Toxic effects of antimony in plants: Reasons and remediation possibilities—A review and future prospects

Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and weathering of sulfide ores are the major ways of introducing Sb into our soils and aquatic environments. Crops grown on Sb-contaminated soils are a...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 13; p. 1011945
Main Authors Tang, Haiying, Meng, Guiyuan, Xiang, Junqing, Mahmood, Athar, Xiang, Guohong, SanaUllah, Liu, Ying, Huang, Guoqin
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 26.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and weathering of sulfide ores are the major ways of introducing Sb into our soils and aquatic environments. Crops grown on Sb-contaminated soils are a major reason of Sb entry into humans by eating Sb-contaminated foods. Sb toxicity in plants reduces seed germination and root and shoot growth, and causes substantial reduction in plant growth and final productions. Moreover, Sb also induces chlorosis, causes damage to the photosynthetic apparatus, reduces membrane stability and nutrient uptake, and increases oxidative stress by increasing reactive oxygen species, thereby reducing plant growth and development. The threats induced by Sb toxicity and Sb concentration in soils are increasing day by day, which would be a major risk to crop production and human health. Additionally, the lack of appropriate measures regarding the remediation of Sb-contaminated soils will further intensify the current situation. Therefore, future research must be aimed at devising appropriate measures to mitigate the hazardous impacts of Sb toxicity on plants, humans, and the environment and to prevent the entry of Sb into our ecosystem. We have also described the various strategies to remediate Sb-contaminated soils to prevent its entry into the human food chain. Additionally, we also identified the various research gaps that must be addressed in future research programs. We believe that this review will help readers to develop the appropriate measures to minimize the toxic effects of Sb and its entry into our ecosystem. This will ensure the proper food production on Sb-contaminated soils.
AbstractList Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and weathering of sulfide ores are the major ways of introducing Sb into our soils and aquatic environments. Crops grown on Sb-contaminated soils are a major reason of Sb entry into humans by eating Sb-contaminated foods. Sb toxicity in plants reduces seed germination and root and shoot growth, and causes substantial reduction in plant growth and final productions. Moreover, Sb also induces chlorosis, causes damage to the photosynthetic apparatus, reduces membrane stability and nutrient uptake, and increases oxidative stress by increasing reactive oxygen species, thereby reducing plant growth and development. The threats induced by Sb toxicity and Sb concentration in soils are increasing day by day, which would be a major risk to crop production and human health. Additionally, the lack of appropriate measures regarding the remediation of Sb-contaminated soils will further intensify the current situation. Therefore, future research must be aimed at devising appropriate measures to mitigate the hazardous impacts of Sb toxicity on plants, humans, and the environment and to prevent the entry of Sb into our ecosystem. We have also described the various strategies to remediate Sb-contaminated soils to prevent its entry into the human food chain. Additionally, we also identified the various research gaps that must be addressed in future research programs. We believe that this review will help readers to develop the appropriate measures to minimize the toxic effects of Sb and its entry into our ecosystem. This will ensure the proper food production on Sb-contaminated soils.Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and weathering of sulfide ores are the major ways of introducing Sb into our soils and aquatic environments. Crops grown on Sb-contaminated soils are a major reason of Sb entry into humans by eating Sb-contaminated foods. Sb toxicity in plants reduces seed germination and root and shoot growth, and causes substantial reduction in plant growth and final productions. Moreover, Sb also induces chlorosis, causes damage to the photosynthetic apparatus, reduces membrane stability and nutrient uptake, and increases oxidative stress by increasing reactive oxygen species, thereby reducing plant growth and development. The threats induced by Sb toxicity and Sb concentration in soils are increasing day by day, which would be a major risk to crop production and human health. Additionally, the lack of appropriate measures regarding the remediation of Sb-contaminated soils will further intensify the current situation. Therefore, future research must be aimed at devising appropriate measures to mitigate the hazardous impacts of Sb toxicity on plants, humans, and the environment and to prevent the entry of Sb into our ecosystem. We have also described the various strategies to remediate Sb-contaminated soils to prevent its entry into the human food chain. Additionally, we also identified the various research gaps that must be addressed in future research programs. We believe that this review will help readers to develop the appropriate measures to minimize the toxic effects of Sb and its entry into our ecosystem. This will ensure the proper food production on Sb-contaminated soils.
Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and weathering of sulfide ores are the major ways of introducing Sb into our soils and aquatic environments. Crops grown on Sb-contaminated soils are a major reason of Sb entry into humans by eating Sb-contaminated foods. Sb toxicity in plants reduces seed germination and root and shoot growth, and causes substantial reduction in plant growth and final productions. Moreover, Sb also induces chlorosis, causes damage to the photosynthetic apparatus, reduces membrane stability and nutrient uptake, and increases oxidative stress by increasing reactive oxygen species, thereby reducing plant growth and development. The threats induced by Sb toxicity and Sb concentration in soils are increasing day by day, which would be a major risk to crop production and human health. Additionally, the lack of appropriate measures regarding the remediation of Sb-contaminated soils will further intensify the current situation. Therefore, future research must be aimed at devising appropriate measures to mitigate the hazardous impacts of Sb toxicity on plants, humans, and the environment and to prevent the entry of Sb into our ecosystem. We have also described the various strategies to remediate Sb-contaminated soils to prevent its entry into the human food chain. Additionally, we also identified the various research gaps that must be addressed in future research programs. We believe that this review will help readers to develop the appropriate measures to minimize the toxic effects of Sb and its entry into our ecosystem. This will ensure the proper food production on Sb-contaminated soils.
Author Mahmood, Athar
Tang, Haiying
Liu, Ying
Meng, Guiyuan
Xiang, Guohong
Huang, Guoqin
Xiang, Junqing
SanaUllah
AuthorAffiliation 3 Department of Agronomy, University of Agriculture Faisalabad , Faisalabad , Pakistan
1 College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology , Loudi , China
4 Agronomic Research Station Karor , Layyah , Pakistan
6 Research Center on Ecological Sciences, Jiangxi Agricultural University , Nanchang , China
5 Key Laboratory of Crop Physiology, Ecology and Genetics Breeding (Jiangxi Agricultural University), Ministry of Education , Nanchang , China
2 Loudi Liancheng Hi-Tech Agricultural Development Co. LTD , Loudi , China
AuthorAffiliation_xml – name: 3 Department of Agronomy, University of Agriculture Faisalabad , Faisalabad , Pakistan
– name: 5 Key Laboratory of Crop Physiology, Ecology and Genetics Breeding (Jiangxi Agricultural University), Ministry of Education , Nanchang , China
– name: 4 Agronomic Research Station Karor , Layyah , Pakistan
– name: 1 College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology , Loudi , China
– name: 2 Loudi Liancheng Hi-Tech Agricultural Development Co. LTD , Loudi , China
– name: 6 Research Center on Ecological Sciences, Jiangxi Agricultural University , Nanchang , China
Author_xml – sequence: 1
  givenname: Haiying
  surname: Tang
  fullname: Tang, Haiying
– sequence: 2
  givenname: Guiyuan
  surname: Meng
  fullname: Meng, Guiyuan
– sequence: 3
  givenname: Junqing
  surname: Xiang
  fullname: Xiang, Junqing
– sequence: 4
  givenname: Athar
  surname: Mahmood
  fullname: Mahmood, Athar
– sequence: 5
  givenname: Guohong
  surname: Xiang
  fullname: Xiang, Guohong
– sequence: 6
  surname: SanaUllah
  fullname: SanaUllah
– sequence: 7
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
– sequence: 8
  givenname: Guoqin
  surname: Huang
  fullname: Huang, Guoqin
BookMark eNp1kc1u1DAUhSNUJErpA7DLks0MtnNjJyyQqopCpUpIqJW6s_xzXTzKxMF2Ct31IXhCngRnZpAoEt7459zz2b7nZXU0hhGr6jUl66bp-rduGtKaEcbWlFDaQ_usOqacwwo4uz36a_2iOk1pQ8poCel7cVxtrsMPb2p0Dk1OdXC1GrPfhvGh9mM9DWWX3tVfUKUwpqLZOuIWrVfZh6KHlLz2g88e06_Hn2dFvff4fVfo5jxHrKcY0rTAX1XPnRoSnh7mk-rm4sP1-afV1eePl-dnVysDwPLKaW3QguEtZ4QoC0hQQ2sNA9cKi5TTDokC0KAN17oz1HVdZxonFOfENifV5Z5rg9rIKfqtig8yKC93ByHeSRWzNwNKQ5reNqCEcQBUC8V0S4xpGO1AsY4X1vs9a5p1-bbBMUc1PIE-VUb_Vd6Fe9lzaAT0BfDmAIjh24wpy61PBofSWAxzkkyUMt4Ksdwl9qWmdCxFdNL4vOtzIftBUiKXtOWStlzSloe0i5P-4_zzwP97fgNMBLTk
CitedBy_id crossref_primary_10_1016_j_ecoenv_2023_115583
crossref_primary_10_1016_j_chemosphere_2024_142694
crossref_primary_10_1016_j_scitotenv_2024_172253
crossref_primary_10_1016_j_ecoenv_2025_117852
crossref_primary_10_1016_j_envres_2024_118645
crossref_primary_10_1016_j_freeradbiomed_2023_09_002
crossref_primary_10_1007_s00344_025_11676_w
crossref_primary_10_3389_feart_2024_1304497
crossref_primary_10_1016_j_envpol_2024_125259
crossref_primary_10_4236_jep_2024_155031
crossref_primary_10_1039_D3AY01185B
crossref_primary_10_17660_ActaHortic_2025_1418_11
crossref_primary_10_1016_j_scitotenv_2023_168815
crossref_primary_10_3390_agronomy14091887
crossref_primary_10_1016_j_jenvman_2025_124100
crossref_primary_10_1016_j_envpol_2023_122637
crossref_primary_10_1007_s10653_023_01787_2
crossref_primary_10_1016_j_heliyon_2024_e28050
crossref_primary_10_3390_agronomy14102387
Cites_doi 10.1016/j.envpol.2012.10.024
10.1016/j.envpol.2019.113670
10.1016/j.envint.2020.105754
10.1016/j.scitotenv.2021.149904
10.1515/aeuc-2016-0006
10.1007/s13762-016-1181-2
10.1088/1757-899X/123/1/012028
10.1016/j.jhazmat.2015.02.011
10.1007/s11356-017-8647-8
10.1016/j.ijhydene.2017.08.056
10.1007/s11368-020-02577-4
10.1016/j.scitotenv.2020.138158
10.1016/j.envpol.2015.11.033
10.1016/j.microc.2010.06.003
10.1016/j.scitotenv.2021.145354
10.1007/s11104-012-1399-9
10.1016/j.gexplo.2019.106348
10.1016/j.scitotenv.2011.06.009
10.1016/j.jhazmat.2018.07.112
10.1016/j.envpol.2003.10.014
10.3389/fpls.2018.00579
10.1007/s11270-010-0496-8
10.1007/s11104-010-0378-2
10.1016/j.dib.2020.105959
10.1016/j.scitotenv.2007.09.007
10.1007/s11356-015-5069-3
10.1016/B978-0-12-817030-4.00005-X
10.5696/2156-9614-7-13.32
10.1016/j.jes.2018.05.023
10.1016/j.heliyon.2020.e04669
10.1016/j.chemosphere.2019.125042
10.1016/j.ecoenv.2020.110599
10.1016/S0048-9697(99)00370-8
10.1016/S0269-7491(99)00240-7
10.1016/j.scitotenv.2019.134589
10.1080/01490451.2014.901440
10.1007/s10811-009-9482-1
10.1016/S0012-8252(02)00089-2
10.1016/S0269-7491(99)00262-6
10.1016/j.envpol.2015.04.019
10.1016/j.apgeochem.2019.104378
10.1016/j.chemosphere.2018.09.089
10.1080/02757540.2012.656609
10.1016/j.chemer.2012.01.006
10.1016/B978-0-12-819481-2.00013-1
10.1155/2015/909724
10.1007/s00344-020-10192-3
10.1016/j.scitotenv.2019.03.145
10.1007/s11270-006-9127-9
10.1016/j.cej.2014.09.021
10.1021/acs.est.8b02035
10.1016/j.scitotenv.2017.01.149
10.1007/s11356-016-6461-3
10.1016/j.envpol.2017.08.105
10.1007/s10661-019-7214-9
10.1016/S1002-0160(14)60082-5
10.15666/aeer/1803_39513964
10.1016/j.electacta.2015.01.025
10.1016/j.chemosphere.2019.124353
10.1007/s11356-011-0589-y
10.1016/j.scitotenv.2015.04.039
10.1016/j.scitotenv.2017.07.268
10.1016/j.scitotenv.2011.05.033
10.1590/2179-8087.039918
10.1016/j.microc.2010.05.010
10.1016/j.envpol.2015.03.004
10.1016/j.apgeochem.2011.12.005
10.15835/nbha49112149
10.1016/j.jhazmat.2016.01.005
10.3923/jas.2006.2705.2714
10.1002/9781119487210.ch14
10.1016/j.chemosphere.2017.03.074
10.1016/j.scitotenv.2015.11.095
10.1016/j.chemosphere.2013.09.077
10.1007/s11356-017-0598-6
10.1371/journal.pone.0183991
10.1016/j.plaphy.2019.05.011
10.1016/j.jhazmat.2013.01.033
10.3389/fpls.2013.00138
10.1016/j.envexpbot.2013.08.006
10.15666/aeer/1803_40054023
10.1016/j.plantsci.2008.10.008
10.1016/S1003-6326(17)60106-7
10.1016/j.microc.2010.05.016
10.1007/s11104-016-3064-1
10.1007/s12011-014-9917-7
10.1016/j.jhazmat.2022.129433
10.1016/j.envint.2020.106233
10.1007/s00203-003-0600-1
10.1038/s41598-021-89865-2
10.1016/j.gexplo.2014.07.002
10.4161/psb.21949
10.1071/EN08111
10.1093/pcp/pcp130
10.1016/j.chemosphere.2013.07.082
10.11159/ijepr.2018.003
10.1016/j.scitotenv.2019.133693
10.1016/S1001-0742(13)60418-0
10.1016/j.envint.2021.106908
10.1016/j.chemosphere.2021.130252
10.1016/j.scitotenv.2013.12.103
10.5402/2011/402647
10.1016/j.marpolbul.2018.10.049
10.1016/j.envpol.2006.04.004
10.1016/j.envpol.2017.12.019
10.1007/s11368-020-02742-9
10.1016/j.plaphy.2006.06.003
10.1007/s10653-006-9066-9
10.1007/s10653-020-00652-w
10.1016/j.scitotenv.2020.144643
10.1016/j.envpol.2021.116789
10.1016/B978-0-12-820318-7.00017-4
10.1016/j.envint.2019.105046
10.1007/978-3-7643-8340-4_6
10.1016/j.geoderma.2009.12.027
10.1007/s11356-015-5987-0
10.1016/j.ecoenv.2020.110683
10.1023/A:1012404204910
10.1007/s11356-019-04540-4
10.1016/j.scitotenv.2014.07.117
10.1016/j.chemosphere.2020.127795
10.1016/j.gexplo.2011.06.006
10.1007/s11033-018-4430-2
10.3390/agriculture10090396
10.1007/s11120-016-0236-z
10.1016/j.envpol.2020.115905
10.1016/j.envpol.2017.01.057
10.1080/15275922.2021.1907816
10.1016/B978-0-12-820318-7.00012-5
10.2116/analsci.21.769
10.1016/j.jes.2020.07.009
10.4103/0019-5278.50716
10.1007/s11270-020-04521-1
10.1016/j.gexplo.2020.106663
10.1080/10934520701435585
10.1007/s11356-013-2297-2
10.1105/tpc.105.033589
10.15666/aeer/1806_74837498
10.1016/j.watres.2009.06.033
10.1007/s10722-020-01103-2
10.1016/j.jenvman.2019.109806
10.1016/j.plaphy.2014.08.014
10.1039/D0DT00024H
10.1016/j.envexpbot.2012.05.005
10.1016/j.chemosphere.2017.03.142
ContentType Journal Article
Copyright Copyright © 2022 Tang, Meng, Xiang, Mahmood, Xiang, SanaUllah, Liu and Huang.
Copyright © 2022 Tang, Meng, Xiang, Mahmood, Xiang, SanaUllah, Liu and Huang 2022 Tang, Meng, Xiang, Mahmood, Xiang, SanaUllah, Liu and Huang
Copyright_xml – notice: Copyright © 2022 Tang, Meng, Xiang, Mahmood, Xiang, SanaUllah, Liu and Huang.
– notice: Copyright © 2022 Tang, Meng, Xiang, Mahmood, Xiang, SanaUllah, Liu and Huang 2022 Tang, Meng, Xiang, Mahmood, Xiang, SanaUllah, Liu and Huang
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fpls.2022.1011945
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_c039d34a7cf441b7a2b50cc32184a286
PMC9643749
10_3389_fpls_2022_1011945
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c442t-fbbced4c656200ad4e0eb45dc24f57de1618e0a44b4bc6bb8c1f888c3f7a660d3
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:31:14 EDT 2025
Thu Aug 21 18:39:16 EDT 2025
Thu Jul 10 23:00:23 EDT 2025
Tue Jul 01 00:54:09 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-fbbced4c656200ad4e0eb45dc24f57de1618e0a44b4bc6bb8c1f888c3f7a660d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Awais Shakoor, Teagasc Environment Research Centre, Ireland; Xintong Xu, Nanjing Agricultural University, China
Edited by: Anis Ali Shah, University of Education Lahore, Pakistan
This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2022.1011945
PQID 2737465776
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c039d34a7cf441b7a2b50cc32184a286
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9643749
proquest_miscellaneous_2737465776
crossref_citationtrail_10_3389_fpls_2022_1011945
crossref_primary_10_3389_fpls_2022_1011945
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-26
PublicationDateYYYYMMDD 2022-10-26
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-26
  day: 26
PublicationDecade 2020
PublicationTitle Frontiers in plant science
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References He (B59) 1999; 243
Wilson (B137) 2013; 261
Rasheed (B105) 2020; 18
Etim (B32) 2017; 7
Nishad (B91) 2017; 14
Araghi (B5) 2014
Baroni (B7) 2000; 109
Macgregor (B80) 2015; 529
Vikent'eva (B132) 2016; 123
Wu (B140) 2019; 141
Turner (B128) 2017; 584
Zeng (B147) 2015; 2015
Pascaud (B97) 2014; 21
Qiang (B101) 2017; 31
Lai (B73) 2018; 52
Mbadugha (B84) 2020; 42
He (B57) 2012
Xing (B141) 2020; 198
Maresca (B82) 2020
Thestorf (B125) 2021; 21
Bolan (B11) 2022; 158
Intrakamhaeng (B64) 2020; 241
Jamali (B65) 2017; 412
Herath (B55) 2017; 223
Rinklebe (B112) 2020; 140
Roccotiello (B113) 2016; 23
Xue (B144) 2015; 201
Zhuang (B152) 2018; 137
Zhang (B149) 2010; 22
Feng (B35) 2013; 96
He (B58) 2019; 236
Dahmani-Muller (B28) 2000; 109
Zhou (B151) 2018; 9
He (B56) 2019; 75
Cooper (B23) 2009; 13
Serfor-Armah (B116) 2006; 175
Miao (B85) 2014; 26
Chirakkara (B19) 2015; 181
Silvani (B120) 2019; 694
Nishad (B90) 2021; 277
Antoniadis (B4) 2021; 146
Romanowska (B114) 2006; 44
Qi (B104) 2011; 97
Sánchez (B115) 2020; 255
Shahid (B118) 2017; 178
Müller (B86) 2013; 174
Zhu (B153) 2020; 231
Bagherifam (B6) 2019; 205
Hiller (B60) 2012; 27
Sun (B121) 2020
Murciego (B87) 2007; 145
Ahmad (B1) 2014; 95
Fort (B41) 2016; 544
Benhamdi (B10) 2014; 158
Bora (B12) 2020; 197
Feng (B38) 2011; 97
Qiao (B102) 2018; 25
Wang (B133) 2018; 610
Gunarathne (B49) 2020
Lan (B74) 2009; 32
Ortega (B93) 2017; 12
Campos (B14) 2019; 26
Long (B77) 2020; 258
Vaculík (B130) 2015; 22
Daszkowska-Golec (B29) 2013; 4
Ma (B81) 2019; 669
Rasheed (B107) 2020; 18
Ren (B111) 2014; 475
Vaculíková (B131) 2014; 83
Zhang (B148) 2021; 100
Tchounwou (B124) 2012; 101
Corrales (B24) 2014; 147
Rasheed (B109) 2021; 68
Remans (B110) 2012; 84
Tschan (B127) 2009; 6
Pan (B95) 2011; 215
Choi (B20) 2017; 42
Cidu (B22) 2014; 497
(B135) 2003
Cen (B16) 2007; 14
Ghassemzadeh (B45) 2006; 6
Girolkar (B46) 2021
Filella (B39) 2002; 59
Geng (B44) 2020; 20
Zand (B145) 2020; 31
Hayat (B53) 2012; 7
Pierart (B99) 2015; 289
Luo (B78) 2021; 40
Mariussen (B83) 2017; 24
(B89) 2011
Baruah (B8) 2021; 11
Chai (B17) 2016; 23
Nguyen (B88) 2014; 31
Cui (B27) 2015; 204
Karacan (B71) 2016; 130
Feng (B34) 2020; 711
Huang (B61) 2012; 28
Prabha (B100) 2021
Filella (B40) 2012; 72
Grundon (B48) 2006
Zand (B146) 2020; 6
Cappuyns (B15) 2021; 220
Gal (B43) 2007; 42
Coughlin (B25) 2020; 49
Bech (B9) 2012; 113
Jia (B68) 2020; 724
Feng (B36) 2013; 365
Peško (B98) 2016; 24
Shahid (B117) 2018; 234
Feng (B37) 2011; 97
Tschan (B126) 2010; 334
Guo (B50) 2009; 43
Qi (B103) 2008; 389
Shtangeeva (B119) 2012; 19
Foyer (B42) 2005; 17
Wilson (B136) 2004; 129
Hua (B62) 2021; 263
Lewińska (B75) 2019; 191
Paoli (B96) 2013; 93
Couto (B26) 2015; 262
Ameen (B3) 2019; 26
Rasheed (B106) 2020; 18
Hasssan (B52) 2020; 10
Chu (B21) 2021; 771
Okkenhaug (B92) 2016; 307
Duquesnoy (B31) 2009; 176
Wuana (B138) 2011; 2011
Wu (B139) 2011; 409
Ji (B67) 2017; 231
Warnken (B134) 2017; 180
Xi (B142) 2022; 804
Rasheed (B108) 2021; 49
Takaoka (B122) 2005; 21
(B129) 1992
Almås (B2) 2019; 108
He (B54) 2007; 29
Zhao (B150) 2001; 39
Tan (B123) 2018; 213
Xi-Yuan (B143) 2015; 25
Zhu (B154) 2022; 437
Diquattro (B30) 2021; 770
Kamiya (B70) 2009; 50
Lu (B79) 2018; 359
Ettler (B33) 2010; 155
Hartmann (B51) 2003; 180
Jo (B69) 2018; 6
Cai (B13) 2016; 209
Jeyasundar (B66) 2021; 277
Liang (B76) 2018; 45
Gowayed (B47) 2013; 7
Palansooriya (B94) 2020; 134
Chai (B18) 2017; 27
Hu (B63) 2021; 269
Kurt (B72) 2021; 23
References_xml – volume: 174
  start-page: 128
  year: 2013
  ident: B86
  article-title: Impact of arsenic on uptake and bio-accumulation of antimony by arsenic hyperaccumulator pteris vittata
  publication-title: Environ. pollut.
  doi: 10.1016/j.envpol.2012.10.024
– volume: 258
  start-page: 113670
  year: 2020
  ident: B77
  article-title: The effect of an antimony resistant bacterium on the iron plaque fraction and antimony uptake by rice seedlings
  publication-title: Environ. pollut.
  doi: 10.1016/j.envpol.2019.113670
– volume: 140
  start-page: 105754
  year: 2020
  ident: B112
  article-title: Redox-induced mobilization of Ag, Sb, Sn, and tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105754
– volume: 804
  start-page: 149904
  year: 2022
  ident: B142
  article-title: Effects of arbuscular mycorrhizal fungi on frond antimony enrichment, morphology, and proteomics in pteris cretica var. nervosa during antimony phytoremediation
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2021.149904
– volume: 24
  start-page: 42
  year: 2016
  ident: B98
  article-title: Response of tomato plants () to stress induced by Sb (III)
  publication-title: Acta Environmentalica. Universitatis. Comenianae.
  doi: 10.1515/aeuc-2016-0006
– volume: 14
  start-page: 777
  year: 2017
  ident: B91
  article-title: Towards finding an efficient sorbent for antimony: comparative investigations on antimony removal properties of potential antimony sorbents
  publication-title: Int. J. Environ. Sci. Technol.
  doi: 10.1007/s13762-016-1181-2
– volume: 123
  start-page: 012028
  year: 2016
  ident: B132
  article-title: Occurrence modes of as, Sb, Te, bi, Ag in sulfide assemblages of gold deposits of the urals
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
  doi: 10.1088/1757-899X/123/1/012028
– volume: 289
  start-page: 219
  year: 2015
  ident: B99
  article-title: Antimony bioavailability: knowledge and research perspectives for sustainable agricultures
  publication-title: J. hazardous. Materials.
  doi: 10.1016/j.jhazmat.2015.02.011
– volume: 24
  start-page: 10182
  year: 2017
  ident: B83
  article-title: Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires
  publication-title: Environ. Sci. pollut. Res.
  doi: 10.1007/s11356-017-8647-8
– volume: 42
  start-page: 27832
  year: 2017
  ident: B20
  article-title: Microbial oxidation of antimonite and arsenite by bacteria isolated from antimony-contaminated soils
  publication-title: Int. J. Hydrogen. Energy
  doi: 10.1016/j.ijhydene.2017.08.056
– volume: 20
  start-page: 2217
  year: 2020
  ident: B44
  article-title: Effects of antimony contamination in soil on the nutrient composition of three green leafy vegetables
  publication-title: J. Soils. Sediments.
  doi: 10.1007/s11368-020-02577-4
– volume: 724
  start-page: 138158
  year: 2020
  ident: B68
  article-title: The antimony sorption and transport mechanisms in removal experiment by Mn-coated biochar
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2020.138158
– volume: 209
  start-page: 169
  year: 2016
  ident: B13
  article-title: Uptake, translocation and transformation of antimony in rice (Oryza sativa l.) seedlings
  publication-title: Environ. pollut.
  doi: 10.1016/j.envpol.2015.11.033
– volume: 97
  start-page: 57
  year: 2011
  ident: B37
  article-title: Detoxification of antimony by selenium and their interaction in paddy rice under hydroponic conditions
  publication-title: Microchemical. J.
  doi: 10.1016/j.microc.2010.06.003
– volume: 770
  start-page: 145354
  year: 2021
  ident: B30
  article-title: Insights into the fate of antimony (Sb) in contaminated soils: Ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2021.145354
– volume: 365
  start-page: 375
  year: 2013
  ident: B36
  article-title: Interactive effects of selenium and antimony on the uptake of selenium, antimony and essential elements in paddy-rice
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1399-9
– volume: 205
  start-page: 106348
  year: 2019
  ident: B6
  article-title: Derivation methods of soils, water and sediments toxicity guidelines: a brief review with a focus on antimony
  publication-title: J. Geochemical. Explor.
  doi: 10.1016/j.gexplo.2019.106348
– year: 2012
  ident: B57
  article-title: Antimony pollution in China
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2011.06.009
– volume: 359
  start-page: 527
  year: 2018
  ident: B79
  article-title: Characterization of the antimonite-and arsenite-oxidizing bacterium bosea sp. AS-1 and its potential application in arsenic removal
  publication-title: J. Hazardous. Materials.
  doi: 10.1016/j.jhazmat.2018.07.112
– volume: 129
  start-page: 257
  year: 2004
  ident: B136
  article-title: Antimony distribution and environmental mobility at an historic antimony smelter site, new Zealand
  publication-title: Environ. pollut.
  doi: 10.1016/j.envpol.2003.10.014
– volume: 9
  year: 2018
  ident: B151
  article-title: Effects of antimony stress on photosynthesis and growth of acorus calamus
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00579
– volume: 215
  start-page: 517
  year: 2011
  ident: B95
  article-title: Antimony accumulation, growth performance, antioxidant defense system and photosynthesis of zea mays in response to antimony pollution in soil
  publication-title: Water. Air. Soil pollut.
  doi: 10.1007/s11270-010-0496-8
– volume: 334
  start-page: 235
  year: 2010
  ident: B126
  article-title: Antimony uptake and toxicity in sunflower and maize growing in SbIII and SbV contaminated soil
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0378-2
– volume: 31
  start-page: 105959
  year: 2020
  ident: B145
  article-title: Phytoremediation: Data on effects of titanium dioxide nanoparticles on phytoremediation of antimony polluted soil
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.105959
– volume: 389
  start-page: 225
  year: 2008
  ident: B103
  article-title: Environmental geochemistry of antimony in Chinese coals
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2007.09.007
– volume: 22
  start-page: 18699
  year: 2015
  ident: B130
  article-title: Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus l.)
  publication-title: Environ. Sci. pollut. Res.
  doi: 10.1007/s11356-015-5069-3
– volume: 14
  start-page: 106
  year: 2007
  ident: B16
  article-title: Investigation on correlation between chronic antimony poisoning and liver fibrosis
  publication-title: Labeled. Immunoass. Clin. Med.
– start-page: 141
  volume-title: Handbook of electronic waste management
  year: 2020
  ident: B49
  article-title: Phytoremediation for e-waste contaminated sites
  doi: 10.1016/B978-0-12-817030-4.00005-X
– volume: 7
  start-page: 32
  year: 2017
  ident: B32
  article-title: Occurrence and distribution of arsenic, antimony and selenium in shallow groundwater systems of ibadan metropolis, southwestern Nigerian
  publication-title: J. Health pollut.
  doi: 10.5696/2156-9614-7-13.32
– volume: 75
  start-page: 14
  year: 2019
  ident: B56
  article-title: Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2018.05.023
– volume: 6
  start-page: e04669
  year: 2020
  ident: B146
  article-title: Co-Application of biochar and titanium dioxide nanoparticles to promote remediation of antimony from soil by sorghum bicolor: Metal uptake and plant response
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2020.e04669
– volume: 241
  start-page: 125042
  year: 2020
  ident: B64
  article-title: Antimony mobility from e-waste plastic in simulated municipal solid waste landfills
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125042
– volume: 197
  start-page: 110599
  year: 2020
  ident: B12
  article-title: Tolerance mechanism of cadmium in ceratopteris pteridoides: Translocation and subcellular distribution
  publication-title: Ecotoxicology. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110599
– volume: 243
  start-page: 149
  year: 1999
  ident: B59
  article-title: Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue
  publication-title: Sci. Total. Environ.
  doi: 10.1016/S0048-9697(99)00370-8
– volume: 109
  start-page: 347
  year: 2000
  ident: B7
  article-title: Antimony accumulation in achillea ageratum, plantago lanceolata and silene vulgaris growing in an old Sb-mining area
  publication-title: Environ. pollut.
  doi: 10.1016/S0269-7491(99)00240-7
– volume: 711
  start-page: 134589
  year: 2020
  ident: B34
  article-title: Toxicity of different forms of antimony to rice plant: Effects on root exudates, cell wall components, endogenous hormones and antioxidant system
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2019.134589
– volume: 31
  start-page: 855
  year: 2014
  ident: B88
  article-title: Isolation and characterization of antimony-reducing bacteria from sediments collected in the vicinity of an antimony factory
  publication-title: Geomicrobiology. J.
  doi: 10.1080/01490451.2014.901440
– volume: 22
  start-page: 479
  year: 2010
  ident: B149
  article-title: Toxic effects of antimony on photosystem II of synechocystis sp. as probed by in vivo chlorophyll fluorescence
  publication-title: J. Appl. Phycology.
  doi: 10.1007/s10811-009-9482-1
– volume: 59
  start-page: 265
  year: 2002
  ident: B39
  article-title: Antimony in the environment: a review focused on natural waters: II. Relevant solution chemistry
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/S0012-8252(02)00089-2
– volume: 109
  start-page: 231
  year: 2000
  ident: B28
  article-title: Strategies of heavy metal uptake by three plant species growing near a metal smelter
  publication-title: Environ. pollut.
  doi: 10.1016/S0269-7491(99)00262-6
– volume: 204
  start-page: 133
  year: 2015
  ident: B27
  article-title: Effect of iron plaque on antimony uptake by rice (Oryza sativa l.)
  publication-title: Environ. pollut.
  doi: 10.1016/j.envpol.2015.04.019
– volume: 108
  start-page: 104378
  year: 2019
  ident: B2
  article-title: The partitioning of Sb in contaminated soils after being immobilization by fe-based amendments is more dynamic compared to Pb
  publication-title: Appl. Geochemistry.
  doi: 10.1016/j.apgeochem.2019.104378
– volume: 213
  start-page: 533
  year: 2018
  ident: B123
  article-title: Fraction and mobility of antimony and arsenic in three polluted soils: a comparison of single extraction and sequential extraction
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.09.089
– start-page: 1144
  year: 2006
  ident: B48
  article-title: Nutrient deficiency and toxicity symptoms
  publication-title: Encyclopedia. Soil Sci.
– volume: 28
  start-page: 341
  year: 2012
  ident: B61
  article-title: Silicon enhances resistance to antimony toxicity in the low-silica rice mutant, lsi1
  publication-title: Chem. Ecol.
  doi: 10.1080/02757540.2012.656609
– volume: 72
  start-page: 49
  year: 2012
  ident: B40
  article-title: Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of binding data for homologous compounds
  publication-title: Geochemistry
  doi: 10.1016/j.chemer.2012.01.006
– volume: 31
  year: 2017
  ident: B101
  article-title: Effects of antimony stress on the biomass, photosynthetic characteristics and antimony accumulation of maize
  publication-title: J. Nucl. Agric. Sci.
– start-page: 261
  year: 2020
  ident: B121
  article-title: Biotechnology for soil decontamination: opportunity, challenges, and prospects for pesticide biodegradation
  publication-title: Bio-based. materials. biotechnologies. eco-efficient. construction.
  doi: 10.1016/B978-0-12-819481-2.00013-1
– volume: 2015
  year: 2015
  ident: B147
  article-title: Bioaccumulation of antimony and arsenic in vegetables and health risk assessment in the superlarge antimony-mining area, China
  publication-title: J. analytical Methods Chem.
  doi: 10.1155/2015/909724
– volume: 40
  start-page: 1327
  year: 2021
  ident: B78
  article-title: Exogenous salicylic acid alleviates the antimony (Sb) toxicity in rice (Oryza sativa l.) seedlings
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-020-10192-3
– volume: 669
  start-page: 421
  year: 2019
  ident: B81
  article-title: Uptake, translocation and phytotoxicity of antimonite in wheat (Triticum aestivum)
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2019.03.145
– volume: 175
  start-page: 181
  year: 2006
  ident: B116
  article-title: Levels of arsenic and antimony in water and sediment from prestea, a gold mining town in Ghana and its environs
  publication-title: Water. Air. Soil pollut.
  doi: 10.1007/s11270-006-9127-9
– volume: 262
  start-page: 563
  year: 2015
  ident: B26
  article-title: Integrated perspectives of a greenhouse study to upgrade an antimony and arsenic mine soil–potential of enhanced phytotechnologies
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.09.021
– volume: 52
  start-page: 8693
  year: 2018
  ident: B73
  article-title: Bioreduction of antimonate by anaerobic methane oxidation in a membrane biofilm batch reactor
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02035
– volume: 584
  start-page: 982
  year: 2017
  ident: B128
  article-title: Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products
  publication-title: Sci. total Environ.
  doi: 10.1016/j.scitotenv.2017.01.149
– volume: 23
  start-page: 12414
  year: 2016
  ident: B113
  article-title: The impact of Ni on the physiology of a Mediterranean Ni-hyperaccumulating plant
  publication-title: Environ. Sci. pollut. Res.
  doi: 10.1007/s11356-016-6461-3
– volume: 231
  start-page: 1322
  year: 2017
  ident: B67
  article-title: Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.08.105
– volume: 191
  start-page: 1
  year: 2019
  ident: B75
  article-title: Antimony in soils of SW Poland–an overview of potentially enriched sites
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-019-7214-9
– volume: 25
  start-page: 124
  year: 2015
  ident: B143
  article-title: Effect of antimony on physiological responses of green Chinese cabbage and enzyme activities of allitic udic ferrisols
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(14)60082-5
– volume: 18
  start-page: 1
  year: 2020
  ident: B107
  article-title: A REview on aluminum toxicity and quantitative trait loci mapping in rice (Oryza sativa l)
  publication-title: Appl. Ecologyand. Environ. Res.
  doi: 10.15666/aeer/1803_39513964
– volume: 181
  start-page: 179
  year: 2015
  ident: B19
  article-title: Electrokinetic amendment in phytoremediation of mixed contaminated soil
  publication-title: Electrochimica. Acta
  doi: 10.1016/j.electacta.2015.01.025
– volume: 236
  start-page: 124353
  year: 2019
  ident: B58
  article-title: Metal oxyanion removal from wastewater using manganese-oxidizing aerobic granular sludge
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124353
– volume: 19
  start-page: 502
  year: 2012
  ident: B119
  article-title: Uptake of different forms of antimony by wheat and rye seedlings
  publication-title: Environ. Sci. pollut. Res.
  doi: 10.1007/s11356-011-0589-y
– volume: 529
  start-page: 213
  year: 2015
  ident: B80
  article-title: Mobility of antimony, arsenic and lead at a former antimony mine, glendinning, Scotland
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2015.04.039
– volume: 7
  start-page: 548
  year: 2013
  ident: B47
  article-title: Effect of copper and cadmium on germination and anatomical structure of leaf and root seedling in maize (Zea mays l)
  publication-title: Aust. J. Basic. Appl. Sci.
– volume: 610
  start-page: 167
  year: 2018
  ident: B133
  article-title: Calculation and application of Sb toxicity coefficient for potential ecological risk assessment
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2017.07.268
– volume: 409
  start-page: 3344
  year: 2011
  ident: B139
  article-title: Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2011.05.033
– volume: 26
  start-page: 1
  year: 2019
  ident: B14
  article-title: Leaching of heavy metals in soils conditioned with biosolids from sewage sludge
  publication-title: Floresta. e Ambiente.
  doi: 10.1590/2179-8087.039918
– volume: 97
  start-page: 38
  year: 2011
  ident: B38
  article-title: Simultaneous hyperaccumulation of arsenic and antimony in Cretan brake fern: evidence of plant uptake and subcellular distributions
  publication-title: Microchemical. J.
  doi: 10.1016/j.microc.2010.05.010
– volume: 201
  start-page: 150
  year: 2015
  ident: B144
  article-title: Comparative proteomic analysis in miscanthus sinensis exposed to antimony stress
  publication-title: Environ. pollut.
  doi: 10.1016/j.envpol.2015.03.004
– volume: 27
  start-page: 598
  year: 2012
  ident: B60
  article-title: Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western carpathians, Slovakia
  publication-title: Appl. Geochemistry.
  doi: 10.1016/j.apgeochem.2011.12.005
– volume: 49
  start-page: 12158
  year: 2021
  ident: B108
  article-title: QTL underlying iron toxicity tolerance at seedling stage in backcross recombinant inbred lines (BRILs) population of rice using high density genetic map
  publication-title: NOTULAE. BOTANICAE. HORTI. AGROBOTANICI. CLUJ-NAPOCA.
  doi: 10.15835/nbha49112149
– volume: 307
  start-page: 336
  year: 2016
  ident: B92
  article-title: Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study
  publication-title: J. Hazardous. Materials.
  doi: 10.1016/j.jhazmat.2016.01.005
– volume: 6
  start-page: 2705
  year: 2006
  ident: B45
  article-title: Arsenic and antimony in drinking water in kohsorkh area, northeast Iran possible rosks for the public health
  publication-title: J. Appl. Sci
  doi: 10.3923/jas.2006.2705.2714
– start-page: 275
  year: 2020
  ident: B82
  article-title: Antimony and plants: Accumulation, toxic effects, and plants’ defense systems
  publication-title: Metalloids. Adv. Future Prospects.
  doi: 10.1002/9781119487210.ch14
– volume: 178
  start-page: 513
  year: 2017
  ident: B118
  article-title: Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.03.074
– volume: 544
  start-page: 391
  year: 2016
  ident: B41
  article-title: Evaluation of atmospheric inputs as possible sources of antimony in pregnant women from urban areas
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2015.11.095
– volume: 95
  start-page: 433
  year: 2014
  ident: B1
  article-title: Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.09.077
– volume: 25
  start-page: 1388
  year: 2018
  ident: B102
  article-title: Effects of storage temperature and time of antimony release from PET bottles into drinking water in China
  publication-title: Environ. Sci. pollut. Res.
  doi: 10.1007/s11356-017-0598-6
– volume: 12
  start-page: e0183991
  year: 2017
  ident: B93
  article-title: Effects of antimony on redox activities and antioxidant defence systems in sunflower (Helianthus annuus l.) plants
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0183991
– volume-title: Toxicological profile of antimony and compounds agency for toxic substances and disease registry U.S. public health service
  year: 1992
  ident: B129
– volume: 141
  start-page: 51
  year: 2019
  ident: B140
  article-title: The potential role of brassinosteroids (BRs) in alleviating antimony (Sb) stress in arabidopsis thaliana
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.05.011
– volume: 261
  start-page: 801
  year: 2013
  ident: B137
  article-title: Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants
  publication-title: J. Hazardous. Materials.
  doi: 10.1016/j.jhazmat.2013.01.033
– volume: 4
  year: 2013
  ident: B29
  article-title: Open or close the gate–stomata action under the control of phytohormones in drought stress conditions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00138
– volume: 96
  start-page: 28
  year: 2013
  ident: B35
  article-title: The uptake and detoxification of antimony by plants: a review
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2013.08.006
– volume: 32
  start-page: 20
  year: 2009
  ident: B74
  article-title: Effect of soil antimony (III) pol-lution on the growth and quality of sweet mustard
  publication-title: Environ. Sci. Technol.
– volume: 18
  start-page: 4005
  year: 2020
  ident: B106
  article-title: Role of genetic factors in regulating cadmium uptake, transport and accumulation mechanisms and quantitative trait loci mapping in rice. a review
  publication-title: Appl. Ecol. Environ. Res.
  doi: 10.15666/aeer/1803_40054023
– volume: 176
  start-page: 206
  year: 2009
  ident: B31
  article-title: Identification of agrostis tenuis leaf proteins in response to as (V) and as (III) induced stress using a proteomics approach
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2008.10.008
– volume: 27
  start-page: 939
  year: 2017
  ident: B18
  article-title: Physiological characteristics of ficus tikoua under antimony stress
  publication-title: Trans. Nonferrous. Metals. Soc. China
  doi: 10.1016/S1003-6326(17)60106-7
– volume: 97
  start-page: 44
  year: 2011
  ident: B104
  article-title: Distribution and accumulation of antimony in plants in the super-large Sb deposit areas, China
  publication-title: Microchemical. J.
  doi: 10.1016/j.microc.2010.05.016
– volume-title: Background document for development of WHO guidelines for drinking-water quality
  year: 2003
  ident: B135
  article-title: Antimony in drinking-water
– volume: 412
  start-page: 267
  year: 2017
  ident: B65
  article-title: A comparison of antimony accumulation and tolerance among achillea wilhelmsii, silene vulgaris and thlaspi arvense
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-3064-1
– volume: 158
  start-page: 96
  year: 2014
  ident: B10
  article-title: Effects of antimony and arsenic on antioxidant enzyme activities of two steppic plant species in an old antimony mining area
  publication-title: Biol. Trace Element. Res.
  doi: 10.1007/s12011-014-9917-7
– volume: 437
  start-page: 129433
  year: 2022
  ident: B154
  article-title: Toxicity of different forms of antimony to rice plants: Photosynthetic electron transfer, gas exchange, photosynthetic efficiency, and carbon assimilation combined with metabolome analysis
  publication-title: J. Hazardous Materials
  doi: 10.1016/j.jhazmat.2022.129433
– volume: 146
  start-page: 106233
  year: 2021
  ident: B4
  article-title: Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.106233
– volume: 180
  start-page: 347
  year: 2003
  ident: B51
  article-title: Influence of arsenic on antimony methylation by the aerobic yeast cryptococcus humicolus
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-003-0600-1
– volume: 11
  start-page: 1
  year: 2021
  ident: B8
  article-title: Antimony induced structural and ultrastructural changes in trapa natans
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-89865-2
– volume: 147
  start-page: 167
  year: 2014
  ident: B24
  article-title: Antimony accumulation and toxicity tolerance mechanisms in trifolium species
  publication-title: J. Geochemical. Explor.
  doi: 10.1016/j.gexplo.2014.07.002
– volume: 7
  start-page: 1456
  year: 2012
  ident: B53
  article-title: Role of proline under changing environments: a review
  publication-title: Plant Signaling Behav.
  doi: 10.4161/psb.21949
– volume: 6
  start-page: 106
  year: 2009
  ident: B127
  article-title: Antimony in the soil–plant system–a review
  publication-title: Environ. Chem.
  doi: 10.1071/EN08111
– volume: 50
  start-page: 1977
  year: 2009
  ident: B70
  article-title: Arabidopsis NIP1; 1 transports antimonite and determines antimonite sensitivity
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcp130
– volume: 93
  start-page: 2269
  year: 2013
  ident: B96
  article-title: Antimony toxicity in the lichen Xanthoria parietina (L.) th. fr
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.07.082
– volume: 6
  start-page: 25
  year: 2018
  ident: B69
  article-title: A comparison of antimony in natural water with leaching concentration from polyethylene terephthalate (PET) bottles
  publication-title: Int. J. Environ. pollut. Remediation.
  doi: 10.11159/ijepr.2018.003
– volume: 694
  start-page: 133693
  year: 2019
  ident: B120
  article-title: Can biochar and designer biochar be used to remediate per-and polyfluorinated alkyl substances (PFAS) and lead and antimony contaminated soils
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2019.133693
– start-page: 54
  volume-title: J Horticult Sci
  year: 2014
  ident: B5
  article-title: Impact of antimony stress on biochemical and physiological criteria of watermelon plant (Citrullus lanatus THUNB.)
– volume: 26
  start-page: 307
  year: 2014
  ident: B85
  article-title: Antimony (V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(13)60418-0
– volume: 158
  start-page: 106908
  year: 2022
  ident: B11
  article-title: Antimony contamination and its risk management in complex environmental settings: A review
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2021.106908
– volume: 277
  start-page: 130252
  year: 2021
  ident: B90
  article-title: Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130252
– volume: 475
  start-page: 83
  year: 2014
  ident: B111
  article-title: Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2013.12.103
– volume: 2011
  year: 2011
  ident: B138
  article-title: Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation
  publication-title: Int. Scholarly. Res. Notices
  doi: 10.5402/2011/402647
– volume: 137
  start-page: 474
  year: 2018
  ident: B152
  article-title: Distribution characteristics, sources and ecological risk of antimony in the surface sediments of changjiang estuary and the adjacent sea, East China
  publication-title: Mar. pollut. Bull.
  doi: 10.1016/j.marpolbul.2018.10.049
– volume: 145
  start-page: 15
  year: 2007
  ident: B87
  article-title: Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in extremadura (Spain)
  publication-title: Environ. pollut.
  doi: 10.1016/j.envpol.2006.04.004
– volume: 234
  start-page: 915
  year: 2018
  ident: B117
  article-title: A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health
  publication-title: Environ. pollut.
  doi: 10.1016/j.envpol.2017.12.019
– volume: 21
  start-page: 2102
  year: 2021
  ident: B125
  article-title: Pseudo-total antimony content in topsoils of the Berlin metropolitan area
  publication-title: J. Soils. Sediments.
  doi: 10.1007/s11368-020-02742-9
– volume: 44
  start-page: 387
  year: 2006
  ident: B114
  article-title: High light intensity protects photosynthetic apparatus of pea plants against exposure to lead
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2006.06.003
– volume: 29
  start-page: 209
  year: 2007
  ident: B54
  article-title: Distribution and phytoavailability of antimony at an antimony mining and smelting area, hunan, China
  publication-title: Environ. Geochemistry. Health
  doi: 10.1007/s10653-006-9066-9
– volume: 42
  start-page: 3911
  year: 2020
  ident: B84
  article-title: Geogenic and anthropogenic interactions at a former Sb mine: environmental impacts of as and Sb
  publication-title: Environ. Geochemistry. Health
  doi: 10.1007/s10653-020-00652-w
– volume: 771
  start-page: 144643
  year: 2021
  ident: B21
  article-title: Dynamic flow and pollution of antimony from polyethylene terephthalate (PET) fibers in China
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2020.144643
– volume: 277
  start-page: 116789
  year: 2021
  ident: B66
  article-title: Green remediation of toxic metals contaminated mining soil using bacterial consortium and brassica juncea
  publication-title: Environ. pollut.
  doi: 10.1016/j.envpol.2021.116789
– start-page: 383
  year: 2021
  ident: B100
  article-title: Opportunities and challenges of utilizing energy crops in phytoremediation of environmental pollutants: a review
  publication-title: Bioremediation. Environ. Sustainability.
  doi: 10.1016/B978-0-12-820318-7.00017-4
– volume: 134
  start-page: 105046
  year: 2020
  ident: B94
  article-title: Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.105046
– volume: 101
  start-page: 133
  year: 2012
  ident: B124
  article-title: Heavy metal toxicity and the environment
  publication-title: Molecular. Clin. And Environ. Toxicol.
  doi: 10.1007/978-3-7643-8340-4_6
– volume: 155
  start-page: 409
  year: 2010
  ident: B33
  article-title: Antimony mobility in lead smelter-polluted soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.027
– volume: 23
  start-page: 7470
  year: 2016
  ident: B17
  article-title: Growth, photosynthesis, and defense mechanism of antimony (Sb)-contaminated boehmeria nivea l
  publication-title: Environ. Sci. pollut. Res.
  doi: 10.1007/s11356-015-5987-0
– volume: 198
  start-page: 110683
  year: 2020
  ident: B141
  article-title: Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter
  publication-title: Ecotoxicology. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.110683
– volume: 39
  start-page: 103
  year: 2001
  ident: B150
  article-title: Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants
  publication-title: Photosynthetica
  doi: 10.1023/A:1012404204910
– volume: 26
  start-page: 10496
  year: 2019
  ident: B3
  article-title: Biogeochemical behavior of nickel under different abiotic stresses: toxicity and detoxification mechanisms in plants
  publication-title: Environ. Sci. pollut. Res.
  doi: 10.1007/s11356-019-04540-4
– volume: 497
  start-page: 319
  year: 2014
  ident: B22
  article-title: Antimony in the soil–water–plant system at the su suergiu abandoned mine (Sardinia, italy): Strategies to mitigate contamination
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2014.07.117
– volume: 263
  start-page: 127795
  year: 2021
  ident: B62
  article-title: Biochar-induced changes in soil microbial affect species of antimony in contaminated soils
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127795
– volume: 113
  start-page: 100
  year: 2012
  ident: B9
  article-title: Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the ribes valley (Eastern pyrenees)
  publication-title: J. Geochemical. Explor.
  doi: 10.1016/j.gexplo.2011.06.006
– volume: 45
  start-page: 2609
  year: 2018
  ident: B76
  article-title: Toxic effects of antimony on the seed germination and seedlings accumulation in Raphanus sativus l. radish and brassica napus l
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-018-4430-2
– volume-title: Australian Drinking water guidelines paper 6 national water quality management strategy
  year: 2011
  ident: B89
– volume: 10
  start-page: 396
  year: 2020
  ident: B52
  article-title: The critical role of zinc in plants facing the drought stress
  publication-title: Agriculture
  doi: 10.3390/agriculture10090396
– volume: 130
  start-page: 167
  year: 2016
  ident: B71
  article-title: Characterization of nineteen antimony (III) complexes as potent inhibitors of photosystem II, carbonic anhydrase, and glutathione reductase
  publication-title: Photosynthesis. Res.
  doi: 10.1007/s11120-016-0236-z
– volume: 269
  start-page: 115905
  year: 2021
  ident: B63
  article-title: Microplastics generated under simulated fire scenarios: Characteristics, antimony leaching, and toxicity
  publication-title: Environ. pollut.
  doi: 10.1016/j.envpol.2020.115905
– volume: 223
  start-page: 545
  year: 2017
  ident: B55
  article-title: Antimony as a global dilemma: Geochemistry, mobility, fate and transport
  publication-title: Environ. pollut.
  doi: 10.1016/j.envpol.2017.01.057
– volume: 23
  start-page: 409
  year: 2021
  ident: B72
  article-title: Antimony and arsenic contamination in water from antimonite mineralization: a case study from turhal (Tokat, northern Turkey)
  publication-title: Environ. Forensics.
  doi: 10.1080/15275922.2021.1907816
– start-page: 247
  year: 2021
  ident: B46
  article-title: Bacteria-assisted phytoremediation of heavy metals and organic pollutants: Challenges and future prospects
  publication-title: Bioremediation. Environ. sustainability.
  doi: 10.1016/B978-0-12-820318-7.00012-5
– volume: 21
  start-page: 769
  year: 2005
  ident: B122
  article-title: Determination of chemical form of antimony in contaminated soil around a smelter using X-ray absorption fine structure
  publication-title: Analytical. Sci.
  doi: 10.2116/analsci.21.769
– volume: 100
  start-page: 90
  year: 2021
  ident: B148
  article-title: Multiple effects of nitrate amendment on the transport, transformation and bioavailability of antimony in a paddy soil-rice plant system
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2020.07.009
– volume: 13
  start-page: 3
  year: 2009
  ident: B23
  article-title: The exposure to and health effects of antimony
  publication-title: Indian J. Occup. Environ. Med.
  doi: 10.4103/0019-5278.50716
– volume: 231
  start-page: 1
  year: 2020
  ident: B153
  article-title: Biochar improves the growth performance of maize seedling in response to antimony stress
  publication-title: Water. Air. Soil pollut.
  doi: 10.1007/s11270-020-04521-1
– volume: 220
  start-page: 106663
  year: 2021
  ident: B15
  article-title: Antimony leaching from soils and mine waste from the mau due antimony mine, north-Vietnam
  publication-title: J. Geochemical. Explor.
  doi: 10.1016/j.gexplo.2020.106663
– volume: 42
  start-page: 1263
  year: 2007
  ident: B43
  article-title: Bioavailability of arsenic and antimony in soils from an abandoned mining area, glendinning (SW Scotland)
  publication-title: J. Environ. Sci. Health Part A
  doi: 10.1080/10934520701435585
– volume: 21
  start-page: 4254
  year: 2014
  ident: B97
  article-title: Environmental and health risk assessment of Pb, zn, as and Sb in soccer field soils and sediments from mine tailings: solid speciation and bioaccessibility
  publication-title: Environ. Sci. pollut. Res.
  doi: 10.1007/s11356-013-2297-2
– volume: 17
  start-page: 1866
  year: 2005
  ident: B42
  article-title: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.033589
– volume: 18
  start-page: 7483
  year: 2020
  ident: B105
  article-title: Iron toxicity, tolerance and quantitative trait loci mapping in rice; a REVIEW
  publication-title: Appl. Ecol. Environ. Res.
  doi: 10.15666/aeer/1806_74837498
– volume: 43
  start-page: 4327
  year: 2009
  ident: B50
  article-title: Removal of antimony (V) and antimony (III) from drinking water by coagulation–flocculation–sedimentation (CFS)
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.06.033
– volume: 68
  start-page: 1889
  year: 2021
  ident: B109
  article-title: Identification of genomic regions at seedling related traits in response to aluminium toxicity using a new high-density genetic map in rice (Oryza sativa l.)
  publication-title: Genet. Resour. Crop Evol.
  doi: 10.1007/s10722-020-01103-2
– volume: 255
  start-page: 109806
  year: 2020
  ident: B115
  article-title: Scaling up the electrokinetic-assisted phytoremediation of atrazine-polluted soils using reversal of electrode polarity: A mesocosm study
  publication-title: J. ofEenvironmental. Manage.
  doi: 10.1016/j.jenvman.2019.109806
– volume: 83
  start-page: 279
  year: 2014
  ident: B131
  article-title: Influence of silicon on maize roots exposed to antimony–growth and antioxidative response
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.08.014
– volume: 49
  start-page: 1726
  year: 2020
  ident: B25
  article-title: Diverse structure and reactivity of pentamethylcyclopentadienyl antimony (iii) cations
  publication-title: Dalton. Trans.
  doi: 10.1039/D0DT00024H
– volume: 84
  start-page: 61
  year: 2012
  ident: B110
  article-title: Exposure of arabidopsis thaliana to excess zn reveals a zn-specific oxidative stress signature
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2012.05.005
– volume: 180
  start-page: 388
  year: 2017
  ident: B134
  article-title: Antimony and arsenic exhibit contrasting spatial distributions in the sediment and vegetation of a contaminated wetland
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.03.142
SSID ssj0000500997
Score 2.4270468
SecondaryResourceType review_article
Snippet Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1011945
SubjectTerms antimony
growth
health risks
photosynthesis
Plant Science
remediation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUq1EMvCEqrLqWVkThVisgmkzjpDSpWCAkOCCRukT2eiEWrZMUuUrn1I_qFfAkzcVhtLnDhGk8SZ2acmWePn5U6KOwYXeHSCA1jE8AaohIzisjHlNe-TDzJ1MD5RX56DWc32c3aUV9SExbogYPiDjFOS5-CNfwYGDtjE5fFiKlAE5sUHdk2x7w1MBVYvSX1MWEZk1FYeVjPZ8LOnSSCVxm5Z4NA1PH1D5LMYYnkWsyZbKnNPlnUR6GT2-oDNZ_Vx-OWE7rHHXV31f6dou4rMnRba9YSq7551NNGz2dS4fJbX5LllHrBbV7LXKAPttDzdtFXxjJWfvr3_0iHXSydYGAa0dzPbifm4ou6npxc_TmN-qMTIgRIllHtHJIH5GyNh4H1QDE5yDwmUGfGk9DkU2wBHDjMnStwXDMWxrQ2Ns9jn35VG03b0DelGXG5jGzBP0XL2Ruy_NhQnlpiCziAkYpf9Fhhzysux1vMKsYXovpKVF-J6qte9SP1a3XLPJBqvCZ8LMZZCQofdneBvaTqvaR6y0tGav_FtBWPH1kUsQ21D_wqkxrIM2NYxgxsPnjjsKWZ3nZM3EJmZqDcfY8uflef5LMlLib5ntpY3j_QD054lu5n59vPv3IC8A
  priority: 102
  providerName: Directory of Open Access Journals
Title Toxic effects of antimony in plants: Reasons and remediation possibilities—A review and future prospects
URI https://www.proquest.com/docview/2737465776
https://pubmed.ncbi.nlm.nih.gov/PMC9643749
https://doaj.org/article/c039d34a7cf441b7a2b50cc32184a286
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEF5q64MvolXx1JYt-CSkJpvJbk4QacVaCvWh9ODewu7sxh4cyXl3hd5_70yyVxoo4kseksmvmUzm-zabb4T4WNoMXenyBA1xE8AakjEWIQk-Dbr2Y-UDDw1c_tLnE7iYFtMdsW1vFR24epTacT-pyXJ-fPdn840S_iszTqq3n-vFnIW3lWIqSqS8eCL2qDAZztPLiPZ7qW_GQ127Fa0hAa2m_XfOx48yqFSdoP8AhQ7nUD4oSmcvxPOIJuVJH_6XYic0--LpaUuIb_NK3Fy3dzOUccqGbGtJbqTYNBs5a-RizlNgvsirYAlzr2iblzxY6PtgyUW7ilNniUwnJ7L_yaUz64VIJF1l96Pm6rWYnP24_n6exM4KCQKodVI7h8EDEpijLLEeQhocFB4V1IXxgVX0Q2oBHDjUzpWY1USVMa-N1Tr1-Rux27RNeCskETJXBFvSO9MSuEOyz0zQuQ3EHR3ASKRbL1YYZce5-8W8IvrBjq_Y8RU7voqOH4lP97sses2NfxmfcmjuDVkuu1vRLn9XMfsqTPOxz8EaehYhc8YqV6SIOfNbq0o9EkfbwFaUXvzNxDahvaVTmdyALowhGzOI-OCMwy3N7KYT6matMwPjd_9x9PfiGd8VV0WlP4jd9fI2HBDcWbvDbpiAlj-n2WH3QP8FocoCtA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxic+effects+of+antimony+in+plants%3A+Reasons+and+remediation+possibilities-A+review+and+future+prospects&rft.jtitle=Frontiers+in+plant+science&rft.au=Tang%2C+Haiying&rft.au=Meng%2C+Guiyuan&rft.au=Xiang%2C+Junqing&rft.au=Mahmood%2C+Athar&rft.date=2022-10-26&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=13&rft.spage=1011945&rft_id=info:doi/10.3389%2Ffpls.2022.1011945&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon