Membrane Tethering Potency of Rab-Family Small GTPases Is Defined by the C-Terminal Hypervariable Regions
Membrane tethering is a crucial step to determine the spatiotemporal specificity of secretory and endocytic trafficking pathways in all eukaryotic endomembrane systems. Recent biochemical studies by a chemically-defined reconstitution approach reveal that, in addition to the structurally-diverse cla...
Saved in:
Published in | Frontiers in cell and developmental biology Vol. 8; p. 577342 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
30.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Membrane tethering is a crucial step to determine the spatiotemporal specificity of secretory and endocytic trafficking pathways in all eukaryotic endomembrane systems. Recent biochemical studies by a chemically-defined reconstitution approach reveal that, in addition to the structurally-diverse classic tethering factors such as coiled-coil tethering proteins and multisubunit tethering complexes, Rab-family small GTPases also retain the inherent membrane tethering functions to directly and physically bridge two distinct lipid bilayers by themselves. Although Rab-mediated membrane tethering reactions are fairly efficient and specific in the physiological context, its mechanistic basis is yet to be understood. Here, to explore whether and how the intrinsic tethering potency of Rab GTPases is controlled by their C-terminal hypervariable region (HVR) domains that link the conserved small GTPase domains (G-domains) to membrane anchors at the C-terminus, we quantitatively compared tethering activities of two representative Rab isoforms in humans (Rab5a, Rab4a) and their HVR-deleted mutant forms. Strikingly, deletion of the HVR linker domains enabled both Rab5a and Rab4a isoforms to enhance their intrinsic tethering potency, exhibiting 5- to 50-fold higher initial velocities of tethering for the HVR-deleted mutants than those for the full-length, wild-type Rabs. Furthermore, we revealed that the tethering activity of full-length Rab5a was significantly reduced by the omission of anionic lipids and cholesterol from membrane lipids and, however, membrane tethering driven by HVR-deleted Rab5a mutant was completely insensitive to the headgroup composition of lipids. Reconstituted membrane tethering assays with the C-terminally-truncated mutants of Rab4a further uncovered that the N-terminal residues in the HVR linker, located adjacent to the G-domain, are critical for regulating the intrinsic tethering activity. In conclusion, our current findings establish that the non-conserved, flexible C-terminal HVR linker domains define membrane tethering potency of Rab-family small GTPases through controlling the close attachment of the globular G-domains to membrane surfaces, which confers the active tethering-competent state of the G-domains on lipid bilayers. |
---|---|
AbstractList | Membrane tethering is a crucial step to determine the spatiotemporal specificity of secretory and endocytic trafficking pathways in all eukaryotic endomembrane systems. Recent biochemical studies by a chemically-defined reconstitution approach reveal that, in addition to the structurally-diverse classic tethering factors such as coiled-coil tethering proteins and multisubunit tethering complexes, Rab-family small GTPases also retain the inherent membrane tethering functions to directly and physically bridge two distinct lipid bilayers by themselves. Although Rab-mediated membrane tethering reactions are fairly efficient and specific in the physiological context, its mechanistic basis is yet to be understood. Here, to explore whether and how the intrinsic tethering potency of Rab GTPases is controlled by their C-terminal hypervariable region (HVR) domains that link the conserved small GTPase domains (G-domains) to membrane anchors at the C-terminus, we quantitatively compared tethering activities of two representative Rab isoforms in humans (Rab5a, Rab4a) and their HVR-deleted mutant forms. Strikingly, deletion of the HVR linker domains enabled both Rab5a and Rab4a isoforms to enhance their intrinsic tethering potency, exhibiting 5- to 50-fold higher initial velocities of tethering for the HVR-deleted mutants than those for the full-length, wild-type Rabs. Furthermore, we revealed that the tethering activity of full-length Rab5a was significantly reduced by the omission of anionic lipids and cholesterol from membrane lipids and, however, membrane tethering driven by HVR-deleted Rab5a mutant was completely insensitive to the headgroup composition of lipids. Reconstituted membrane tethering assays with the C-terminally-truncated mutants of Rab4a further uncovered that the N-terminal residues in the HVR linker, located adjacent to the G-domain, are critical for regulating the intrinsic tethering activity. In conclusion, our current findings establish that the non-conserved, flexible C-terminal HVR linker domains define membrane tethering potency of Rab-family small GTPases through controlling the close attachment of the globular G-domains to membrane surfaces, which confers the active tethering-competent state of the G-domains on lipid bilayers. |
Author | Mima, Joji Ueda, Sanae Tamura, Naoki |
AuthorAffiliation | Institute for Protein Research, Osaka University , Suita , Japan |
AuthorAffiliation_xml | – name: Institute for Protein Research, Osaka University , Suita , Japan |
Author_xml | – sequence: 1 givenname: Sanae surname: Ueda fullname: Ueda, Sanae – sequence: 2 givenname: Naoki surname: Tamura fullname: Tamura, Naoki – sequence: 3 givenname: Joji surname: Mima fullname: Mima, Joji |
BookMark | eNpVkU1r3DAQhkVJaZJtfkBvOvbirT4t-VIo23wspDSkW-hNjO3xRsGWtpI34H9fbzaE5jIzSKPnBT3n5CTEgIR84mwppa2-dA32_VIwwZbaGKnEO3ImRFUWpVR_Tv6bT8lFzo-MMS600VZ-IKdSciaUVWfE_8ChThCQbnB8wOTDlt7FEUMz0djRe6iLKxh8P9FfA_Q9vd7cQcZM15l-x84HbGk90fklXRUbTIMP0NObaYfpCZKHukd6j1sfQ_5I3nfQZ7x46Qvy--pys7opbn9er1ffbotGKTEWnSzRcsGgZhosNC3Yai7GMNsaKTrZYs1MiS2zuoJOcM0st6WQUpgaRSUXZH3kthEe3S75AdLkInj3fBDT1kEafdOjkxKktnVjpS6VMAJUw4zQHbR11co5bkG-Hlm7fT1g22AYE_RvoG9vgn9w2_jkjNZKV2IGfH4BpPh3j3l0g88HcfOPx312QmmlOC_1IYsfV5sUc07YvcZw5g7G3bNxdzDujsblP5VJoAE |
CitedBy_id | crossref_primary_10_1007_s12551_021_00819_4 crossref_primary_10_1073_pnas_2316143121 crossref_primary_10_3389_fcell_2021_628910 crossref_primary_10_3390_biomedicines10051141 |
Cites_doi | 10.1038/8967 10.1016/j.febslet.2015.06.001 10.1083/jcb.132.5.755 10.1016/S0304-4157(00)00016-2 10.1038/nature19326 10.1080/21541248.2017.1336191 10.3389/fcell.2015.00086 10.1016/j.cell.2009.11.002 10.1016/j.devcel.2009.07.012 10.1152/physrev.00059.2009 10.1016/j.devcel.2018.11.013 10.1083/jcb.200505145 10.3389/fcell.2016.00018 10.7554/eLife.12790 10.1074/jbc.ra119.007947 10.1016/j.str.2013.06.016 10.1083/jcb.200202016 10.1091/mbc.11.1.305 10.1083/jcb.201103008 10.1038/srep04277 10.1128/mcb.00495-09 10.1038/nature05527 10.1016/j.ceb.2019.04.010 10.1111/j.1600-0854.2005.00376.x 10.1021/acs.jpcb.0c02642 10.1016/j.bpj.2016.01.019 10.1016/s1097-2765(01)00190-3 10.1007/s12551-017-0358-3 10.1126/science.1256898 10.1007/s12575-009-9008-x 10.1074/jbc.m117.811356 10.1083/jcb.136.2.307 10.1093/emboj/17.8.2156 10.1083/jcb.139.5.1097 10.1016/j.cell.2011.06.022 10.1038/nsmb.2162 10.1073/pnas.082100899 10.1073/pnas.0903801106 10.1038/nrm2330 10.1074/jbc.r117.000582 10.1016/s0955-0674(99)80065-9 10.1038/25069 10.1002/pro.3828 10.1016/s0092-8674(03)01079-1 10.1083/jcb.201904161 10.1016/j.bpj.2019.12.039 10.1002/j.1460-2075.1996.tb01039.x 10.1242/jcs.01542 10.1074/jbc.m111.307439 10.1038/35052055 10.1111/tra.12421 10.1111/tra.12230 10.1242/bio.20149340 10.1021/acs.jpcb.9b05796 10.1034/j.1600-0854.2000.010802.x 10.1038/35025000 10.1091/mbc.12.12.3783 10.1126/science.1155821 10.1093/emboj/18.4.1071 10.1111/tra.12200 10.1091/mbc.e07-11-1189 10.1038/nrm2728 10.3389/fcell.2016.00035 10.1073/pnas.1313655111 10.1091/mbc.e10-01-0044 10.1083/jcb.200412003 10.1083/jcb.148.6.1231 10.1016/j.cell.2006.10.030 10.1073/pnas.92.2.522 10.1091/mbc.e14-04-0922 10.1038/nrm2002 10.1101/cshperspect.a016857 10.1146/annurev.cellbio.042308.113327 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Ueda, Tamura and Mima. 2020 Ueda, Tamura and Mima |
Copyright_xml | – notice: Copyright © 2020 Ueda, Tamura and Mima. 2020 Ueda, Tamura and Mima |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fcell.2020.577342 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: Open Access: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2296-634X |
EndPage | 577342 |
ExternalDocumentID | oai_doaj_org_article_33a358bc83564272a4c0725fadb9d3d7 10_3389_fcell_2020_577342 |
GrantInformation_xml | – fundername: Ministry of Education, Culture, Sports, Science and Technology |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE IAO IEA IHR IHW ISR KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM |
ID | FETCH-LOGICAL-c442t-f36e8120ab05a8acda89cda7708d732f3deb076ed0859af2150818623327be293 |
IEDL.DBID | RPM |
ISSN | 2296-634X |
IngestDate | Tue Oct 22 15:14:12 EDT 2024 Tue Sep 17 21:04:22 EDT 2024 Fri Oct 25 12:27:51 EDT 2024 Thu Sep 26 16:28:59 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-f36e8120ab05a8acda89cda7708d732f3deb076ed0859af2150818623327be293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Rutilio A. Fratti, University of Illinois at Urbana-Champaign, United States Reviewed by: Christopher Stroupe, University of Virginia, United States; Christopher L. Brett, Concordia University, Canada This article was submitted to Membrane Traffic, a section of the journal Frontiers in Cell and Developmental Biology |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554592/ |
PMID | 33102484 |
PQID | 2454411657 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_33a358bc83564272a4c0725fadb9d3d7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7554592 proquest_miscellaneous_2454411657 crossref_primary_10_3389_fcell_2020_577342 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-30 |
PublicationDateYYYYMMDD | 2020-09-30 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in cell and developmental biology |
PublicationYear | 2020 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Cheung (B9) 2016; 4 Cai (B6) 2005; 171 Pfeffer (B39) 1999; 1 Ho (B17) 2015; 26 Rossi (B47) 2020; 219 Erickson (B12) 2009; 11 Klumperman (B24) 2014; 6 Thomas (B60) 2019; 48 Nagle (B32) 2000; 1469 Pylypenko (B43) 2018; 9 Lo (B27) 2012; 19 Sapperstein (B50) 1995; 92 Witkos (B67) 2016; 3 Furukawa (B13) 2014; 4 Zink (B72) 2009; 17 Guo (B15) 1999; 18 Khan (B23) 2013; 21 Pérez-Victoria (B38) 2008; 19 Yu (B70) 2010; 26 Drin (B11) 2008; 320 Izawa (B21) 2012; 287 Ho (B18) 2016; 17 Li (B26) 2014; 111 Inoshita (B20) 2017; 292 McNew (B29) 2000; 407 Stroupe (B55) 2009; 106 Conibear (B10) 2000; 11 Parlati (B36) 2002; 99 Stenmark (B54) 2009; 10 TerBush (B59) 1996; 15 Mima (B30) 2018; 10 Cheung (B8) 2015; 4 Price (B42) 2000; 148 Jahn (B22) 2006; 7 Murray (B31) 2016; 537 Sapperstein (B49) 1996; 132 Yang (B69) 2018; 293 Taniguchi (B58) 2020; 29 Waters (B65) 2000; 1 Kuhlee (B25) 2015; 589 Ungermann (B62) 1998; 396 Mayer (B28) 1997; 136 Bonifacino (B3) 2004; 116 Hutagalung (B19) 2011; 91 Prakash (B40) 2019; 123 Sacher (B48) 2001; 7 Shestakova (B52) 2006; 7 Zolov (B73) 2005; 168 Barlowe (B2) 1997; 139 Hickey (B16) 2010; 21 Cao (B7) 1998; 17 Wong (B68) 2014; 346 Spang (B53) 2016; 4 Gillingham (B14) 2019; 59 Ali (B1) 2004; 117 Waters (B66) 1999; 11 Ngo (B35) 2020; 124 Neale (B34) 2020; 118 Segawa (B51) 2019; 294 Reilly (B44) 2001; 12 Brunet (B4) 2014; 15 Pérez-Victoria (B37) 2009; 29 Vance (B64) 2015; 16 Ren (B45) 2009; 139 van Meer (B63) 2008; 9 Zerial (B71) 2001; 2 Nair (B33) 2011; 146 Cai (B5) 2007; 445 Ungar (B61) 2002; 157 Takamori (B56) 2006; 127 Tamura (B57) 2014; 3 Rojas (B46) 2012; 196 Prakash (B41) 2016; 110 |
References_xml | – volume: 1 start-page: E17 year: 1999 ident: B39 article-title: Transport-vesicle targeting: tethers before SNAREs. publication-title: Nat. Cell Biol. doi: 10.1038/8967 contributor: fullname: Pfeffer – volume: 589 start-page: 2487 year: 2015 ident: B25 article-title: Functional homologies in vesicle tethering. publication-title: FEBS Lett. doi: 10.1016/j.febslet.2015.06.001 contributor: fullname: Kuhlee – volume: 132 start-page: 755 year: 1996 ident: B49 article-title: Assembly of the ER to Golgi SNARE complex requires Uso1p. publication-title: J. Cell Biol. doi: 10.1083/jcb.132.5.755 contributor: fullname: Sapperstein – volume: 1469 start-page: 159 year: 2000 ident: B32 article-title: Structure of lipid bilayers. publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4157(00)00016-2 contributor: fullname: Nagle – volume: 537 start-page: 107 year: 2016 ident: B31 article-title: An endosomal tether undergoes an entropic collapse to bring vesicles together. publication-title: Nature doi: 10.1038/nature19326 contributor: fullname: Murray – volume: 9 start-page: 22 year: 2018 ident: B43 article-title: Rab GTPases and their interacting protein partners: structural insights into Rab functional diversity. publication-title: Small GTPases doi: 10.1080/21541248.2017.1336191 contributor: fullname: Pylypenko – volume: 3 year: 2016 ident: B67 article-title: The golgin family of coiled-coil tethering proteins. publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2015.00086 contributor: fullname: Witkos – volume: 139 start-page: 1119 year: 2009 ident: B45 article-title: A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1. publication-title: Cell doi: 10.1016/j.cell.2009.11.002 contributor: fullname: Ren – volume: 17 start-page: 403 year: 2009 ident: B72 article-title: A link between ER tethering and COP-I vesicle uncoating. publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.07.012 contributor: fullname: Zink – volume: 91 start-page: 119 year: 2011 ident: B19 article-title: Role of Rab GTPases in membrane traffic and cell physiology. publication-title: Physiol. Rev. doi: 10.1152/physrev.00059.2009 contributor: fullname: Hutagalung – volume: 48 start-page: 100 year: 2019 ident: B60 article-title: A steric gating mechanism dictates the substrate specificity of a Rab-GEF. publication-title: Dev. Cell doi: 10.1016/j.devcel.2018.11.013 contributor: fullname: Thomas – volume: 171 start-page: 823 year: 2005 ident: B6 article-title: Mutants in trs120 disrupt traffic from the early endosome to the late Golgi. publication-title: J. Cell Biol. doi: 10.1083/jcb.200505145 contributor: fullname: Cai – volume: 4 year: 2016 ident: B9 article-title: Transport vesicle tethering at the trans golgi network: coiled coil proteins in action. publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2016.00018 contributor: fullname: Cheung – volume: 4 year: 2015 ident: B8 article-title: Protein flexibility is required for vesicle tethering at the Golgi. publication-title: eLife doi: 10.7554/eLife.12790 contributor: fullname: Cheung – volume: 294 start-page: 7722 year: 2019 ident: B51 article-title: Homotypic and heterotypic trans-assembly of human Rab-family small GTPases in reconstituted membrane tethering. publication-title: J. Biol. Chem. doi: 10.1074/jbc.ra119.007947 contributor: fullname: Segawa – volume: 21 start-page: 1284 year: 2013 ident: B23 article-title: Structural biology of Arf and Rab GTPases’ effector recruitment and specificity. publication-title: Structure doi: 10.1016/j.str.2013.06.016 contributor: fullname: Khan – volume: 157 start-page: 405 year: 2002 ident: B61 article-title: Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. publication-title: J. Cell Biol. doi: 10.1083/jcb.200202016 contributor: fullname: Ungar – volume: 11 start-page: 305 year: 2000 ident: B10 article-title: Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.11.1.305 contributor: fullname: Conibear – volume: 196 start-page: 189 year: 2012 ident: B46 article-title: The Ras protein superfamily: evolutionary tree and role of conserved amino acids. publication-title: J. Cell Biol. doi: 10.1083/jcb.201103008 contributor: fullname: Rojas – volume: 4 year: 2014 ident: B13 article-title: Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion. publication-title: Sci. Rep. doi: 10.1038/srep04277 contributor: fullname: Furukawa – volume: 29 start-page: 5251 year: 2009 ident: B37 article-title: Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network. publication-title: Mol. Cell Biol. doi: 10.1128/mcb.00495-09 contributor: fullname: Pérez-Victoria – volume: 445 start-page: 941 year: 2007 ident: B5 article-title: TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. publication-title: Nature doi: 10.1038/nature05527 contributor: fullname: Cai – volume: 59 start-page: 140 year: 2019 ident: B14 article-title: Transport carrier tethering - how vesicles are captured by organelles. publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2019.04.010 contributor: fullname: Gillingham – volume: 7 start-page: 191 year: 2006 ident: B52 article-title: COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. publication-title: Traffic doi: 10.1111/j.1600-0854.2005.00376.x contributor: fullname: Shestakova – volume: 124 start-page: 5434 year: 2020 ident: B35 article-title: How anionic lipids affect spatiotemporal properties of KRAS4B on model membranes. publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.0c02642 contributor: fullname: Ngo – volume: 110 start-page: 1125 year: 2016 ident: B41 article-title: Oncogenic K-Ras Binds to an anionic membrane in two distinct orientations: a molecular dynamics analysis. publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.01.019 contributor: fullname: Prakash – volume: 7 start-page: 433 year: 2001 ident: B48 article-title: TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport. publication-title: Mol. Cell doi: 10.1016/s1097-2765(01)00190-3 contributor: fullname: Sacher – volume: 10 start-page: 543 year: 2018 ident: B30 article-title: Reconstitution of membrane tethering mediated by Rab-family small GTPases. publication-title: Biophys. Rev. doi: 10.1007/s12551-017-0358-3 contributor: fullname: Mima – volume: 346 year: 2014 ident: B68 article-title: The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. publication-title: Science doi: 10.1126/science.1256898 contributor: fullname: Wong – volume: 11 start-page: 32 year: 2009 ident: B12 article-title: Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. publication-title: Biol. Proced. Online doi: 10.1007/s12575-009-9008-x contributor: fullname: Erickson – volume: 292 start-page: 18500 year: 2017 ident: B20 article-title: Human Rab small GTPase- and class V myosin-mediated membrane tethering in a chemically defined reconstitution system. publication-title: J. Biol. Chem. doi: 10.1074/jbc.m117.811356 contributor: fullname: Inoshita – volume: 136 start-page: 307 year: 1997 ident: B28 article-title: Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). publication-title: J. Cell Biol. doi: 10.1083/jcb.136.2.307 contributor: fullname: Mayer – volume: 17 start-page: 2156 year: 1998 ident: B7 article-title: Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. publication-title: EMBO J. doi: 10.1093/emboj/17.8.2156 contributor: fullname: Cao – volume: 139 start-page: 1097 year: 1997 ident: B2 article-title: Coupled ER to Golgi transport reconstituted with purified cytosolic proteins. publication-title: J. Cell Biol. doi: 10.1083/jcb.139.5.1097 contributor: fullname: Barlowe – volume: 146 start-page: 290 year: 2011 ident: B33 article-title: SNARE proteins are required for macroautophagy. publication-title: Cell doi: 10.1016/j.cell.2011.06.022 contributor: fullname: Nair – volume: 19 start-page: 40 year: 2012 ident: B27 article-title: Intrinsic tethering activity of endosomal Rab proteins. publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2162 contributor: fullname: Lo – volume: 99 start-page: 5424 year: 2002 ident: B36 article-title: Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.082100899 contributor: fullname: Parlati – volume: 106 start-page: 17626 year: 2009 ident: B55 article-title: Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0903801106 contributor: fullname: Stroupe – volume: 9 start-page: 112 year: 2008 ident: B63 article-title: Membrane lipids: where they are and how they behave. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2330 contributor: fullname: van Meer – volume: 293 start-page: 6230 year: 2018 ident: B69 article-title: Phospholipid subcellular localization and dynamics. publication-title: J. Biol. Chem. doi: 10.1074/jbc.r117.000582 contributor: fullname: Yang – volume: 11 start-page: 453 year: 1999 ident: B66 article-title: Membrane tethering in intracellular transport. publication-title: Curr. Opin. Cell Biol. doi: 10.1016/s0955-0674(99)80065-9 contributor: fullname: Waters – volume: 396 start-page: 543 year: 1998 ident: B62 article-title: Defining the functions of trans-SNARE pairs. publication-title: Nature doi: 10.1038/25069 contributor: fullname: Ungermann – volume: 29 start-page: 1387 year: 2020 ident: B58 article-title: Curvature-sensitive trans-assembly of human Atg8-family proteins in autophagy-related membrane tethering. publication-title: Prot. Sci. doi: 10.1002/pro.3828 contributor: fullname: Taniguchi – volume: 116 start-page: 153 year: 2004 ident: B3 article-title: The mechanisms of vesicle budding and fusion. publication-title: Cell doi: 10.1016/s0092-8674(03)01079-1 contributor: fullname: Bonifacino – volume: 219 year: 2020 ident: B47 article-title: Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases. publication-title: J. Cell Biol. doi: 10.1083/jcb.201904161 contributor: fullname: Rossi – volume: 118 start-page: 1129 year: 2020 ident: B34 article-title: The plasma membrane as a competitive inhibitor and positive allosteric modulator of KRas4B signaling. publication-title: Biophys. J. doi: 10.1016/j.bpj.2019.12.039 contributor: fullname: Neale – volume: 15 start-page: 6483 year: 1996 ident: B59 article-title: The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb01039.x contributor: fullname: TerBush – volume: 117 start-page: 6401 year: 2004 ident: B1 article-title: Multiple regions contribute to membrane targeting of Rab GTPases. publication-title: J. Cell Sci. doi: 10.1242/jcs.01542 contributor: fullname: Ali – volume: 287 start-page: 3445 year: 2012 ident: B21 article-title: Distinct contributions of vacuolar Qabc- and R-SNARE proteins to membrane fusion specificity. publication-title: J. Biol. Chem. doi: 10.1074/jbc.m111.307439 contributor: fullname: Izawa – volume: 2 start-page: 107 year: 2001 ident: B71 article-title: Rab proteins as membrane organizers. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/35052055 contributor: fullname: Zerial – volume: 17 start-page: 1078 year: 2016 ident: B18 article-title: The HOPS/Class C Vps complex tethers high-curvature membranes via a direct protein-membrane interaction. publication-title: Traffic doi: 10.1111/tra.12421 contributor: fullname: Ho – volume: 16 start-page: 1 year: 2015 ident: B64 article-title: Phospholipid synthesis and transport in mammalian cells. publication-title: Traffic doi: 10.1111/tra.12230 contributor: fullname: Vance – volume: 3 start-page: 1108 year: 2014 ident: B57 article-title: Membrane-anchored human Rab GTPases directly mediate membrane tethering in vitro. publication-title: Biol. Open doi: 10.1242/bio.20149340 contributor: fullname: Tamura – volume: 123 start-page: 8644 year: 2019 ident: B40 article-title: Probing the conformational and energy landscapes of KRAS membrane orientation. publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.9b05796 contributor: fullname: Prakash – volume: 1 start-page: 588 year: 2000 ident: B65 article-title: Membrane tethering and fusion in the secretory and endocytic pathways. publication-title: Traffic doi: 10.1034/j.1600-0854.2000.010802.x contributor: fullname: Waters – volume: 407 start-page: 153 year: 2000 ident: B29 article-title: Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. publication-title: Nature doi: 10.1038/35025000 contributor: fullname: McNew – volume: 12 start-page: 3783 year: 2001 ident: B44 article-title: Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.12.12.3783 contributor: fullname: Reilly – volume: 320 start-page: 670 year: 2008 ident: B11 article-title: Asymmetric tethering of flat and curved lipid membranes by a golgin. publication-title: Science doi: 10.1126/science.1155821 contributor: fullname: Drin – volume: 18 start-page: 1071 year: 1999 ident: B15 article-title: The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. publication-title: EMBO J. doi: 10.1093/emboj/18.4.1071 contributor: fullname: Guo – volume: 15 start-page: 1282 year: 2014 ident: B4 article-title: Are all multisubunit tethering complexes bona fide tethers? publication-title: Traffic doi: 10.1111/tra.12200 contributor: fullname: Brunet – volume: 19 start-page: 2350 year: 2008 ident: B38 article-title: Requirement of the human GARP complex for mannose 6-phosphate-receptor-dependent sorting of cathepsin D to lysosomes. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-11-1189 contributor: fullname: Pérez-Victoria – volume: 10 start-page: 513 year: 2009 ident: B54 article-title: Rab GTPases as coordinators of vesicle traffic. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2728 contributor: fullname: Stenmark – volume: 4 year: 2016 ident: B53 article-title: Membrane tethering complexes in the endosomal system. publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2016.00035 contributor: fullname: Spang – volume: 111 start-page: 2572 year: 2014 ident: B26 article-title: The role of the hypervariable C-terminal domain in Rab GTPases membrane targeting. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1313655111 contributor: fullname: Li – volume: 21 start-page: 2297 year: 2010 ident: B16 article-title: HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly. publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e10-01-0044 contributor: fullname: Hickey – volume: 168 start-page: 747 year: 2005 ident: B73 article-title: Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. publication-title: J. Cell Biol. doi: 10.1083/jcb.200412003 contributor: fullname: Zolov – volume: 148 start-page: 1231 year: 2000 ident: B42 article-title: The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. publication-title: J. Cell Biol. doi: 10.1083/jcb.148.6.1231 contributor: fullname: Price – volume: 127 start-page: 831 year: 2006 ident: B56 article-title: Molecular anatomy of a trafficking organelle. publication-title: Cell doi: 10.1016/j.cell.2006.10.030 contributor: fullname: Takamori – volume: 92 start-page: 522 year: 1995 ident: B50 article-title: p115 is a general vesicular transport factor related to the yeast endoplasmic reticulum to Golgi transport factor Uso1p. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.92.2.522 contributor: fullname: Sapperstein – volume: 26 start-page: 2655 year: 2015 ident: B17 article-title: The HOPS/class C Vps complex tethers membranes by binding to one Rab GTPase in each apposed membrane. publication-title: Mol. Biol. Cell. doi: 10.1091/mbc.e14-04-0922 contributor: fullname: Ho – volume: 7 start-page: 631 year: 2006 ident: B22 article-title: SNAREs–engines for membrane fusion. publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2002 contributor: fullname: Jahn – volume: 6 year: 2014 ident: B24 article-title: The complex ultrastructure of the endolysosomal system. publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016857 contributor: fullname: Klumperman – volume: 26 start-page: 137 year: 2010 ident: B70 article-title: Tethering factors as organizers of intracellular vesicular traffic. publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.042308.113327 contributor: fullname: Yu |
SSID | ssj0001257583 |
Score | 2.1997526 |
Snippet | Membrane tethering is a crucial step to determine the spatiotemporal specificity of secretory and endocytic trafficking pathways in all eukaryotic endomembrane... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 577342 |
SubjectTerms | Cell and Developmental Biology hypervariable region membrane tethering membrane trafficking Rab GTPase reconstitution small GTPase |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9swGLamSpN2mfgYojCQkXaaFOr4I06OwChl0iYERerNsmN7VGpTtJZD__3eNy6oOe3CJYfEiZ3nTeLncd4PQr5J72pppc04zy0KFPgOKldkeVHmUmtMT9I6yP4uRo_y50RNtkp9oU9YSg-cgBsIYYUqXQ1MAaiy5lbWTHMVrXeVFz7FkbNqS0yl1RWgIaVIvzFBhVWDiAvhoAc5O1daC8k7E1Gbr79DMrsukltzznCHfN6QRXqRBrlLPoRmj3xM5SPX-2T6K8xB7DaBjkOK4_tD7xZIgtd0Eem9dVmqa0Ef5nY2ozfjO5izlvR2SX-ECPTSU7emcCa9ysbJKWZGRyBMsVzQFGOq6H1Af-XlF_I4vB5fjbJN6YSslpKvsiiKAFM3s44pW9ra27KCjdas9FrwKHxwTBfBY34zGzlmhc9B3AjBtQtAAQ5Ir1k04ZBQpHhRRMVLBteuHEhmjM8VugazMMv65PsrjuY5ZcgwoCwQdNOCbhB0k0Dvk0tE-q0hJrdud4DJzcbk5n8m75OzVzsZeBmwD4B68bI0XGJJtbxQ0EZ3DNjpsXukmT61abU1MCtV8aP3GOIx-YR3nRxLvpLe6u9LOAH2snKn7YP6D7cG7Dg priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBYhIdBLaZuUbl-okFPBiayHZR9KaNOmm0JLSHZhb0aypHRhYyfrDWT_fWYsb4khh158sPXAI0vzffLoG0IOpLOVNNIknKcGCQqsg8pmSZrlqdQa5Um6ANk_2Xgqf83UbIts0lv1BmyfpHaYT2q6XBze366PYcJ_QcYJ_vYo4B43UD3ODpXWQsKKvMMlEHWM5OvRftxyAWzSCXNyXmRJJuQs_ud8upWBp-oE_QcodBhD-cgpnb4gz3s0Sb_G4X9Jtnz9iuzG_JLrPTL_7a-BDdeeTnw86HdFzxtEyWvaBHphbBITX9DLa7NY0J-Tc3BqLT1r6XcfAH86atcUatKTZBKjZhZ0DMwV8wnN8dAVvfAY0Nzuk-npj8nJOOlzKySVlHyVBJF58O3MWKZMbipn8gIuWrPcacGDcN4ynXmHAmgmcJSNT4H9CMG19YARXpPtuqn9G0IRAwYRFM8ZtF1Y4NR4gFfoSuWWGTYinzd2LG-ihEYJ1AONXnZGL9HoZTT6iHxDS_8riOrX3Y1meVX2kwmqGgFtV4AegT5pbmTFNFfBOFs44fSIfNqMUwmzBfsAUzd3bckl5lxLMwVl9GAABz0On9Tzv53utgbopQr-9j9af0ee4UvFwJL3ZHu1vPMfAL2s7Mfum3wAr_Pr2g priority: 102 providerName: Scholars Portal |
Title | Membrane Tethering Potency of Rab-Family Small GTPases Is Defined by the C-Terminal Hypervariable Regions |
URI | https://search.proquest.com/docview/2454411657 https://pubmed.ncbi.nlm.nih.gov/PMC7554592 https://doaj.org/article/33a358bc83564272a4c0725fadb9d3d7 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBa7C4VeSp80fSwq9FRwIuthycc27TYtpIRtFvZmJEvaBhJ72WQP-fedkZKyvvbig62HPRp7vk-eByEfpXettNIWnJcWCQp8B5WrirIypdQa05MkB9lf1exK_rxW1ydEHWNhktN-61bjbr0Zd6s_ybfydtNOjn5ik8V8qsEGqppPTskpKOgDip43VgCBGJH_YAIBqycR98CBCnI2VloLiRVsBMAaLo0cmKOUtX8ANYeOkg8sz8VT8uQAGennfGvPyEnonpNHuYjk_gVZzcMGKG8X6DLkaL4buugRCu9pH-mldUWubkF_b-x6Tb8vF2C5tvTHln4NEUCmp25PoSedFsvsGrOmM6CnWDRohZFV9DKg1_L2Jbm6-LaczopDAYWilZLviiiqAAacWceUNbb11tRw0JoZrwWPwgfHdBU8ZjmzkWNu-BIojhBcuwBA4BU56_ouvCYUgV4UUXHDYOzaAXHGKF2hW2Ucs2xEPh3l2NzmPBkN8AuUf5Pk36D8myz_EfmCkv7XEFNcpxP93U1zWGjoagWM3QJEBI6kuZUt01xF613thdcj8uG4Tg28EjgHiLq_3zZcYmG1slLQRg8WcDDj8AroWkqufdCtN__d8y15jI-afUrekbPd3X14D8Bl584T4YfjXJrzpLR_AQL07sk |
link.rule.ids | 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGEILLNH6JMgZG4oSU1vGPODlCt9HBOlUjk3az7MQeldpkWrtD_3vei1u0XLnkkNhO8mznfZ_z-T1CvsjaVdJKm3CeWiQo8B1ULkvSLE-l1hiepBPIXmaTa_nzRt3sEbXbC9OJ9is3HzaL5bCZ_-m0lXfLarTTiY1m07EGH6gKPnpCnsJ8ZfIRSY9LK4BBchH_YQIFK0YBV8GBDHI2VFoLiTlsBAAbLnPZc0hd3P4e2OxLJR_5nrNDcrAFjfRbfLiXZM83r8izmEZy85rMp34JpLfxtPRxP98tnbUIhje0DfTKuiTmt6C_l3axoD_KGfiuFT1f0RMfAGbW1G0o1KTjpIzimAWdAEHFtEFz3FtFrzzqlldvyPXZaTmeJNsUCkklJV8nQWQeXDizjimb26q2eQEHrVlea8GDqL1jOvM1xjmzgWN0-BRIjhBcOw9Q4C3Zb9rGvyMUoV4QQfGcQduFA-qM-3SFrlTumGUD8nVnR3MXI2UYYBhof9PZ36D9TbT_gHxHS_8riEGuuxPt_a3ZdjVUtQLargAkAkvS3MqKaa6CrV1Ri1oPyOddPxmYFHgPMHX7sDJcYmq1NFNQRvc6sHfH_hUYbV147e3oev_fNT-R55NyemEuzi9_HZEX-NpRYfKB7K_vH_wxwJi1-9gN2r9-ofBQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgCMRl4qdWfhqJE1Iax3bi5AgdpQM2VaOTdrPs2B6V2qRau0P_-70Xt6i5cskhsZ3k2c77Pufze4R8ls7W0kiTcJ4ZJCjwHcxtkWRFmUmlMDxJJ5C9KCZX8ud1fn2Q6qsT7dd2PmwWy2Ez_9tpK1fLOt3rxNLp-UiBD8wrnq5cSB-SRzBnWXFA1OPyCuCQUsT_mEDDqjTgSjgQQs6GuVJCYh4bAeCGy1L2nFIXu78HOPtyyQP_M35GjnfAkX6ND_icPPDNC_I4ppLcviTzc78E4tt4OvNxT98NnbYIiLe0DfTS2CTmuKB_lmaxoD9mU_Bfa3q2pqc-ANR01G4p1KSjZBYFMgs6AZKKqYPmuL-KXnrULq9fkavx99lokuzSKCS1lHyTBFF4cOPMWJab0tTOlBUclGKlU4IH4bxlqvAOY52ZwDFCfAZERwiurAc48JocNW3jTwhFuBdEyHnJoO3KAn3GvbpC1XlpmWED8mVvR72K0TI0sAy0v-7sr9H-Otp_QL6hpf8VxEDX3Yn29kbvuhuqGgFt1wAUgSkpbmTNFM-DcbZywqkB-bTvJw0TA-8Bpm7v1ppLTK-WFTmUUb0O7N2xfwVGXBdiezfC3vx3zY_kyfR0rH-fXfx6S57iW0eRyTtytLm98-8ByWzsh27M3gP4xfFj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Membrane+Tethering+Potency+of+Rab-Family+Small+GTPases+Is+Defined+by+the+C-Terminal+Hypervariable+Regions&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Ueda%2C+Sanae&rft.au=Tamura%2C+Naoki&rft.au=Mima%2C+Joji&rft.date=2020-09-30&rft.issn=2296-634X&rft.eissn=2296-634X&rft.volume=8&rft.spage=577342&rft.epage=577342&rft_id=info:doi/10.3389%2Ffcell.2020.577342&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |