Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts: A review

CO2 dry reforming of methane (DRM) not only utilized the two greenhouse gases, CO2 and CH4, but also produced synthesis gas, which could be used for Fischer-Tropsch synthesis. Besides, DRM reaction could utilize marsh gas and the gaseous products from pyrolysis of biomass, consequently increasing th...

Full description

Saved in:
Bibliographic Details
Published inFuel processing technology Vol. 169; pp. 199 - 206
Main Authors Wang, Ye, Yao, Lu, Wang, Shenghong, Mao, Dehua, Hu, Changwei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2018
Subjects
Online AccessGet full text
ISSN0378-3820
1873-7188
DOI10.1016/j.fuproc.2017.10.007

Cover

Abstract CO2 dry reforming of methane (DRM) not only utilized the two greenhouse gases, CO2 and CH4, but also produced synthesis gas, which could be used for Fischer-Tropsch synthesis. Besides, DRM reaction could utilize marsh gas and the gaseous products from pyrolysis of biomass, consequently increasing their value for businesses and reducing environment pollution, thereby providing ways for sustainable development. Nickel based catalyst was widely used in DRM reaction. This paper reviewed the recent progresses of the DRM reaction at low temperature. Suitable supports and promoters improved the catalytic performance by adjusting the interaction between nickel and the support. Besides, the temperature of calcination, the order of materials loading on support, the reduction temperature, and the nickel particle size also altered the performance of the catalysts. It was suggested that by investigating the interaction of supports, promoters with nickel, as well as their structural adjustment, the development of low temperature DRM catalysts was feasible. The scheme of CO2 dry reforming of methane. [Display omitted] •New low temperature (<600°C) DRM catalysts are important.•Alkaline earth supports enhances the catalytic performance.•Rare earth promoters contribute to the formation of new active phase.•The atomic level essence of nickel-based active phase needs more investigations.
AbstractList CO₂ dry reforming of methane (DRM) not only utilized the two greenhouse gases, CO₂ and CH₄, but also produced synthesis gas, which could be used for Fischer-Tropsch synthesis. Besides, DRM reaction could utilize marsh gas and the gaseous products from pyrolysis of biomass, consequently increasing their value for businesses and reducing environment pollution, thereby providing ways for sustainable development. Nickel based catalyst was widely used in DRM reaction. This paper reviewed the recent progresses of the DRM reaction at low temperature. Suitable supports and promoters improved the catalytic performance by adjusting the interaction between nickel and the support. Besides, the temperature of calcination, the order of materials loading on support, the reduction temperature, and the nickel particle size also altered the performance of the catalysts. It was suggested that by investigating the interaction of supports, promoters with nickel, as well as their structural adjustment, the development of low temperature DRM catalysts was feasible.
CO2 dry reforming of methane (DRM) not only utilized the two greenhouse gases, CO2 and CH4, but also produced synthesis gas, which could be used for Fischer-Tropsch synthesis. Besides, DRM reaction could utilize marsh gas and the gaseous products from pyrolysis of biomass, consequently increasing their value for businesses and reducing environment pollution, thereby providing ways for sustainable development. Nickel based catalyst was widely used in DRM reaction. This paper reviewed the recent progresses of the DRM reaction at low temperature. Suitable supports and promoters improved the catalytic performance by adjusting the interaction between nickel and the support. Besides, the temperature of calcination, the order of materials loading on support, the reduction temperature, and the nickel particle size also altered the performance of the catalysts. It was suggested that by investigating the interaction of supports, promoters with nickel, as well as their structural adjustment, the development of low temperature DRM catalysts was feasible. The scheme of CO2 dry reforming of methane. [Display omitted] •New low temperature (<600°C) DRM catalysts are important.•Alkaline earth supports enhances the catalytic performance.•Rare earth promoters contribute to the formation of new active phase.•The atomic level essence of nickel-based active phase needs more investigations.
Author Hu, Changwei
Wang, Ye
Wang, Shenghong
Yao, Lu
Mao, Dehua
Author_xml – sequence: 1
  givenname: Ye
  surname: Wang
  fullname: Wang, Ye
  organization: College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
– sequence: 2
  givenname: Lu
  surname: Yao
  fullname: Yao, Lu
  organization: Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
– sequence: 3
  givenname: Shenghong
  surname: Wang
  fullname: Wang, Shenghong
  organization: College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
– sequence: 4
  givenname: Dehua
  surname: Mao
  fullname: Mao, Dehua
  organization: Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
– sequence: 5
  givenname: Changwei
  surname: Hu
  fullname: Hu, Changwei
  email: changweihu@scu.edu.cn
  organization: College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
BookMark eNqFkL1OwzAURi1UJNrCGzB4ZEmwnTR2OyBVFX9SRRdgtVznGlwlcbFdqr49rtKJASbrXn3nyt8ZoUHnOkDompKcElrdbnKz23qnc0YoT6ucEH6GhlTwIuNUiAEakoKLrBCMXKBRCBtCyGQy5UP0vnT7LEK7Ba_izgPWKqrmEK3GixXDtT9gD8b51nYf2BncQvxUHWDX4RebrVWA-oSEGGZ4ntLfFvaX6NyoJsDV6R2jt4f718VTtlw9Pi_my0yXJYuZWVeGca6LCdfTKUBV1YVShk-hpkowVoJSIs1lJTSfrAUzjFZCaTAKagLrYoxu-rup_tcOQpStDRqaJv3R7YJkx6KcJx8pWvZR7V0IqZTcetsqf5CUyKNGuZG9RnnUeNz22OwXpm1U0bouemWb_-C7HobkIHnxMmgLnYbaetBR1s7-feAHWvuUOA
CitedBy_id crossref_primary_10_1016_j_ijhydene_2022_08_248
crossref_primary_10_1021_acscatal_2c06412
crossref_primary_10_3390_catal14080494
crossref_primary_10_1016_j_biteb_2022_101104
crossref_primary_10_1016_j_ccst_2022_100068
crossref_primary_10_1016_j_mcat_2024_114398
crossref_primary_10_3390_molecules24030526
crossref_primary_10_1016_j_psep_2021_10_051
crossref_primary_10_1021_acsenergylett_0c01635
crossref_primary_10_1515_ijcre_2021_0006
crossref_primary_10_1016_j_apcatb_2024_124722
crossref_primary_10_1016_j_fuel_2024_130998
crossref_primary_10_1016_j_ijhydene_2020_04_233
crossref_primary_10_3390_cryst12050713
crossref_primary_10_1002_cctc_202300245
crossref_primary_10_1016_j_ceramint_2023_05_057
crossref_primary_10_1021_acs_energyfuels_9b02236
crossref_primary_10_1021_acsanm_0c01724
crossref_primary_10_1002_asia_202101428
crossref_primary_10_1016_j_apcata_2022_118605
crossref_primary_10_1016_j_jssc_2022_123267
crossref_primary_10_1039_D0CC02284E
crossref_primary_10_1016_j_fuproc_2018_03_032
crossref_primary_10_1002_ese3_1021
crossref_primary_10_1016_j_ijhydene_2021_03_150
crossref_primary_10_1016_j_enconman_2020_112950
crossref_primary_10_1016_j_fuel_2019_03_153
crossref_primary_10_1007_s10311_020_00968_0
crossref_primary_10_1039_D4TA04069D
crossref_primary_10_1016_j_apcatb_2018_02_041
crossref_primary_10_1016_j_joei_2024_101901
crossref_primary_10_1039_D3CY00600J
crossref_primary_10_1016_j_ijhydene_2024_01_250
crossref_primary_10_1021_acs_iecr_0c02444
crossref_primary_10_1002_cey2_127
crossref_primary_10_1016_j_cej_2024_148940
crossref_primary_10_1627_jpi_67_217
crossref_primary_10_1016_j_apcatb_2023_123243
crossref_primary_10_1038_s42004_023_01018_w
crossref_primary_10_1007_s10562_019_02879_4
crossref_primary_10_1016_j_fuel_2024_132385
crossref_primary_10_1002_ceat_201900514
crossref_primary_10_1016_j_ccst_2024_100286
crossref_primary_10_1016_j_ijhydene_2021_03_246
crossref_primary_10_1016_j_apcatb_2021_120779
crossref_primary_10_1016_j_nxener_2024_100199
crossref_primary_10_1016_j_jclepro_2018_07_228
crossref_primary_10_3390_en14102928
crossref_primary_10_1016_j_energy_2025_134917
crossref_primary_10_1016_j_mcat_2021_111623
crossref_primary_10_1016_j_ijhydene_2019_09_014
crossref_primary_10_1021_acs_iecr_8b04183
crossref_primary_10_1039_D0CS01262A
crossref_primary_10_3390_fuels5040033
crossref_primary_10_1016_j_ijhydene_2022_06_185
crossref_primary_10_3390_app13021169
crossref_primary_10_1016_j_fuel_2023_127409
crossref_primary_10_1021_acsami_2c12123
crossref_primary_10_1016_j_apsusc_2018_05_177
crossref_primary_10_1039_C9TA03584B
crossref_primary_10_1016_j_ijhydene_2019_06_167
crossref_primary_10_1016_j_jre_2020_11_020
crossref_primary_10_1016_j_apcatb_2018_10_011
crossref_primary_10_1016_j_cplett_2019_137027
crossref_primary_10_1016_j_ijhydene_2024_01_004
crossref_primary_10_1039_D0GC01608J
crossref_primary_10_3390_molecules29194597
crossref_primary_10_1002_cjce_23992
crossref_primary_10_1016_j_cej_2020_125393
crossref_primary_10_1016_j_jcat_2019_04_017
crossref_primary_10_1007_s11244_022_01621_6
crossref_primary_10_1016_j_apcata_2019_04_023
crossref_primary_10_1016_j_cattod_2021_03_004
crossref_primary_10_1016_j_rser_2023_113747
crossref_primary_10_1016_j_cattod_2022_05_014
crossref_primary_10_1016_j_ijhydene_2019_12_207
crossref_primary_10_1016_j_ijhydene_2018_12_145
crossref_primary_10_1016_j_renene_2023_119307
crossref_primary_10_1016_j_arabjc_2020_04_012
crossref_primary_10_1039_D1CY02281D
crossref_primary_10_1002_ente_201900555
crossref_primary_10_3389_fchem_2021_736801
crossref_primary_10_1016_j_apsusc_2023_158958
crossref_primary_10_1016_j_seppur_2023_125868
crossref_primary_10_1016_j_ijhydene_2018_07_104
crossref_primary_10_1016_j_catcom_2020_105953
crossref_primary_10_1016_j_jcis_2021_01_100
crossref_primary_10_1016_j_jcou_2018_03_012
crossref_primary_10_1021_acs_iecr_1c04010
crossref_primary_10_1016_j_aej_2023_05_040
crossref_primary_10_18321_ectj691
crossref_primary_10_1002_advs_202203221
crossref_primary_10_1016_j_fuel_2018_01_052
crossref_primary_10_1016_j_fuel_2022_124032
crossref_primary_10_1021_acs_jpcc_1c07071
crossref_primary_10_1002_smll_202408678
crossref_primary_10_1021_acsanm_0c03140
crossref_primary_10_1016_j_fuel_2021_120182
crossref_primary_10_1021_acs_iecr_0c01204
crossref_primary_10_2109_jcersj2_25025
crossref_primary_10_1039_C9SE00206E
crossref_primary_10_1039_D0NR04644B
crossref_primary_10_3390_molecules27020356
crossref_primary_10_3390_en13133365
crossref_primary_10_1016_j_jcou_2019_01_006
crossref_primary_10_1002_ange_202101335
crossref_primary_10_1016_j_apcatb_2021_120321
crossref_primary_10_1016_j_cattod_2022_08_036
crossref_primary_10_1016_j_ijhydene_2020_03_176
crossref_primary_10_1016_j_rineng_2022_100630
crossref_primary_10_1016_j_fuel_2020_117849
crossref_primary_10_1016_j_ijhydene_2021_07_097
crossref_primary_10_1016_j_ijhydene_2018_09_122
crossref_primary_10_1016_j_apcatb_2020_119734
crossref_primary_10_1039_D4SE00529E
crossref_primary_10_1016_j_apt_2019_09_039
crossref_primary_10_1016_j_indcrop_2022_115844
crossref_primary_10_1016_j_jre_2018_10_016
crossref_primary_10_1016_j_apsusc_2021_152310
crossref_primary_10_1016_j_jcou_2024_102734
crossref_primary_10_1007_s12039_021_01886_6
crossref_primary_10_1016_j_pecs_2022_101008
crossref_primary_10_1007_s10971_024_06336_6
crossref_primary_10_1016_j_jcou_2021_101447
crossref_primary_10_3390_nano12091556
crossref_primary_10_1016_j_fuproc_2022_107615
crossref_primary_10_1021_acsomega_1c06182
crossref_primary_10_1016_j_fuel_2022_127082
crossref_primary_10_1039_D0NR01960G
crossref_primary_10_1016_j_catcom_2018_11_006
crossref_primary_10_1016_j_fuproc_2022_107617
crossref_primary_10_1016_j_ijhydene_2019_05_113
crossref_primary_10_1016_j_ijhydene_2022_11_205
crossref_primary_10_1016_j_cej_2022_137860
crossref_primary_10_1016_j_cej_2020_125519
crossref_primary_10_1016_j_ijhydene_2020_10_164
crossref_primary_10_1016_j_ijhydene_2021_05_049
crossref_primary_10_1007_s40242_021_1281_5
crossref_primary_10_1016_j_joule_2019_06_023
crossref_primary_10_1016_j_jcou_2021_101696
crossref_primary_10_1016_j_joei_2023_101332
crossref_primary_10_1016_j_fuel_2024_131386
crossref_primary_10_3390_en14102973
crossref_primary_10_1016_j_jece_2024_113873
crossref_primary_10_1016_j_fuproc_2018_03_011
crossref_primary_10_1016_j_ijhydene_2018_01_173
crossref_primary_10_1021_acs_jpcc_4c06174
crossref_primary_10_1016_j_energy_2019_05_083
crossref_primary_10_1007_s10311_020_01055_0
crossref_primary_10_3389_fchem_2020_581923
crossref_primary_10_1038_s41598_022_09291_w
crossref_primary_10_1021_acs_iecr_9b03676
crossref_primary_10_1002_er_7923
crossref_primary_10_1002_anie_202101335
crossref_primary_10_1021_acs_iecr_0c01416
crossref_primary_10_7498_aps_70_20201700
crossref_primary_10_1002_er_5741
crossref_primary_10_1016_j_cattod_2020_07_030
crossref_primary_10_1016_j_cep_2023_109575
crossref_primary_10_1016_j_renene_2022_10_046
crossref_primary_10_1016_j_ijhydene_2024_02_220
crossref_primary_10_1016_j_ijhydene_2019_12_053
crossref_primary_10_1016_j_cej_2024_148899
crossref_primary_10_1515_ijcre_2020_0111
crossref_primary_10_1007_s11144_021_02043_3
crossref_primary_10_54175_hsustain3020013
crossref_primary_10_1021_acsengineeringau_3c00025
crossref_primary_10_1016_j_energy_2022_125781
crossref_primary_10_1016_j_apcatb_2021_119922
crossref_primary_10_1016_j_fuel_2019_05_145
crossref_primary_10_1016_j_fuel_2021_122441
crossref_primary_10_3390_catal14050316
crossref_primary_10_1016_j_cej_2022_139703
crossref_primary_10_1016_j_energy_2022_124205
crossref_primary_10_1021_acsomega_1c03174
crossref_primary_10_1021_acscatal_9b05517
crossref_primary_10_1016_j_ijhydene_2019_12_059
crossref_primary_10_1016_j_ijhydene_2023_12_117
crossref_primary_10_1016_j_nanoen_2021_106379
crossref_primary_10_1016_j_fuproc_2018_12_018
crossref_primary_10_18178_JOCET_2018_6_4_480
crossref_primary_10_1039_D1CP04048K
crossref_primary_10_1016_j_ijhydene_2020_03_012
crossref_primary_10_3390_inorganics6020039
crossref_primary_10_1002_slct_202102877
crossref_primary_10_1016_j_rser_2022_112774
crossref_primary_10_1021_acssuschemeng_8b04727
crossref_primary_10_1039_D4RA06740A
crossref_primary_10_1039_D4TA01823K
crossref_primary_10_1016_j_cej_2025_160707
crossref_primary_10_1007_s13203_018_0214_9
crossref_primary_10_1021_acs_energyfuels_0c01678
crossref_primary_10_1021_acscatal_9b04555
crossref_primary_10_1021_acs_energyfuels_1c00219
crossref_primary_10_1016_j_rser_2020_110363
crossref_primary_10_1016_j_rser_2019_03_054
crossref_primary_10_1002_smll_202310926
crossref_primary_10_3389_fenrg_2023_1150000
crossref_primary_10_3390_en15186774
crossref_primary_10_1016_j_enconman_2018_12_112
crossref_primary_10_1021_acscatal_2c04619
crossref_primary_10_3390_catal11081003
crossref_primary_10_3390_reactions3030025
crossref_primary_10_1016_j_ijhydene_2021_11_086
crossref_primary_10_1021_acsami_1c02180
crossref_primary_10_1016_j_jcou_2021_101647
crossref_primary_10_1016_j_ijhydene_2020_08_067
crossref_primary_10_3390_catal11020175
crossref_primary_10_1016_j_cej_2021_130864
crossref_primary_10_1039_D3CP04626E
crossref_primary_10_3390_catal10010038
crossref_primary_10_1016_j_jechem_2024_04_022
crossref_primary_10_1016_j_fuproc_2018_05_030
crossref_primary_10_3390_en13225956
crossref_primary_10_1021_acs_iecr_4c04860
crossref_primary_10_1016_j_energy_2025_134516
crossref_primary_10_3389_fchem_2020_00269
crossref_primary_10_3390_nano11112880
crossref_primary_10_1016_j_ijhydene_2020_02_200
crossref_primary_10_3390_catal15020102
crossref_primary_10_1016_j_ijhydene_2020_10_240
crossref_primary_10_1016_j_fuproc_2021_106837
crossref_primary_10_3390_catal10091043
crossref_primary_10_1016_j_cattod_2018_11_064
crossref_primary_10_1016_j_cej_2025_159939
crossref_primary_10_1016_j_jcou_2023_102427
crossref_primary_10_1016_j_cej_2023_148476
crossref_primary_10_1039_D1CC01551F
crossref_primary_10_3390_catal15010040
crossref_primary_10_3390_methane1030012
crossref_primary_10_1016_j_ceramint_2021_08_220
crossref_primary_10_1016_j_ijhydene_2023_05_281
crossref_primary_10_1002_ange_202112835
crossref_primary_10_1016_j_ijhydene_2019_03_265
crossref_primary_10_1016_j_apcata_2021_118120
crossref_primary_10_1016_j_apsusc_2022_153128
crossref_primary_10_1016_j_jcou_2022_102115
crossref_primary_10_1002_ppsc_201800426
crossref_primary_10_1016_j_apcatb_2022_121809
crossref_primary_10_1093_chemle_upae055
crossref_primary_10_1002_jctb_6451
crossref_primary_10_1016_j_seppur_2022_122245
crossref_primary_10_1021_acs_iecr_3c04276
crossref_primary_10_1016_j_rineng_2025_104328
crossref_primary_10_1021_acscatal_1c02200
crossref_primary_10_1016_j_fuel_2024_132619
crossref_primary_10_3390_catal11040446
crossref_primary_10_1039_C9RA03679B
crossref_primary_10_4191_kcers_2019_56_6_06
crossref_primary_10_1016_j_ijhydene_2020_09_129
crossref_primary_10_3390_catal9121055
crossref_primary_10_1007_s12274_022_4180_2
crossref_primary_10_18321_ectj978
crossref_primary_10_1016_j_fuproc_2020_106335
crossref_primary_10_1002_adfm_202111875
crossref_primary_10_1016_j_jece_2018_07_032
crossref_primary_10_1007_s11356_024_34021_2
crossref_primary_10_1016_j_jechem_2021_05_017
crossref_primary_10_1016_j_mcat_2021_111498
crossref_primary_10_1016_j_ijhydene_2025_01_193
crossref_primary_10_1021_acsami_3c09349
crossref_primary_10_1016_j_apcata_2020_117439
crossref_primary_10_1002_ese3_1586
crossref_primary_10_1016_j_enconman_2018_05_083
crossref_primary_10_1016_j_ijhydene_2021_03_190
crossref_primary_10_1002_anie_202112835
crossref_primary_10_1016_j_cscee_2024_101078
crossref_primary_10_1016_j_jece_2021_105173
crossref_primary_10_1016_j_ijhydene_2022_07_104
crossref_primary_10_3390_catal11010067
crossref_primary_10_1016_j_mencom_2019_01_006
crossref_primary_10_1002_anie_201911195
crossref_primary_10_1002_cjce_24876
crossref_primary_10_1016_j_jcou_2020_101328
crossref_primary_10_1016_j_ces_2024_119914
crossref_primary_10_1021_acs_energyfuels_3c03421
crossref_primary_10_1016_j_apcatb_2018_10_048
crossref_primary_10_1016_j_ijhydene_2022_11_287
crossref_primary_10_3390_catal13040686
crossref_primary_10_4028_www_scientific_net_MSF_1016_1585
crossref_primary_10_1007_s10934_022_01386_z
crossref_primary_10_1016_j_jcou_2021_101728
crossref_primary_10_1016_j_jece_2021_106150
crossref_primary_10_1002_adma_202003999
crossref_primary_10_1016_j_apenergy_2024_123011
crossref_primary_10_3390_catal10040379
crossref_primary_10_1016_j_fuproc_2019_02_013
crossref_primary_10_1016_j_ces_2023_119165
crossref_primary_10_1002_smll_202305258
crossref_primary_10_1016_j_ces_2022_118315
crossref_primary_10_1016_j_cherd_2023_04_020
crossref_primary_10_1515_ijcre_2022_0079
crossref_primary_10_1002_ente_201900521
crossref_primary_10_1016_j_ijhydene_2021_12_214
crossref_primary_10_1016_j_ijhydene_2025_03_217
crossref_primary_10_1002_ente_201900750
crossref_primary_10_1002_ange_201911195
crossref_primary_10_1039_D0CC00729C
crossref_primary_10_2139_ssrn_3972774
crossref_primary_10_1016_j_apcatb_2022_121583
crossref_primary_10_1016_j_catcom_2020_106181
crossref_primary_10_1016_j_ijhydene_2018_08_181
crossref_primary_10_1016_j_fuel_2023_130166
crossref_primary_10_1016_j_isci_2020_101082
Cites_doi 10.1016/S0920-5861(98)00465-9
10.1007/BF00807002
10.1016/j.ijhydene.2016.12.121
10.1006/jcat.1993.1136
10.1016/j.fuproc.2015.12.009
10.1016/j.energy.2015.08.086
10.1016/S0926-860X(02)00493-3
10.1016/j.apcata.2008.04.012
10.1016/0926-860X(95)00238-3
10.1016/j.apcatb.2015.05.021
10.1021/ie010665p
10.1039/C6RA27266E
10.3390/catal3020563
10.1016/j.apcatb.2015.07.039
10.1016/S0167-2991(97)80381-3
10.1016/j.cej.2014.11.143
10.1016/j.biombioe.2011.02.033
10.1021/ie980489t
10.1016/S0926-860X(01)00974-7
10.1016/j.catcom.2014.07.022
10.1021/ef7002409
10.1002/cctc.201402673
10.1002/chin.200449267
10.1016/j.ijhydene.2017.03.208
10.1016/j.mcat.2017.01.012
10.1016/j.jcou.2016.12.014
10.1016/j.jcat.2012.09.011
10.1021/la503340s
10.1021/ef200827p
10.1021/jf052858j
10.1016/j.ijhydene.2009.12.073
10.1016/j.fuel.2009.05.029
10.1016/j.apcata.2015.07.005
10.1016/j.cej.2012.11.034
10.1016/j.cattod.2014.06.011
10.1016/j.ijhydene.2012.04.059
10.1016/j.apcata.2016.04.014
10.1016/j.apcatb.2016.05.001
10.1016/j.crci.2015.04.005
10.1016/j.crci.2015.01.004
10.1007/BF00816306
10.1016/j.apcatb.2016.01.067
10.1002/cssc.201500390
10.1016/0009-2509(94)87013-6
10.1016/j.apcata.2014.10.026
10.1016/j.ijhydene.2011.08.022
10.1016/j.apcatb.2012.06.006
10.1016/j.ijhydene.2012.10.063
10.1021/jp401855x
10.1016/j.apcatb.2011.09.035
10.1016/j.apcatb.2012.09.052
10.1016/0926-860X(96)00065-8
10.1039/c3cy00869j
10.1016/j.ijhydene.2016.02.074
10.1016/j.mcat.2017.02.019
10.1016/j.jaap.2014.12.011
10.1023/A:1006722207492
10.1021/cs401027p
10.1002/cphc.200400364
10.1021/ie970246l
10.1021/jp036985z
10.1016/S0167-2991(97)80385-0
10.1016/j.fuel.2016.05.073
10.1016/j.jcou.2016.05.007
10.1002/cctc.201500787
10.1038/417507a
10.1006/jcat.1996.0005
10.3390/catal7010032
10.1016/j.cattod.2011.03.080
10.1016/j.fuel.2008.11.033
10.1006/jcat.2000.2978
10.1016/j.fuproc.2016.11.013
10.1016/j.cattod.2015.03.017
10.1016/S0926-860X(99)00504-9
10.1016/j.fuproc.2010.11.027
10.1039/c39950000071
10.1023/A:1019121429843
10.1016/S0926-860X(02)00230-2
10.1016/j.catcom.2017.08.027
10.1021/ac00094a024
10.1016/j.rser.2015.03.020
10.1016/j.ijhydene.2015.08.045
10.1016/j.rser.2016.04.007
10.1016/j.ijhydene.2015.07.076
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.fuproc.2017.10.007
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7188
EndPage 206
ExternalDocumentID 10_1016_j_fuproc_2017_10_007
S0378382017310184
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSK
SSR
SSZ
T5K
TWZ
UHS
WUQ
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
GROUPED_DOAJ
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c442t-fb6f277c357c99ee66d3aaf79ed1a8224eaa8af7468c75b82f2168acefaed0eb3
IEDL.DBID AIKHN
ISSN 0378-3820
IngestDate Thu Sep 04 19:34:47 EDT 2025
Tue Jul 01 03:04:34 EDT 2025
Thu Apr 24 23:04:23 EDT 2025
Fri Feb 23 02:46:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CO2 dry reforming of methane
Low-temperature activity
Reduction temperature
Active site
Ni-based catalyst
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-fb6f277c357c99ee66d3aaf79ed1a8224eaa8af7468c75b82f2168acefaed0eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000577007
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_2000577007
crossref_primary_10_1016_j_fuproc_2017_10_007
crossref_citationtrail_10_1016_j_fuproc_2017_10_007
elsevier_sciencedirect_doi_10_1016_j_fuproc_2017_10_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationTitle Fuel processing technology
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gao, Liu, Hidajat, Kawi (bb0195) 2016; 7
Wei, Xu, Li, Cheng, Zhu (bb0410) 2000; 196
Osaki, Horiuchi, Suzuki, Mori (bb0325) 1995; 35
Ryckebosch, Drouillon, Vervaeren (bb0045) 2011; 35
Tomiyama, Takahashi, Sato (bb0110) 2003; 241
Angeli, Turchetti, Monteleone, Lemonidou (bb0130) 2015; 181
Bradford, Vannice (bb0255) 1999; 50
He, Jin, Wang, Zhao, Zhu, Hu (bb0030) 2011; 25
Labinger, Bercaw (bb0095) 2002; 417
Oemar, Hidajat, Kawi (bb0165) 2015; 40
Sokolov, Kondratenko, Pohl, Barkschat, Rodemerck (bb0345) 2012; s113–114
Baudouin, Rodemerck, Krumeich, Mallmann, Szeto, Ménard, Veyre, Candy, Webb, Thieuleux (bb0005) 2013; 297
Wei, Iglesia (bb0235) 2004; 108
lI, Kathiraser, Ashok, Oemar, Kawi (bb0210) 2014; 30
Ovanesyan, Dubkov, Pyalling, Shteinman (bb0055) 2000; 246
Bian, Kawi (bb0140) 2017; 18
Yao, Wang, Shi, Xu, Shen, Hu (bb0375) 2016
Ogasa, Sato, Koide, Matusita (bb0050) 2004
Park, Ahn, Sim, Seo, Han, Shin (bb0330) 2014; 56
Al-Fatesh, Amin, Ibrahim, Khan, Soliman, Al-Otaibi, Fakeeha (bb0120) 2016; 6
Pengpanich, Meeyoo, Rirksomboon, Bunyakiat (bb0335) 2002; 234
Grossi, Jardim, Araújo, Lago, Silva (bb0415) 2010; 89
Aresta, Dibenedetto, Quaranta (bb0105) 2016; 76
Gao, Ashok, Widjaja, Hidajat, Kawi (bb0020) 2015; 503
Kathiraser, Oemar, Saw, Li, Kawi (bb0220) 2015; 278
Youngjun, Youngsuk, Kang (bb0040) 2015; 91
Unni Olsbye, Thomas Wurzel (bb0085) 1997; 36
Mo, Leong, Kawi (bb0205) 2014; 4
Barroso-Quiroga, Castro-Luna (bb0395) 2010; 35
Beneroso, Bermúdez, Arenillas, Menéndez (bb0025) 2015; 111
Siengchum (bb0060) 2012
Chung, Chang (bb0470) 2016; 62
Hawthorne, Miller (bb0075) 1994; 66
Erdőhelyi, Fodor, Solymosi (bb0280) 1997; 107
Zhang, Tsipouriari, Efstathiou, Verykios (bb0370) 1996; 158
Li, Hu, Yang, Wang, He (bb0310) 2012; s413–414
Li, Li, Bian, Kathiraser, Kawi (bb0225) 2016; 188
Trovarelli, Fornasiero (bb0405) 2013
Slagtern, Olsbye, Blom, Dahl (bb0390) 1997; 107
Valin, Cances, Castelli, Thiery, Dufour, Boissonnet, Spindler (bb0035) 2009; 88
Yao, Shi, Xu, Shen, Hu (bb0100) 2016; 144
Dębek, Ribeiro, Fernandes, Motak (bb0260) 2015; 18
Kathiraser, Thitsartarn, Sutthiumporn, Kawi (bb0160) 2013; 117
Bradford, Vannice (bb0250) 1996; 142
Yabe, Mitarai, Oshima, Ogo, Sekine (bb0465) 2017; 158
Tu, Whitehead (bb0385) 2012; 125
Gao, Hidajat, Kawi (bb0185) 2016; 15
Zhang, Verykios (bb0360) 1995; 1
Kaydouh, Hassan, Davidson, Casale, Zakhem, Massiani (bb0295) 2015; 18
Mette, Kühl, Tarasov, Düdder, Kähler, Muhler, Schlögl, Behrens (bb0125) 2015; 242
Liu, Wierzbicki, Debek, Motak, Grzybek, Costa, Gálvez (bb0315) 2016; 182
Chang, Park, Yoo, Park (bb0435) 2000; 195
Dębek, Motak, Grzybek, Galvez, Costa, Short Review (bb0015) 2017
Sutthiumporn, Kawi (bb0180) 2011; 36
Kawi, Kathiraser, Ni, Oemar, Li, Saw (bb0215) 2015; 8
Bachiller-Baeza, Mateos-Pedrero, Soria, Guerrero-Ruiz, Rodemerck, Rodríguez-Ramos (bb0245) 2013; 129
Erdohelyi, Cserenyi, Solymosi (bb0275) 1993; 141
Dębek, Motak, Galvez, Costa, Grzybek (bb0480) 2017
Dębek, Motak, Galvez, Grzybek, Costa (bb0425) 2017
Gao, Tan, Hidajat, Kawi (bb0170) 2016
Sovová, Kučera, Jež (bb0080) 1994; 49
Snoeck, Froment, Fowles (bb0440) 2002; 41
Li, Kathiraser, Kawi (bb0190) 2015; 7
Maneerung, Hidajat, Kawi (bb0145) 2015; 40
Dębek, Galvez, Launay, Motak, Grzybek, Costa (bb0265) 2016; 41
Özkara-Aydınoğlu, Aksoylu (bb0380) 2013; s215–216
Wu, Parola, Pantaleo, Puleo, Venezia, Liotta (bb0090) 2013; 3
Wan, Ramli, Hisham, Yarmo (bb0350) 2015; 47
Wang, Hu, Dong, Parkinson, Li (bb0355) 2016
Nikoo, Amin (bb0230) 2011; 92
Sigl, Bradford, Knözinger (bb0340) 1999; 8
Elsayed, Roberts, Joseph, Kuhn (bb0010) 2015; 179
Xu, Xiao, Zhang, Sun, Zhu (bb0475) 2017; 432
Lemonidou, Vasalos (bb0305) 2002; 228
Hu, Ruckenstein (bb0400) 2004; 35
Yao, Galvez, Hu, Da Costa (bb0460) 2017
Kumar, Sun, Idem (bb0300) 2007; 21
Dębek, Radlik, Motak, Galvez, Turek, Costa, Grzybek (bb0270) 2015; 257
Nakamura, Aikawa, Sato, Uchijima (bb0320) 1994; 25
Díaz-Reinoso, Moure, Domínguez, Parajó (bb0070) 2006; 54
Hassan, Kaydouh, Geagea, Zein, Jabbour, Casale, Zakhem, Massiani (bb0290) 2016; 520
Cao, Bourane, Schlup, Hohn (bb0135) 2008; 344
Aghamohammadi, Haghighi, Maleki, Rahemi (bb0455) 2017; 431
Wang, Lu (bb0240) 1999; 38
Albarazi, Beaunier, Costa (bb0420) 2013; 38
Bian, Suryawinata, Kawi (bb0200) 2016; 195
Yin (bb0065) 2017; 102
Gálvez, Albarazi, Costa (bb0285) 2014; 504
Sutthiumporn, Maneerung, Kathiraser, Kawi (bb0155) 2012; 37
Maneerung, Hidajat, Kawi (bb0150) 2011; 171
Li, Mo, Kathiraser, Kawi (bb0175) 2014; 4
Tsutomu, Ikeda, Satoshi, Yasushi, Ryo, Jiro, Zatsepina, Buffett (bb0115) 2005; 6
Zhang, Verykios (bb0365) 1996; 21
Oemar, Kathiraser, Mo, Ho, Kawi (bb0430) 2016; 6
Suwała, Dębek, Motak, Galvez-Parruca, Grzybek, Da Costa, Pieńkowski, Dudek, Leszczyński, Łopata (bb0450) 2017; 14
Zhao, Cao, Li, Zhang, Shi, Zhang (bb0445) 2017; 7
Li (10.1016/j.fuproc.2017.10.007_bb0225) 2016; 188
Youngjun (10.1016/j.fuproc.2017.10.007_bb0040) 2015; 91
Ovanesyan (10.1016/j.fuproc.2017.10.007_bb0055) 2000; 246
Dębek (10.1016/j.fuproc.2017.10.007_bb0260) 2015; 18
Lemonidou (10.1016/j.fuproc.2017.10.007_bb0305) 2002; 228
Chung (10.1016/j.fuproc.2017.10.007_bb0470) 2016; 62
Dębek (10.1016/j.fuproc.2017.10.007_bb0480) 2017
He (10.1016/j.fuproc.2017.10.007_bb0030) 2011; 25
Yao (10.1016/j.fuproc.2017.10.007_bb0100) 2016; 144
Hassan (10.1016/j.fuproc.2017.10.007_bb0290) 2016; 520
Angeli (10.1016/j.fuproc.2017.10.007_bb0130) 2015; 181
Bian (10.1016/j.fuproc.2017.10.007_bb0200) 2016; 195
Suwała (10.1016/j.fuproc.2017.10.007_bb0450) 2017; 14
Siengchum (10.1016/j.fuproc.2017.10.007_bb0060) 2012
Valin (10.1016/j.fuproc.2017.10.007_bb0035) 2009; 88
Dębek (10.1016/j.fuproc.2017.10.007_bb0265) 2016; 41
Elsayed (10.1016/j.fuproc.2017.10.007_bb0010) 2015; 179
Sutthiumporn (10.1016/j.fuproc.2017.10.007_bb0180) 2011; 36
Trovarelli (10.1016/j.fuproc.2017.10.007_bb0405) 2013
Erdőhelyi (10.1016/j.fuproc.2017.10.007_bb0280) 1997; 107
Dębek (10.1016/j.fuproc.2017.10.007_bb0015) 2017
Tsutomu (10.1016/j.fuproc.2017.10.007_bb0115) 2005; 6
Al-Fatesh (10.1016/j.fuproc.2017.10.007_bb0120) 2016; 6
Zhang (10.1016/j.fuproc.2017.10.007_bb0370) 1996; 158
Xu (10.1016/j.fuproc.2017.10.007_bb0475) 2017; 432
Tomiyama (10.1016/j.fuproc.2017.10.007_bb0110) 2003; 241
Kathiraser (10.1016/j.fuproc.2017.10.007_bb0220) 2015; 278
Wu (10.1016/j.fuproc.2017.10.007_bb0090) 2013; 3
Mette (10.1016/j.fuproc.2017.10.007_bb0125) 2015; 242
Wang (10.1016/j.fuproc.2017.10.007_bb0240) 1999; 38
Park (10.1016/j.fuproc.2017.10.007_bb0330) 2014; 56
Chang (10.1016/j.fuproc.2017.10.007_bb0435) 2000; 195
Bachiller-Baeza (10.1016/j.fuproc.2017.10.007_bb0245) 2013; 129
Sovová (10.1016/j.fuproc.2017.10.007_bb0080) 1994; 49
Wang (10.1016/j.fuproc.2017.10.007_bb0355) 2016
Sigl (10.1016/j.fuproc.2017.10.007_bb0340) 1999; 8
Wei (10.1016/j.fuproc.2017.10.007_bb0410) 2000; 196
Aghamohammadi (10.1016/j.fuproc.2017.10.007_bb0455) 2017; 431
Bian (10.1016/j.fuproc.2017.10.007_bb0140) 2017; 18
Nikoo (10.1016/j.fuproc.2017.10.007_bb0230) 2011; 92
Hawthorne (10.1016/j.fuproc.2017.10.007_bb0075) 1994; 66
Sokolov (10.1016/j.fuproc.2017.10.007_bb0345) 2012; s113–114
Gao (10.1016/j.fuproc.2017.10.007_bb0195) 2016; 7
Grossi (10.1016/j.fuproc.2017.10.007_bb0415) 2010; 89
Beneroso (10.1016/j.fuproc.2017.10.007_bb0025) 2015; 111
Aresta (10.1016/j.fuproc.2017.10.007_bb0105) 2016; 76
Gálvez (10.1016/j.fuproc.2017.10.007_bb0285) 2014; 504
Kawi (10.1016/j.fuproc.2017.10.007_bb0215) 2015; 8
Oemar (10.1016/j.fuproc.2017.10.007_bb0165) 2015; 40
Dębek (10.1016/j.fuproc.2017.10.007_bb0270) 2015; 257
Yao (10.1016/j.fuproc.2017.10.007_bb0375) 2016
Pengpanich (10.1016/j.fuproc.2017.10.007_bb0335) 2002; 234
Yin (10.1016/j.fuproc.2017.10.007_bb0065) 2017; 102
Díaz-Reinoso (10.1016/j.fuproc.2017.10.007_bb0070) 2006; 54
Maneerung (10.1016/j.fuproc.2017.10.007_bb0150) 2011; 171
Oemar (10.1016/j.fuproc.2017.10.007_bb0430) 2016; 6
Cao (10.1016/j.fuproc.2017.10.007_bb0135) 2008; 344
Yao (10.1016/j.fuproc.2017.10.007_bb0460) 2017
Kathiraser (10.1016/j.fuproc.2017.10.007_bb0160) 2013; 117
Maneerung (10.1016/j.fuproc.2017.10.007_bb0145) 2015; 40
Bradford (10.1016/j.fuproc.2017.10.007_bb0255) 1999; 50
Dębek (10.1016/j.fuproc.2017.10.007_bb0425) 2017
Zhang (10.1016/j.fuproc.2017.10.007_bb0360) 1995; 1
lI (10.1016/j.fuproc.2017.10.007_bb0210) 2014; 30
Ogasa (10.1016/j.fuproc.2017.10.007_bb0050) 2004
Nakamura (10.1016/j.fuproc.2017.10.007_bb0320) 1994; 25
Wan (10.1016/j.fuproc.2017.10.007_bb0350) 2015; 47
Gao (10.1016/j.fuproc.2017.10.007_bb0185) 2016; 15
Snoeck (10.1016/j.fuproc.2017.10.007_bb0440) 2002; 41
Bradford (10.1016/j.fuproc.2017.10.007_bb0250) 1996; 142
Osaki (10.1016/j.fuproc.2017.10.007_bb0325) 1995; 35
Slagtern (10.1016/j.fuproc.2017.10.007_bb0390) 1997; 107
Gao (10.1016/j.fuproc.2017.10.007_bb0170) 2016
Erdohelyi (10.1016/j.fuproc.2017.10.007_bb0275) 1993; 141
Liu (10.1016/j.fuproc.2017.10.007_bb0315) 2016; 182
Wei (10.1016/j.fuproc.2017.10.007_bb0235) 2004; 108
Yabe (10.1016/j.fuproc.2017.10.007_bb0465) 2017; 158
Albarazi (10.1016/j.fuproc.2017.10.007_bb0420) 2013; 38
Li (10.1016/j.fuproc.2017.10.007_bb0175) 2014; 4
Ryckebosch (10.1016/j.fuproc.2017.10.007_bb0045) 2011; 35
Labinger (10.1016/j.fuproc.2017.10.007_bb0095) 2002; 417
Li (10.1016/j.fuproc.2017.10.007_bb0190) 2015; 7
Kumar (10.1016/j.fuproc.2017.10.007_bb0300) 2007; 21
Özkara-Aydınoğlu (10.1016/j.fuproc.2017.10.007_bb0380) 2013; s215–216
Baudouin (10.1016/j.fuproc.2017.10.007_bb0005) 2013; 297
Gao (10.1016/j.fuproc.2017.10.007_bb0020) 2015; 503
Unni Olsbye (10.1016/j.fuproc.2017.10.007_bb0085) 1997; 36
Zhao (10.1016/j.fuproc.2017.10.007_bb0445) 2017; 7
Barroso-Quiroga (10.1016/j.fuproc.2017.10.007_bb0395) 2010; 35
Li (10.1016/j.fuproc.2017.10.007_bb0310) 2012; s413–414
Zhang (10.1016/j.fuproc.2017.10.007_bb0365) 1996; 21
Kaydouh (10.1016/j.fuproc.2017.10.007_bb0295) 2015; 18
Tu (10.1016/j.fuproc.2017.10.007_bb0385) 2012; 125
Sutthiumporn (10.1016/j.fuproc.2017.10.007_bb0155) 2012; 37
Hu (10.1016/j.fuproc.2017.10.007_bb0400) 2004; 35
Mo (10.1016/j.fuproc.2017.10.007_bb0205) 2014; 4
References_xml – volume: 520
  start-page: 114
  year: 2016
  end-page: 121
  ident: bb0290
  article-title: Low temperature dry reforming of methane on rhodium and cobalt based catalysts: active phase stabilization by confinement in mesoporous SBA-15
  publication-title: Appl. Catal. A Gen.
– volume: 228
  start-page: 227
  year: 2002
  end-page: 235
  ident: bb0305
  article-title: Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al
  publication-title: Appl. Catal. A Gen.
– volume: 35
  start-page: 297
  year: 2004
  end-page: 345
  ident: bb0400
  article-title: Catalytic conversion of methane to synthesis gas by partial oxidation and CO
  publication-title: ChemInform
– volume: 241
  start-page: 349
  year: 2003
  end-page: 361
  ident: bb0110
  article-title: Preparation of Ni/SiO
  publication-title: Appl. Catal. A Gen.
– volume: 171
  start-page: 24
  year: 2011
  end-page: 35
  ident: bb0150
  article-title: LaNiO
  publication-title: Catal. Today
– volume: 246
  start-page: 149
  year: 2000
  end-page: 152
  ident: bb0055
  article-title: The Fe active sites in Fe/ZSM-5 catalyst for selective oxidation of CH
  publication-title: J. Radioanal. Nucl. Chem.
– volume: 432
  start-page: 31
  year: 2017
  end-page: 36
  ident: bb0475
  article-title: NiO-MgO nanoparticles confined inside SiO
  publication-title: Mol. Catal.
– volume: 107
  start-page: 497
  year: 1997
  end-page: 502
  ident: bb0390
  article-title: The influence of rare earth oxides on Ni/Al
  publication-title: Stud. Surf. Sci. Catal.
– volume: 111
  start-page: 55
  year: 2015
  end-page: 63
  ident: bb0025
  article-title: Comparing the composition of the synthesis-gas obtained from the pyrolysis of different organic residues for a potential use in the synthesis of bioplastics
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 278
  start-page: 62
  year: 2015
  end-page: 78
  ident: bb0220
  article-title: Kinetic and mechanistic aspects for CO
  publication-title: Chem. Eng. J.
– volume: 125
  start-page: 439
  year: 2012
  end-page: 448
  ident: bb0385
  article-title: Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature
  publication-title: Appl. Catal. B Environ.
– year: 2017
  ident: bb0015
  article-title: On the catalytic activity of Hydrotalcite-derived materials for dry reforming of methane
  publication-title: Catalysts
– volume: 181
  start-page: 34
  year: 2015
  end-page: 46
  ident: bb0130
  article-title: Catalyst development for steam reforming of methane and model biogas at low temperature
  publication-title: Appl. Catal. B Environ.
– volume: 8
  start-page: 3556
  year: 2015
  end-page: 3575
  ident: bb0215
  article-title: Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane
  publication-title: ChemSusChem
– volume: 6
  start-page: 646
  year: 2005
  end-page: 654
  ident: bb0115
  article-title: Kinetics and stability of CH
  publication-title: ChemPhysChem
– volume: 158
  start-page: 96
  year: 2017
  end-page: 103
  ident: bb0465
  article-title: Low-temperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ZrO
  publication-title: Fuel Process. Technol.
– volume: s413–414
  start-page: 163
  year: 2012
  end-page: 169
  ident: bb0310
  article-title: Studies on stability and coking resistance of Ni/BaTiO
  publication-title: Appl. Catal. A Gen.
– volume: 102
  start-page: 62
  year: 2017
  end-page: 66
  ident: bb0065
  article-title: SSC Chuang, CH
  publication-title: Catalysis Communications
– volume: 30
  start-page: 14694
  year: 2014
  end-page: 14705
  ident: bb0210
  article-title: Simultaneous tuning porosity and basicity of nickel@nickel-magnesium phyllosilicate core-shell catalysts for CO₂ reforming of CH₄
  publication-title: Langmuir
– year: 2013
  ident: bb0405
  article-title: Catalysis by Ceria and Related Materials
– volume: 54
  start-page: 2441
  year: 2006
  end-page: 2469
  ident: bb0070
  article-title: Supercritical CO
  publication-title: J. Agric. Food Chem.
– volume: 129
  start-page: 450
  year: 2013
  end-page: 459
  ident: bb0245
  article-title: Transient studies of low-temperature dry reforming of methane over Ni-CaO/ZrO
  publication-title: Appl. Catal. B Environ.
– volume: 234
  start-page: 221
  year: 2002
  end-page: 233
  ident: bb0335
  article-title: Catalytic oxidation of methane over CeO
  publication-title: Appl. Catal. A Gen.
– volume: 91
  start-page: 732
  year: 2015
  end-page: 741
  ident: bb0040
  article-title: Study on a numerical model and PSA (pressure swing adsorption) process experiment for CH
  publication-title: Energy
– year: 2017
  ident: bb0460
  article-title: Mo-promoted Ni/Al
  publication-title: Int. J. Hydrog. Energy
– volume: 195
  start-page: 1
  year: 2016
  end-page: 8
  ident: bb0200
  article-title: Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane
  publication-title: Appl. Catal. B Environ.
– volume: 21
  start-page: 109
  year: 1996
  end-page: 133
  ident: bb0365
  article-title: ChemInform abstract: carbon dioxide reforming of methane to synthesis gas over Ni/La
  publication-title: Appl. Catal. A Gen.
– volume: 179
  start-page: 213
  year: 2015
  end-page: 219
  ident: bb0010
  article-title: Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts
  publication-title: Appl. Catal. B Environ.
– volume: 257
  start-page: 59
  year: 2015
  end-page: 65
  ident: bb0270
  article-title: Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature – on the effect of basicity
  publication-title: Catal. Today
– volume: 4
  start-page: 1526
  year: 2014
  end-page: 1536
  ident: bb0175
  article-title: Yolk–satellite–shell structured Ni–Yolk@Ni@SiO
  publication-title: ACS Catal.
– volume: 92
  start-page: 678
  year: 2011
  end-page: 691
  ident: bb0230
  article-title: Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation
  publication-title: Fuel Process. Technol.
– volume: 7
  start-page: 4188
  year: 2016
  end-page: 4196
  ident: bb0195
  article-title: Anti-coking Ni/SiO
  publication-title: ChemCatChem
– volume: 4
  start-page: 2107
  year: 2014
  end-page: 2114
  ident: bb0205
  article-title: A highly dispersed and anti-coking Ni–La2O3/SiO2 catalyst for syngas production from dry carbon dioxide reforming of methane
  publication-title: Cat. Sci. Technol.
– volume: 142
  start-page: 73
  year: 1996
  end-page: 96
  ident: bb0250
  article-title: Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity
  publication-title: Appl. Catal. A Gen.
– volume: 141
  start-page: 287
  year: 1993
  end-page: 299
  ident: bb0275
  article-title: Activation of CH
  publication-title: J. Catal.
– volume: 50
  start-page: 87
  year: 1999
  end-page: 96
  ident: bb0255
  article-title: The role of metal–support interactions in CO
  publication-title: Catal. Today
– volume: 76
  start-page: 430
  year: 2016
  end-page: 491
  ident: bb0105
  article-title: The Carbon Dioxide Molecule
– volume: 40
  start-page: 12227
  year: 2015
  end-page: 12238
  ident: bb0165
  article-title: Pd-Ni catalyst over spherical nanostructured Y
  publication-title: Int. J. Hydrog. Energy
– volume: 503
  start-page: 34
  year: 2015
  end-page: 42
  ident: bb0020
  article-title: Ni/SiO
  publication-title: Appl. Catal. A Gen.
– volume: 158
  start-page: 51
  year: 1996
  end-page: 63
  ident: bb0370
  article-title: Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts : I. Effects of support and metal crystallite size on reaction activity and deactivation characteristics
  publication-title: J. Catal.
– volume: 49
  start-page: 415
  year: 1994
  end-page: 420
  ident: bb0080
  article-title: Rate of the vegetable oil extraction with supercritical CO
  publication-title: Chem. Eng. Sci.
– volume: 89
  start-page: 257
  year: 2010
  end-page: 259
  ident: bb0415
  article-title: Sulfonated polystyrene: a catalyst with acid and superabsorbent properties for the esterification of fatty acids
  publication-title: Fuel
– volume: 21
  start-page: 3113
  year: 2007
  end-page: 3123
  ident: bb0300
  article-title: Nickel-based ceria, zirconia, and ceria–zirconia catalytic systems for low-temperature carbon dioxide reforming of methane
  publication-title: Energy Fuel
– volume: 195
  start-page: 1
  year: 2000
  end-page: 11
  ident: bb0435
  article-title: Catalytic behavior of supported KNiCa catalyst and mechanistic consideration for carbon dioxide reforming of methane
  publication-title: J. Catal.
– volume: 38
  start-page: 127
  year: 2013
  end-page: 139
  ident: bb0420
  article-title: Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts: on the effect of promotion by Ce
  publication-title: Int. J. Hydrog. Energy
– start-page: 1
  year: 2017
  end-page: 24
  ident: bb0480
  article-title: Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition
  publication-title: React. Kinet. Mech. Catal.
– volume: 36
  start-page: 14435
  year: 2011
  end-page: 14446
  ident: bb0180
  article-title: Promotional effect of alkaline earth over Ni–La
  publication-title: Int. J. Hydrog. Energy
– volume: 14
  start-page: 02039
  year: 2017
  ident: bb0450
  article-title: Ceria promotion over Ni-containing hydrotalcite-derived catalysts for CO2 methane reforming
  publication-title: E3S Web of Conferences
– volume: 35
  start-page: 1633
  year: 2011
  end-page: 1645
  ident: bb0045
  article-title: Techniques for transformation of biogas to biomethane
  publication-title: Biomass Bioenergy
– volume: 15
  start-page: 146
  year: 2016
  end-page: 153
  ident: bb0185
  article-title: Facile synthesis of Ni/SiO
  publication-title: J. CO₂ Util.
– volume: 1
  start-page: 71
  year: 1995
  end-page: 72
  ident: bb0360
  article-title: A stable and active nickel-based catalyst for carbon dioxide reforming of methane to synthesis gas
  publication-title: J. Chem. Soc. Chem. Commun.
– volume: 344
  start-page: 78
  year: 2008
  end-page: 87
  ident: bb0135
  article-title: In situ IR investigation of activation and catalytic ignition of methane over Rh/Al
  publication-title: Appl. Catal. A Gen.
– volume: 35
  start-page: 39
  year: 1995
  end-page: 43
  ident: bb0325
  article-title: Suppression of carbon deposition in CO
  publication-title: Catal. Lett.
– start-page: 112
  year: 2004
  ident: bb0050
  article-title: Retardation of carbon deposition on Ni-YSZ anode in a solid oxide fuel cell by addition of CO
  publication-title: J. Ceram. Soc. Jpn.
– volume: 117
  start-page: 8120
  year: 2013
  end-page: 8130
  ident: bb0160
  article-title: Inverse NiAl
  publication-title: J. Phys. Chem. C
– volume: 36
  start-page: 5180
  year: 1997
  end-page: 5188
  ident: bb0085
  article-title: Mleczko, kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al
  publication-title: Ind. Eng. Chem. Res.
– volume: 188
  start-page: 324
  year: 2016
  end-page: 341
  ident: bb0225
  article-title: Design of highly stable and selective core/yolk–shell nanocatalysts—a review
  publication-title: Appl. Catal. B Environ.
– volume: 25
  start-page: 4036
  year: 2011
  end-page: 4042
  ident: bb0030
  article-title: Integrated process of coal pyrolysis with CO
  publication-title: Energy Fuel
– volume: 66
  start-page: 4005
  year: 1994
  end-page: 4012
  ident: bb0075
  article-title: Direct comparison of Soxhlet and low- and high-temperature supercritical CO
  publication-title: Anal. Chem.
– volume: 7
  start-page: 4735
  year: 2017
  end-page: 4745
  ident: bb0445
  article-title: Sc promoted and aerogel confined Ni catalysts for coking-resistant dry reforming of methane
  publication-title: RSC Adv.
– volume: 88
  start-page: 834
  year: 2009
  end-page: 842
  ident: bb0035
  article-title: Upgrading biomass pyrolysis gas by conversion of methane at high temperature: experiments and modelling
  publication-title: Fuel
– volume: s215–216
  start-page: 542
  year: 2013
  end-page: 549
  ident: bb0380
  article-title: A comparative study on the kinetics of carbon dioxide reforming of methane over Pt–Ni/Al
  publication-title: Chem. Eng. J.
– volume: 297
  start-page: 27
  year: 2013
  end-page: 34
  ident: bb0005
  article-title: Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles
  publication-title: J. Catal.
– volume: 18
  start-page: 1205
  year: 2015
  end-page: 1210
  ident: bb0260
  article-title: Ni–Al hydrotalcite-like material as the catalyst precursors for the dry reforming of methane at low temperature
  publication-title: C. R. Chim.
– volume: 7
  start-page: 160
  year: 2015
  end-page: 168
  ident: bb0190
  article-title: Facile synthesis of high surface area yolk–shell Ni@Ni embedded SiO
  publication-title: ChemCatChem
– volume: 196
  start-page: L167
  year: 2000
  end-page: L172
  ident: bb0410
  article-title: Highly active and stable Ni/ZrO
  publication-title: Appl. Catal. A Gen.
– volume: 144
  start-page: 1
  year: 2016
  end-page: 7
  ident: bb0100
  article-title: Low-temperature CO
  publication-title: Fuel Process. Technol.
– volume: 417
  start-page: 507
  year: 2002
  end-page: 514
  ident: bb0095
  article-title: Understanding and exploiting C
  publication-title: Nature
– volume: s113–114
  start-page: 19
  year: 2012
  end-page: 30
  ident: bb0345
  article-title: Stable low-temperature dry reforming of methane over mesoporous La
  publication-title: Appl. Catal. B Environ.
– year: 2016
  ident: bb0375
  article-title: The influence of reduction temperature on the performance of ZrO
  publication-title: Catal. Today
– volume: 182
  start-page: 8
  year: 2016
  end-page: 16
  ident: bb0315
  article-title: La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures
  publication-title: Fuel
– volume: 3
  start-page: 563
  year: 2013
  end-page: 583
  ident: bb0090
  article-title: Ni-based catalysts for low temperature methane steam reforming: recent results on Ni-Au and comparison with other bi-metallic systems
  publication-title: Catalysts
– year: 2012
  ident: bb0060
  article-title: Study of direct utilization of solid carbon and CH
  publication-title: Dissertations Theses-Gradworks
– volume: 18
  start-page: 345
  year: 2017
  end-page: 352
  ident: bb0140
  article-title: Highly carbon-resistant Ni–Co/SiO
  publication-title: J. CO₂ Util.
– volume: 25
  start-page: 265
  year: 1994
  end-page: 270
  ident: bb0320
  article-title: Role of support in reforming of CH
  publication-title: Catal. Lett.
– volume: 38
  start-page: 2615
  year: 1999
  end-page: 2625
  ident: bb0240
  article-title: A comprehensive study on carbon dioxide reforming of methane over Ni/γ-Al2O3 catalysts
  publication-title: Ind. Eng. Chem. Res.
– year: 2017
  ident: bb0425
  article-title: Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts atlow temperature CO
  publication-title: Int. J. Hydrog. Energy
– volume: 41
  start-page: 3548
  year: 2002
  end-page: 3556
  ident: bb0440
  article-title: Steam/CO
  publication-title: Ind. Eng. Chem. Res.
– volume: 504
  start-page: 143
  year: 2014
  end-page: 150
  ident: bb0285
  article-title: Enhanced catalytic stability through non-conventional synthesis of Ni/SBA-15 for methane dry reforming at low temperatures
  publication-title: Appl. Catal. A Gen.
– volume: 35
  start-page: 6052
  year: 2010
  end-page: 6056
  ident: bb0395
  article-title: Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane
  publication-title: Int. J. Hydrog. Energy
– volume: 62
  start-page: 13
  year: 2016
  end-page: 31
  ident: bb0470
  article-title: Review of catalysis and plasma performance on dry reforming of CH
  publication-title: Renew. Sust. Energ. Rev.
– volume: 40
  start-page: 13399
  year: 2015
  end-page: 13411
  ident: bb0145
  article-title: Co-production of hydrogen and carbon nanofibers from catalytic decomposition of methane over LaNi
  publication-title: Int. J. Hydrog. Energy
– year: 2016
  ident: bb0170
  article-title: Highly reactive Ni-Co/SiO
  publication-title: Catal. Today
– volume: 6
  year: 2016
  ident: bb0120
  article-title: Effect of Ce and Co addition to Fe/Al
  publication-title: Catalysts
– volume: 47
  start-page: 93
  year: 2015
  end-page: 106
  ident: bb0350
  article-title: The formation of a series of carbonates from carbon dioxide: capturing and utilisation
  publication-title: Renew. Sust. Energ. Rev.
– volume: 41
  start-page: 11616
  year: 2016
  end-page: 11623
  ident: bb0265
  article-title: Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni–Mg–Al hydrotalcite-derived catalysts
  publication-title: Int. J. Hydrog. Energy
– volume: 56
  start-page: 157
  year: 2014
  end-page: 163
  ident: bb0330
  article-title: Low-temperature combustion of methane using PdO/Al
  publication-title: Catal. Commun.
– volume: 37
  start-page: 11195
  year: 2012
  end-page: 11207
  ident: bb0155
  article-title: CO
  publication-title: Int. J. Hydrog. Energy
– volume: 108
  start-page: 4094
  year: 2004
  end-page: 4103
  ident: bb0235
  article-title: Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals
  publication-title: J. Phys. Chem. B
– volume: 8
  start-page: 211
  year: 1999
  end-page: 222
  ident: bb0340
  article-title: CO
  publication-title: Top. Catal.
– volume: 431
  start-page: 39
  year: 2017
  end-page: 48
  ident: bb0455
  article-title: Sequential impregnation vs. sol-gel synthesized Ni/Al
  publication-title: Mol. Catal.
– volume: 242
  start-page: 101
  year: 2015
  end-page: 110
  ident: bb0125
  article-title: Redox dynamics of Ni catalysts in CO
  publication-title: Catal. Today
– volume: 107
  start-page: 525
  year: 1997
  end-page: 530
  ident: bb0280
  article-title: Reaction of CH
  publication-title: Stud. Surf. Sci. Catal.
– year: 2016
  ident: bb0355
  article-title: Effects of calcination temperature of electrospun fibrous Ni/Al
  publication-title: Fuel Process. Technol.
– volume: 18
  start-page: 293
  year: 2015
  end-page: 301
  ident: bb0295
  article-title: Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane
  publication-title: C. R. Chim.
– volume: 6
  start-page: 1173
  year: 2016
  end-page: 1186
  ident: bb0430
  article-title: CO
  publication-title: Sci. Technol.
– volume: 50
  start-page: 87
  year: 1999
  ident: 10.1016/j.fuproc.2017.10.007_bb0255
  article-title: The role of metal–support interactions in CO2 reforming of CH4
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(98)00465-9
– volume: 35
  start-page: 39
  year: 1995
  ident: 10.1016/j.fuproc.2017.10.007_bb0325
  article-title: Suppression of carbon deposition in CO2-reforming of methane on metal sulfide catalysts
  publication-title: Catal. Lett.
  doi: 10.1007/BF00807002
– year: 2017
  ident: 10.1016/j.fuproc.2017.10.007_bb0425
  article-title: Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts atlow temperature CO2 methane reforming
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.12.121
– year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0355
  article-title: Effects of calcination temperature of electrospun fibrous Ni/Al2O3 catalysts on the dry reforming of methane
  publication-title: Fuel Process. Technol.
– start-page: 112
  year: 2004
  ident: 10.1016/j.fuproc.2017.10.007_bb0050
  article-title: Retardation of carbon deposition on Ni-YSZ anode in a solid oxide fuel cell by addition of CO2 to CH4
  publication-title: J. Ceram. Soc. Jpn.
– volume: 141
  start-page: 287
  year: 1993
  ident: 10.1016/j.fuproc.2017.10.007_bb0275
  article-title: Activation of CH2 and its reaction with CO2 over supported Rh catalysts
  publication-title: J. Catal.
  doi: 10.1006/jcat.1993.1136
– volume: 144
  start-page: 1
  year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0100
  article-title: Low-temperature CO2 reforming of methane on Zr-promoted Ni/SiO2 catalyst
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2015.12.009
– volume: 91
  start-page: 732
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0040
  article-title: Study on a numerical model and PSA (pressure swing adsorption) process experiment for CH4/CO2 separation from biogas
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.086
– volume: 241
  start-page: 349
  year: 2003
  ident: 10.1016/j.fuproc.2017.10.007_bb0110
  article-title: Preparation of Ni/SiO2 catalyst with high thermal stability for CO2-reforming of CH4
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/S0926-860X(02)00493-3
– volume: 344
  start-page: 78
  year: 2008
  ident: 10.1016/j.fuproc.2017.10.007_bb0135
  article-title: In situ IR investigation of activation and catalytic ignition of methane over Rh/Al2O3 catalysts
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2008.04.012
– volume: 21
  start-page: 109
  year: 1996
  ident: 10.1016/j.fuproc.2017.10.007_bb0365
  article-title: ChemInform abstract: carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/0926-860X(95)00238-3
– volume: 14
  start-page: 02039
  year: 2017
  ident: 10.1016/j.fuproc.2017.10.007_bb0450
  article-title: Ceria promotion over Ni-containing hydrotalcite-derived catalysts for CO2 methane reforming
– volume: 179
  start-page: 213
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0010
  article-title: Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.05.021
– volume: 41
  start-page: 3548
  year: 2002
  ident: 10.1016/j.fuproc.2017.10.007_bb0440
  article-title: Steam/CO2 reforming of methane. Carbon formation and gasification on catalysts with various potassium contents
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie010665p
– volume: 7
  start-page: 4735
  year: 2017
  ident: 10.1016/j.fuproc.2017.10.007_bb0445
  article-title: Sc promoted and aerogel confined Ni catalysts for coking-resistant dry reforming of methane
  publication-title: RSC Adv.
  doi: 10.1039/C6RA27266E
– volume: 6
  start-page: 1173
  year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0430
  article-title: CO2 reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts: mechanism and kinetic modelling, Catal
  publication-title: Sci. Technol.
– volume: 3
  start-page: 563
  year: 2013
  ident: 10.1016/j.fuproc.2017.10.007_bb0090
  article-title: Ni-based catalysts for low temperature methane steam reforming: recent results on Ni-Au and comparison with other bi-metallic systems
  publication-title: Catalysts
  doi: 10.3390/catal3020563
– volume: 181
  start-page: 34
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0130
  article-title: Catalyst development for steam reforming of methane and model biogas at low temperature
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.07.039
– volume: 107
  start-page: 497
  year: 1997
  ident: 10.1016/j.fuproc.2017.10.007_bb0390
  article-title: The influence of rare earth oxides on Ni/Al2O3 catalysts during CO2 reforming of CH4
  publication-title: Stud. Surf. Sci. Catal.
  doi: 10.1016/S0167-2991(97)80381-3
– volume: 278
  start-page: 62
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0220
  article-title: Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.11.143
– volume: 35
  start-page: 1633
  year: 2011
  ident: 10.1016/j.fuproc.2017.10.007_bb0045
  article-title: Techniques for transformation of biogas to biomethane
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.02.033
– volume: 38
  start-page: 2615
  year: 1999
  ident: 10.1016/j.fuproc.2017.10.007_bb0240
  article-title: A comprehensive study on carbon dioxide reforming of methane over Ni/γ-Al2O3 catalysts
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie980489t
– volume: 228
  start-page: 227
  year: 2002
  ident: 10.1016/j.fuproc.2017.10.007_bb0305
  article-title: Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al2O3 catalyst
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/S0926-860X(01)00974-7
– volume: 56
  start-page: 157
  year: 2014
  ident: 10.1016/j.fuproc.2017.10.007_bb0330
  article-title: Low-temperature combustion of methane using PdO/Al2O3 catalyst: influence of crystalline phase of Al2O3 support
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2014.07.022
– volume: 21
  start-page: 3113
  year: 2007
  ident: 10.1016/j.fuproc.2017.10.007_bb0300
  article-title: Nickel-based ceria, zirconia, and ceria–zirconia catalytic systems for low-temperature carbon dioxide reforming of methane
  publication-title: Energy Fuel
  doi: 10.1021/ef7002409
– volume: 7
  start-page: 160
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0190
  article-title: Facile synthesis of high surface area yolk–shell Ni@Ni embedded SiO2 via Ni Phyllosilicate with enhanced performance for CO2 reforming of CH4
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402673
– volume: 35
  start-page: 297
  year: 2004
  ident: 10.1016/j.fuproc.2017.10.007_bb0400
  article-title: Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming
  publication-title: ChemInform
  doi: 10.1002/chin.200449267
– start-page: 1
  year: 2017
  ident: 10.1016/j.fuproc.2017.10.007_bb0480
  article-title: Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition
  publication-title: React. Kinet. Mech. Catal.
– year: 2017
  ident: 10.1016/j.fuproc.2017.10.007_bb0460
  article-title: Mo-promoted Ni/Al2O3 catalyst for dry reforming of methane
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.03.208
– volume: 431
  start-page: 39
  year: 2017
  ident: 10.1016/j.fuproc.2017.10.007_bb0455
  article-title: Sequential impregnation vs. sol-gel synthesized Ni/Al2O3-CeO2 nanocatalyst for dry reforming of methane: effect of synthesis method and support promotion
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2017.01.012
– volume: 18
  start-page: 345
  year: 2017
  ident: 10.1016/j.fuproc.2017.10.007_bb0140
  article-title: Highly carbon-resistant Ni–Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane
  publication-title: J. CO₂ Util.
  doi: 10.1016/j.jcou.2016.12.014
– volume: 297
  start-page: 27
  year: 2013
  ident: 10.1016/j.fuproc.2017.10.007_bb0005
  article-title: Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.09.011
– volume: 30
  start-page: 14694
  year: 2014
  ident: 10.1016/j.fuproc.2017.10.007_bb0210
  article-title: Simultaneous tuning porosity and basicity of nickel@nickel-magnesium phyllosilicate core-shell catalysts for CO₂ reforming of CH₄
  publication-title: Langmuir
  doi: 10.1021/la503340s
– year: 2012
  ident: 10.1016/j.fuproc.2017.10.007_bb0060
  article-title: Study of direct utilization of solid carbon and CH4/CO2 reforming on solid oxide fuel cell
– volume: 25
  start-page: 4036
  year: 2011
  ident: 10.1016/j.fuproc.2017.10.007_bb0030
  article-title: Integrated process of coal pyrolysis with CO2 reforming of methane by dielectric barrier discharge plasma
  publication-title: Energy Fuel
  doi: 10.1021/ef200827p
– volume: 54
  start-page: 2441
  year: 2006
  ident: 10.1016/j.fuproc.2017.10.007_bb0070
  article-title: Supercritical CO2 extraction and purification of compounds with antioxidant activity
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf052858j
– volume: 35
  start-page: 6052
  year: 2010
  ident: 10.1016/j.fuproc.2017.10.007_bb0395
  article-title: Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2009.12.073
– volume: 89
  start-page: 257
  year: 2010
  ident: 10.1016/j.fuproc.2017.10.007_bb0415
  article-title: Sulfonated polystyrene: a catalyst with acid and superabsorbent properties for the esterification of fatty acids
  publication-title: Fuel
  doi: 10.1016/j.fuel.2009.05.029
– volume: 503
  start-page: 34
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0020
  article-title: Ni/SiO2 catalyst prepared via Ni-aliphatic amine complexation for dry reforming of methane: effect of carbon chain number and amine concentration
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2015.07.005
– volume: s215–216
  start-page: 542
  year: 2013
  ident: 10.1016/j.fuproc.2017.10.007_bb0380
  article-title: A comparative study on the kinetics of carbon dioxide reforming of methane over Pt–Ni/Al2O3 catalyst: effect of Pt/Ni ratio
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.11.034
– volume: 242
  start-page: 101
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0125
  article-title: Redox dynamics of Ni catalysts in CO2 reforming of methane
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2014.06.011
– volume: 37
  start-page: 11195
  year: 2012
  ident: 10.1016/j.fuproc.2017.10.007_bb0155
  article-title: CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M=Bi, Co, Cr, Cu, Fe): roles of lattice oxygen on C–H activation and carbon suppression
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2012.04.059
– volume: 520
  start-page: 114
  year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0290
  article-title: Low temperature dry reforming of methane on rhodium and cobalt based catalysts: active phase stabilization by confinement in mesoporous SBA-15
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2016.04.014
– volume: 195
  start-page: 1
  year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0200
  article-title: Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.05.001
– volume: 18
  start-page: 1205
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0260
  article-title: Ni–Al hydrotalcite-like material as the catalyst precursors for the dry reforming of methane at low temperature
  publication-title: C. R. Chim.
  doi: 10.1016/j.crci.2015.04.005
– volume: 18
  start-page: 293
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0295
  article-title: Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane
  publication-title: C. R. Chim.
  doi: 10.1016/j.crci.2015.01.004
– volume: 25
  start-page: 265
  year: 1994
  ident: 10.1016/j.fuproc.2017.10.007_bb0320
  article-title: Role of support in reforming of CH4 with CO2 over Rh catalysts
  publication-title: Catal. Lett.
  doi: 10.1007/BF00816306
– volume: 188
  start-page: 324
  year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0225
  article-title: Design of highly stable and selective core/yolk–shell nanocatalysts—a review
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.01.067
– volume: 8
  start-page: 3556
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0215
  article-title: Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500390
– volume: 49
  start-page: 415
  year: 1994
  ident: 10.1016/j.fuproc.2017.10.007_bb0080
  article-title: Rate of the vegetable oil extraction with supercritical CO2: II extraction of grape oil
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(94)87013-6
– volume: 504
  start-page: 143
  year: 2014
  ident: 10.1016/j.fuproc.2017.10.007_bb0285
  article-title: Enhanced catalytic stability through non-conventional synthesis of Ni/SBA-15 for methane dry reforming at low temperatures
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2014.10.026
– volume: 36
  start-page: 14435
  year: 2011
  ident: 10.1016/j.fuproc.2017.10.007_bb0180
  article-title: Promotional effect of alkaline earth over Ni–La2O3 catalyst for CO2 reforming of CH4: role of surface oxygen species on H2 production and carbon suppression
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.08.022
– volume: 125
  start-page: 439
  year: 2012
  ident: 10.1016/j.fuproc.2017.10.007_bb0385
  article-title: Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2012.06.006
– volume: 38
  start-page: 127
  year: 2013
  ident: 10.1016/j.fuproc.2017.10.007_bb0420
  article-title: Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts: on the effect of promotion by Ce0.75Zr0.25O2 mixed oxide
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2012.10.063
– volume: 117
  start-page: 8120
  year: 2013
  ident: 10.1016/j.fuproc.2017.10.007_bb0160
  article-title: Inverse NiAl2O4 on LaAlO3–Al2O3: unique catalytic structure for stable CO2 reforming of methane
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp401855x
– volume: s113–114
  start-page: 19
  year: 2012
  ident: 10.1016/j.fuproc.2017.10.007_bb0345
  article-title: Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2011.09.035
– volume: 129
  start-page: 450
  year: 2013
  ident: 10.1016/j.fuproc.2017.10.007_bb0245
  article-title: Transient studies of low-temperature dry reforming of methane over Ni-CaO/ZrO2-La2O3
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2012.09.052
– volume: 142
  start-page: 73
  year: 1996
  ident: 10.1016/j.fuproc.2017.10.007_bb0250
  article-title: Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/0926-860X(96)00065-8
– volume: 4
  start-page: 2107
  year: 2014
  ident: 10.1016/j.fuproc.2017.10.007_bb0205
  article-title: A highly dispersed and anti-coking Ni–La2O3/SiO2 catalyst for syngas production from dry carbon dioxide reforming of methane
  publication-title: Cat. Sci. Technol.
  doi: 10.1039/c3cy00869j
– volume: 41
  start-page: 11616
  year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0265
  article-title: Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni–Mg–Al hydrotalcite-derived catalysts
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.02.074
– volume: 432
  start-page: 31
  year: 2017
  ident: 10.1016/j.fuproc.2017.10.007_bb0475
  article-title: NiO-MgO nanoparticles confined inside SiO2 frameworks to achieve highly catalytic performance for CO2 reforming of methane
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2017.02.019
– volume: 111
  start-page: 55
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0025
  article-title: Comparing the composition of the synthesis-gas obtained from the pyrolysis of different organic residues for a potential use in the synthesis of bioplastics
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2014.12.011
– volume: 246
  start-page: 149
  year: 2000
  ident: 10.1016/j.fuproc.2017.10.007_bb0055
  article-title: The Fe active sites in Fe/ZSM-5 catalyst for selective oxidation of CH4 to CH3OH at room temperature
  publication-title: J. Radioanal. Nucl. Chem.
  doi: 10.1023/A:1006722207492
– volume: 4
  start-page: 1526
  year: 2014
  ident: 10.1016/j.fuproc.2017.10.007_bb0175
  article-title: Yolk–satellite–shell structured Ni–Yolk@Ni@SiO2 Nanocomposite: superb catalyst toward methane CO2 reforming reaction
  publication-title: ACS Catal.
  doi: 10.1021/cs401027p
– volume: 6
  start-page: 646
  year: 2005
  ident: 10.1016/j.fuproc.2017.10.007_bb0115
  article-title: Kinetics and stability of CH4 and CO2 mixed gas hydrates during formation and long-term storage
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200400364
– volume: 36
  start-page: 5180
  year: 1997
  ident: 10.1016/j.fuproc.2017.10.007_bb0085
  article-title: Mleczko, kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al2O3 catalyst
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie970246l
– volume: 108
  start-page: 4094
  year: 2004
  ident: 10.1016/j.fuproc.2017.10.007_bb0235
  article-title: Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp036985z
– volume: 107
  start-page: 525
  year: 1997
  ident: 10.1016/j.fuproc.2017.10.007_bb0280
  article-title: Reaction of CH4 with CO2 and H2O over supported Ir catalyst
  publication-title: Stud. Surf. Sci. Catal.
  doi: 10.1016/S0167-2991(97)80385-0
– volume: 182
  start-page: 8
  year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0315
  article-title: La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.05.073
– volume: 15
  start-page: 146
  year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0185
  article-title: Facile synthesis of Ni/SiO2 catalyst by sequential hydrogen/air treatment: a superior anti-coking catalyst for dry reforming of methane
  publication-title: J. CO₂ Util.
  doi: 10.1016/j.jcou.2016.05.007
– volume: 7
  start-page: 4188
  year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0195
  article-title: Anti-coking Ni/SiO2 catalyst for dry reforming of methane: role of oleylamine/oleic acid organic pair
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500787
– year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0375
  article-title: The influence of reduction temperature on the performance of ZrOx/Ni-MnOx/SiO2 catalyst for low-temperature CO2 reforming of methane
  publication-title: Catal. Today
– volume: s413–414
  start-page: 163
  year: 2012
  ident: 10.1016/j.fuproc.2017.10.007_bb0310
  article-title: Studies on stability and coking resistance of Ni/BaTiO3–Al2O3 catalysts for lower temperature dry reforming of methane (LTDRM)
  publication-title: Appl. Catal. A Gen.
– volume: 417
  start-page: 507
  year: 2002
  ident: 10.1016/j.fuproc.2017.10.007_bb0095
  article-title: Understanding and exploiting CH bond activation
  publication-title: Nature
  doi: 10.1038/417507a
– volume: 6
  issue: 40
  year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0120
  article-title: Effect of Ce and Co addition to Fe/Al2O3 for catalytic methane decomposition
  publication-title: Catalysts
– volume: 158
  start-page: 51
  year: 1996
  ident: 10.1016/j.fuproc.2017.10.007_bb0370
  article-title: Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts : I. Effects of support and metal crystallite size on reaction activity and deactivation characteristics
  publication-title: J. Catal.
  doi: 10.1006/jcat.1996.0005
– year: 2017
  ident: 10.1016/j.fuproc.2017.10.007_bb0015
  article-title: On the catalytic activity of Hydrotalcite-derived materials for dry reforming of methane
  publication-title: Catalysts
  doi: 10.3390/catal7010032
– volume: 171
  start-page: 24
  year: 2011
  ident: 10.1016/j.fuproc.2017.10.007_bb0150
  article-title: LaNiO3 perovskite catalyst precursor for rapid decomposition of methane: influence of temperature and presence of H2 in feed stream
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2011.03.080
– volume: 88
  start-page: 834
  year: 2009
  ident: 10.1016/j.fuproc.2017.10.007_bb0035
  article-title: Upgrading biomass pyrolysis gas by conversion of methane at high temperature: experiments and modelling
  publication-title: Fuel
  doi: 10.1016/j.fuel.2008.11.033
– volume: 195
  start-page: 1
  year: 2000
  ident: 10.1016/j.fuproc.2017.10.007_bb0435
  article-title: Catalytic behavior of supported KNiCa catalyst and mechanistic consideration for carbon dioxide reforming of methane
  publication-title: J. Catal.
  doi: 10.1006/jcat.2000.2978
– volume: 158
  start-page: 96
  year: 2017
  ident: 10.1016/j.fuproc.2017.10.007_bb0465
  article-title: Low-temperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ZrO2 catalysts
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.11.013
– year: 2013
  ident: 10.1016/j.fuproc.2017.10.007_bb0405
– volume: 257
  start-page: 59
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0270
  article-title: Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature – on the effect of basicity
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2015.03.017
– volume: 196
  start-page: L167
  year: 2000
  ident: 10.1016/j.fuproc.2017.10.007_bb0410
  article-title: Highly active and stable Ni/ZrO2 catalyst for syngas production by CO2 reforming of methane
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/S0926-860X(99)00504-9
– volume: 92
  start-page: 678
  year: 2011
  ident: 10.1016/j.fuproc.2017.10.007_bb0230
  article-title: Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2010.11.027
– volume: 1
  start-page: 71
  year: 1995
  ident: 10.1016/j.fuproc.2017.10.007_bb0360
  article-title: A stable and active nickel-based catalyst for carbon dioxide reforming of methane to synthesis gas
  publication-title: J. Chem. Soc. Chem. Commun.
  doi: 10.1039/c39950000071
– year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0170
  article-title: Highly reactive Ni-Co/SiO2 bimetallic catalyst via complexation with oleylamine/oleic acid organic pair for dry reforming of methane
  publication-title: Catal. Today
– volume: 8
  start-page: 211
  year: 1999
  ident: 10.1016/j.fuproc.2017.10.007_bb0340
  article-title: CO2 reforming of methane over vanadia-promoted Rh/SiO2 catalysts
  publication-title: Top. Catal.
  doi: 10.1023/A:1019121429843
– volume: 234
  start-page: 221
  year: 2002
  ident: 10.1016/j.fuproc.2017.10.007_bb0335
  article-title: Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/S0926-860X(02)00230-2
– volume: 102
  start-page: 62
  year: 2017
  ident: 10.1016/j.fuproc.2017.10.007_bb0065
  article-title: SSC Chuang, CH4 internal dry reforming over a Ni/YSZ/ScSZ anode catalyst in a SOFC: A transient kinetic study
  publication-title: Catalysis Communications
  doi: 10.1016/j.catcom.2017.08.027
– volume: 66
  start-page: 4005
  year: 1994
  ident: 10.1016/j.fuproc.2017.10.007_bb0075
  article-title: Direct comparison of Soxhlet and low- and high-temperature supercritical CO2 extraction efficiencies of organics from environmental solids
  publication-title: Anal. Chem.
  doi: 10.1021/ac00094a024
– volume: 47
  start-page: 93
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0350
  article-title: The formation of a series of carbonates from carbon dioxide: capturing and utilisation
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.03.020
– volume: 76
  start-page: 430
  year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0105
– volume: 40
  start-page: 13399
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0145
  article-title: Co-production of hydrogen and carbon nanofibers from catalytic decomposition of methane over LaNi(1−x)MxO3−α perovskite (where M=Co, Fe and X=0, 0.2, 0.5, 0.8, 1)
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.08.045
– volume: 62
  start-page: 13
  year: 2016
  ident: 10.1016/j.fuproc.2017.10.007_bb0470
  article-title: Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2016.04.007
– volume: 40
  start-page: 12227
  year: 2015
  ident: 10.1016/j.fuproc.2017.10.007_bb0165
  article-title: Pd-Ni catalyst over spherical nanostructured Y2O3 support for oxy-CO2 reforming of methane: role of surface oxygen mobility
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.07.076
SSID ssj0005597
Score 2.636213
SecondaryResourceType review_article
Snippet CO2 dry reforming of methane (DRM) not only utilized the two greenhouse gases, CO2 and CH4, but also produced synthesis gas, which could be used for...
CO₂ dry reforming of methane (DRM) not only utilized the two greenhouse gases, CO₂ and CH₄, but also produced synthesis gas, which could be used for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 199
SubjectTerms Active site
biomass
business enterprises
carbon dioxide
catalysts
catalytic activity
CO2 dry reforming of methane
Fischer-Tropsch reaction
greenhouse gases
Low-temperature activity
marshes
methane
Ni-based catalyst
nickel
particle size
pollution
pyrolysis
Reduction temperature
sustainable development
synthesis gas
temperature
Title Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts: A review
URI https://dx.doi.org/10.1016/j.fuproc.2017.10.007
https://www.proquest.com/docview/2000577007
Volume 169
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOKbCF7j9pEmqbdlUdbXevCBt5KnKNKKu4t48bebtKkvEMFjQqYtk3S-SfLNDMAe0c4JSmmEM800Jg6isVSaYC6pirngmtZBYedDOrgmJ7fZ7RT021gYT6sMtr-x6bW1Dj3doM3u0_199zJKGU89gLHUp50i0zCTpDnNOjDTOz4dDD-ZHlldY8WPx16gjaCraV524pHCc7zYfk3zYr8h1A9bXQPQ0QLMB88R9ZqPW4QpUy7B3Jd8gstwc1a9YJ9sKmRKRvXhzKsTQP2LBOnnV-ReV3n6yx2qLPLlo0VpUFWiodsjO0DTQWQ0Hh2gHmoCW1bg-ujwqj_AoXACVoQkY2wltQljKs2YynNjKNWpEJblRsfC00aNENy1CeWKZZInNokpF8pYYXTktter0Cmr0qwBSqTVQhFldZ4TESkpdaZFJPNIJ7E00TqkrbIKFbKK--IWj0VLH3soGhUXXsW-16l4HfCH1FOTVeOP8aydh-Lb6iic4f9DcredtsL9OP42xOm1mox8_U3nqzI3ZuPfT9-EWdfizZHMFnTGzxOz7ZyUsdyB6f23eCcsxXcJhejr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60HtSD-MS3K3jdNk02uxtvUpSqbT1oxVvYpyiSiG2RXvzt7uQhVRDBYzYzSZhN5pvdfDOD0Ak1PgiKWEBiww2hHqKJ0oYSoZhuCykMK5LC-gPWHdKrh_hhDnXqXBigVVa-v_TphbeuRlqVNVuvT0-t2yDiIgIA4xGUnaLzaIHGEQdeX_NjhucRFx1WQJqAeJ0_V5C83ARwAhhevFmQvPhv-PTDUxfwc7GKVqq4EZ-Vj7aG5my2jpZnqgluoPte_k6g1FRVJxkXWzNTr4A7NyE2b1Psb5cD-eUR5w5D82iZWZxneOBXyB7OTKUyGo9O8Rku01o20fDi_K7TJVXbBKIpDcfEKeZCznUUc50k1jJmIikdT6xpSyCNWimFP6ZMaB4rEbqwzYTU1klrAr-43kKNLM_sNsKhckZqqp1JEioDrZSJjQxUEpiwrWywg6LaWKmuaopDa4uXtCaPPaeliVMwMYx6E-8g8qX1WtbU-EOe1_OQfns3Uu_2_9A8rqct9Z8N_Avxds0nI-i-6SNV7mV2_331I7TYvev30t7l4HoPLfkzotyc2UeN8dvEHvhwZawOi9fxEwUj6bY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-temperature+catalytic+CO2+dry+reforming+of+methane+on+Ni-based+catalysts%3A+A+review&rft.jtitle=Fuel+processing+technology&rft.au=Wang%2C+Ye&rft.au=Yao%2C+Lu&rft.au=Wang%2C+Shenghong&rft.au=Mao%2C+Dehua&rft.date=2018-01-01&rft.issn=0378-3820&rft.volume=169&rft.spage=199&rft.epage=206&rft_id=info:doi/10.1016%2Fj.fuproc.2017.10.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuproc_2017_10_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon