5374_264455
crossref_primary_10_1139_cjpp_2021_0745
crossref_primary_10_3390_ijms222112018
crossref_primary_10_1159_000506303
crossref_primary_10_1002_btm2_10521
crossref_primary_10_1186_s13287_020_01728_1
crossref_primary_10_1007_s40883_021_00242_x
crossref_primary_10_1002_jbm_a_36191
crossref_primary_10_1155_2022_5704628
crossref_primary_10_1371_journal_pone_0254657
crossref_primary_10_1016_j_pxur_2023_01_004
crossref_primary_10_3389_fbioe_2022_1061855
crossref_primary_10_3390_jcm9020310
crossref_primary_10_1016_j_arbres_2019_08_014
crossref_primary_10_3390_cells12010178
crossref_primary_10_1186_s13287_017_0558_6
crossref_primary_10_3390_cells10092303
crossref_primary_10_1016_j_biopha_2024_116263
crossref_primary_10_1016_j_tibtech_2020_04_013
crossref_primary_10_1155_2019_9158016
crossref_primary_10_14734_PN_2021_32_3_105
crossref_primary_10_1186_s40001_023_01008_7
crossref_primary_10_1063_5_0131125
crossref_primary_10_1016_j_addr_2021_113913
crossref_primary_10_3390_ijms19010036
crossref_primary_10_1016_j_msec_2020_111812
crossref_primary_10_1186_s13287_021_02137_8
crossref_primary_10_1016_j_bbrc_2018_08_012
crossref_primary_10_1016_j_bioactmat_2023_03_017
crossref_primary_10_1016_j_expneurol_2022_114199
crossref_primary_10_1016_j_tice_2024_102709
crossref_primary_10_1002_jcp_29803
crossref_primary_10_1002_jbm_a_37800
crossref_primary_10_3390_cells8090965
crossref_primary_10_1152_ajplung_00263_2019
crossref_primary_10_1038_s41598_020_63445_2
crossref_primary_10_1186_s40902_022_00357_3
crossref_primary_10_2147_JIR_S355479
crossref_primary_10_3343_alm_2023_0382
crossref_primary_10_1186_s13287_023_03516_z
crossref_primary_10_1002_tox_23833
crossref_primary_10_1038_s41598_018_33397_9
crossref_primary_10_2174_1574888X17666220817093305
crossref_primary_10_1155_2019_1513526
crossref_primary_10_1016_j_jcyt_2021_06_004
crossref_primary_10_1164_rccm_202405_0961ED
crossref_primary_10_1016_j_biomaterials_2021_121109
crossref_primary_10_1016_j_cej_2022_136508
crossref_primary_10_1002_term_2966
crossref_primary_10_1080_14712598_2018_1546840
crossref_primary_10_18632_oncotarget_18126
crossref_primary_10_1007_s12015_024_10724_4
crossref_primary_10_3390_polym13142350
crossref_primary_10_1007_s11010_022_04421_4
crossref_primary_10_1039_D1TB00017A
crossref_primary_10_1186_s13287_020_01776_7
crossref_primary_10_3389_fbioe_2022_1082403
crossref_primary_10_1016_j_actbio_2023_06_041
crossref_primary_10_3390_polym14224907
crossref_primary_10_1097_PRS_0000000000006867
crossref_primary_10_1021_acsnano_2c03060
crossref_primary_10_1016_j_omtn_2023_03_006
crossref_primary_10_1016_j_pedneo_2020_11_007
crossref_primary_10_3389_fcell_2021_650664
crossref_primary_10_3389_fvets_2022_897150
crossref_primary_10_1007_s40778_021_00187_5
crossref_primary_10_1016_j_actbio_2021_03_069
crossref_primary_10_1016_j_ocl_2022_08_007
crossref_primary_10_1186_s40635_021_00424_5
crossref_primary_10_1042_BST20210231
crossref_primary_10_3390_ijms21041217
crossref_primary_10_1016_j_jcyt_2017_12_004
crossref_primary_10_3390_ijms23136877
crossref_primary_10_1111_ijd_14949
crossref_primary_10_1007_s12035_022_02967_4
crossref_primary_10_1002_jcp_30330
crossref_primary_10_1089_ten_tec_2024_0066
crossref_primary_10_1080_17446651_2025_2457474
crossref_primary_10_1016_j_jiec_2021_07_040
crossref_primary_10_3389_fimmu_2019_01112
crossref_primary_10_1002_advs_202003186
crossref_primary_10_1007_s13577_022_00811_4
crossref_primary_10_1177_2041731418808695
crossref_primary_10_3390_ijms23052529
crossref_primary_10_31857_S0044452924020043
crossref_primary_10_1089_ten_tea_2023_0279
crossref_primary_10_3390_ijms25105204
crossref_primary_10_1016_j_heliyon_2023_e23723
crossref_primary_10_1186_s13287_022_02747_w
crossref_primary_10_1016_j_berh_2023_101824
crossref_primary_10_1093_asj_sjaa362
crossref_primary_10_1097_MD_0000000000030013
crossref_primary_10_1016_j_cej_2021_130147
crossref_primary_10_1111_exd_13451
crossref_primary_10_1016_j_molimm_2023_04_009
crossref_primary_10_18081_2333_5106_9_4_224
crossref_primary_10_3389_fimmu_2018_02013
crossref_primary_10_3389_fphar_2020_00654
crossref_primary_10_1089_ten_teb_2023_0094
crossref_primary_10_3390_biomedicines10030563
crossref_primary_10_1007_s10529_020_02907_z
crossref_primary_10_1016_j_jcyt_2019_04_003
crossref_primary_10_3892_etm_2021_9642
crossref_primary_10_1007_s40204_019_0108_7
crossref_primary_10_1016_j_actbio_2024_10_039
crossref_primary_10_1186_s13287_020_1566_5
crossref_primary_10_1093_stcltm_szae067
crossref_primary_10_5493_wjem_v10_i3_26
crossref_primary_10_1016_j_cytogfr_2020_12_002
crossref_primary_10_3390_ijms20030574
crossref_primary_10_1080_21655979_2021_2006866
crossref_primary_10_1089_scd_2017_0291
crossref_primary_10_1002_biot_202300474
crossref_primary_10_1089_ten_tea_2023_0059
crossref_primary_10_1186_s13287_019_1224_y
crossref_primary_10_23838_pfm_2018_00058
crossref_primary_10_3390_pharmaceutics16101316
crossref_primary_10_3390_cancers13092153
crossref_primary_10_1016_j_msec_2019_04_030
crossref_primary_10_2217_rme_2017_0093
crossref_primary_10_1007_s10856_018_6180_z
crossref_primary_10_1039_C7TB02764H
crossref_primary_10_1007_s13346_021_00934_5
crossref_primary_10_1038_s42003_022_03838_3
crossref_primary_10_1111_wrr_13251
crossref_primary_10_1002_bit_27974
crossref_primary_10_1177_09636897211057465
crossref_primary_10_3390_ijms24119586
crossref_primary_10_3390_ma14133512
crossref_primary_10_1016_j_arbr_2019_08_009
crossref_primary_10_1096_fj_202001768RR
crossref_primary_10_1007_s12016_021_08892_z
crossref_primary_10_1002_sctm_17_0101
crossref_primary_10_1021_acs_nanolett_0c00929
crossref_primary_10_1111_jgh_15434
crossref_primary_10_1186_s13287_021_02291_z
crossref_primary_10_3390_cells7110190
crossref_primary_10_1016_j_jddst_2024_105803
crossref_primary_10_1183_13993003_00986_2021
crossref_primary_10_3389_fbioe_2020_624096
crossref_primary_10_2147_JIR_S396064
crossref_primary_10_3389_fimmu_2023_1090416
crossref_primary_10_1093_rb_rbz049
crossref_primary_10_3390_biom11060784
crossref_primary_10_3390_ijms221910197
crossref_primary_10_31083_j_fbl2804072
crossref_primary_10_1093_gastro_goae016
crossref_primary_10_3390_ijms21155399
crossref_primary_10_1371_journal_pone_0222093
crossref_primary_10_1016_j_heliyon_2024_e24342
crossref_primary_10_1002_jbm_a_36906
crossref_primary_10_1093_rb_rbac043
crossref_primary_10_3389_fphar_2024_1345779
crossref_primary_10_1016_j_biomaterials_2019_119710
crossref_primary_10_18502_kss_v9i28_17192
crossref_primary_10_3389_fendo_2023_1256375
crossref_primary_10_1016_j_jcyt_2025_01_006
crossref_primary_10_3389_fphar_2021_645558
crossref_primary_10_1016_j_actbio_2021_04_017
crossref_primary_10_1111_php_13370
crossref_primary_10_1021_acsami_1c24095
crossref_primary_10_1038_s41598_020_61167_z
crossref_primary_10_1016_j_molimm_2023_12_005
crossref_primary_10_1186_s12974_022_02418_w
crossref_primary_10_1073_pnas_1902598116
crossref_primary_10_1039_D0LC00623H
crossref_primary_10_1016_j_jcyt_2020_02_005
crossref_primary_10_1016_j_actbio_2023_08_035
crossref_primary_10_4252_wjsc_v17_i1_101485
crossref_primary_10_1152_ajplung_00218_2020
crossref_primary_10_1002_cbin_12131
crossref_primary_10_1016_j_biologicals_2020_08_003
crossref_primary_10_1016_j_bbrc_2019_09_006
crossref_primary_10_1513_AnnalsATS_201812_890CME
crossref_primary_10_1021_acsabm_9b00420
crossref_primary_10_3389_fphar_2023_1130074
crossref_primary_10_1016_j_reth_2023_01_006
crossref_primary_10_3390_biomimetics7020077
crossref_primary_10_1186_s13287_020_01642_6
crossref_primary_10_5021_ad_2021_33_4_309
crossref_primary_10_3389_fphar_2018_01199
crossref_primary_10_1007_s00011_018_1131_1
crossref_primary_10_1016_j_cej_2023_145877
crossref_primary_10_1186_s13287_019_1282_1
crossref_primary_10_3390_molecules27041303
crossref_primary_10_1183_13993003_04149_2020
crossref_primary_10_32604_biocell_2024_054278
crossref_primary_10_1016_j_actbio_2021_04_025
crossref_primary_10_3389_fcell_2023_1244120
crossref_primary_10_1089_scd_2021_0005
crossref_primary_10_1186_s13287_023_03450_0
crossref_primary_10_3389_fimmu_2023_1287182
crossref_primary_10_1016_j_omtm_2019_05_004
crossref_primary_10_1155_2021_6546780
crossref_primary_10_1038_s41420_020_00363_2
crossref_primary_10_1098_rsif_2019_0815
crossref_primary_10_1186_s13287_020_01751_2
crossref_primary_10_1002_jgm_3510
crossref_primary_10_1186_s13287_024_03792_3
crossref_primary_10_3389_fcell_2022_851613
crossref_primary_10_1007_s13770_021_00335_2
crossref_primary_10_1016_j_aanat_2023_152084
crossref_primary_10_1111_wrr_12749
crossref_primary_10_1016_j_carbpol_2020_117159
crossref_primary_10_3390_cells9092069
crossref_primary_10_20960_RevOsteoporosMetabMiner_00012
crossref_primary_10_1134_S0022093024020042
crossref_primary_10_1155_2020_4356359
crossref_primary_10_1007_s00403_024_03289_2
crossref_primary_10_1155_2022_1779346
crossref_primary_10_1186_s13287_022_02996_9
crossref_primary_10_2217_rme_2021_0069
crossref_primary_10_3390_cells11030465
crossref_primary_10_3390_antiox10020268
crossref_primary_10_1016_j_biomaterials_2020_119881
crossref_primary_10_3390_jcm11144195
crossref_primary_10_1002_adbi_202000062
crossref_primary_10_1016_j_ajps_2021_10_002
crossref_primary_10_1002_2211_5463_13804
crossref_primary_10_34133_research_0311
crossref_primary_10_4252_wjsc_v12_i8_857
crossref_primary_10_1186_s13287_018_1043_6
crossref_primary_10_3390_cells13181565
crossref_primary_10_1007_s10561_019_09781_8
crossref_primary_10_1152_ajpheart_00075_2020
crossref_primary_10_1182_bloodadvances_2020002556
crossref_primary_10_1186_s13287_019_1447_y
crossref_primary_10_1002_jor_25179
crossref_primary_10_1002_vms3_442
crossref_primary_10_3390_antiox11102011
crossref_primary_10_1155_2021_2616807
crossref_primary_10_3390_cells10123278
crossref_primary_10_1016_j_stemcr_2019_12_003
crossref_primary_10_1038_s41598_024_60928_4
crossref_primary_10_3389_fbioe_2020_00146
crossref_primary_10_1007_s12015_021_10231_w
crossref_primary_10_1021_acsbiomaterials_1c00759
crossref_primary_10_1089_scd_2020_0206
crossref_primary_10_3389_fcell_2023_1291016
crossref_primary_10_1016_j_biomaterials_2019_119639
crossref_primary_10_2174_1574888X18666230113143234
crossref_primary_10_1557_s43579_021_00078_0
crossref_primary_10_1155_2021_1634782
crossref_primary_10_3390_biomedicines11051426
crossref_primary_10_3390_polym14061218
crossref_primary_10_1080_09205063_2017_1341675
crossref_primary_10_1186_s12891_025_08365_w
crossref_primary_10_1186_s12951_024_02410_x
crossref_primary_10_3390_biomedicines9091178
crossref_primary_10_1038_s41598_022_08583_5
crossref_primary_10_1002_adma_201705694
crossref_primary_10_1016_j_jid_2019_07_721
crossref_primary_10_3390_ijms21228608
crossref_primary_10_1134_S1990519X20060024
crossref_primary_10_1186_s13287_021_02513_4
crossref_primary_10_1007_s13770_023_00551_y
crossref_primary_10_1038_d41586_018_05120_1
crossref_primary_10_1038_s41598_024_57361_y
crossref_primary_10_1016_j_etap_2017_12_012
crossref_primary_10_3390_ijms19041016
crossref_primary_10_1007_s40883_021_00229_8
crossref_primary_10_1016_j_jconrel_2019_02_038
crossref_primary_10_3390_polym15061337
crossref_primary_10_1039_D0TB01686A
crossref_primary_10_3389_fcell_2020_00678
crossref_primary_10_3389_fgene_2024_1380696
crossref_primary_10_3390_cells11121866
crossref_primary_10_2217_rme_2018_0145
crossref_primary_10_3390_ijms20184516
crossref_primary_10_3390_ani10101899
crossref_primary_10_1016_j_jcyt_2022_07_010
crossref_primary_10_3390_ijms241612594
crossref_primary_10_3390_medicina60050787
crossref_primary_10_1016_j_bbrc_2022_10_014
crossref_primary_10_1155_2022_7819234
crossref_primary_10_1038_s41598_021_87571_7
crossref_primary_10_1038_s41378_024_00735_z
crossref_primary_10_1186_s13287_025_04221_9
crossref_primary_10_1080_02713683_2024_2424265
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1089/scd.2016.0349
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1557-8534
ExternalDocumentID 28186467
Genre Journal Article
Review
GroupedDBID ---
0R~
123
29Q
34G
39C
4.4
ABBKN
ABJNI
ACGFS
ADBBV
ADNWM
AENEX
ALMA_UNASSIGNED_HOLDINGS
BNQNF
CGR
CS3
CUY
CVF
DU5
ECM
EIF
EJD
F5P
IHR
IM4
MV1
NPM
NQHIM
O9-
RML
UE5
ID FETCH-LOGICAL-c442t-fc35f99ccf9ed625ada66a9703c142dcd5e1b3ccacd9c9a589cd6caf7c59cab82
IngestDate Thu Apr 03 07:03:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords microenvironment
mesenchymal stem cell
tissue engineering
paracrine signaling
exosomes
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c442t-fc35f99ccf9ed625ada66a9703c142dcd5e1b3ccacd9c9a589cd6caf7c59cab82
OpenAccessLink https://www.liebertpub.com/doi/pdf/10.1089/scd.2016.0349
PMID 28186467
ParticipantIDs pubmed_primary_28186467
PublicationCentury 2000
PublicationDate 2017-May-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-May-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Stem cells and development
PublicationTitleAlternate Stem Cells Dev
PublicationYear 2017
SSID ssj0026284
Score 2.6107836
SecondaryResourceType review_article
Snippet Cues from the extracellular environment, including physical stimuli, are well known to affect mesenchymal stem cell (MSC) properties in terms of proliferation...
SourceID pubmed
SourceType Index Database
StartPage 617
SubjectTerms Cell Differentiation
Cell Proliferation
Cellular Microenvironment
Extracellular Vesicles - metabolism
Humans
Mechanotransduction, Cellular
Mesenchymal Stem Cell Transplantation - methods
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - metabolism
Paracrine Communication
Tissue Engineering - methods
Title Effect of the Microenvironment on Mesenchymal Stem Cell Paracrine Signaling: Opportunities to Engineer the Therapeutic Effect
URI https://www.ncbi.nlm.nih.gov/pubmed/28186467
Volume 26
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELbSIiQuiJZHecoHbtGGPGwn5lZF0KpS4EAq9VbZY5v2kE2EtkKt1F_DH2XGdna3AUTbyyraTby7_r6Mx_bMN4y9R5vYx2FNFJMgXCG0cYUGKwqBiIQhbbzFKhGzL-rwWBydyJNO51craumisj24-mteyX1QxXOIK2XJ3gHZulE8gZ8RXzwiwni8FcZZejhv888otq6VuEb7ADNKLoKzywWJflR-0Z3GtToSaaa0v-638-_kiaek568rcsYvyiiySk7pWqwwNj9vMrW66cZtxzY2TrsASfPZNbFIzWYRdk10VQ_OS9NEGk_xxc78zzpktw4RSnWeM_41z37klaAjit8FkzMp8roFjoV1lGDPZ1srcYCUeS0zG-OUPp9Jp1uWVaUUzz8sfn-iY41KUn0dqB7J7bS_h723WkT4SfZKCTX-_9UNAe71pS22hVMRqq1KC0J5Tq9weM_SrfgkH248BwlN599uTFqi8zJ_wh7nWQffTxTaYR1f7rKHqQ7p5VN2nfDky8ARCr5JJL4seYtInLDmRCReE4nXRPrIb9CIV0u-plFsvEUjnm77jB1__jSfHha5LkcBQgyrIsBIBq0BgvYO58_GGaWMxrEDBmLowEk_sCOkBjgN2siJBqfAhDFIDcZOhs_Zdrks_R7jKljQyjtnsZvkSFtv0FQ4NRr3vZK2_5K9SP12ukriK6frHn31zyuv2aOGb2_Yg4D_dv8WXcfKvovg_QbRhXRE
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+the+Microenvironment+on+Mesenchymal+Stem+Cell+Paracrine+Signaling%3A+Opportunities+to+Engineer+the+Therapeutic+Effect&rft.jtitle=Stem+cells+and+development&rft.au=Kusuma%2C+Gina+D&rft.au=Carthew%2C+James&rft.au=Lim%2C+Rebecca&rft.au=Frith%2C+Jessica+E&rft.date=2017-05-01&rft.eissn=1557-8534&rft.volume=26&rft.issue=9&rft.spage=617&rft_id=info:doi/10.1089%2Fscd.2016.0349&rft_id=info%3Apmid%2F28186467&rft_id=info%3Apmid%2F28186467&rft.externalDocID=28186467