Toxic effects of antimony in plants: Reasons and remediation possibilities—A review and future prospects
Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and weathering of sulfide ores are the major ways of introducing Sb into our soils and aquatic environments. Crops grown on Sb-contaminated soils are a...
Saved in:
Published in | Frontiers in plant science Vol. 13; p. 1011945 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
26.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and weathering of sulfide ores are the major ways of introducing Sb into our soils and aquatic environments. Crops grown on Sb-contaminated soils are a major reason of Sb entry into humans by eating Sb-contaminated foods. Sb toxicity in plants reduces seed germination and root and shoot growth, and causes substantial reduction in plant growth and final productions. Moreover, Sb also induces chlorosis, causes damage to the photosynthetic apparatus, reduces membrane stability and nutrient uptake, and increases oxidative stress by increasing reactive oxygen species, thereby reducing plant growth and development. The threats induced by Sb toxicity and Sb concentration in soils are increasing day by day, which would be a major risk to crop production and human health. Additionally, the lack of appropriate measures regarding the remediation of Sb-contaminated soils will further intensify the current situation. Therefore, future research must be aimed at devising appropriate measures to mitigate the hazardous impacts of Sb toxicity on plants, humans, and the environment and to prevent the entry of Sb into our ecosystem. We have also described the various strategies to remediate Sb-contaminated soils to prevent its entry into the human food chain. Additionally, we also identified the various research gaps that must be addressed in future research programs. We believe that this review will help readers to develop the appropriate measures to minimize the toxic effects of Sb and its entry into our ecosystem. This will ensure the proper food production on Sb-contaminated soils. |
---|---|
AbstractList | Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and weathering of sulfide ores are the major ways of introducing Sb into our soils and aquatic environments. Crops grown on Sb-contaminated soils are a major reason of Sb entry into humans by eating Sb-contaminated foods. Sb toxicity in plants reduces seed germination and root and shoot growth, and causes substantial reduction in plant growth and final productions. Moreover, Sb also induces chlorosis, causes damage to the photosynthetic apparatus, reduces membrane stability and nutrient uptake, and increases oxidative stress by increasing reactive oxygen species, thereby reducing plant growth and development. The threats induced by Sb toxicity and Sb concentration in soils are increasing day by day, which would be a major risk to crop production and human health. Additionally, the lack of appropriate measures regarding the remediation of Sb-contaminated soils will further intensify the current situation. Therefore, future research must be aimed at devising appropriate measures to mitigate the hazardous impacts of Sb toxicity on plants, humans, and the environment and to prevent the entry of Sb into our ecosystem. We have also described the various strategies to remediate Sb-contaminated soils to prevent its entry into the human food chain. Additionally, we also identified the various research gaps that must be addressed in future research programs. We believe that this review will help readers to develop the appropriate measures to minimize the toxic effects of Sb and its entry into our ecosystem. This will ensure the proper food production on Sb-contaminated soils.Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and weathering of sulfide ores are the major ways of introducing Sb into our soils and aquatic environments. Crops grown on Sb-contaminated soils are a major reason of Sb entry into humans by eating Sb-contaminated foods. Sb toxicity in plants reduces seed germination and root and shoot growth, and causes substantial reduction in plant growth and final productions. Moreover, Sb also induces chlorosis, causes damage to the photosynthetic apparatus, reduces membrane stability and nutrient uptake, and increases oxidative stress by increasing reactive oxygen species, thereby reducing plant growth and development. The threats induced by Sb toxicity and Sb concentration in soils are increasing day by day, which would be a major risk to crop production and human health. Additionally, the lack of appropriate measures regarding the remediation of Sb-contaminated soils will further intensify the current situation. Therefore, future research must be aimed at devising appropriate measures to mitigate the hazardous impacts of Sb toxicity on plants, humans, and the environment and to prevent the entry of Sb into our ecosystem. We have also described the various strategies to remediate Sb-contaminated soils to prevent its entry into the human food chain. Additionally, we also identified the various research gaps that must be addressed in future research programs. We believe that this review will help readers to develop the appropriate measures to minimize the toxic effects of Sb and its entry into our ecosystem. This will ensure the proper food production on Sb-contaminated soils. Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and weathering of sulfide ores are the major ways of introducing Sb into our soils and aquatic environments. Crops grown on Sb-contaminated soils are a major reason of Sb entry into humans by eating Sb-contaminated foods. Sb toxicity in plants reduces seed germination and root and shoot growth, and causes substantial reduction in plant growth and final productions. Moreover, Sb also induces chlorosis, causes damage to the photosynthetic apparatus, reduces membrane stability and nutrient uptake, and increases oxidative stress by increasing reactive oxygen species, thereby reducing plant growth and development. The threats induced by Sb toxicity and Sb concentration in soils are increasing day by day, which would be a major risk to crop production and human health. Additionally, the lack of appropriate measures regarding the remediation of Sb-contaminated soils will further intensify the current situation. Therefore, future research must be aimed at devising appropriate measures to mitigate the hazardous impacts of Sb toxicity on plants, humans, and the environment and to prevent the entry of Sb into our ecosystem. We have also described the various strategies to remediate Sb-contaminated soils to prevent its entry into the human food chain. Additionally, we also identified the various research gaps that must be addressed in future research programs. We believe that this review will help readers to develop the appropriate measures to minimize the toxic effects of Sb and its entry into our ecosystem. This will ensure the proper food production on Sb-contaminated soils. |
Author | Mahmood, Athar Tang, Haiying Liu, Ying Meng, Guiyuan Xiang, Guohong Huang, Guoqin Xiang, Junqing SanaUllah |
AuthorAffiliation | 3 Department of Agronomy, University of Agriculture Faisalabad , Faisalabad , Pakistan 1 College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology , Loudi , China 4 Agronomic Research Station Karor , Layyah , Pakistan 6 Research Center on Ecological Sciences, Jiangxi Agricultural University , Nanchang , China 5 Key Laboratory of Crop Physiology, Ecology and Genetics Breeding (Jiangxi Agricultural University), Ministry of Education , Nanchang , China 2 Loudi Liancheng Hi-Tech Agricultural Development Co. LTD , Loudi , China |
AuthorAffiliation_xml | – name: 3 Department of Agronomy, University of Agriculture Faisalabad , Faisalabad , Pakistan – name: 5 Key Laboratory of Crop Physiology, Ecology and Genetics Breeding (Jiangxi Agricultural University), Ministry of Education , Nanchang , China – name: 4 Agronomic Research Station Karor , Layyah , Pakistan – name: 1 College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology , Loudi , China – name: 2 Loudi Liancheng Hi-Tech Agricultural Development Co. LTD , Loudi , China – name: 6 Research Center on Ecological Sciences, Jiangxi Agricultural University , Nanchang , China |
Author_xml | – sequence: 1 givenname: Haiying surname: Tang fullname: Tang, Haiying – sequence: 2 givenname: Guiyuan surname: Meng fullname: Meng, Guiyuan – sequence: 3 givenname: Junqing surname: Xiang fullname: Xiang, Junqing – sequence: 4 givenname: Athar surname: Mahmood fullname: Mahmood, Athar – sequence: 5 givenname: Guohong surname: Xiang fullname: Xiang, Guohong – sequence: 6 surname: SanaUllah fullname: SanaUllah – sequence: 7 givenname: Ying surname: Liu fullname: Liu, Ying – sequence: 8 givenname: Guoqin surname: Huang fullname: Huang, Guoqin |
BookMark | eNp1kc1u1DAUhSNUJErpA7DLks0MtnNjJyyQqopCpUpIqJW6s_xzXTzKxMF2Ct31IXhCngRnZpAoEt7459zz2b7nZXU0hhGr6jUl66bp-rduGtKaEcbWlFDaQ_usOqacwwo4uz36a_2iOk1pQ8poCel7cVxtrsMPb2p0Dk1OdXC1GrPfhvGh9mM9DWWX3tVfUKUwpqLZOuIWrVfZh6KHlLz2g88e06_Hn2dFvff4fVfo5jxHrKcY0rTAX1XPnRoSnh7mk-rm4sP1-afV1eePl-dnVysDwPLKaW3QguEtZ4QoC0hQQ2sNA9cKi5TTDokC0KAN17oz1HVdZxonFOfENifV5Z5rg9rIKfqtig8yKC93ByHeSRWzNwNKQ5reNqCEcQBUC8V0S4xpGO1AsY4X1vs9a5p1-bbBMUc1PIE-VUb_Vd6Fe9lzaAT0BfDmAIjh24wpy61PBofSWAxzkkyUMt4Ksdwl9qWmdCxFdNL4vOtzIftBUiKXtOWStlzSloe0i5P-4_zzwP97fgNMBLTk |
CitedBy_id | crossref_primary_10_1016_j_ecoenv_2023_115583 crossref_primary_10_1016_j_chemosphere_2024_142694 crossref_primary_10_1016_j_scitotenv_2024_172253 crossref_primary_10_1016_j_ecoenv_2025_117852 crossref_primary_10_1016_j_envres_2024_118645 crossref_primary_10_1016_j_freeradbiomed_2023_09_002 crossref_primary_10_1007_s00344_025_11676_w crossref_primary_10_3389_feart_2024_1304497 crossref_primary_10_1016_j_envpol_2024_125259 crossref_primary_10_4236_jep_2024_155031 crossref_primary_10_1039_D3AY01185B crossref_primary_10_17660_ActaHortic_2025_1418_11 crossref_primary_10_1016_j_scitotenv_2023_168815 crossref_primary_10_3390_agronomy14091887 crossref_primary_10_1016_j_jenvman_2025_124100 crossref_primary_10_1016_j_envpol_2023_122637 crossref_primary_10_1007_s10653_023_01787_2 crossref_primary_10_1016_j_heliyon_2024_e28050 crossref_primary_10_3390_agronomy14102387 |
Cites_doi | 10.1016/j.envpol.2012.10.024 10.1016/j.envpol.2019.113670 10.1016/j.envint.2020.105754 10.1016/j.scitotenv.2021.149904 10.1515/aeuc-2016-0006 10.1007/s13762-016-1181-2 10.1088/1757-899X/123/1/012028 10.1016/j.jhazmat.2015.02.011 10.1007/s11356-017-8647-8 10.1016/j.ijhydene.2017.08.056 10.1007/s11368-020-02577-4 10.1016/j.scitotenv.2020.138158 10.1016/j.envpol.2015.11.033 10.1016/j.microc.2010.06.003 10.1016/j.scitotenv.2021.145354 10.1007/s11104-012-1399-9 10.1016/j.gexplo.2019.106348 10.1016/j.scitotenv.2011.06.009 10.1016/j.jhazmat.2018.07.112 10.1016/j.envpol.2003.10.014 10.3389/fpls.2018.00579 10.1007/s11270-010-0496-8 10.1007/s11104-010-0378-2 10.1016/j.dib.2020.105959 10.1016/j.scitotenv.2007.09.007 10.1007/s11356-015-5069-3 10.1016/B978-0-12-817030-4.00005-X 10.5696/2156-9614-7-13.32 10.1016/j.jes.2018.05.023 10.1016/j.heliyon.2020.e04669 10.1016/j.chemosphere.2019.125042 10.1016/j.ecoenv.2020.110599 10.1016/S0048-9697(99)00370-8 10.1016/S0269-7491(99)00240-7 10.1016/j.scitotenv.2019.134589 10.1080/01490451.2014.901440 10.1007/s10811-009-9482-1 10.1016/S0012-8252(02)00089-2 10.1016/S0269-7491(99)00262-6 10.1016/j.envpol.2015.04.019 10.1016/j.apgeochem.2019.104378 10.1016/j.chemosphere.2018.09.089 10.1080/02757540.2012.656609 10.1016/j.chemer.2012.01.006 10.1016/B978-0-12-819481-2.00013-1 10.1155/2015/909724 10.1007/s00344-020-10192-3 10.1016/j.scitotenv.2019.03.145 10.1007/s11270-006-9127-9 10.1016/j.cej.2014.09.021 10.1021/acs.est.8b02035 10.1016/j.scitotenv.2017.01.149 10.1007/s11356-016-6461-3 10.1016/j.envpol.2017.08.105 10.1007/s10661-019-7214-9 10.1016/S1002-0160(14)60082-5 10.15666/aeer/1803_39513964 10.1016/j.electacta.2015.01.025 10.1016/j.chemosphere.2019.124353 10.1007/s11356-011-0589-y 10.1016/j.scitotenv.2015.04.039 10.1016/j.scitotenv.2017.07.268 10.1016/j.scitotenv.2011.05.033 10.1590/2179-8087.039918 10.1016/j.microc.2010.05.010 10.1016/j.envpol.2015.03.004 10.1016/j.apgeochem.2011.12.005 10.15835/nbha49112149 10.1016/j.jhazmat.2016.01.005 10.3923/jas.2006.2705.2714 10.1002/9781119487210.ch14 10.1016/j.chemosphere.2017.03.074 10.1016/j.scitotenv.2015.11.095 10.1016/j.chemosphere.2013.09.077 10.1007/s11356-017-0598-6 10.1371/journal.pone.0183991 10.1016/j.plaphy.2019.05.011 10.1016/j.jhazmat.2013.01.033 10.3389/fpls.2013.00138 10.1016/j.envexpbot.2013.08.006 10.15666/aeer/1803_40054023 10.1016/j.plantsci.2008.10.008 10.1016/S1003-6326(17)60106-7 10.1016/j.microc.2010.05.016 10.1007/s11104-016-3064-1 10.1007/s12011-014-9917-7 10.1016/j.jhazmat.2022.129433 10.1016/j.envint.2020.106233 10.1007/s00203-003-0600-1 10.1038/s41598-021-89865-2 10.1016/j.gexplo.2014.07.002 10.4161/psb.21949 10.1071/EN08111 10.1093/pcp/pcp130 10.1016/j.chemosphere.2013.07.082 10.11159/ijepr.2018.003 10.1016/j.scitotenv.2019.133693 10.1016/S1001-0742(13)60418-0 10.1016/j.envint.2021.106908 10.1016/j.chemosphere.2021.130252 10.1016/j.scitotenv.2013.12.103 10.5402/2011/402647 10.1016/j.marpolbul.2018.10.049 10.1016/j.envpol.2006.04.004 10.1016/j.envpol.2017.12.019 10.1007/s11368-020-02742-9 10.1016/j.plaphy.2006.06.003 10.1007/s10653-006-9066-9 10.1007/s10653-020-00652-w 10.1016/j.scitotenv.2020.144643 10.1016/j.envpol.2021.116789 10.1016/B978-0-12-820318-7.00017-4 10.1016/j.envint.2019.105046 10.1007/978-3-7643-8340-4_6 10.1016/j.geoderma.2009.12.027 10.1007/s11356-015-5987-0 10.1016/j.ecoenv.2020.110683 10.1023/A:1012404204910 10.1007/s11356-019-04540-4 10.1016/j.scitotenv.2014.07.117 10.1016/j.chemosphere.2020.127795 10.1016/j.gexplo.2011.06.006 10.1007/s11033-018-4430-2 10.3390/agriculture10090396 10.1007/s11120-016-0236-z 10.1016/j.envpol.2020.115905 10.1016/j.envpol.2017.01.057 10.1080/15275922.2021.1907816 10.1016/B978-0-12-820318-7.00012-5 10.2116/analsci.21.769 10.1016/j.jes.2020.07.009 10.4103/0019-5278.50716 10.1007/s11270-020-04521-1 10.1016/j.gexplo.2020.106663 10.1080/10934520701435585 10.1007/s11356-013-2297-2 10.1105/tpc.105.033589 10.15666/aeer/1806_74837498 10.1016/j.watres.2009.06.033 10.1007/s10722-020-01103-2 10.1016/j.jenvman.2019.109806 10.1016/j.plaphy.2014.08.014 10.1039/D0DT00024H 10.1016/j.envexpbot.2012.05.005 10.1016/j.chemosphere.2017.03.142 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Tang, Meng, Xiang, Mahmood, Xiang, SanaUllah, Liu and Huang. Copyright © 2022 Tang, Meng, Xiang, Mahmood, Xiang, SanaUllah, Liu and Huang 2022 Tang, Meng, Xiang, Mahmood, Xiang, SanaUllah, Liu and Huang |
Copyright_xml | – notice: Copyright © 2022 Tang, Meng, Xiang, Mahmood, Xiang, SanaUllah, Liu and Huang. – notice: Copyright © 2022 Tang, Meng, Xiang, Mahmood, Xiang, SanaUllah, Liu and Huang 2022 Tang, Meng, Xiang, Mahmood, Xiang, SanaUllah, Liu and Huang |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fpls.2022.1011945 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_c039d34a7cf441b7a2b50cc32184a286 PMC9643749 10_3389_fpls_2022_1011945 |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c442t-fbbced4c656200ad4e0eb45dc24f57de1618e0a44b4bc6bb8c1f888c3f7a660d3 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:31:14 EDT 2025 Thu Aug 21 18:39:16 EDT 2025 Thu Jul 10 23:00:23 EDT 2025 Tue Jul 01 00:54:09 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-fbbced4c656200ad4e0eb45dc24f57de1618e0a44b4bc6bb8c1f888c3f7a660d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Awais Shakoor, Teagasc Environment Research Centre, Ireland; Xintong Xu, Nanjing Agricultural University, China Edited by: Anis Ali Shah, University of Education Lahore, Pakistan This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2022.1011945 |
PQID | 2737465776 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c039d34a7cf441b7a2b50cc32184a286 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9643749 proquest_miscellaneous_2737465776 crossref_citationtrail_10_3389_fpls_2022_1011945 crossref_primary_10_3389_fpls_2022_1011945 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-26 |
PublicationDateYYYYMMDD | 2022-10-26 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in plant science |
PublicationYear | 2022 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | He (B59) 1999; 243 Wilson (B137) 2013; 261 Rasheed (B105) 2020; 18 Etim (B32) 2017; 7 Nishad (B91) 2017; 14 Araghi (B5) 2014 Baroni (B7) 2000; 109 Macgregor (B80) 2015; 529 Vikent'eva (B132) 2016; 123 Wu (B140) 2019; 141 Turner (B128) 2017; 584 Zeng (B147) 2015; 2015 Pascaud (B97) 2014; 21 Qiang (B101) 2017; 31 Lai (B73) 2018; 52 Mbadugha (B84) 2020; 42 He (B57) 2012 Xing (B141) 2020; 198 Maresca (B82) 2020 Thestorf (B125) 2021; 21 Bolan (B11) 2022; 158 Intrakamhaeng (B64) 2020; 241 Jamali (B65) 2017; 412 Herath (B55) 2017; 223 Rinklebe (B112) 2020; 140 Roccotiello (B113) 2016; 23 Xue (B144) 2015; 201 Zhuang (B152) 2018; 137 Zhang (B149) 2010; 22 Feng (B35) 2013; 96 He (B58) 2019; 236 Dahmani-Muller (B28) 2000; 109 Zhou (B151) 2018; 9 He (B56) 2019; 75 Cooper (B23) 2009; 13 Serfor-Armah (B116) 2006; 175 Miao (B85) 2014; 26 Chirakkara (B19) 2015; 181 Silvani (B120) 2019; 694 Nishad (B90) 2021; 277 Antoniadis (B4) 2021; 146 Romanowska (B114) 2006; 44 Qi (B104) 2011; 97 Sánchez (B115) 2020; 255 Shahid (B118) 2017; 178 Müller (B86) 2013; 174 Zhu (B153) 2020; 231 Bagherifam (B6) 2019; 205 Hiller (B60) 2012; 27 Sun (B121) 2020 Murciego (B87) 2007; 145 Ahmad (B1) 2014; 95 Fort (B41) 2016; 544 Benhamdi (B10) 2014; 158 Bora (B12) 2020; 197 Feng (B38) 2011; 97 Qiao (B102) 2018; 25 Wang (B133) 2018; 610 Gunarathne (B49) 2020 Lan (B74) 2009; 32 Ortega (B93) 2017; 12 Campos (B14) 2019; 26 Long (B77) 2020; 258 Vaculík (B130) 2015; 22 Daszkowska-Golec (B29) 2013; 4 Ma (B81) 2019; 669 Rasheed (B107) 2020; 18 Ren (B111) 2014; 475 Vaculíková (B131) 2014; 83 Zhang (B148) 2021; 100 Tchounwou (B124) 2012; 101 Corrales (B24) 2014; 147 Rasheed (B109) 2021; 68 Remans (B110) 2012; 84 Tschan (B127) 2009; 6 Pan (B95) 2011; 215 Choi (B20) 2017; 42 Cidu (B22) 2014; 497 (B135) 2003 Cen (B16) 2007; 14 Ghassemzadeh (B45) 2006; 6 Girolkar (B46) 2021 Filella (B39) 2002; 59 Geng (B44) 2020; 20 Zand (B145) 2020; 31 Hayat (B53) 2012; 7 Pierart (B99) 2015; 289 Luo (B78) 2021; 40 Mariussen (B83) 2017; 24 (B89) 2011 Baruah (B8) 2021; 11 Chai (B17) 2016; 23 Nguyen (B88) 2014; 31 Cui (B27) 2015; 204 Karacan (B71) 2016; 130 Feng (B34) 2020; 711 Huang (B61) 2012; 28 Prabha (B100) 2021 Filella (B40) 2012; 72 Grundon (B48) 2006 Zand (B146) 2020; 6 Cappuyns (B15) 2021; 220 Gal (B43) 2007; 42 Coughlin (B25) 2020; 49 Bech (B9) 2012; 113 Jia (B68) 2020; 724 Feng (B36) 2013; 365 Peško (B98) 2016; 24 Shahid (B117) 2018; 234 Feng (B37) 2011; 97 Tschan (B126) 2010; 334 Guo (B50) 2009; 43 Qi (B103) 2008; 389 Shtangeeva (B119) 2012; 19 Foyer (B42) 2005; 17 Wilson (B136) 2004; 129 Hua (B62) 2021; 263 Lewińska (B75) 2019; 191 Paoli (B96) 2013; 93 Couto (B26) 2015; 262 Ameen (B3) 2019; 26 Rasheed (B106) 2020; 18 Hasssan (B52) 2020; 10 Chu (B21) 2021; 771 Okkenhaug (B92) 2016; 307 Duquesnoy (B31) 2009; 176 Wuana (B138) 2011; 2011 Wu (B139) 2011; 409 Ji (B67) 2017; 231 Warnken (B134) 2017; 180 Xi (B142) 2022; 804 Rasheed (B108) 2021; 49 Takaoka (B122) 2005; 21 (B129) 1992 Almås (B2) 2019; 108 He (B54) 2007; 29 Zhao (B150) 2001; 39 Tan (B123) 2018; 213 Xi-Yuan (B143) 2015; 25 Zhu (B154) 2022; 437 Diquattro (B30) 2021; 770 Kamiya (B70) 2009; 50 Lu (B79) 2018; 359 Ettler (B33) 2010; 155 Hartmann (B51) 2003; 180 Jo (B69) 2018; 6 Cai (B13) 2016; 209 Jeyasundar (B66) 2021; 277 Liang (B76) 2018; 45 Gowayed (B47) 2013; 7 Palansooriya (B94) 2020; 134 Chai (B18) 2017; 27 Hu (B63) 2021; 269 Kurt (B72) 2021; 23 |
References_xml | – volume: 174 start-page: 128 year: 2013 ident: B86 article-title: Impact of arsenic on uptake and bio-accumulation of antimony by arsenic hyperaccumulator pteris vittata publication-title: Environ. pollut. doi: 10.1016/j.envpol.2012.10.024 – volume: 258 start-page: 113670 year: 2020 ident: B77 article-title: The effect of an antimony resistant bacterium on the iron plaque fraction and antimony uptake by rice seedlings publication-title: Environ. pollut. doi: 10.1016/j.envpol.2019.113670 – volume: 140 start-page: 105754 year: 2020 ident: B112 article-title: Redox-induced mobilization of Ag, Sb, Sn, and tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105754 – volume: 804 start-page: 149904 year: 2022 ident: B142 article-title: Effects of arbuscular mycorrhizal fungi on frond antimony enrichment, morphology, and proteomics in pteris cretica var. nervosa during antimony phytoremediation publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2021.149904 – volume: 24 start-page: 42 year: 2016 ident: B98 article-title: Response of tomato plants () to stress induced by Sb (III) publication-title: Acta Environmentalica. Universitatis. Comenianae. doi: 10.1515/aeuc-2016-0006 – volume: 14 start-page: 777 year: 2017 ident: B91 article-title: Towards finding an efficient sorbent for antimony: comparative investigations on antimony removal properties of potential antimony sorbents publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-016-1181-2 – volume: 123 start-page: 012028 year: 2016 ident: B132 article-title: Occurrence modes of as, Sb, Te, bi, Ag in sulfide assemblages of gold deposits of the urals publication-title: IOP Conf. Ser.: Mater. Sci. Eng. doi: 10.1088/1757-899X/123/1/012028 – volume: 289 start-page: 219 year: 2015 ident: B99 article-title: Antimony bioavailability: knowledge and research perspectives for sustainable agricultures publication-title: J. hazardous. Materials. doi: 10.1016/j.jhazmat.2015.02.011 – volume: 24 start-page: 10182 year: 2017 ident: B83 article-title: Distribution and mobility of lead (Pb), copper (Cu), zinc (Zn), and antimony (Sb) from ammunition residues on shooting ranges for small arms located on mires publication-title: Environ. Sci. pollut. Res. doi: 10.1007/s11356-017-8647-8 – volume: 42 start-page: 27832 year: 2017 ident: B20 article-title: Microbial oxidation of antimonite and arsenite by bacteria isolated from antimony-contaminated soils publication-title: Int. J. Hydrogen. Energy doi: 10.1016/j.ijhydene.2017.08.056 – volume: 20 start-page: 2217 year: 2020 ident: B44 article-title: Effects of antimony contamination in soil on the nutrient composition of three green leafy vegetables publication-title: J. Soils. Sediments. doi: 10.1007/s11368-020-02577-4 – volume: 724 start-page: 138158 year: 2020 ident: B68 article-title: The antimony sorption and transport mechanisms in removal experiment by Mn-coated biochar publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2020.138158 – volume: 209 start-page: 169 year: 2016 ident: B13 article-title: Uptake, translocation and transformation of antimony in rice (Oryza sativa l.) seedlings publication-title: Environ. pollut. doi: 10.1016/j.envpol.2015.11.033 – volume: 97 start-page: 57 year: 2011 ident: B37 article-title: Detoxification of antimony by selenium and their interaction in paddy rice under hydroponic conditions publication-title: Microchemical. J. doi: 10.1016/j.microc.2010.06.003 – volume: 770 start-page: 145354 year: 2021 ident: B30 article-title: Insights into the fate of antimony (Sb) in contaminated soils: Ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2021.145354 – volume: 365 start-page: 375 year: 2013 ident: B36 article-title: Interactive effects of selenium and antimony on the uptake of selenium, antimony and essential elements in paddy-rice publication-title: Plant Soil doi: 10.1007/s11104-012-1399-9 – volume: 205 start-page: 106348 year: 2019 ident: B6 article-title: Derivation methods of soils, water and sediments toxicity guidelines: a brief review with a focus on antimony publication-title: J. Geochemical. Explor. doi: 10.1016/j.gexplo.2019.106348 – year: 2012 ident: B57 article-title: Antimony pollution in China publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2011.06.009 – volume: 359 start-page: 527 year: 2018 ident: B79 article-title: Characterization of the antimonite-and arsenite-oxidizing bacterium bosea sp. AS-1 and its potential application in arsenic removal publication-title: J. Hazardous. Materials. doi: 10.1016/j.jhazmat.2018.07.112 – volume: 129 start-page: 257 year: 2004 ident: B136 article-title: Antimony distribution and environmental mobility at an historic antimony smelter site, new Zealand publication-title: Environ. pollut. doi: 10.1016/j.envpol.2003.10.014 – volume: 9 year: 2018 ident: B151 article-title: Effects of antimony stress on photosynthesis and growth of acorus calamus publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00579 – volume: 215 start-page: 517 year: 2011 ident: B95 article-title: Antimony accumulation, growth performance, antioxidant defense system and photosynthesis of zea mays in response to antimony pollution in soil publication-title: Water. Air. Soil pollut. doi: 10.1007/s11270-010-0496-8 – volume: 334 start-page: 235 year: 2010 ident: B126 article-title: Antimony uptake and toxicity in sunflower and maize growing in SbIII and SbV contaminated soil publication-title: Plant Soil doi: 10.1007/s11104-010-0378-2 – volume: 31 start-page: 105959 year: 2020 ident: B145 article-title: Phytoremediation: Data on effects of titanium dioxide nanoparticles on phytoremediation of antimony polluted soil publication-title: Data Brief doi: 10.1016/j.dib.2020.105959 – volume: 389 start-page: 225 year: 2008 ident: B103 article-title: Environmental geochemistry of antimony in Chinese coals publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2007.09.007 – volume: 22 start-page: 18699 year: 2015 ident: B130 article-title: Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus l.) publication-title: Environ. Sci. pollut. Res. doi: 10.1007/s11356-015-5069-3 – volume: 14 start-page: 106 year: 2007 ident: B16 article-title: Investigation on correlation between chronic antimony poisoning and liver fibrosis publication-title: Labeled. Immunoass. Clin. Med. – start-page: 141 volume-title: Handbook of electronic waste management year: 2020 ident: B49 article-title: Phytoremediation for e-waste contaminated sites doi: 10.1016/B978-0-12-817030-4.00005-X – volume: 7 start-page: 32 year: 2017 ident: B32 article-title: Occurrence and distribution of arsenic, antimony and selenium in shallow groundwater systems of ibadan metropolis, southwestern Nigerian publication-title: J. Health pollut. doi: 10.5696/2156-9614-7-13.32 – volume: 75 start-page: 14 year: 2019 ident: B56 article-title: Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2018.05.023 – volume: 6 start-page: e04669 year: 2020 ident: B146 article-title: Co-Application of biochar and titanium dioxide nanoparticles to promote remediation of antimony from soil by sorghum bicolor: Metal uptake and plant response publication-title: Heliyon doi: 10.1016/j.heliyon.2020.e04669 – volume: 241 start-page: 125042 year: 2020 ident: B64 article-title: Antimony mobility from e-waste plastic in simulated municipal solid waste landfills publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125042 – volume: 197 start-page: 110599 year: 2020 ident: B12 article-title: Tolerance mechanism of cadmium in ceratopteris pteridoides: Translocation and subcellular distribution publication-title: Ecotoxicology. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110599 – volume: 243 start-page: 149 year: 1999 ident: B59 article-title: Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue publication-title: Sci. Total. Environ. doi: 10.1016/S0048-9697(99)00370-8 – volume: 109 start-page: 347 year: 2000 ident: B7 article-title: Antimony accumulation in achillea ageratum, plantago lanceolata and silene vulgaris growing in an old Sb-mining area publication-title: Environ. pollut. doi: 10.1016/S0269-7491(99)00240-7 – volume: 711 start-page: 134589 year: 2020 ident: B34 article-title: Toxicity of different forms of antimony to rice plant: Effects on root exudates, cell wall components, endogenous hormones and antioxidant system publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2019.134589 – volume: 31 start-page: 855 year: 2014 ident: B88 article-title: Isolation and characterization of antimony-reducing bacteria from sediments collected in the vicinity of an antimony factory publication-title: Geomicrobiology. J. doi: 10.1080/01490451.2014.901440 – volume: 22 start-page: 479 year: 2010 ident: B149 article-title: Toxic effects of antimony on photosystem II of synechocystis sp. as probed by in vivo chlorophyll fluorescence publication-title: J. Appl. Phycology. doi: 10.1007/s10811-009-9482-1 – volume: 59 start-page: 265 year: 2002 ident: B39 article-title: Antimony in the environment: a review focused on natural waters: II. Relevant solution chemistry publication-title: Earth-Sci. Rev. doi: 10.1016/S0012-8252(02)00089-2 – volume: 109 start-page: 231 year: 2000 ident: B28 article-title: Strategies of heavy metal uptake by three plant species growing near a metal smelter publication-title: Environ. pollut. doi: 10.1016/S0269-7491(99)00262-6 – volume: 204 start-page: 133 year: 2015 ident: B27 article-title: Effect of iron plaque on antimony uptake by rice (Oryza sativa l.) publication-title: Environ. pollut. doi: 10.1016/j.envpol.2015.04.019 – volume: 108 start-page: 104378 year: 2019 ident: B2 article-title: The partitioning of Sb in contaminated soils after being immobilization by fe-based amendments is more dynamic compared to Pb publication-title: Appl. Geochemistry. doi: 10.1016/j.apgeochem.2019.104378 – volume: 213 start-page: 533 year: 2018 ident: B123 article-title: Fraction and mobility of antimony and arsenic in three polluted soils: a comparison of single extraction and sequential extraction publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.09.089 – start-page: 1144 year: 2006 ident: B48 article-title: Nutrient deficiency and toxicity symptoms publication-title: Encyclopedia. Soil Sci. – volume: 28 start-page: 341 year: 2012 ident: B61 article-title: Silicon enhances resistance to antimony toxicity in the low-silica rice mutant, lsi1 publication-title: Chem. Ecol. doi: 10.1080/02757540.2012.656609 – volume: 72 start-page: 49 year: 2012 ident: B40 article-title: Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of binding data for homologous compounds publication-title: Geochemistry doi: 10.1016/j.chemer.2012.01.006 – volume: 31 year: 2017 ident: B101 article-title: Effects of antimony stress on the biomass, photosynthetic characteristics and antimony accumulation of maize publication-title: J. Nucl. Agric. Sci. – start-page: 261 year: 2020 ident: B121 article-title: Biotechnology for soil decontamination: opportunity, challenges, and prospects for pesticide biodegradation publication-title: Bio-based. materials. biotechnologies. eco-efficient. construction. doi: 10.1016/B978-0-12-819481-2.00013-1 – volume: 2015 year: 2015 ident: B147 article-title: Bioaccumulation of antimony and arsenic in vegetables and health risk assessment in the superlarge antimony-mining area, China publication-title: J. analytical Methods Chem. doi: 10.1155/2015/909724 – volume: 40 start-page: 1327 year: 2021 ident: B78 article-title: Exogenous salicylic acid alleviates the antimony (Sb) toxicity in rice (Oryza sativa l.) seedlings publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-020-10192-3 – volume: 669 start-page: 421 year: 2019 ident: B81 article-title: Uptake, translocation and phytotoxicity of antimonite in wheat (Triticum aestivum) publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2019.03.145 – volume: 175 start-page: 181 year: 2006 ident: B116 article-title: Levels of arsenic and antimony in water and sediment from prestea, a gold mining town in Ghana and its environs publication-title: Water. Air. Soil pollut. doi: 10.1007/s11270-006-9127-9 – volume: 262 start-page: 563 year: 2015 ident: B26 article-title: Integrated perspectives of a greenhouse study to upgrade an antimony and arsenic mine soil–potential of enhanced phytotechnologies publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.09.021 – volume: 52 start-page: 8693 year: 2018 ident: B73 article-title: Bioreduction of antimonate by anaerobic methane oxidation in a membrane biofilm batch reactor publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02035 – volume: 584 start-page: 982 year: 2017 ident: B128 article-title: Field-portable-XRF reveals the ubiquity of antimony in plastic consumer products publication-title: Sci. total Environ. doi: 10.1016/j.scitotenv.2017.01.149 – volume: 23 start-page: 12414 year: 2016 ident: B113 article-title: The impact of Ni on the physiology of a Mediterranean Ni-hyperaccumulating plant publication-title: Environ. Sci. pollut. Res. doi: 10.1007/s11356-016-6461-3 – volume: 231 start-page: 1322 year: 2017 ident: B67 article-title: Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.08.105 – volume: 191 start-page: 1 year: 2019 ident: B75 article-title: Antimony in soils of SW Poland–an overview of potentially enriched sites publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-019-7214-9 – volume: 25 start-page: 124 year: 2015 ident: B143 article-title: Effect of antimony on physiological responses of green Chinese cabbage and enzyme activities of allitic udic ferrisols publication-title: Pedosphere doi: 10.1016/S1002-0160(14)60082-5 – volume: 18 start-page: 1 year: 2020 ident: B107 article-title: A REview on aluminum toxicity and quantitative trait loci mapping in rice (Oryza sativa l) publication-title: Appl. Ecologyand. Environ. Res. doi: 10.15666/aeer/1803_39513964 – volume: 181 start-page: 179 year: 2015 ident: B19 article-title: Electrokinetic amendment in phytoremediation of mixed contaminated soil publication-title: Electrochimica. Acta doi: 10.1016/j.electacta.2015.01.025 – volume: 236 start-page: 124353 year: 2019 ident: B58 article-title: Metal oxyanion removal from wastewater using manganese-oxidizing aerobic granular sludge publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124353 – volume: 19 start-page: 502 year: 2012 ident: B119 article-title: Uptake of different forms of antimony by wheat and rye seedlings publication-title: Environ. Sci. pollut. Res. doi: 10.1007/s11356-011-0589-y – volume: 529 start-page: 213 year: 2015 ident: B80 article-title: Mobility of antimony, arsenic and lead at a former antimony mine, glendinning, Scotland publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2015.04.039 – volume: 7 start-page: 548 year: 2013 ident: B47 article-title: Effect of copper and cadmium on germination and anatomical structure of leaf and root seedling in maize (Zea mays l) publication-title: Aust. J. Basic. Appl. Sci. – volume: 610 start-page: 167 year: 2018 ident: B133 article-title: Calculation and application of Sb toxicity coefficient for potential ecological risk assessment publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2017.07.268 – volume: 409 start-page: 3344 year: 2011 ident: B139 article-title: Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world's largest antimony mine area publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2011.05.033 – volume: 26 start-page: 1 year: 2019 ident: B14 article-title: Leaching of heavy metals in soils conditioned with biosolids from sewage sludge publication-title: Floresta. e Ambiente. doi: 10.1590/2179-8087.039918 – volume: 97 start-page: 38 year: 2011 ident: B38 article-title: Simultaneous hyperaccumulation of arsenic and antimony in Cretan brake fern: evidence of plant uptake and subcellular distributions publication-title: Microchemical. J. doi: 10.1016/j.microc.2010.05.010 – volume: 201 start-page: 150 year: 2015 ident: B144 article-title: Comparative proteomic analysis in miscanthus sinensis exposed to antimony stress publication-title: Environ. pollut. doi: 10.1016/j.envpol.2015.03.004 – volume: 27 start-page: 598 year: 2012 ident: B60 article-title: Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western carpathians, Slovakia publication-title: Appl. Geochemistry. doi: 10.1016/j.apgeochem.2011.12.005 – volume: 49 start-page: 12158 year: 2021 ident: B108 article-title: QTL underlying iron toxicity tolerance at seedling stage in backcross recombinant inbred lines (BRILs) population of rice using high density genetic map publication-title: NOTULAE. BOTANICAE. HORTI. AGROBOTANICI. CLUJ-NAPOCA. doi: 10.15835/nbha49112149 – volume: 307 start-page: 336 year: 2016 ident: B92 article-title: Antimony (Sb) and lead (Pb) in contaminated shooting range soils: Sb and Pb mobility and immobilization by iron based sorbents, a field study publication-title: J. Hazardous. Materials. doi: 10.1016/j.jhazmat.2016.01.005 – volume: 6 start-page: 2705 year: 2006 ident: B45 article-title: Arsenic and antimony in drinking water in kohsorkh area, northeast Iran possible rosks for the public health publication-title: J. Appl. Sci doi: 10.3923/jas.2006.2705.2714 – start-page: 275 year: 2020 ident: B82 article-title: Antimony and plants: Accumulation, toxic effects, and plants’ defense systems publication-title: Metalloids. Adv. Future Prospects. doi: 10.1002/9781119487210.ch14 – volume: 178 start-page: 513 year: 2017 ident: B118 article-title: Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.03.074 – volume: 544 start-page: 391 year: 2016 ident: B41 article-title: Evaluation of atmospheric inputs as possible sources of antimony in pregnant women from urban areas publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2015.11.095 – volume: 95 start-page: 433 year: 2014 ident: B1 article-title: Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.09.077 – volume: 25 start-page: 1388 year: 2018 ident: B102 article-title: Effects of storage temperature and time of antimony release from PET bottles into drinking water in China publication-title: Environ. Sci. pollut. Res. doi: 10.1007/s11356-017-0598-6 – volume: 12 start-page: e0183991 year: 2017 ident: B93 article-title: Effects of antimony on redox activities and antioxidant defence systems in sunflower (Helianthus annuus l.) plants publication-title: PLoS One doi: 10.1371/journal.pone.0183991 – volume-title: Toxicological profile of antimony and compounds agency for toxic substances and disease registry U.S. public health service year: 1992 ident: B129 – volume: 141 start-page: 51 year: 2019 ident: B140 article-title: The potential role of brassinosteroids (BRs) in alleviating antimony (Sb) stress in arabidopsis thaliana publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.05.011 – volume: 261 start-page: 801 year: 2013 ident: B137 article-title: Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants publication-title: J. Hazardous. Materials. doi: 10.1016/j.jhazmat.2013.01.033 – volume: 4 year: 2013 ident: B29 article-title: Open or close the gate–stomata action under the control of phytohormones in drought stress conditions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00138 – volume: 96 start-page: 28 year: 2013 ident: B35 article-title: The uptake and detoxification of antimony by plants: a review publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2013.08.006 – volume: 32 start-page: 20 year: 2009 ident: B74 article-title: Effect of soil antimony (III) pol-lution on the growth and quality of sweet mustard publication-title: Environ. Sci. Technol. – volume: 18 start-page: 4005 year: 2020 ident: B106 article-title: Role of genetic factors in regulating cadmium uptake, transport and accumulation mechanisms and quantitative trait loci mapping in rice. a review publication-title: Appl. Ecol. Environ. Res. doi: 10.15666/aeer/1803_40054023 – volume: 176 start-page: 206 year: 2009 ident: B31 article-title: Identification of agrostis tenuis leaf proteins in response to as (V) and as (III) induced stress using a proteomics approach publication-title: Plant Sci. doi: 10.1016/j.plantsci.2008.10.008 – volume: 27 start-page: 939 year: 2017 ident: B18 article-title: Physiological characteristics of ficus tikoua under antimony stress publication-title: Trans. Nonferrous. Metals. Soc. China doi: 10.1016/S1003-6326(17)60106-7 – volume: 97 start-page: 44 year: 2011 ident: B104 article-title: Distribution and accumulation of antimony in plants in the super-large Sb deposit areas, China publication-title: Microchemical. J. doi: 10.1016/j.microc.2010.05.016 – volume-title: Background document for development of WHO guidelines for drinking-water quality year: 2003 ident: B135 article-title: Antimony in drinking-water – volume: 412 start-page: 267 year: 2017 ident: B65 article-title: A comparison of antimony accumulation and tolerance among achillea wilhelmsii, silene vulgaris and thlaspi arvense publication-title: Plant Soil doi: 10.1007/s11104-016-3064-1 – volume: 158 start-page: 96 year: 2014 ident: B10 article-title: Effects of antimony and arsenic on antioxidant enzyme activities of two steppic plant species in an old antimony mining area publication-title: Biol. Trace Element. Res. doi: 10.1007/s12011-014-9917-7 – volume: 437 start-page: 129433 year: 2022 ident: B154 article-title: Toxicity of different forms of antimony to rice plants: Photosynthetic electron transfer, gas exchange, photosynthetic efficiency, and carbon assimilation combined with metabolome analysis publication-title: J. Hazardous Materials doi: 10.1016/j.jhazmat.2022.129433 – volume: 146 start-page: 106233 year: 2021 ident: B4 article-title: Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil publication-title: Environ. Int. doi: 10.1016/j.envint.2020.106233 – volume: 180 start-page: 347 year: 2003 ident: B51 article-title: Influence of arsenic on antimony methylation by the aerobic yeast cryptococcus humicolus publication-title: Arch. Microbiol. doi: 10.1007/s00203-003-0600-1 – volume: 11 start-page: 1 year: 2021 ident: B8 article-title: Antimony induced structural and ultrastructural changes in trapa natans publication-title: Sci. Rep. doi: 10.1038/s41598-021-89865-2 – volume: 147 start-page: 167 year: 2014 ident: B24 article-title: Antimony accumulation and toxicity tolerance mechanisms in trifolium species publication-title: J. Geochemical. Explor. doi: 10.1016/j.gexplo.2014.07.002 – volume: 7 start-page: 1456 year: 2012 ident: B53 article-title: Role of proline under changing environments: a review publication-title: Plant Signaling Behav. doi: 10.4161/psb.21949 – volume: 6 start-page: 106 year: 2009 ident: B127 article-title: Antimony in the soil–plant system–a review publication-title: Environ. Chem. doi: 10.1071/EN08111 – volume: 50 start-page: 1977 year: 2009 ident: B70 article-title: Arabidopsis NIP1; 1 transports antimonite and determines antimonite sensitivity publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcp130 – volume: 93 start-page: 2269 year: 2013 ident: B96 article-title: Antimony toxicity in the lichen Xanthoria parietina (L.) th. fr publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.07.082 – volume: 6 start-page: 25 year: 2018 ident: B69 article-title: A comparison of antimony in natural water with leaching concentration from polyethylene terephthalate (PET) bottles publication-title: Int. J. Environ. pollut. Remediation. doi: 10.11159/ijepr.2018.003 – volume: 694 start-page: 133693 year: 2019 ident: B120 article-title: Can biochar and designer biochar be used to remediate per-and polyfluorinated alkyl substances (PFAS) and lead and antimony contaminated soils publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2019.133693 – start-page: 54 volume-title: J Horticult Sci year: 2014 ident: B5 article-title: Impact of antimony stress on biochemical and physiological criteria of watermelon plant (Citrullus lanatus THUNB.) – volume: 26 start-page: 307 year: 2014 ident: B85 article-title: Antimony (V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(13)60418-0 – volume: 158 start-page: 106908 year: 2022 ident: B11 article-title: Antimony contamination and its risk management in complex environmental settings: A review publication-title: Environ. Int. doi: 10.1016/j.envint.2021.106908 – volume: 277 start-page: 130252 year: 2021 ident: B90 article-title: Antimony, a pollutant of emerging concern: A review on industrial sources and remediation technologies publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130252 – volume: 475 start-page: 83 year: 2014 ident: B111 article-title: Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2013.12.103 – volume: 2011 year: 2011 ident: B138 article-title: Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation publication-title: Int. Scholarly. Res. Notices doi: 10.5402/2011/402647 – volume: 137 start-page: 474 year: 2018 ident: B152 article-title: Distribution characteristics, sources and ecological risk of antimony in the surface sediments of changjiang estuary and the adjacent sea, East China publication-title: Mar. pollut. Bull. doi: 10.1016/j.marpolbul.2018.10.049 – volume: 145 start-page: 15 year: 2007 ident: B87 article-title: Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in extremadura (Spain) publication-title: Environ. pollut. doi: 10.1016/j.envpol.2006.04.004 – volume: 234 start-page: 915 year: 2018 ident: B117 article-title: A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health publication-title: Environ. pollut. doi: 10.1016/j.envpol.2017.12.019 – volume: 21 start-page: 2102 year: 2021 ident: B125 article-title: Pseudo-total antimony content in topsoils of the Berlin metropolitan area publication-title: J. Soils. Sediments. doi: 10.1007/s11368-020-02742-9 – volume: 44 start-page: 387 year: 2006 ident: B114 article-title: High light intensity protects photosynthetic apparatus of pea plants against exposure to lead publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2006.06.003 – volume: 29 start-page: 209 year: 2007 ident: B54 article-title: Distribution and phytoavailability of antimony at an antimony mining and smelting area, hunan, China publication-title: Environ. Geochemistry. Health doi: 10.1007/s10653-006-9066-9 – volume: 42 start-page: 3911 year: 2020 ident: B84 article-title: Geogenic and anthropogenic interactions at a former Sb mine: environmental impacts of as and Sb publication-title: Environ. Geochemistry. Health doi: 10.1007/s10653-020-00652-w – volume: 771 start-page: 144643 year: 2021 ident: B21 article-title: Dynamic flow and pollution of antimony from polyethylene terephthalate (PET) fibers in China publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2020.144643 – volume: 277 start-page: 116789 year: 2021 ident: B66 article-title: Green remediation of toxic metals contaminated mining soil using bacterial consortium and brassica juncea publication-title: Environ. pollut. doi: 10.1016/j.envpol.2021.116789 – start-page: 383 year: 2021 ident: B100 article-title: Opportunities and challenges of utilizing energy crops in phytoremediation of environmental pollutants: a review publication-title: Bioremediation. Environ. Sustainability. doi: 10.1016/B978-0-12-820318-7.00017-4 – volume: 134 start-page: 105046 year: 2020 ident: B94 article-title: Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105046 – volume: 101 start-page: 133 year: 2012 ident: B124 article-title: Heavy metal toxicity and the environment publication-title: Molecular. Clin. And Environ. Toxicol. doi: 10.1007/978-3-7643-8340-4_6 – volume: 155 start-page: 409 year: 2010 ident: B33 article-title: Antimony mobility in lead smelter-polluted soils publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.027 – volume: 23 start-page: 7470 year: 2016 ident: B17 article-title: Growth, photosynthesis, and defense mechanism of antimony (Sb)-contaminated boehmeria nivea l publication-title: Environ. Sci. pollut. Res. doi: 10.1007/s11356-015-5987-0 – volume: 198 start-page: 110683 year: 2020 ident: B141 article-title: Cadmium, copper, lead and zinc accumulation in wild plant species near a lead smelter publication-title: Ecotoxicology. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110683 – volume: 39 start-page: 103 year: 2001 ident: B150 article-title: Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants publication-title: Photosynthetica doi: 10.1023/A:1012404204910 – volume: 26 start-page: 10496 year: 2019 ident: B3 article-title: Biogeochemical behavior of nickel under different abiotic stresses: toxicity and detoxification mechanisms in plants publication-title: Environ. Sci. pollut. Res. doi: 10.1007/s11356-019-04540-4 – volume: 497 start-page: 319 year: 2014 ident: B22 article-title: Antimony in the soil–water–plant system at the su suergiu abandoned mine (Sardinia, italy): Strategies to mitigate contamination publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2014.07.117 – volume: 263 start-page: 127795 year: 2021 ident: B62 article-title: Biochar-induced changes in soil microbial affect species of antimony in contaminated soils publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127795 – volume: 113 start-page: 100 year: 2012 ident: B9 article-title: Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the ribes valley (Eastern pyrenees) publication-title: J. Geochemical. Explor. doi: 10.1016/j.gexplo.2011.06.006 – volume: 45 start-page: 2609 year: 2018 ident: B76 article-title: Toxic effects of antimony on the seed germination and seedlings accumulation in Raphanus sativus l. radish and brassica napus l publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-018-4430-2 – volume-title: Australian Drinking water guidelines paper 6 national water quality management strategy year: 2011 ident: B89 – volume: 10 start-page: 396 year: 2020 ident: B52 article-title: The critical role of zinc in plants facing the drought stress publication-title: Agriculture doi: 10.3390/agriculture10090396 – volume: 130 start-page: 167 year: 2016 ident: B71 article-title: Characterization of nineteen antimony (III) complexes as potent inhibitors of photosystem II, carbonic anhydrase, and glutathione reductase publication-title: Photosynthesis. Res. doi: 10.1007/s11120-016-0236-z – volume: 269 start-page: 115905 year: 2021 ident: B63 article-title: Microplastics generated under simulated fire scenarios: Characteristics, antimony leaching, and toxicity publication-title: Environ. pollut. doi: 10.1016/j.envpol.2020.115905 – volume: 223 start-page: 545 year: 2017 ident: B55 article-title: Antimony as a global dilemma: Geochemistry, mobility, fate and transport publication-title: Environ. pollut. doi: 10.1016/j.envpol.2017.01.057 – volume: 23 start-page: 409 year: 2021 ident: B72 article-title: Antimony and arsenic contamination in water from antimonite mineralization: a case study from turhal (Tokat, northern Turkey) publication-title: Environ. Forensics. doi: 10.1080/15275922.2021.1907816 – start-page: 247 year: 2021 ident: B46 article-title: Bacteria-assisted phytoremediation of heavy metals and organic pollutants: Challenges and future prospects publication-title: Bioremediation. Environ. sustainability. doi: 10.1016/B978-0-12-820318-7.00012-5 – volume: 21 start-page: 769 year: 2005 ident: B122 article-title: Determination of chemical form of antimony in contaminated soil around a smelter using X-ray absorption fine structure publication-title: Analytical. Sci. doi: 10.2116/analsci.21.769 – volume: 100 start-page: 90 year: 2021 ident: B148 article-title: Multiple effects of nitrate amendment on the transport, transformation and bioavailability of antimony in a paddy soil-rice plant system publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2020.07.009 – volume: 13 start-page: 3 year: 2009 ident: B23 article-title: The exposure to and health effects of antimony publication-title: Indian J. Occup. Environ. Med. doi: 10.4103/0019-5278.50716 – volume: 231 start-page: 1 year: 2020 ident: B153 article-title: Biochar improves the growth performance of maize seedling in response to antimony stress publication-title: Water. Air. Soil pollut. doi: 10.1007/s11270-020-04521-1 – volume: 220 start-page: 106663 year: 2021 ident: B15 article-title: Antimony leaching from soils and mine waste from the mau due antimony mine, north-Vietnam publication-title: J. Geochemical. Explor. doi: 10.1016/j.gexplo.2020.106663 – volume: 42 start-page: 1263 year: 2007 ident: B43 article-title: Bioavailability of arsenic and antimony in soils from an abandoned mining area, glendinning (SW Scotland) publication-title: J. Environ. Sci. Health Part A doi: 10.1080/10934520701435585 – volume: 21 start-page: 4254 year: 2014 ident: B97 article-title: Environmental and health risk assessment of Pb, zn, as and Sb in soccer field soils and sediments from mine tailings: solid speciation and bioaccessibility publication-title: Environ. Sci. pollut. Res. doi: 10.1007/s11356-013-2297-2 – volume: 17 start-page: 1866 year: 2005 ident: B42 article-title: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses publication-title: Plant Cell doi: 10.1105/tpc.105.033589 – volume: 18 start-page: 7483 year: 2020 ident: B105 article-title: Iron toxicity, tolerance and quantitative trait loci mapping in rice; a REVIEW publication-title: Appl. Ecol. Environ. Res. doi: 10.15666/aeer/1806_74837498 – volume: 43 start-page: 4327 year: 2009 ident: B50 article-title: Removal of antimony (V) and antimony (III) from drinking water by coagulation–flocculation–sedimentation (CFS) publication-title: Water Res. doi: 10.1016/j.watres.2009.06.033 – volume: 68 start-page: 1889 year: 2021 ident: B109 article-title: Identification of genomic regions at seedling related traits in response to aluminium toxicity using a new high-density genetic map in rice (Oryza sativa l.) publication-title: Genet. Resour. Crop Evol. doi: 10.1007/s10722-020-01103-2 – volume: 255 start-page: 109806 year: 2020 ident: B115 article-title: Scaling up the electrokinetic-assisted phytoremediation of atrazine-polluted soils using reversal of electrode polarity: A mesocosm study publication-title: J. ofEenvironmental. Manage. doi: 10.1016/j.jenvman.2019.109806 – volume: 83 start-page: 279 year: 2014 ident: B131 article-title: Influence of silicon on maize roots exposed to antimony–growth and antioxidative response publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.08.014 – volume: 49 start-page: 1726 year: 2020 ident: B25 article-title: Diverse structure and reactivity of pentamethylcyclopentadienyl antimony (iii) cations publication-title: Dalton. Trans. doi: 10.1039/D0DT00024H – volume: 84 start-page: 61 year: 2012 ident: B110 article-title: Exposure of arabidopsis thaliana to excess zn reveals a zn-specific oxidative stress signature publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2012.05.005 – volume: 180 start-page: 388 year: 2017 ident: B134 article-title: Antimony and arsenic exhibit contrasting spatial distributions in the sediment and vegetation of a contaminated wetland publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.03.142 |
SSID | ssj0000500997 |
Score | 2.4270468 |
SecondaryResourceType | review_article |
Snippet | Antimony (Sb) is a dangerous heavy metal (HM) that poses a serious threat to the health of plants, animals, and humans. Leaching from mining wastes and... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1011945 |
SubjectTerms | antimony growth health risks photosynthesis Plant Science remediation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUq1EMvCEqrLqWVkThVisgmkzjpDSpWCAkOCCRukT2eiEWrZMUuUrn1I_qFfAkzcVhtLnDhGk8SZ2acmWePn5U6KOwYXeHSCA1jE8AaohIzisjHlNe-TDzJ1MD5RX56DWc32c3aUV9SExbogYPiDjFOS5-CNfwYGDtjE5fFiKlAE5sUHdk2x7w1MBVYvSX1MWEZk1FYeVjPZ8LOnSSCVxm5Z4NA1PH1D5LMYYnkWsyZbKnNPlnUR6GT2-oDNZ_Vx-OWE7rHHXV31f6dou4rMnRba9YSq7551NNGz2dS4fJbX5LllHrBbV7LXKAPttDzdtFXxjJWfvr3_0iHXSydYGAa0dzPbifm4ou6npxc_TmN-qMTIgRIllHtHJIH5GyNh4H1QDE5yDwmUGfGk9DkU2wBHDjMnStwXDMWxrQ2Ns9jn35VG03b0DelGXG5jGzBP0XL2Ruy_NhQnlpiCziAkYpf9Fhhzysux1vMKsYXovpKVF-J6qte9SP1a3XLPJBqvCZ8LMZZCQofdneBvaTqvaR6y0tGav_FtBWPH1kUsQ21D_wqkxrIM2NYxgxsPnjjsKWZ3nZM3EJmZqDcfY8uflef5LMlLib5ntpY3j_QD054lu5n59vPv3IC8A priority: 102 providerName: Directory of Open Access Journals |
Title | Toxic effects of antimony in plants: Reasons and remediation possibilities—A review and future prospects |
URI | https://www.proquest.com/docview/2737465776 https://pubmed.ncbi.nlm.nih.gov/PMC9643749 https://doaj.org/article/c039d34a7cf441b7a2b50cc32184a286 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEF5q64MvolXx1JYt-CSkJpvJbk4QacVaCvWh9ODewu7sxh4cyXl3hd5_70yyVxoo4kseksmvmUzm-zabb4T4WNoMXenyBA1xE8AakjEWIQk-Dbr2Y-UDDw1c_tLnE7iYFtMdsW1vFR24epTacT-pyXJ-fPdn840S_iszTqq3n-vFnIW3lWIqSqS8eCL2qDAZztPLiPZ7qW_GQ127Fa0hAa2m_XfOx48yqFSdoP8AhQ7nUD4oSmcvxPOIJuVJH_6XYic0--LpaUuIb_NK3Fy3dzOUccqGbGtJbqTYNBs5a-RizlNgvsirYAlzr2iblzxY6PtgyUW7ilNniUwnJ7L_yaUz64VIJF1l96Pm6rWYnP24_n6exM4KCQKodVI7h8EDEpijLLEeQhocFB4V1IXxgVX0Q2oBHDjUzpWY1USVMa-N1Tr1-Rux27RNeCskETJXBFvSO9MSuEOyz0zQuQ3EHR3ASKRbL1YYZce5-8W8IvrBjq_Y8RU7voqOH4lP97sses2NfxmfcmjuDVkuu1vRLn9XMfsqTPOxz8EaehYhc8YqV6SIOfNbq0o9EkfbwFaUXvzNxDahvaVTmdyALowhGzOI-OCMwy3N7KYT6matMwPjd_9x9PfiGd8VV0WlP4jd9fI2HBDcWbvDbpiAlj-n2WH3QP8FocoCtA |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxic+effects+of+antimony+in+plants%3A+Reasons+and+remediation+possibilities-A+review+and+future+prospects&rft.jtitle=Frontiers+in+plant+science&rft.au=Tang%2C+Haiying&rft.au=Meng%2C+Guiyuan&rft.au=Xiang%2C+Junqing&rft.au=Mahmood%2C+Athar&rft.date=2022-10-26&rft.issn=1664-462X&rft.eissn=1664-462X&rft.volume=13&rft.spage=1011945&rft_id=info:doi/10.3389%2Ffpls.2022.1011945&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |