Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts: A review
CO2 dry reforming of methane (DRM) not only utilized the two greenhouse gases, CO2 and CH4, but also produced synthesis gas, which could be used for Fischer-Tropsch synthesis. Besides, DRM reaction could utilize marsh gas and the gaseous products from pyrolysis of biomass, consequently increasing th...
Saved in:
Published in | Fuel processing technology Vol. 169; pp. 199 - 206 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-3820 1873-7188 |
DOI | 10.1016/j.fuproc.2017.10.007 |
Cover
Abstract | CO2 dry reforming of methane (DRM) not only utilized the two greenhouse gases, CO2 and CH4, but also produced synthesis gas, which could be used for Fischer-Tropsch synthesis. Besides, DRM reaction could utilize marsh gas and the gaseous products from pyrolysis of biomass, consequently increasing their value for businesses and reducing environment pollution, thereby providing ways for sustainable development. Nickel based catalyst was widely used in DRM reaction. This paper reviewed the recent progresses of the DRM reaction at low temperature. Suitable supports and promoters improved the catalytic performance by adjusting the interaction between nickel and the support. Besides, the temperature of calcination, the order of materials loading on support, the reduction temperature, and the nickel particle size also altered the performance of the catalysts. It was suggested that by investigating the interaction of supports, promoters with nickel, as well as their structural adjustment, the development of low temperature DRM catalysts was feasible.
The scheme of CO2 dry reforming of methane. [Display omitted]
•New low temperature (<600°C) DRM catalysts are important.•Alkaline earth supports enhances the catalytic performance.•Rare earth promoters contribute to the formation of new active phase.•The atomic level essence of nickel-based active phase needs more investigations. |
---|---|
AbstractList | CO₂ dry reforming of methane (DRM) not only utilized the two greenhouse gases, CO₂ and CH₄, but also produced synthesis gas, which could be used for Fischer-Tropsch synthesis. Besides, DRM reaction could utilize marsh gas and the gaseous products from pyrolysis of biomass, consequently increasing their value for businesses and reducing environment pollution, thereby providing ways for sustainable development. Nickel based catalyst was widely used in DRM reaction. This paper reviewed the recent progresses of the DRM reaction at low temperature. Suitable supports and promoters improved the catalytic performance by adjusting the interaction between nickel and the support. Besides, the temperature of calcination, the order of materials loading on support, the reduction temperature, and the nickel particle size also altered the performance of the catalysts. It was suggested that by investigating the interaction of supports, promoters with nickel, as well as their structural adjustment, the development of low temperature DRM catalysts was feasible. CO2 dry reforming of methane (DRM) not only utilized the two greenhouse gases, CO2 and CH4, but also produced synthesis gas, which could be used for Fischer-Tropsch synthesis. Besides, DRM reaction could utilize marsh gas and the gaseous products from pyrolysis of biomass, consequently increasing their value for businesses and reducing environment pollution, thereby providing ways for sustainable development. Nickel based catalyst was widely used in DRM reaction. This paper reviewed the recent progresses of the DRM reaction at low temperature. Suitable supports and promoters improved the catalytic performance by adjusting the interaction between nickel and the support. Besides, the temperature of calcination, the order of materials loading on support, the reduction temperature, and the nickel particle size also altered the performance of the catalysts. It was suggested that by investigating the interaction of supports, promoters with nickel, as well as their structural adjustment, the development of low temperature DRM catalysts was feasible. The scheme of CO2 dry reforming of methane. [Display omitted] •New low temperature (<600°C) DRM catalysts are important.•Alkaline earth supports enhances the catalytic performance.•Rare earth promoters contribute to the formation of new active phase.•The atomic level essence of nickel-based active phase needs more investigations. |
Author | Hu, Changwei Wang, Ye Wang, Shenghong Yao, Lu Mao, Dehua |
Author_xml | – sequence: 1 givenname: Ye surname: Wang fullname: Wang, Ye organization: College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China – sequence: 2 givenname: Lu surname: Yao fullname: Yao, Lu organization: Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China – sequence: 3 givenname: Shenghong surname: Wang fullname: Wang, Shenghong organization: College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China – sequence: 4 givenname: Dehua surname: Mao fullname: Mao, Dehua organization: Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China – sequence: 5 givenname: Changwei surname: Hu fullname: Hu, Changwei email: changweihu@scu.edu.cn organization: College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China |
BookMark | eNqFkL1OwzAURi1UJNrCGzB4ZEmwnTR2OyBVFX9SRRdgtVznGlwlcbFdqr49rtKJASbrXn3nyt8ZoUHnOkDompKcElrdbnKz23qnc0YoT6ucEH6GhlTwIuNUiAEakoKLrBCMXKBRCBtCyGQy5UP0vnT7LEK7Ba_izgPWKqrmEK3GixXDtT9gD8b51nYf2BncQvxUHWDX4RebrVWA-oSEGGZ4ntLfFvaX6NyoJsDV6R2jt4f718VTtlw9Pi_my0yXJYuZWVeGca6LCdfTKUBV1YVShk-hpkowVoJSIs1lJTSfrAUzjFZCaTAKagLrYoxu-rup_tcOQpStDRqaJv3R7YJkx6KcJx8pWvZR7V0IqZTcetsqf5CUyKNGuZG9RnnUeNz22OwXpm1U0bouemWb_-C7HobkIHnxMmgLnYbaetBR1s7-feAHWvuUOA |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2022_08_248 crossref_primary_10_1021_acscatal_2c06412 crossref_primary_10_3390_catal14080494 crossref_primary_10_1016_j_biteb_2022_101104 crossref_primary_10_1016_j_ccst_2022_100068 crossref_primary_10_1016_j_mcat_2024_114398 crossref_primary_10_3390_molecules24030526 crossref_primary_10_1016_j_psep_2021_10_051 crossref_primary_10_1021_acsenergylett_0c01635 crossref_primary_10_1515_ijcre_2021_0006 crossref_primary_10_1016_j_apcatb_2024_124722 crossref_primary_10_1016_j_fuel_2024_130998 crossref_primary_10_1016_j_ijhydene_2020_04_233 crossref_primary_10_3390_cryst12050713 crossref_primary_10_1002_cctc_202300245 crossref_primary_10_1016_j_ceramint_2023_05_057 crossref_primary_10_1021_acs_energyfuels_9b02236 crossref_primary_10_1021_acsanm_0c01724 crossref_primary_10_1002_asia_202101428 crossref_primary_10_1016_j_apcata_2022_118605 crossref_primary_10_1016_j_jssc_2022_123267 crossref_primary_10_1039_D0CC02284E crossref_primary_10_1016_j_fuproc_2018_03_032 crossref_primary_10_1002_ese3_1021 crossref_primary_10_1016_j_ijhydene_2021_03_150 crossref_primary_10_1016_j_enconman_2020_112950 crossref_primary_10_1016_j_fuel_2019_03_153 crossref_primary_10_1007_s10311_020_00968_0 crossref_primary_10_1039_D4TA04069D crossref_primary_10_1016_j_apcatb_2018_02_041 crossref_primary_10_1016_j_joei_2024_101901 crossref_primary_10_1039_D3CY00600J crossref_primary_10_1016_j_ijhydene_2024_01_250 crossref_primary_10_1021_acs_iecr_0c02444 crossref_primary_10_1002_cey2_127 crossref_primary_10_1016_j_cej_2024_148940 crossref_primary_10_1627_jpi_67_217 crossref_primary_10_1016_j_apcatb_2023_123243 crossref_primary_10_1038_s42004_023_01018_w crossref_primary_10_1007_s10562_019_02879_4 crossref_primary_10_1016_j_fuel_2024_132385 crossref_primary_10_1002_ceat_201900514 crossref_primary_10_1016_j_ccst_2024_100286 crossref_primary_10_1016_j_ijhydene_2021_03_246 crossref_primary_10_1016_j_apcatb_2021_120779 crossref_primary_10_1016_j_nxener_2024_100199 crossref_primary_10_1016_j_jclepro_2018_07_228 crossref_primary_10_3390_en14102928 crossref_primary_10_1016_j_energy_2025_134917 crossref_primary_10_1016_j_mcat_2021_111623 crossref_primary_10_1016_j_ijhydene_2019_09_014 crossref_primary_10_1021_acs_iecr_8b04183 crossref_primary_10_1039_D0CS01262A crossref_primary_10_3390_fuels5040033 crossref_primary_10_1016_j_ijhydene_2022_06_185 crossref_primary_10_3390_app13021169 crossref_primary_10_1016_j_fuel_2023_127409 crossref_primary_10_1021_acsami_2c12123 crossref_primary_10_1016_j_apsusc_2018_05_177 crossref_primary_10_1039_C9TA03584B crossref_primary_10_1016_j_ijhydene_2019_06_167 crossref_primary_10_1016_j_jre_2020_11_020 crossref_primary_10_1016_j_apcatb_2018_10_011 crossref_primary_10_1016_j_cplett_2019_137027 crossref_primary_10_1016_j_ijhydene_2024_01_004 crossref_primary_10_1039_D0GC01608J crossref_primary_10_3390_molecules29194597 crossref_primary_10_1002_cjce_23992 crossref_primary_10_1016_j_cej_2020_125393 crossref_primary_10_1016_j_jcat_2019_04_017 crossref_primary_10_1007_s11244_022_01621_6 crossref_primary_10_1016_j_apcata_2019_04_023 crossref_primary_10_1016_j_cattod_2021_03_004 crossref_primary_10_1016_j_rser_2023_113747 crossref_primary_10_1016_j_cattod_2022_05_014 crossref_primary_10_1016_j_ijhydene_2019_12_207 crossref_primary_10_1016_j_ijhydene_2018_12_145 crossref_primary_10_1016_j_renene_2023_119307 crossref_primary_10_1016_j_arabjc_2020_04_012 crossref_primary_10_1039_D1CY02281D crossref_primary_10_1002_ente_201900555 crossref_primary_10_3389_fchem_2021_736801 crossref_primary_10_1016_j_apsusc_2023_158958 crossref_primary_10_1016_j_seppur_2023_125868 crossref_primary_10_1016_j_ijhydene_2018_07_104 crossref_primary_10_1016_j_catcom_2020_105953 crossref_primary_10_1016_j_jcis_2021_01_100 crossref_primary_10_1016_j_jcou_2018_03_012 crossref_primary_10_1021_acs_iecr_1c04010 crossref_primary_10_1016_j_aej_2023_05_040 crossref_primary_10_18321_ectj691 crossref_primary_10_1002_advs_202203221 crossref_primary_10_1016_j_fuel_2018_01_052 crossref_primary_10_1016_j_fuel_2022_124032 crossref_primary_10_1021_acs_jpcc_1c07071 crossref_primary_10_1002_smll_202408678 crossref_primary_10_1021_acsanm_0c03140 crossref_primary_10_1016_j_fuel_2021_120182 crossref_primary_10_1021_acs_iecr_0c01204 crossref_primary_10_2109_jcersj2_25025 crossref_primary_10_1039_C9SE00206E crossref_primary_10_1039_D0NR04644B crossref_primary_10_3390_molecules27020356 crossref_primary_10_3390_en13133365 crossref_primary_10_1016_j_jcou_2019_01_006 crossref_primary_10_1002_ange_202101335 crossref_primary_10_1016_j_apcatb_2021_120321 crossref_primary_10_1016_j_cattod_2022_08_036 crossref_primary_10_1016_j_ijhydene_2020_03_176 crossref_primary_10_1016_j_rineng_2022_100630 crossref_primary_10_1016_j_fuel_2020_117849 crossref_primary_10_1016_j_ijhydene_2021_07_097 crossref_primary_10_1016_j_ijhydene_2018_09_122 crossref_primary_10_1016_j_apcatb_2020_119734 crossref_primary_10_1039_D4SE00529E crossref_primary_10_1016_j_apt_2019_09_039 crossref_primary_10_1016_j_indcrop_2022_115844 crossref_primary_10_1016_j_jre_2018_10_016 crossref_primary_10_1016_j_apsusc_2021_152310 crossref_primary_10_1016_j_jcou_2024_102734 crossref_primary_10_1007_s12039_021_01886_6 crossref_primary_10_1016_j_pecs_2022_101008 crossref_primary_10_1007_s10971_024_06336_6 crossref_primary_10_1016_j_jcou_2021_101447 crossref_primary_10_3390_nano12091556 crossref_primary_10_1016_j_fuproc_2022_107615 crossref_primary_10_1021_acsomega_1c06182 crossref_primary_10_1016_j_fuel_2022_127082 crossref_primary_10_1039_D0NR01960G crossref_primary_10_1016_j_catcom_2018_11_006 crossref_primary_10_1016_j_fuproc_2022_107617 crossref_primary_10_1016_j_ijhydene_2019_05_113 crossref_primary_10_1016_j_ijhydene_2022_11_205 crossref_primary_10_1016_j_cej_2022_137860 crossref_primary_10_1016_j_cej_2020_125519 crossref_primary_10_1016_j_ijhydene_2020_10_164 crossref_primary_10_1016_j_ijhydene_2021_05_049 crossref_primary_10_1007_s40242_021_1281_5 crossref_primary_10_1016_j_joule_2019_06_023 crossref_primary_10_1016_j_jcou_2021_101696 crossref_primary_10_1016_j_joei_2023_101332 crossref_primary_10_1016_j_fuel_2024_131386 crossref_primary_10_3390_en14102973 crossref_primary_10_1016_j_jece_2024_113873 crossref_primary_10_1016_j_fuproc_2018_03_011 crossref_primary_10_1016_j_ijhydene_2018_01_173 crossref_primary_10_1021_acs_jpcc_4c06174 crossref_primary_10_1016_j_energy_2019_05_083 crossref_primary_10_1007_s10311_020_01055_0 crossref_primary_10_3389_fchem_2020_581923 crossref_primary_10_1038_s41598_022_09291_w crossref_primary_10_1021_acs_iecr_9b03676 crossref_primary_10_1002_er_7923 crossref_primary_10_1002_anie_202101335 crossref_primary_10_1021_acs_iecr_0c01416 crossref_primary_10_7498_aps_70_20201700 crossref_primary_10_1002_er_5741 crossref_primary_10_1016_j_cattod_2020_07_030 crossref_primary_10_1016_j_cep_2023_109575 crossref_primary_10_1016_j_renene_2022_10_046 crossref_primary_10_1016_j_ijhydene_2024_02_220 crossref_primary_10_1016_j_ijhydene_2019_12_053 crossref_primary_10_1016_j_cej_2024_148899 crossref_primary_10_1515_ijcre_2020_0111 crossref_primary_10_1007_s11144_021_02043_3 crossref_primary_10_54175_hsustain3020013 crossref_primary_10_1021_acsengineeringau_3c00025 crossref_primary_10_1016_j_energy_2022_125781 crossref_primary_10_1016_j_apcatb_2021_119922 crossref_primary_10_1016_j_fuel_2019_05_145 crossref_primary_10_1016_j_fuel_2021_122441 crossref_primary_10_3390_catal14050316 crossref_primary_10_1016_j_cej_2022_139703 crossref_primary_10_1016_j_energy_2022_124205 crossref_primary_10_1021_acsomega_1c03174 crossref_primary_10_1021_acscatal_9b05517 crossref_primary_10_1016_j_ijhydene_2019_12_059 crossref_primary_10_1016_j_ijhydene_2023_12_117 crossref_primary_10_1016_j_nanoen_2021_106379 crossref_primary_10_1016_j_fuproc_2018_12_018 crossref_primary_10_18178_JOCET_2018_6_4_480 crossref_primary_10_1039_D1CP04048K crossref_primary_10_1016_j_ijhydene_2020_03_012 crossref_primary_10_3390_inorganics6020039 crossref_primary_10_1002_slct_202102877 crossref_primary_10_1016_j_rser_2022_112774 crossref_primary_10_1021_acssuschemeng_8b04727 crossref_primary_10_1039_D4RA06740A crossref_primary_10_1039_D4TA01823K crossref_primary_10_1016_j_cej_2025_160707 crossref_primary_10_1007_s13203_018_0214_9 crossref_primary_10_1021_acs_energyfuels_0c01678 crossref_primary_10_1021_acscatal_9b04555 crossref_primary_10_1021_acs_energyfuels_1c00219 crossref_primary_10_1016_j_rser_2020_110363 crossref_primary_10_1016_j_rser_2019_03_054 crossref_primary_10_1002_smll_202310926 crossref_primary_10_3389_fenrg_2023_1150000 crossref_primary_10_3390_en15186774 crossref_primary_10_1016_j_enconman_2018_12_112 crossref_primary_10_1021_acscatal_2c04619 crossref_primary_10_3390_catal11081003 crossref_primary_10_3390_reactions3030025 crossref_primary_10_1016_j_ijhydene_2021_11_086 crossref_primary_10_1021_acsami_1c02180 crossref_primary_10_1016_j_jcou_2021_101647 crossref_primary_10_1016_j_ijhydene_2020_08_067 crossref_primary_10_3390_catal11020175 crossref_primary_10_1016_j_cej_2021_130864 crossref_primary_10_1039_D3CP04626E crossref_primary_10_3390_catal10010038 crossref_primary_10_1016_j_jechem_2024_04_022 crossref_primary_10_1016_j_fuproc_2018_05_030 crossref_primary_10_3390_en13225956 crossref_primary_10_1021_acs_iecr_4c04860 crossref_primary_10_1016_j_energy_2025_134516 crossref_primary_10_3389_fchem_2020_00269 crossref_primary_10_3390_nano11112880 crossref_primary_10_1016_j_ijhydene_2020_02_200 crossref_primary_10_3390_catal15020102 crossref_primary_10_1016_j_ijhydene_2020_10_240 crossref_primary_10_1016_j_fuproc_2021_106837 crossref_primary_10_3390_catal10091043 crossref_primary_10_1016_j_cattod_2018_11_064 crossref_primary_10_1016_j_cej_2025_159939 crossref_primary_10_1016_j_jcou_2023_102427 crossref_primary_10_1016_j_cej_2023_148476 crossref_primary_10_1039_D1CC01551F crossref_primary_10_3390_catal15010040 crossref_primary_10_3390_methane1030012 crossref_primary_10_1016_j_ceramint_2021_08_220 crossref_primary_10_1016_j_ijhydene_2023_05_281 crossref_primary_10_1002_ange_202112835 crossref_primary_10_1016_j_ijhydene_2019_03_265 crossref_primary_10_1016_j_apcata_2021_118120 crossref_primary_10_1016_j_apsusc_2022_153128 crossref_primary_10_1016_j_jcou_2022_102115 crossref_primary_10_1002_ppsc_201800426 crossref_primary_10_1016_j_apcatb_2022_121809 crossref_primary_10_1093_chemle_upae055 crossref_primary_10_1002_jctb_6451 crossref_primary_10_1016_j_seppur_2022_122245 crossref_primary_10_1021_acs_iecr_3c04276 crossref_primary_10_1016_j_rineng_2025_104328 crossref_primary_10_1021_acscatal_1c02200 crossref_primary_10_1016_j_fuel_2024_132619 crossref_primary_10_3390_catal11040446 crossref_primary_10_1039_C9RA03679B crossref_primary_10_4191_kcers_2019_56_6_06 crossref_primary_10_1016_j_ijhydene_2020_09_129 crossref_primary_10_3390_catal9121055 crossref_primary_10_1007_s12274_022_4180_2 crossref_primary_10_18321_ectj978 crossref_primary_10_1016_j_fuproc_2020_106335 crossref_primary_10_1002_adfm_202111875 crossref_primary_10_1016_j_jece_2018_07_032 crossref_primary_10_1007_s11356_024_34021_2 crossref_primary_10_1016_j_jechem_2021_05_017 crossref_primary_10_1016_j_mcat_2021_111498 crossref_primary_10_1016_j_ijhydene_2025_01_193 crossref_primary_10_1021_acsami_3c09349 crossref_primary_10_1016_j_apcata_2020_117439 crossref_primary_10_1002_ese3_1586 crossref_primary_10_1016_j_enconman_2018_05_083 crossref_primary_10_1016_j_ijhydene_2021_03_190 crossref_primary_10_1002_anie_202112835 crossref_primary_10_1016_j_cscee_2024_101078 crossref_primary_10_1016_j_jece_2021_105173 crossref_primary_10_1016_j_ijhydene_2022_07_104 crossref_primary_10_3390_catal11010067 crossref_primary_10_1016_j_mencom_2019_01_006 crossref_primary_10_1002_anie_201911195 crossref_primary_10_1002_cjce_24876 crossref_primary_10_1016_j_jcou_2020_101328 crossref_primary_10_1016_j_ces_2024_119914 crossref_primary_10_1021_acs_energyfuels_3c03421 crossref_primary_10_1016_j_apcatb_2018_10_048 crossref_primary_10_1016_j_ijhydene_2022_11_287 crossref_primary_10_3390_catal13040686 crossref_primary_10_4028_www_scientific_net_MSF_1016_1585 crossref_primary_10_1007_s10934_022_01386_z crossref_primary_10_1016_j_jcou_2021_101728 crossref_primary_10_1016_j_jece_2021_106150 crossref_primary_10_1002_adma_202003999 crossref_primary_10_1016_j_apenergy_2024_123011 crossref_primary_10_3390_catal10040379 crossref_primary_10_1016_j_fuproc_2019_02_013 crossref_primary_10_1016_j_ces_2023_119165 crossref_primary_10_1002_smll_202305258 crossref_primary_10_1016_j_ces_2022_118315 crossref_primary_10_1016_j_cherd_2023_04_020 crossref_primary_10_1515_ijcre_2022_0079 crossref_primary_10_1002_ente_201900521 crossref_primary_10_1016_j_ijhydene_2021_12_214 crossref_primary_10_1016_j_ijhydene_2025_03_217 crossref_primary_10_1002_ente_201900750 crossref_primary_10_1002_ange_201911195 crossref_primary_10_1039_D0CC00729C crossref_primary_10_2139_ssrn_3972774 crossref_primary_10_1016_j_apcatb_2022_121583 crossref_primary_10_1016_j_catcom_2020_106181 crossref_primary_10_1016_j_ijhydene_2018_08_181 crossref_primary_10_1016_j_fuel_2023_130166 crossref_primary_10_1016_j_isci_2020_101082 |
Cites_doi | 10.1016/S0920-5861(98)00465-9 10.1007/BF00807002 10.1016/j.ijhydene.2016.12.121 10.1006/jcat.1993.1136 10.1016/j.fuproc.2015.12.009 10.1016/j.energy.2015.08.086 10.1016/S0926-860X(02)00493-3 10.1016/j.apcata.2008.04.012 10.1016/0926-860X(95)00238-3 10.1016/j.apcatb.2015.05.021 10.1021/ie010665p 10.1039/C6RA27266E 10.3390/catal3020563 10.1016/j.apcatb.2015.07.039 10.1016/S0167-2991(97)80381-3 10.1016/j.cej.2014.11.143 10.1016/j.biombioe.2011.02.033 10.1021/ie980489t 10.1016/S0926-860X(01)00974-7 10.1016/j.catcom.2014.07.022 10.1021/ef7002409 10.1002/cctc.201402673 10.1002/chin.200449267 10.1016/j.ijhydene.2017.03.208 10.1016/j.mcat.2017.01.012 10.1016/j.jcou.2016.12.014 10.1016/j.jcat.2012.09.011 10.1021/la503340s 10.1021/ef200827p 10.1021/jf052858j 10.1016/j.ijhydene.2009.12.073 10.1016/j.fuel.2009.05.029 10.1016/j.apcata.2015.07.005 10.1016/j.cej.2012.11.034 10.1016/j.cattod.2014.06.011 10.1016/j.ijhydene.2012.04.059 10.1016/j.apcata.2016.04.014 10.1016/j.apcatb.2016.05.001 10.1016/j.crci.2015.04.005 10.1016/j.crci.2015.01.004 10.1007/BF00816306 10.1016/j.apcatb.2016.01.067 10.1002/cssc.201500390 10.1016/0009-2509(94)87013-6 10.1016/j.apcata.2014.10.026 10.1016/j.ijhydene.2011.08.022 10.1016/j.apcatb.2012.06.006 10.1016/j.ijhydene.2012.10.063 10.1021/jp401855x 10.1016/j.apcatb.2011.09.035 10.1016/j.apcatb.2012.09.052 10.1016/0926-860X(96)00065-8 10.1039/c3cy00869j 10.1016/j.ijhydene.2016.02.074 10.1016/j.mcat.2017.02.019 10.1016/j.jaap.2014.12.011 10.1023/A:1006722207492 10.1021/cs401027p 10.1002/cphc.200400364 10.1021/ie970246l 10.1021/jp036985z 10.1016/S0167-2991(97)80385-0 10.1016/j.fuel.2016.05.073 10.1016/j.jcou.2016.05.007 10.1002/cctc.201500787 10.1038/417507a 10.1006/jcat.1996.0005 10.3390/catal7010032 10.1016/j.cattod.2011.03.080 10.1016/j.fuel.2008.11.033 10.1006/jcat.2000.2978 10.1016/j.fuproc.2016.11.013 10.1016/j.cattod.2015.03.017 10.1016/S0926-860X(99)00504-9 10.1016/j.fuproc.2010.11.027 10.1039/c39950000071 10.1023/A:1019121429843 10.1016/S0926-860X(02)00230-2 10.1016/j.catcom.2017.08.027 10.1021/ac00094a024 10.1016/j.rser.2015.03.020 10.1016/j.ijhydene.2015.08.045 10.1016/j.rser.2016.04.007 10.1016/j.ijhydene.2015.07.076 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. |
Copyright_xml | – notice: 2017 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.fuproc.2017.10.007 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7188 |
EndPage | 206 |
ExternalDocumentID | 10_1016_j_fuproc_2017_10_007 S0378382017310184 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSR SSZ T5K TWZ UHS WUQ ZY4 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION GROUPED_DOAJ SSH 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c442t-fb6f277c357c99ee66d3aaf79ed1a8224eaa8af7468c75b82f2168acefaed0eb3 |
IEDL.DBID | AIKHN |
ISSN | 0378-3820 |
IngestDate | Thu Sep 04 19:34:47 EDT 2025 Tue Jul 01 03:04:34 EDT 2025 Thu Apr 24 23:04:23 EDT 2025 Fri Feb 23 02:46:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CO2 dry reforming of methane Low-temperature activity Reduction temperature Active site Ni-based catalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-fb6f277c357c99ee66d3aaf79ed1a8224eaa8af7468c75b82f2168acefaed0eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2000577007 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000577007 crossref_primary_10_1016_j_fuproc_2017_10_007 crossref_citationtrail_10_1016_j_fuproc_2017_10_007 elsevier_sciencedirect_doi_10_1016_j_fuproc_2017_10_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationTitle | Fuel processing technology |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gao, Liu, Hidajat, Kawi (bb0195) 2016; 7 Wei, Xu, Li, Cheng, Zhu (bb0410) 2000; 196 Osaki, Horiuchi, Suzuki, Mori (bb0325) 1995; 35 Ryckebosch, Drouillon, Vervaeren (bb0045) 2011; 35 Tomiyama, Takahashi, Sato (bb0110) 2003; 241 Angeli, Turchetti, Monteleone, Lemonidou (bb0130) 2015; 181 Bradford, Vannice (bb0255) 1999; 50 He, Jin, Wang, Zhao, Zhu, Hu (bb0030) 2011; 25 Labinger, Bercaw (bb0095) 2002; 417 Oemar, Hidajat, Kawi (bb0165) 2015; 40 Sokolov, Kondratenko, Pohl, Barkschat, Rodemerck (bb0345) 2012; s113–114 Baudouin, Rodemerck, Krumeich, Mallmann, Szeto, Ménard, Veyre, Candy, Webb, Thieuleux (bb0005) 2013; 297 Wei, Iglesia (bb0235) 2004; 108 lI, Kathiraser, Ashok, Oemar, Kawi (bb0210) 2014; 30 Ovanesyan, Dubkov, Pyalling, Shteinman (bb0055) 2000; 246 Bian, Kawi (bb0140) 2017; 18 Yao, Wang, Shi, Xu, Shen, Hu (bb0375) 2016 Ogasa, Sato, Koide, Matusita (bb0050) 2004 Park, Ahn, Sim, Seo, Han, Shin (bb0330) 2014; 56 Al-Fatesh, Amin, Ibrahim, Khan, Soliman, Al-Otaibi, Fakeeha (bb0120) 2016; 6 Pengpanich, Meeyoo, Rirksomboon, Bunyakiat (bb0335) 2002; 234 Grossi, Jardim, Araújo, Lago, Silva (bb0415) 2010; 89 Aresta, Dibenedetto, Quaranta (bb0105) 2016; 76 Gao, Ashok, Widjaja, Hidajat, Kawi (bb0020) 2015; 503 Kathiraser, Oemar, Saw, Li, Kawi (bb0220) 2015; 278 Youngjun, Youngsuk, Kang (bb0040) 2015; 91 Unni Olsbye, Thomas Wurzel (bb0085) 1997; 36 Mo, Leong, Kawi (bb0205) 2014; 4 Barroso-Quiroga, Castro-Luna (bb0395) 2010; 35 Beneroso, Bermúdez, Arenillas, Menéndez (bb0025) 2015; 111 Siengchum (bb0060) 2012 Chung, Chang (bb0470) 2016; 62 Hawthorne, Miller (bb0075) 1994; 66 Erdőhelyi, Fodor, Solymosi (bb0280) 1997; 107 Zhang, Tsipouriari, Efstathiou, Verykios (bb0370) 1996; 158 Li, Hu, Yang, Wang, He (bb0310) 2012; s413–414 Li, Li, Bian, Kathiraser, Kawi (bb0225) 2016; 188 Trovarelli, Fornasiero (bb0405) 2013 Slagtern, Olsbye, Blom, Dahl (bb0390) 1997; 107 Valin, Cances, Castelli, Thiery, Dufour, Boissonnet, Spindler (bb0035) 2009; 88 Yao, Shi, Xu, Shen, Hu (bb0100) 2016; 144 Dębek, Ribeiro, Fernandes, Motak (bb0260) 2015; 18 Kathiraser, Thitsartarn, Sutthiumporn, Kawi (bb0160) 2013; 117 Bradford, Vannice (bb0250) 1996; 142 Yabe, Mitarai, Oshima, Ogo, Sekine (bb0465) 2017; 158 Tu, Whitehead (bb0385) 2012; 125 Gao, Hidajat, Kawi (bb0185) 2016; 15 Zhang, Verykios (bb0360) 1995; 1 Kaydouh, Hassan, Davidson, Casale, Zakhem, Massiani (bb0295) 2015; 18 Mette, Kühl, Tarasov, Düdder, Kähler, Muhler, Schlögl, Behrens (bb0125) 2015; 242 Liu, Wierzbicki, Debek, Motak, Grzybek, Costa, Gálvez (bb0315) 2016; 182 Chang, Park, Yoo, Park (bb0435) 2000; 195 Dębek, Motak, Grzybek, Galvez, Costa, Short Review (bb0015) 2017 Sutthiumporn, Kawi (bb0180) 2011; 36 Kawi, Kathiraser, Ni, Oemar, Li, Saw (bb0215) 2015; 8 Bachiller-Baeza, Mateos-Pedrero, Soria, Guerrero-Ruiz, Rodemerck, Rodríguez-Ramos (bb0245) 2013; 129 Erdohelyi, Cserenyi, Solymosi (bb0275) 1993; 141 Dębek, Motak, Galvez, Costa, Grzybek (bb0480) 2017 Dębek, Motak, Galvez, Grzybek, Costa (bb0425) 2017 Gao, Tan, Hidajat, Kawi (bb0170) 2016 Sovová, Kučera, Jež (bb0080) 1994; 49 Snoeck, Froment, Fowles (bb0440) 2002; 41 Li, Kathiraser, Kawi (bb0190) 2015; 7 Maneerung, Hidajat, Kawi (bb0145) 2015; 40 Dębek, Galvez, Launay, Motak, Grzybek, Costa (bb0265) 2016; 41 Özkara-Aydınoğlu, Aksoylu (bb0380) 2013; s215–216 Wu, Parola, Pantaleo, Puleo, Venezia, Liotta (bb0090) 2013; 3 Wan, Ramli, Hisham, Yarmo (bb0350) 2015; 47 Wang, Hu, Dong, Parkinson, Li (bb0355) 2016 Nikoo, Amin (bb0230) 2011; 92 Sigl, Bradford, Knözinger (bb0340) 1999; 8 Elsayed, Roberts, Joseph, Kuhn (bb0010) 2015; 179 Xu, Xiao, Zhang, Sun, Zhu (bb0475) 2017; 432 Lemonidou, Vasalos (bb0305) 2002; 228 Hu, Ruckenstein (bb0400) 2004; 35 Yao, Galvez, Hu, Da Costa (bb0460) 2017 Kumar, Sun, Idem (bb0300) 2007; 21 Dębek, Radlik, Motak, Galvez, Turek, Costa, Grzybek (bb0270) 2015; 257 Nakamura, Aikawa, Sato, Uchijima (bb0320) 1994; 25 Díaz-Reinoso, Moure, Domínguez, Parajó (bb0070) 2006; 54 Hassan, Kaydouh, Geagea, Zein, Jabbour, Casale, Zakhem, Massiani (bb0290) 2016; 520 Cao, Bourane, Schlup, Hohn (bb0135) 2008; 344 Aghamohammadi, Haghighi, Maleki, Rahemi (bb0455) 2017; 431 Wang, Lu (bb0240) 1999; 38 Albarazi, Beaunier, Costa (bb0420) 2013; 38 Bian, Suryawinata, Kawi (bb0200) 2016; 195 Yin (bb0065) 2017; 102 Gálvez, Albarazi, Costa (bb0285) 2014; 504 Sutthiumporn, Maneerung, Kathiraser, Kawi (bb0155) 2012; 37 Maneerung, Hidajat, Kawi (bb0150) 2011; 171 Li, Mo, Kathiraser, Kawi (bb0175) 2014; 4 Tsutomu, Ikeda, Satoshi, Yasushi, Ryo, Jiro, Zatsepina, Buffett (bb0115) 2005; 6 Zhang, Verykios (bb0365) 1996; 21 Oemar, Kathiraser, Mo, Ho, Kawi (bb0430) 2016; 6 Suwała, Dębek, Motak, Galvez-Parruca, Grzybek, Da Costa, Pieńkowski, Dudek, Leszczyński, Łopata (bb0450) 2017; 14 Zhao, Cao, Li, Zhang, Shi, Zhang (bb0445) 2017; 7 Li (10.1016/j.fuproc.2017.10.007_bb0225) 2016; 188 Youngjun (10.1016/j.fuproc.2017.10.007_bb0040) 2015; 91 Ovanesyan (10.1016/j.fuproc.2017.10.007_bb0055) 2000; 246 Dębek (10.1016/j.fuproc.2017.10.007_bb0260) 2015; 18 Lemonidou (10.1016/j.fuproc.2017.10.007_bb0305) 2002; 228 Chung (10.1016/j.fuproc.2017.10.007_bb0470) 2016; 62 Dębek (10.1016/j.fuproc.2017.10.007_bb0480) 2017 He (10.1016/j.fuproc.2017.10.007_bb0030) 2011; 25 Yao (10.1016/j.fuproc.2017.10.007_bb0100) 2016; 144 Hassan (10.1016/j.fuproc.2017.10.007_bb0290) 2016; 520 Angeli (10.1016/j.fuproc.2017.10.007_bb0130) 2015; 181 Bian (10.1016/j.fuproc.2017.10.007_bb0200) 2016; 195 Suwała (10.1016/j.fuproc.2017.10.007_bb0450) 2017; 14 Siengchum (10.1016/j.fuproc.2017.10.007_bb0060) 2012 Valin (10.1016/j.fuproc.2017.10.007_bb0035) 2009; 88 Dębek (10.1016/j.fuproc.2017.10.007_bb0265) 2016; 41 Elsayed (10.1016/j.fuproc.2017.10.007_bb0010) 2015; 179 Sutthiumporn (10.1016/j.fuproc.2017.10.007_bb0180) 2011; 36 Trovarelli (10.1016/j.fuproc.2017.10.007_bb0405) 2013 Erdőhelyi (10.1016/j.fuproc.2017.10.007_bb0280) 1997; 107 Dębek (10.1016/j.fuproc.2017.10.007_bb0015) 2017 Tsutomu (10.1016/j.fuproc.2017.10.007_bb0115) 2005; 6 Al-Fatesh (10.1016/j.fuproc.2017.10.007_bb0120) 2016; 6 Zhang (10.1016/j.fuproc.2017.10.007_bb0370) 1996; 158 Xu (10.1016/j.fuproc.2017.10.007_bb0475) 2017; 432 Tomiyama (10.1016/j.fuproc.2017.10.007_bb0110) 2003; 241 Kathiraser (10.1016/j.fuproc.2017.10.007_bb0220) 2015; 278 Wu (10.1016/j.fuproc.2017.10.007_bb0090) 2013; 3 Mette (10.1016/j.fuproc.2017.10.007_bb0125) 2015; 242 Wang (10.1016/j.fuproc.2017.10.007_bb0240) 1999; 38 Park (10.1016/j.fuproc.2017.10.007_bb0330) 2014; 56 Chang (10.1016/j.fuproc.2017.10.007_bb0435) 2000; 195 Bachiller-Baeza (10.1016/j.fuproc.2017.10.007_bb0245) 2013; 129 Sovová (10.1016/j.fuproc.2017.10.007_bb0080) 1994; 49 Wang (10.1016/j.fuproc.2017.10.007_bb0355) 2016 Sigl (10.1016/j.fuproc.2017.10.007_bb0340) 1999; 8 Wei (10.1016/j.fuproc.2017.10.007_bb0410) 2000; 196 Aghamohammadi (10.1016/j.fuproc.2017.10.007_bb0455) 2017; 431 Bian (10.1016/j.fuproc.2017.10.007_bb0140) 2017; 18 Nikoo (10.1016/j.fuproc.2017.10.007_bb0230) 2011; 92 Hawthorne (10.1016/j.fuproc.2017.10.007_bb0075) 1994; 66 Sokolov (10.1016/j.fuproc.2017.10.007_bb0345) 2012; s113–114 Gao (10.1016/j.fuproc.2017.10.007_bb0195) 2016; 7 Grossi (10.1016/j.fuproc.2017.10.007_bb0415) 2010; 89 Beneroso (10.1016/j.fuproc.2017.10.007_bb0025) 2015; 111 Aresta (10.1016/j.fuproc.2017.10.007_bb0105) 2016; 76 Gálvez (10.1016/j.fuproc.2017.10.007_bb0285) 2014; 504 Kawi (10.1016/j.fuproc.2017.10.007_bb0215) 2015; 8 Oemar (10.1016/j.fuproc.2017.10.007_bb0165) 2015; 40 Dębek (10.1016/j.fuproc.2017.10.007_bb0270) 2015; 257 Yao (10.1016/j.fuproc.2017.10.007_bb0375) 2016 Pengpanich (10.1016/j.fuproc.2017.10.007_bb0335) 2002; 234 Yin (10.1016/j.fuproc.2017.10.007_bb0065) 2017; 102 Díaz-Reinoso (10.1016/j.fuproc.2017.10.007_bb0070) 2006; 54 Maneerung (10.1016/j.fuproc.2017.10.007_bb0150) 2011; 171 Oemar (10.1016/j.fuproc.2017.10.007_bb0430) 2016; 6 Cao (10.1016/j.fuproc.2017.10.007_bb0135) 2008; 344 Yao (10.1016/j.fuproc.2017.10.007_bb0460) 2017 Kathiraser (10.1016/j.fuproc.2017.10.007_bb0160) 2013; 117 Maneerung (10.1016/j.fuproc.2017.10.007_bb0145) 2015; 40 Bradford (10.1016/j.fuproc.2017.10.007_bb0255) 1999; 50 Dębek (10.1016/j.fuproc.2017.10.007_bb0425) 2017 Zhang (10.1016/j.fuproc.2017.10.007_bb0360) 1995; 1 lI (10.1016/j.fuproc.2017.10.007_bb0210) 2014; 30 Ogasa (10.1016/j.fuproc.2017.10.007_bb0050) 2004 Nakamura (10.1016/j.fuproc.2017.10.007_bb0320) 1994; 25 Wan (10.1016/j.fuproc.2017.10.007_bb0350) 2015; 47 Gao (10.1016/j.fuproc.2017.10.007_bb0185) 2016; 15 Snoeck (10.1016/j.fuproc.2017.10.007_bb0440) 2002; 41 Bradford (10.1016/j.fuproc.2017.10.007_bb0250) 1996; 142 Osaki (10.1016/j.fuproc.2017.10.007_bb0325) 1995; 35 Slagtern (10.1016/j.fuproc.2017.10.007_bb0390) 1997; 107 Gao (10.1016/j.fuproc.2017.10.007_bb0170) 2016 Erdohelyi (10.1016/j.fuproc.2017.10.007_bb0275) 1993; 141 Liu (10.1016/j.fuproc.2017.10.007_bb0315) 2016; 182 Wei (10.1016/j.fuproc.2017.10.007_bb0235) 2004; 108 Yabe (10.1016/j.fuproc.2017.10.007_bb0465) 2017; 158 Albarazi (10.1016/j.fuproc.2017.10.007_bb0420) 2013; 38 Li (10.1016/j.fuproc.2017.10.007_bb0175) 2014; 4 Ryckebosch (10.1016/j.fuproc.2017.10.007_bb0045) 2011; 35 Labinger (10.1016/j.fuproc.2017.10.007_bb0095) 2002; 417 Li (10.1016/j.fuproc.2017.10.007_bb0190) 2015; 7 Kumar (10.1016/j.fuproc.2017.10.007_bb0300) 2007; 21 Özkara-Aydınoğlu (10.1016/j.fuproc.2017.10.007_bb0380) 2013; s215–216 Baudouin (10.1016/j.fuproc.2017.10.007_bb0005) 2013; 297 Gao (10.1016/j.fuproc.2017.10.007_bb0020) 2015; 503 Unni Olsbye (10.1016/j.fuproc.2017.10.007_bb0085) 1997; 36 Zhao (10.1016/j.fuproc.2017.10.007_bb0445) 2017; 7 Barroso-Quiroga (10.1016/j.fuproc.2017.10.007_bb0395) 2010; 35 Li (10.1016/j.fuproc.2017.10.007_bb0310) 2012; s413–414 Zhang (10.1016/j.fuproc.2017.10.007_bb0365) 1996; 21 Kaydouh (10.1016/j.fuproc.2017.10.007_bb0295) 2015; 18 Tu (10.1016/j.fuproc.2017.10.007_bb0385) 2012; 125 Sutthiumporn (10.1016/j.fuproc.2017.10.007_bb0155) 2012; 37 Hu (10.1016/j.fuproc.2017.10.007_bb0400) 2004; 35 Mo (10.1016/j.fuproc.2017.10.007_bb0205) 2014; 4 |
References_xml | – volume: 520 start-page: 114 year: 2016 end-page: 121 ident: bb0290 article-title: Low temperature dry reforming of methane on rhodium and cobalt based catalysts: active phase stabilization by confinement in mesoporous SBA-15 publication-title: Appl. Catal. A Gen. – volume: 228 start-page: 227 year: 2002 end-page: 235 ident: bb0305 article-title: Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al publication-title: Appl. Catal. A Gen. – volume: 35 start-page: 297 year: 2004 end-page: 345 ident: bb0400 article-title: Catalytic conversion of methane to synthesis gas by partial oxidation and CO publication-title: ChemInform – volume: 241 start-page: 349 year: 2003 end-page: 361 ident: bb0110 article-title: Preparation of Ni/SiO publication-title: Appl. Catal. A Gen. – volume: 171 start-page: 24 year: 2011 end-page: 35 ident: bb0150 article-title: LaNiO publication-title: Catal. Today – volume: 246 start-page: 149 year: 2000 end-page: 152 ident: bb0055 article-title: The Fe active sites in Fe/ZSM-5 catalyst for selective oxidation of CH publication-title: J. Radioanal. Nucl. Chem. – volume: 432 start-page: 31 year: 2017 end-page: 36 ident: bb0475 article-title: NiO-MgO nanoparticles confined inside SiO publication-title: Mol. Catal. – volume: 107 start-page: 497 year: 1997 end-page: 502 ident: bb0390 article-title: The influence of rare earth oxides on Ni/Al publication-title: Stud. Surf. Sci. Catal. – volume: 111 start-page: 55 year: 2015 end-page: 63 ident: bb0025 article-title: Comparing the composition of the synthesis-gas obtained from the pyrolysis of different organic residues for a potential use in the synthesis of bioplastics publication-title: J. Anal. Appl. Pyrolysis – volume: 278 start-page: 62 year: 2015 end-page: 78 ident: bb0220 article-title: Kinetic and mechanistic aspects for CO publication-title: Chem. Eng. J. – volume: 125 start-page: 439 year: 2012 end-page: 448 ident: bb0385 article-title: Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature publication-title: Appl. Catal. B Environ. – year: 2017 ident: bb0015 article-title: On the catalytic activity of Hydrotalcite-derived materials for dry reforming of methane publication-title: Catalysts – volume: 181 start-page: 34 year: 2015 end-page: 46 ident: bb0130 article-title: Catalyst development for steam reforming of methane and model biogas at low temperature publication-title: Appl. Catal. B Environ. – volume: 8 start-page: 3556 year: 2015 end-page: 3575 ident: bb0215 article-title: Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane publication-title: ChemSusChem – volume: 6 start-page: 646 year: 2005 end-page: 654 ident: bb0115 article-title: Kinetics and stability of CH publication-title: ChemPhysChem – volume: 158 start-page: 96 year: 2017 end-page: 103 ident: bb0465 article-title: Low-temperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ZrO publication-title: Fuel Process. Technol. – volume: s413–414 start-page: 163 year: 2012 end-page: 169 ident: bb0310 article-title: Studies on stability and coking resistance of Ni/BaTiO publication-title: Appl. Catal. A Gen. – volume: 102 start-page: 62 year: 2017 end-page: 66 ident: bb0065 article-title: SSC Chuang, CH publication-title: Catalysis Communications – volume: 30 start-page: 14694 year: 2014 end-page: 14705 ident: bb0210 article-title: Simultaneous tuning porosity and basicity of nickel@nickel-magnesium phyllosilicate core-shell catalysts for CO₂ reforming of CH₄ publication-title: Langmuir – year: 2013 ident: bb0405 article-title: Catalysis by Ceria and Related Materials – volume: 54 start-page: 2441 year: 2006 end-page: 2469 ident: bb0070 article-title: Supercritical CO publication-title: J. Agric. Food Chem. – volume: 129 start-page: 450 year: 2013 end-page: 459 ident: bb0245 article-title: Transient studies of low-temperature dry reforming of methane over Ni-CaO/ZrO publication-title: Appl. Catal. B Environ. – volume: 234 start-page: 221 year: 2002 end-page: 233 ident: bb0335 article-title: Catalytic oxidation of methane over CeO publication-title: Appl. Catal. A Gen. – volume: 91 start-page: 732 year: 2015 end-page: 741 ident: bb0040 article-title: Study on a numerical model and PSA (pressure swing adsorption) process experiment for CH publication-title: Energy – year: 2017 ident: bb0460 article-title: Mo-promoted Ni/Al publication-title: Int. J. Hydrog. Energy – volume: 195 start-page: 1 year: 2016 end-page: 8 ident: bb0200 article-title: Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane publication-title: Appl. Catal. B Environ. – volume: 21 start-page: 109 year: 1996 end-page: 133 ident: bb0365 article-title: ChemInform abstract: carbon dioxide reforming of methane to synthesis gas over Ni/La publication-title: Appl. Catal. A Gen. – volume: 179 start-page: 213 year: 2015 end-page: 219 ident: bb0010 article-title: Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts publication-title: Appl. Catal. B Environ. – volume: 257 start-page: 59 year: 2015 end-page: 65 ident: bb0270 article-title: Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature – on the effect of basicity publication-title: Catal. Today – volume: 4 start-page: 1526 year: 2014 end-page: 1536 ident: bb0175 article-title: Yolk–satellite–shell structured Ni–Yolk@Ni@SiO publication-title: ACS Catal. – volume: 92 start-page: 678 year: 2011 end-page: 691 ident: bb0230 article-title: Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation publication-title: Fuel Process. Technol. – volume: 7 start-page: 4188 year: 2016 end-page: 4196 ident: bb0195 article-title: Anti-coking Ni/SiO publication-title: ChemCatChem – volume: 4 start-page: 2107 year: 2014 end-page: 2114 ident: bb0205 article-title: A highly dispersed and anti-coking Ni–La2O3/SiO2 catalyst for syngas production from dry carbon dioxide reforming of methane publication-title: Cat. Sci. Technol. – volume: 142 start-page: 73 year: 1996 end-page: 96 ident: bb0250 article-title: Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity publication-title: Appl. Catal. A Gen. – volume: 141 start-page: 287 year: 1993 end-page: 299 ident: bb0275 article-title: Activation of CH publication-title: J. Catal. – volume: 50 start-page: 87 year: 1999 end-page: 96 ident: bb0255 article-title: The role of metal–support interactions in CO publication-title: Catal. Today – volume: 76 start-page: 430 year: 2016 end-page: 491 ident: bb0105 article-title: The Carbon Dioxide Molecule – volume: 40 start-page: 12227 year: 2015 end-page: 12238 ident: bb0165 article-title: Pd-Ni catalyst over spherical nanostructured Y publication-title: Int. J. Hydrog. Energy – volume: 503 start-page: 34 year: 2015 end-page: 42 ident: bb0020 article-title: Ni/SiO publication-title: Appl. Catal. A Gen. – volume: 158 start-page: 51 year: 1996 end-page: 63 ident: bb0370 article-title: Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts : I. Effects of support and metal crystallite size on reaction activity and deactivation characteristics publication-title: J. Catal. – volume: 49 start-page: 415 year: 1994 end-page: 420 ident: bb0080 article-title: Rate of the vegetable oil extraction with supercritical CO publication-title: Chem. Eng. Sci. – volume: 89 start-page: 257 year: 2010 end-page: 259 ident: bb0415 article-title: Sulfonated polystyrene: a catalyst with acid and superabsorbent properties for the esterification of fatty acids publication-title: Fuel – volume: 21 start-page: 3113 year: 2007 end-page: 3123 ident: bb0300 article-title: Nickel-based ceria, zirconia, and ceria–zirconia catalytic systems for low-temperature carbon dioxide reforming of methane publication-title: Energy Fuel – volume: 195 start-page: 1 year: 2000 end-page: 11 ident: bb0435 article-title: Catalytic behavior of supported KNiCa catalyst and mechanistic consideration for carbon dioxide reforming of methane publication-title: J. Catal. – volume: 38 start-page: 127 year: 2013 end-page: 139 ident: bb0420 article-title: Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts: on the effect of promotion by Ce publication-title: Int. J. Hydrog. Energy – start-page: 1 year: 2017 end-page: 24 ident: bb0480 article-title: Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition publication-title: React. Kinet. Mech. Catal. – volume: 36 start-page: 14435 year: 2011 end-page: 14446 ident: bb0180 article-title: Promotional effect of alkaline earth over Ni–La publication-title: Int. J. Hydrog. Energy – volume: 14 start-page: 02039 year: 2017 ident: bb0450 article-title: Ceria promotion over Ni-containing hydrotalcite-derived catalysts for CO2 methane reforming publication-title: E3S Web of Conferences – volume: 35 start-page: 1633 year: 2011 end-page: 1645 ident: bb0045 article-title: Techniques for transformation of biogas to biomethane publication-title: Biomass Bioenergy – volume: 15 start-page: 146 year: 2016 end-page: 153 ident: bb0185 article-title: Facile synthesis of Ni/SiO publication-title: J. CO₂ Util. – volume: 1 start-page: 71 year: 1995 end-page: 72 ident: bb0360 article-title: A stable and active nickel-based catalyst for carbon dioxide reforming of methane to synthesis gas publication-title: J. Chem. Soc. Chem. Commun. – volume: 344 start-page: 78 year: 2008 end-page: 87 ident: bb0135 article-title: In situ IR investigation of activation and catalytic ignition of methane over Rh/Al publication-title: Appl. Catal. A Gen. – volume: 35 start-page: 39 year: 1995 end-page: 43 ident: bb0325 article-title: Suppression of carbon deposition in CO publication-title: Catal. Lett. – start-page: 112 year: 2004 ident: bb0050 article-title: Retardation of carbon deposition on Ni-YSZ anode in a solid oxide fuel cell by addition of CO publication-title: J. Ceram. Soc. Jpn. – volume: 117 start-page: 8120 year: 2013 end-page: 8130 ident: bb0160 article-title: Inverse NiAl publication-title: J. Phys. Chem. C – volume: 36 start-page: 5180 year: 1997 end-page: 5188 ident: bb0085 article-title: Mleczko, kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al publication-title: Ind. Eng. Chem. Res. – volume: 188 start-page: 324 year: 2016 end-page: 341 ident: bb0225 article-title: Design of highly stable and selective core/yolk–shell nanocatalysts—a review publication-title: Appl. Catal. B Environ. – volume: 25 start-page: 4036 year: 2011 end-page: 4042 ident: bb0030 article-title: Integrated process of coal pyrolysis with CO publication-title: Energy Fuel – volume: 66 start-page: 4005 year: 1994 end-page: 4012 ident: bb0075 article-title: Direct comparison of Soxhlet and low- and high-temperature supercritical CO publication-title: Anal. Chem. – volume: 7 start-page: 4735 year: 2017 end-page: 4745 ident: bb0445 article-title: Sc promoted and aerogel confined Ni catalysts for coking-resistant dry reforming of methane publication-title: RSC Adv. – volume: 88 start-page: 834 year: 2009 end-page: 842 ident: bb0035 article-title: Upgrading biomass pyrolysis gas by conversion of methane at high temperature: experiments and modelling publication-title: Fuel – volume: s215–216 start-page: 542 year: 2013 end-page: 549 ident: bb0380 article-title: A comparative study on the kinetics of carbon dioxide reforming of methane over Pt–Ni/Al publication-title: Chem. Eng. J. – volume: 297 start-page: 27 year: 2013 end-page: 34 ident: bb0005 article-title: Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles publication-title: J. Catal. – volume: 18 start-page: 1205 year: 2015 end-page: 1210 ident: bb0260 article-title: Ni–Al hydrotalcite-like material as the catalyst precursors for the dry reforming of methane at low temperature publication-title: C. R. Chim. – volume: 7 start-page: 160 year: 2015 end-page: 168 ident: bb0190 article-title: Facile synthesis of high surface area yolk–shell Ni@Ni embedded SiO publication-title: ChemCatChem – volume: 196 start-page: L167 year: 2000 end-page: L172 ident: bb0410 article-title: Highly active and stable Ni/ZrO publication-title: Appl. Catal. A Gen. – volume: 144 start-page: 1 year: 2016 end-page: 7 ident: bb0100 article-title: Low-temperature CO publication-title: Fuel Process. Technol. – volume: 417 start-page: 507 year: 2002 end-page: 514 ident: bb0095 article-title: Understanding and exploiting C publication-title: Nature – volume: s113–114 start-page: 19 year: 2012 end-page: 30 ident: bb0345 article-title: Stable low-temperature dry reforming of methane over mesoporous La publication-title: Appl. Catal. B Environ. – year: 2016 ident: bb0375 article-title: The influence of reduction temperature on the performance of ZrO publication-title: Catal. Today – volume: 182 start-page: 8 year: 2016 end-page: 16 ident: bb0315 article-title: La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures publication-title: Fuel – volume: 3 start-page: 563 year: 2013 end-page: 583 ident: bb0090 article-title: Ni-based catalysts for low temperature methane steam reforming: recent results on Ni-Au and comparison with other bi-metallic systems publication-title: Catalysts – year: 2012 ident: bb0060 article-title: Study of direct utilization of solid carbon and CH publication-title: Dissertations Theses-Gradworks – volume: 18 start-page: 345 year: 2017 end-page: 352 ident: bb0140 article-title: Highly carbon-resistant Ni–Co/SiO publication-title: J. CO₂ Util. – volume: 25 start-page: 265 year: 1994 end-page: 270 ident: bb0320 article-title: Role of support in reforming of CH publication-title: Catal. Lett. – volume: 38 start-page: 2615 year: 1999 end-page: 2625 ident: bb0240 article-title: A comprehensive study on carbon dioxide reforming of methane over Ni/γ-Al2O3 catalysts publication-title: Ind. Eng. Chem. Res. – year: 2017 ident: bb0425 article-title: Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts atlow temperature CO publication-title: Int. J. Hydrog. Energy – volume: 41 start-page: 3548 year: 2002 end-page: 3556 ident: bb0440 article-title: Steam/CO publication-title: Ind. Eng. Chem. Res. – volume: 504 start-page: 143 year: 2014 end-page: 150 ident: bb0285 article-title: Enhanced catalytic stability through non-conventional synthesis of Ni/SBA-15 for methane dry reforming at low temperatures publication-title: Appl. Catal. A Gen. – volume: 35 start-page: 6052 year: 2010 end-page: 6056 ident: bb0395 article-title: Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane publication-title: Int. J. Hydrog. Energy – volume: 62 start-page: 13 year: 2016 end-page: 31 ident: bb0470 article-title: Review of catalysis and plasma performance on dry reforming of CH publication-title: Renew. Sust. Energ. Rev. – volume: 40 start-page: 13399 year: 2015 end-page: 13411 ident: bb0145 article-title: Co-production of hydrogen and carbon nanofibers from catalytic decomposition of methane over LaNi publication-title: Int. J. Hydrog. Energy – year: 2016 ident: bb0170 article-title: Highly reactive Ni-Co/SiO publication-title: Catal. Today – volume: 6 year: 2016 ident: bb0120 article-title: Effect of Ce and Co addition to Fe/Al publication-title: Catalysts – volume: 47 start-page: 93 year: 2015 end-page: 106 ident: bb0350 article-title: The formation of a series of carbonates from carbon dioxide: capturing and utilisation publication-title: Renew. Sust. Energ. Rev. – volume: 41 start-page: 11616 year: 2016 end-page: 11623 ident: bb0265 article-title: Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni–Mg–Al hydrotalcite-derived catalysts publication-title: Int. J. Hydrog. Energy – volume: 56 start-page: 157 year: 2014 end-page: 163 ident: bb0330 article-title: Low-temperature combustion of methane using PdO/Al publication-title: Catal. Commun. – volume: 37 start-page: 11195 year: 2012 end-page: 11207 ident: bb0155 article-title: CO publication-title: Int. J. Hydrog. Energy – volume: 108 start-page: 4094 year: 2004 end-page: 4103 ident: bb0235 article-title: Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals publication-title: J. Phys. Chem. B – volume: 8 start-page: 211 year: 1999 end-page: 222 ident: bb0340 article-title: CO publication-title: Top. Catal. – volume: 431 start-page: 39 year: 2017 end-page: 48 ident: bb0455 article-title: Sequential impregnation vs. sol-gel synthesized Ni/Al publication-title: Mol. Catal. – volume: 242 start-page: 101 year: 2015 end-page: 110 ident: bb0125 article-title: Redox dynamics of Ni catalysts in CO publication-title: Catal. Today – volume: 107 start-page: 525 year: 1997 end-page: 530 ident: bb0280 article-title: Reaction of CH publication-title: Stud. Surf. Sci. Catal. – year: 2016 ident: bb0355 article-title: Effects of calcination temperature of electrospun fibrous Ni/Al publication-title: Fuel Process. Technol. – volume: 18 start-page: 293 year: 2015 end-page: 301 ident: bb0295 article-title: Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane publication-title: C. R. Chim. – volume: 6 start-page: 1173 year: 2016 end-page: 1186 ident: bb0430 article-title: CO publication-title: Sci. Technol. – volume: 50 start-page: 87 year: 1999 ident: 10.1016/j.fuproc.2017.10.007_bb0255 article-title: The role of metal–support interactions in CO2 reforming of CH4 publication-title: Catal. Today doi: 10.1016/S0920-5861(98)00465-9 – volume: 35 start-page: 39 year: 1995 ident: 10.1016/j.fuproc.2017.10.007_bb0325 article-title: Suppression of carbon deposition in CO2-reforming of methane on metal sulfide catalysts publication-title: Catal. Lett. doi: 10.1007/BF00807002 – year: 2017 ident: 10.1016/j.fuproc.2017.10.007_bb0425 article-title: Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts atlow temperature CO2 methane reforming publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.12.121 – year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0355 article-title: Effects of calcination temperature of electrospun fibrous Ni/Al2O3 catalysts on the dry reforming of methane publication-title: Fuel Process. Technol. – start-page: 112 year: 2004 ident: 10.1016/j.fuproc.2017.10.007_bb0050 article-title: Retardation of carbon deposition on Ni-YSZ anode in a solid oxide fuel cell by addition of CO2 to CH4 publication-title: J. Ceram. Soc. Jpn. – volume: 141 start-page: 287 year: 1993 ident: 10.1016/j.fuproc.2017.10.007_bb0275 article-title: Activation of CH2 and its reaction with CO2 over supported Rh catalysts publication-title: J. Catal. doi: 10.1006/jcat.1993.1136 – volume: 144 start-page: 1 year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0100 article-title: Low-temperature CO2 reforming of methane on Zr-promoted Ni/SiO2 catalyst publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2015.12.009 – volume: 91 start-page: 732 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0040 article-title: Study on a numerical model and PSA (pressure swing adsorption) process experiment for CH4/CO2 separation from biogas publication-title: Energy doi: 10.1016/j.energy.2015.08.086 – volume: 241 start-page: 349 year: 2003 ident: 10.1016/j.fuproc.2017.10.007_bb0110 article-title: Preparation of Ni/SiO2 catalyst with high thermal stability for CO2-reforming of CH4 publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(02)00493-3 – volume: 344 start-page: 78 year: 2008 ident: 10.1016/j.fuproc.2017.10.007_bb0135 article-title: In situ IR investigation of activation and catalytic ignition of methane over Rh/Al2O3 catalysts publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2008.04.012 – volume: 21 start-page: 109 year: 1996 ident: 10.1016/j.fuproc.2017.10.007_bb0365 article-title: ChemInform abstract: carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts publication-title: Appl. Catal. A Gen. doi: 10.1016/0926-860X(95)00238-3 – volume: 14 start-page: 02039 year: 2017 ident: 10.1016/j.fuproc.2017.10.007_bb0450 article-title: Ceria promotion over Ni-containing hydrotalcite-derived catalysts for CO2 methane reforming – volume: 179 start-page: 213 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0010 article-title: Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.05.021 – volume: 41 start-page: 3548 year: 2002 ident: 10.1016/j.fuproc.2017.10.007_bb0440 article-title: Steam/CO2 reforming of methane. Carbon formation and gasification on catalysts with various potassium contents publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie010665p – volume: 7 start-page: 4735 year: 2017 ident: 10.1016/j.fuproc.2017.10.007_bb0445 article-title: Sc promoted and aerogel confined Ni catalysts for coking-resistant dry reforming of methane publication-title: RSC Adv. doi: 10.1039/C6RA27266E – volume: 6 start-page: 1173 year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0430 article-title: CO2 reforming of methane over highly active La-promoted Ni supported on SBA-15 catalysts: mechanism and kinetic modelling, Catal publication-title: Sci. Technol. – volume: 3 start-page: 563 year: 2013 ident: 10.1016/j.fuproc.2017.10.007_bb0090 article-title: Ni-based catalysts for low temperature methane steam reforming: recent results on Ni-Au and comparison with other bi-metallic systems publication-title: Catalysts doi: 10.3390/catal3020563 – volume: 181 start-page: 34 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0130 article-title: Catalyst development for steam reforming of methane and model biogas at low temperature publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.07.039 – volume: 107 start-page: 497 year: 1997 ident: 10.1016/j.fuproc.2017.10.007_bb0390 article-title: The influence of rare earth oxides on Ni/Al2O3 catalysts during CO2 reforming of CH4 publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(97)80381-3 – volume: 278 start-page: 62 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0220 article-title: Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.11.143 – volume: 35 start-page: 1633 year: 2011 ident: 10.1016/j.fuproc.2017.10.007_bb0045 article-title: Techniques for transformation of biogas to biomethane publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.02.033 – volume: 38 start-page: 2615 year: 1999 ident: 10.1016/j.fuproc.2017.10.007_bb0240 article-title: A comprehensive study on carbon dioxide reforming of methane over Ni/γ-Al2O3 catalysts publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie980489t – volume: 228 start-page: 227 year: 2002 ident: 10.1016/j.fuproc.2017.10.007_bb0305 article-title: Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al2O3 catalyst publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(01)00974-7 – volume: 56 start-page: 157 year: 2014 ident: 10.1016/j.fuproc.2017.10.007_bb0330 article-title: Low-temperature combustion of methane using PdO/Al2O3 catalyst: influence of crystalline phase of Al2O3 support publication-title: Catal. Commun. doi: 10.1016/j.catcom.2014.07.022 – volume: 21 start-page: 3113 year: 2007 ident: 10.1016/j.fuproc.2017.10.007_bb0300 article-title: Nickel-based ceria, zirconia, and ceria–zirconia catalytic systems for low-temperature carbon dioxide reforming of methane publication-title: Energy Fuel doi: 10.1021/ef7002409 – volume: 7 start-page: 160 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0190 article-title: Facile synthesis of high surface area yolk–shell Ni@Ni embedded SiO2 via Ni Phyllosilicate with enhanced performance for CO2 reforming of CH4 publication-title: ChemCatChem doi: 10.1002/cctc.201402673 – volume: 35 start-page: 297 year: 2004 ident: 10.1016/j.fuproc.2017.10.007_bb0400 article-title: Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming publication-title: ChemInform doi: 10.1002/chin.200449267 – start-page: 1 year: 2017 ident: 10.1016/j.fuproc.2017.10.007_bb0480 article-title: Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition publication-title: React. Kinet. Mech. Catal. – year: 2017 ident: 10.1016/j.fuproc.2017.10.007_bb0460 article-title: Mo-promoted Ni/Al2O3 catalyst for dry reforming of methane publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.03.208 – volume: 431 start-page: 39 year: 2017 ident: 10.1016/j.fuproc.2017.10.007_bb0455 article-title: Sequential impregnation vs. sol-gel synthesized Ni/Al2O3-CeO2 nanocatalyst for dry reforming of methane: effect of synthesis method and support promotion publication-title: Mol. Catal. doi: 10.1016/j.mcat.2017.01.012 – volume: 18 start-page: 345 year: 2017 ident: 10.1016/j.fuproc.2017.10.007_bb0140 article-title: Highly carbon-resistant Ni–Co/SiO2 catalysts derived from phyllosilicates for dry reforming of methane publication-title: J. CO₂ Util. doi: 10.1016/j.jcou.2016.12.014 – volume: 297 start-page: 27 year: 2013 ident: 10.1016/j.fuproc.2017.10.007_bb0005 article-title: Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles publication-title: J. Catal. doi: 10.1016/j.jcat.2012.09.011 – volume: 30 start-page: 14694 year: 2014 ident: 10.1016/j.fuproc.2017.10.007_bb0210 article-title: Simultaneous tuning porosity and basicity of nickel@nickel-magnesium phyllosilicate core-shell catalysts for CO₂ reforming of CH₄ publication-title: Langmuir doi: 10.1021/la503340s – year: 2012 ident: 10.1016/j.fuproc.2017.10.007_bb0060 article-title: Study of direct utilization of solid carbon and CH4/CO2 reforming on solid oxide fuel cell – volume: 25 start-page: 4036 year: 2011 ident: 10.1016/j.fuproc.2017.10.007_bb0030 article-title: Integrated process of coal pyrolysis with CO2 reforming of methane by dielectric barrier discharge plasma publication-title: Energy Fuel doi: 10.1021/ef200827p – volume: 54 start-page: 2441 year: 2006 ident: 10.1016/j.fuproc.2017.10.007_bb0070 article-title: Supercritical CO2 extraction and purification of compounds with antioxidant activity publication-title: J. Agric. Food Chem. doi: 10.1021/jf052858j – volume: 35 start-page: 6052 year: 2010 ident: 10.1016/j.fuproc.2017.10.007_bb0395 article-title: Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2009.12.073 – volume: 89 start-page: 257 year: 2010 ident: 10.1016/j.fuproc.2017.10.007_bb0415 article-title: Sulfonated polystyrene: a catalyst with acid and superabsorbent properties for the esterification of fatty acids publication-title: Fuel doi: 10.1016/j.fuel.2009.05.029 – volume: 503 start-page: 34 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0020 article-title: Ni/SiO2 catalyst prepared via Ni-aliphatic amine complexation for dry reforming of methane: effect of carbon chain number and amine concentration publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2015.07.005 – volume: s215–216 start-page: 542 year: 2013 ident: 10.1016/j.fuproc.2017.10.007_bb0380 article-title: A comparative study on the kinetics of carbon dioxide reforming of methane over Pt–Ni/Al2O3 catalyst: effect of Pt/Ni ratio publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.11.034 – volume: 242 start-page: 101 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0125 article-title: Redox dynamics of Ni catalysts in CO2 reforming of methane publication-title: Catal. Today doi: 10.1016/j.cattod.2014.06.011 – volume: 37 start-page: 11195 year: 2012 ident: 10.1016/j.fuproc.2017.10.007_bb0155 article-title: CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M=Bi, Co, Cr, Cu, Fe): roles of lattice oxygen on C–H activation and carbon suppression publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2012.04.059 – volume: 520 start-page: 114 year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0290 article-title: Low temperature dry reforming of methane on rhodium and cobalt based catalysts: active phase stabilization by confinement in mesoporous SBA-15 publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2016.04.014 – volume: 195 start-page: 1 year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0200 article-title: Highly carbon resistant multicore-shell catalyst derived from Ni-Mg phyllosilicate nanotubes@silica for dry reforming of methane publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.05.001 – volume: 18 start-page: 1205 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0260 article-title: Ni–Al hydrotalcite-like material as the catalyst precursors for the dry reforming of methane at low temperature publication-title: C. R. Chim. doi: 10.1016/j.crci.2015.04.005 – volume: 18 start-page: 293 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0295 article-title: Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane publication-title: C. R. Chim. doi: 10.1016/j.crci.2015.01.004 – volume: 25 start-page: 265 year: 1994 ident: 10.1016/j.fuproc.2017.10.007_bb0320 article-title: Role of support in reforming of CH4 with CO2 over Rh catalysts publication-title: Catal. Lett. doi: 10.1007/BF00816306 – volume: 188 start-page: 324 year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0225 article-title: Design of highly stable and selective core/yolk–shell nanocatalysts—a review publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.01.067 – volume: 8 start-page: 3556 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0215 article-title: Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane publication-title: ChemSusChem doi: 10.1002/cssc.201500390 – volume: 49 start-page: 415 year: 1994 ident: 10.1016/j.fuproc.2017.10.007_bb0080 article-title: Rate of the vegetable oil extraction with supercritical CO2: II extraction of grape oil publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(94)87013-6 – volume: 504 start-page: 143 year: 2014 ident: 10.1016/j.fuproc.2017.10.007_bb0285 article-title: Enhanced catalytic stability through non-conventional synthesis of Ni/SBA-15 for methane dry reforming at low temperatures publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2014.10.026 – volume: 36 start-page: 14435 year: 2011 ident: 10.1016/j.fuproc.2017.10.007_bb0180 article-title: Promotional effect of alkaline earth over Ni–La2O3 catalyst for CO2 reforming of CH4: role of surface oxygen species on H2 production and carbon suppression publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.08.022 – volume: 125 start-page: 439 year: 2012 ident: 10.1016/j.fuproc.2017.10.007_bb0385 article-title: Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.06.006 – volume: 38 start-page: 127 year: 2013 ident: 10.1016/j.fuproc.2017.10.007_bb0420 article-title: Hydrogen and syngas production by methane dry reforming on SBA-15 supported nickel catalysts: on the effect of promotion by Ce0.75Zr0.25O2 mixed oxide publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2012.10.063 – volume: 117 start-page: 8120 year: 2013 ident: 10.1016/j.fuproc.2017.10.007_bb0160 article-title: Inverse NiAl2O4 on LaAlO3–Al2O3: unique catalytic structure for stable CO2 reforming of methane publication-title: J. Phys. Chem. C doi: 10.1021/jp401855x – volume: s113–114 start-page: 19 year: 2012 ident: 10.1016/j.fuproc.2017.10.007_bb0345 article-title: Stable low-temperature dry reforming of methane over mesoporous La2O3-ZrO2 supported Ni catalyst publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2011.09.035 – volume: 129 start-page: 450 year: 2013 ident: 10.1016/j.fuproc.2017.10.007_bb0245 article-title: Transient studies of low-temperature dry reforming of methane over Ni-CaO/ZrO2-La2O3 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2012.09.052 – volume: 142 start-page: 73 year: 1996 ident: 10.1016/j.fuproc.2017.10.007_bb0250 article-title: Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity publication-title: Appl. Catal. A Gen. doi: 10.1016/0926-860X(96)00065-8 – volume: 4 start-page: 2107 year: 2014 ident: 10.1016/j.fuproc.2017.10.007_bb0205 article-title: A highly dispersed and anti-coking Ni–La2O3/SiO2 catalyst for syngas production from dry carbon dioxide reforming of methane publication-title: Cat. Sci. Technol. doi: 10.1039/c3cy00869j – volume: 41 start-page: 11616 year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0265 article-title: Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni–Mg–Al hydrotalcite-derived catalysts publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.02.074 – volume: 432 start-page: 31 year: 2017 ident: 10.1016/j.fuproc.2017.10.007_bb0475 article-title: NiO-MgO nanoparticles confined inside SiO2 frameworks to achieve highly catalytic performance for CO2 reforming of methane publication-title: Mol. Catal. doi: 10.1016/j.mcat.2017.02.019 – volume: 111 start-page: 55 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0025 article-title: Comparing the composition of the synthesis-gas obtained from the pyrolysis of different organic residues for a potential use in the synthesis of bioplastics publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2014.12.011 – volume: 246 start-page: 149 year: 2000 ident: 10.1016/j.fuproc.2017.10.007_bb0055 article-title: The Fe active sites in Fe/ZSM-5 catalyst for selective oxidation of CH4 to CH3OH at room temperature publication-title: J. Radioanal. Nucl. Chem. doi: 10.1023/A:1006722207492 – volume: 4 start-page: 1526 year: 2014 ident: 10.1016/j.fuproc.2017.10.007_bb0175 article-title: Yolk–satellite–shell structured Ni–Yolk@Ni@SiO2 Nanocomposite: superb catalyst toward methane CO2 reforming reaction publication-title: ACS Catal. doi: 10.1021/cs401027p – volume: 6 start-page: 646 year: 2005 ident: 10.1016/j.fuproc.2017.10.007_bb0115 article-title: Kinetics and stability of CH4 and CO2 mixed gas hydrates during formation and long-term storage publication-title: ChemPhysChem doi: 10.1002/cphc.200400364 – volume: 36 start-page: 5180 year: 1997 ident: 10.1016/j.fuproc.2017.10.007_bb0085 article-title: Mleczko, kinetic and reaction engineering studies of dry reforming of methane over a Ni/La/Al2O3 catalyst publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie970246l – volume: 108 start-page: 4094 year: 2004 ident: 10.1016/j.fuproc.2017.10.007_bb0235 article-title: Mechanism and site requirements for activation and chemical conversion of methane on supported Pt clusters and turnover rate comparisons among noble metals publication-title: J. Phys. Chem. B doi: 10.1021/jp036985z – volume: 107 start-page: 525 year: 1997 ident: 10.1016/j.fuproc.2017.10.007_bb0280 article-title: Reaction of CH4 with CO2 and H2O over supported Ir catalyst publication-title: Stud. Surf. Sci. Catal. doi: 10.1016/S0167-2991(97)80385-0 – volume: 182 start-page: 8 year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0315 article-title: La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures publication-title: Fuel doi: 10.1016/j.fuel.2016.05.073 – volume: 15 start-page: 146 year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0185 article-title: Facile synthesis of Ni/SiO2 catalyst by sequential hydrogen/air treatment: a superior anti-coking catalyst for dry reforming of methane publication-title: J. CO₂ Util. doi: 10.1016/j.jcou.2016.05.007 – volume: 7 start-page: 4188 year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0195 article-title: Anti-coking Ni/SiO2 catalyst for dry reforming of methane: role of oleylamine/oleic acid organic pair publication-title: ChemCatChem doi: 10.1002/cctc.201500787 – year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0375 article-title: The influence of reduction temperature on the performance of ZrOx/Ni-MnOx/SiO2 catalyst for low-temperature CO2 reforming of methane publication-title: Catal. Today – volume: s413–414 start-page: 163 year: 2012 ident: 10.1016/j.fuproc.2017.10.007_bb0310 article-title: Studies on stability and coking resistance of Ni/BaTiO3–Al2O3 catalysts for lower temperature dry reforming of methane (LTDRM) publication-title: Appl. Catal. A Gen. – volume: 417 start-page: 507 year: 2002 ident: 10.1016/j.fuproc.2017.10.007_bb0095 article-title: Understanding and exploiting CH bond activation publication-title: Nature doi: 10.1038/417507a – volume: 6 issue: 40 year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0120 article-title: Effect of Ce and Co addition to Fe/Al2O3 for catalytic methane decomposition publication-title: Catalysts – volume: 158 start-page: 51 year: 1996 ident: 10.1016/j.fuproc.2017.10.007_bb0370 article-title: Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts : I. Effects of support and metal crystallite size on reaction activity and deactivation characteristics publication-title: J. Catal. doi: 10.1006/jcat.1996.0005 – year: 2017 ident: 10.1016/j.fuproc.2017.10.007_bb0015 article-title: On the catalytic activity of Hydrotalcite-derived materials for dry reforming of methane publication-title: Catalysts doi: 10.3390/catal7010032 – volume: 171 start-page: 24 year: 2011 ident: 10.1016/j.fuproc.2017.10.007_bb0150 article-title: LaNiO3 perovskite catalyst precursor for rapid decomposition of methane: influence of temperature and presence of H2 in feed stream publication-title: Catal. Today doi: 10.1016/j.cattod.2011.03.080 – volume: 88 start-page: 834 year: 2009 ident: 10.1016/j.fuproc.2017.10.007_bb0035 article-title: Upgrading biomass pyrolysis gas by conversion of methane at high temperature: experiments and modelling publication-title: Fuel doi: 10.1016/j.fuel.2008.11.033 – volume: 195 start-page: 1 year: 2000 ident: 10.1016/j.fuproc.2017.10.007_bb0435 article-title: Catalytic behavior of supported KNiCa catalyst and mechanistic consideration for carbon dioxide reforming of methane publication-title: J. Catal. doi: 10.1006/jcat.2000.2978 – volume: 158 start-page: 96 year: 2017 ident: 10.1016/j.fuproc.2017.10.007_bb0465 article-title: Low-temperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ZrO2 catalysts publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.11.013 – year: 2013 ident: 10.1016/j.fuproc.2017.10.007_bb0405 – volume: 257 start-page: 59 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0270 article-title: Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature – on the effect of basicity publication-title: Catal. Today doi: 10.1016/j.cattod.2015.03.017 – volume: 196 start-page: L167 year: 2000 ident: 10.1016/j.fuproc.2017.10.007_bb0410 article-title: Highly active and stable Ni/ZrO2 catalyst for syngas production by CO2 reforming of methane publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(99)00504-9 – volume: 92 start-page: 678 year: 2011 ident: 10.1016/j.fuproc.2017.10.007_bb0230 article-title: Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2010.11.027 – volume: 1 start-page: 71 year: 1995 ident: 10.1016/j.fuproc.2017.10.007_bb0360 article-title: A stable and active nickel-based catalyst for carbon dioxide reforming of methane to synthesis gas publication-title: J. Chem. Soc. Chem. Commun. doi: 10.1039/c39950000071 – year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0170 article-title: Highly reactive Ni-Co/SiO2 bimetallic catalyst via complexation with oleylamine/oleic acid organic pair for dry reforming of methane publication-title: Catal. Today – volume: 8 start-page: 211 year: 1999 ident: 10.1016/j.fuproc.2017.10.007_bb0340 article-title: CO2 reforming of methane over vanadia-promoted Rh/SiO2 catalysts publication-title: Top. Catal. doi: 10.1023/A:1019121429843 – volume: 234 start-page: 221 year: 2002 ident: 10.1016/j.fuproc.2017.10.007_bb0335 article-title: Catalytic oxidation of methane over CeO2-ZrO2 mixed oxide solid solution catalysts prepared via urea hydrolysis publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(02)00230-2 – volume: 102 start-page: 62 year: 2017 ident: 10.1016/j.fuproc.2017.10.007_bb0065 article-title: SSC Chuang, CH4 internal dry reforming over a Ni/YSZ/ScSZ anode catalyst in a SOFC: A transient kinetic study publication-title: Catalysis Communications doi: 10.1016/j.catcom.2017.08.027 – volume: 66 start-page: 4005 year: 1994 ident: 10.1016/j.fuproc.2017.10.007_bb0075 article-title: Direct comparison of Soxhlet and low- and high-temperature supercritical CO2 extraction efficiencies of organics from environmental solids publication-title: Anal. Chem. doi: 10.1021/ac00094a024 – volume: 47 start-page: 93 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0350 article-title: The formation of a series of carbonates from carbon dioxide: capturing and utilisation publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.03.020 – volume: 76 start-page: 430 year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0105 – volume: 40 start-page: 13399 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0145 article-title: Co-production of hydrogen and carbon nanofibers from catalytic decomposition of methane over LaNi(1−x)MxO3−α perovskite (where M=Co, Fe and X=0, 0.2, 0.5, 0.8, 1) publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.08.045 – volume: 62 start-page: 13 year: 2016 ident: 10.1016/j.fuproc.2017.10.007_bb0470 article-title: Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2016.04.007 – volume: 40 start-page: 12227 year: 2015 ident: 10.1016/j.fuproc.2017.10.007_bb0165 article-title: Pd-Ni catalyst over spherical nanostructured Y2O3 support for oxy-CO2 reforming of methane: role of surface oxygen mobility publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.07.076 |
SSID | ssj0005597 |
Score | 2.636213 |
SecondaryResourceType | review_article |
Snippet | CO2 dry reforming of methane (DRM) not only utilized the two greenhouse gases, CO2 and CH4, but also produced synthesis gas, which could be used for... CO₂ dry reforming of methane (DRM) not only utilized the two greenhouse gases, CO₂ and CH₄, but also produced synthesis gas, which could be used for... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 199 |
SubjectTerms | Active site biomass business enterprises carbon dioxide catalysts catalytic activity CO2 dry reforming of methane Fischer-Tropsch reaction greenhouse gases Low-temperature activity marshes methane Ni-based catalyst nickel particle size pollution pyrolysis Reduction temperature sustainable development synthesis gas temperature |
Title | Low-temperature catalytic CO2 dry reforming of methane on Ni-based catalysts: A review |
URI | https://dx.doi.org/10.1016/j.fuproc.2017.10.007 https://www.proquest.com/docview/2000577007 |
Volume | 169 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOKbCF7j9pEmqbdlUdbXevCBt5KnKNKKu4t48bebtKkvEMFjQqYtk3S-SfLNDMAe0c4JSmmEM800Jg6isVSaYC6pirngmtZBYedDOrgmJ7fZ7RT021gYT6sMtr-x6bW1Dj3doM3u0_199zJKGU89gLHUp50i0zCTpDnNOjDTOz4dDD-ZHlldY8WPx16gjaCraV524pHCc7zYfk3zYr8h1A9bXQPQ0QLMB88R9ZqPW4QpUy7B3Jd8gstwc1a9YJ9sKmRKRvXhzKsTQP2LBOnnV-ReV3n6yx2qLPLlo0VpUFWiodsjO0DTQWQ0Hh2gHmoCW1bg-ujwqj_AoXACVoQkY2wltQljKs2YynNjKNWpEJblRsfC00aNENy1CeWKZZInNokpF8pYYXTktter0Cmr0qwBSqTVQhFldZ4TESkpdaZFJPNIJ7E00TqkrbIKFbKK--IWj0VLH3soGhUXXsW-16l4HfCH1FOTVeOP8aydh-Lb6iic4f9DcredtsL9OP42xOm1mox8_U3nqzI3ZuPfT9-EWdfizZHMFnTGzxOz7ZyUsdyB6f23eCcsxXcJhejr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60HtSD-MS3K3jdNk02uxtvUpSqbT1oxVvYpyiSiG2RXvzt7uQhVRDBYzYzSZhN5pvdfDOD0Ak1PgiKWEBiww2hHqKJ0oYSoZhuCykMK5LC-gPWHdKrh_hhDnXqXBigVVa-v_TphbeuRlqVNVuvT0-t2yDiIgIA4xGUnaLzaIHGEQdeX_NjhucRFx1WQJqAeJ0_V5C83ARwAhhevFmQvPhv-PTDUxfwc7GKVqq4EZ-Vj7aG5my2jpZnqgluoPte_k6g1FRVJxkXWzNTr4A7NyE2b1Psb5cD-eUR5w5D82iZWZxneOBXyB7OTKUyGo9O8Rku01o20fDi_K7TJVXbBKIpDcfEKeZCznUUc50k1jJmIikdT6xpSyCNWimFP6ZMaB4rEbqwzYTU1klrAr-43kKNLM_sNsKhckZqqp1JEioDrZSJjQxUEpiwrWywg6LaWKmuaopDa4uXtCaPPaeliVMwMYx6E-8g8qX1WtbU-EOe1_OQfns3Uu_2_9A8rqct9Z8N_Avxds0nI-i-6SNV7mV2_331I7TYvev30t7l4HoPLfkzotyc2UeN8dvEHvhwZawOi9fxEwUj6bY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-temperature+catalytic+CO2+dry+reforming+of+methane+on+Ni-based+catalysts%3A+A+review&rft.jtitle=Fuel+processing+technology&rft.au=Wang%2C+Ye&rft.au=Yao%2C+Lu&rft.au=Wang%2C+Shenghong&rft.au=Mao%2C+Dehua&rft.date=2018-01-01&rft.issn=0378-3820&rft.volume=169&rft.spage=199&rft.epage=206&rft_id=info:doi/10.1016%2Fj.fuproc.2017.10.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuproc_2017_10_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |