Membrane Tethering Potency of Rab-Family Small GTPases Is Defined by the C-Terminal Hypervariable Regions

Membrane tethering is a crucial step to determine the spatiotemporal specificity of secretory and endocytic trafficking pathways in all eukaryotic endomembrane systems. Recent biochemical studies by a chemically-defined reconstitution approach reveal that, in addition to the structurally-diverse cla...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cell and developmental biology Vol. 8; p. 577342
Main Authors Ueda, Sanae, Tamura, Naoki, Mima, Joji
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 30.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Membrane tethering is a crucial step to determine the spatiotemporal specificity of secretory and endocytic trafficking pathways in all eukaryotic endomembrane systems. Recent biochemical studies by a chemically-defined reconstitution approach reveal that, in addition to the structurally-diverse classic tethering factors such as coiled-coil tethering proteins and multisubunit tethering complexes, Rab-family small GTPases also retain the inherent membrane tethering functions to directly and physically bridge two distinct lipid bilayers by themselves. Although Rab-mediated membrane tethering reactions are fairly efficient and specific in the physiological context, its mechanistic basis is yet to be understood. Here, to explore whether and how the intrinsic tethering potency of Rab GTPases is controlled by their C-terminal hypervariable region (HVR) domains that link the conserved small GTPase domains (G-domains) to membrane anchors at the C-terminus, we quantitatively compared tethering activities of two representative Rab isoforms in humans (Rab5a, Rab4a) and their HVR-deleted mutant forms. Strikingly, deletion of the HVR linker domains enabled both Rab5a and Rab4a isoforms to enhance their intrinsic tethering potency, exhibiting 5- to 50-fold higher initial velocities of tethering for the HVR-deleted mutants than those for the full-length, wild-type Rabs. Furthermore, we revealed that the tethering activity of full-length Rab5a was significantly reduced by the omission of anionic lipids and cholesterol from membrane lipids and, however, membrane tethering driven by HVR-deleted Rab5a mutant was completely insensitive to the headgroup composition of lipids. Reconstituted membrane tethering assays with the C-terminally-truncated mutants of Rab4a further uncovered that the N-terminal residues in the HVR linker, located adjacent to the G-domain, are critical for regulating the intrinsic tethering activity. In conclusion, our current findings establish that the non-conserved, flexible C-terminal HVR linker domains define membrane tethering potency of Rab-family small GTPases through controlling the close attachment of the globular G-domains to membrane surfaces, which confers the active tethering-competent state of the G-domains on lipid bilayers.
AbstractList Membrane tethering is a crucial step to determine the spatiotemporal specificity of secretory and endocytic trafficking pathways in all eukaryotic endomembrane systems. Recent biochemical studies by a chemically-defined reconstitution approach reveal that, in addition to the structurally-diverse classic tethering factors such as coiled-coil tethering proteins and multisubunit tethering complexes, Rab-family small GTPases also retain the inherent membrane tethering functions to directly and physically bridge two distinct lipid bilayers by themselves. Although Rab-mediated membrane tethering reactions are fairly efficient and specific in the physiological context, its mechanistic basis is yet to be understood. Here, to explore whether and how the intrinsic tethering potency of Rab GTPases is controlled by their C-terminal hypervariable region (HVR) domains that link the conserved small GTPase domains (G-domains) to membrane anchors at the C-terminus, we quantitatively compared tethering activities of two representative Rab isoforms in humans (Rab5a, Rab4a) and their HVR-deleted mutant forms. Strikingly, deletion of the HVR linker domains enabled both Rab5a and Rab4a isoforms to enhance their intrinsic tethering potency, exhibiting 5- to 50-fold higher initial velocities of tethering for the HVR-deleted mutants than those for the full-length, wild-type Rabs. Furthermore, we revealed that the tethering activity of full-length Rab5a was significantly reduced by the omission of anionic lipids and cholesterol from membrane lipids and, however, membrane tethering driven by HVR-deleted Rab5a mutant was completely insensitive to the headgroup composition of lipids. Reconstituted membrane tethering assays with the C-terminally-truncated mutants of Rab4a further uncovered that the N-terminal residues in the HVR linker, located adjacent to the G-domain, are critical for regulating the intrinsic tethering activity. In conclusion, our current findings establish that the non-conserved, flexible C-terminal HVR linker domains define membrane tethering potency of Rab-family small GTPases through controlling the close attachment of the globular G-domains to membrane surfaces, which confers the active tethering-competent state of the G-domains on lipid bilayers.
Author Mima, Joji
Ueda, Sanae
Tamura, Naoki
AuthorAffiliation Institute for Protein Research, Osaka University , Suita , Japan
AuthorAffiliation_xml – name: Institute for Protein Research, Osaka University , Suita , Japan
Author_xml – sequence: 1
  givenname: Sanae
  surname: Ueda
  fullname: Ueda, Sanae
– sequence: 2
  givenname: Naoki
  surname: Tamura
  fullname: Tamura, Naoki
– sequence: 3
  givenname: Joji
  surname: Mima
  fullname: Mima, Joji
BookMark eNpVkU1r3DAQhkVJaZJtfkBvOvbirT4t-VIo23wspDSkW-hNjO3xRsGWtpI34H9fbzaE5jIzSKPnBT3n5CTEgIR84mwppa2-dA32_VIwwZbaGKnEO3ImRFUWpVR_Tv6bT8lFzo-MMS600VZ-IKdSciaUVWfE_8ChThCQbnB8wOTDlt7FEUMz0djRe6iLKxh8P9FfA_Q9vd7cQcZM15l-x84HbGk90fklXRUbTIMP0NObaYfpCZKHukd6j1sfQ_5I3nfQZ7x46Qvy--pys7opbn9er1ffbotGKTEWnSzRcsGgZhosNC3Yai7GMNsaKTrZYs1MiS2zuoJOcM0st6WQUpgaRSUXZH3kthEe3S75AdLkInj3fBDT1kEafdOjkxKktnVjpS6VMAJUw4zQHbR11co5bkG-Hlm7fT1g22AYE_RvoG9vgn9w2_jkjNZKV2IGfH4BpPh3j3l0g88HcfOPx312QmmlOC_1IYsfV5sUc07YvcZw5g7G3bNxdzDujsblP5VJoAE
CitedBy_id crossref_primary_10_1007_s12551_021_00819_4
crossref_primary_10_1073_pnas_2316143121
crossref_primary_10_3389_fcell_2021_628910
crossref_primary_10_3390_biomedicines10051141
Cites_doi 10.1038/8967
10.1016/j.febslet.2015.06.001
10.1083/jcb.132.5.755
10.1016/S0304-4157(00)00016-2
10.1038/nature19326
10.1080/21541248.2017.1336191
10.3389/fcell.2015.00086
10.1016/j.cell.2009.11.002
10.1016/j.devcel.2009.07.012
10.1152/physrev.00059.2009
10.1016/j.devcel.2018.11.013
10.1083/jcb.200505145
10.3389/fcell.2016.00018
10.7554/eLife.12790
10.1074/jbc.ra119.007947
10.1016/j.str.2013.06.016
10.1083/jcb.200202016
10.1091/mbc.11.1.305
10.1083/jcb.201103008
10.1038/srep04277
10.1128/mcb.00495-09
10.1038/nature05527
10.1016/j.ceb.2019.04.010
10.1111/j.1600-0854.2005.00376.x
10.1021/acs.jpcb.0c02642
10.1016/j.bpj.2016.01.019
10.1016/s1097-2765(01)00190-3
10.1007/s12551-017-0358-3
10.1126/science.1256898
10.1007/s12575-009-9008-x
10.1074/jbc.m117.811356
10.1083/jcb.136.2.307
10.1093/emboj/17.8.2156
10.1083/jcb.139.5.1097
10.1016/j.cell.2011.06.022
10.1038/nsmb.2162
10.1073/pnas.082100899
10.1073/pnas.0903801106
10.1038/nrm2330
10.1074/jbc.r117.000582
10.1016/s0955-0674(99)80065-9
10.1038/25069
10.1002/pro.3828
10.1016/s0092-8674(03)01079-1
10.1083/jcb.201904161
10.1016/j.bpj.2019.12.039
10.1002/j.1460-2075.1996.tb01039.x
10.1242/jcs.01542
10.1074/jbc.m111.307439
10.1038/35052055
10.1111/tra.12421
10.1111/tra.12230
10.1242/bio.20149340
10.1021/acs.jpcb.9b05796
10.1034/j.1600-0854.2000.010802.x
10.1038/35025000
10.1091/mbc.12.12.3783
10.1126/science.1155821
10.1093/emboj/18.4.1071
10.1111/tra.12200
10.1091/mbc.e07-11-1189
10.1038/nrm2728
10.3389/fcell.2016.00035
10.1073/pnas.1313655111
10.1091/mbc.e10-01-0044
10.1083/jcb.200412003
10.1083/jcb.148.6.1231
10.1016/j.cell.2006.10.030
10.1073/pnas.92.2.522
10.1091/mbc.e14-04-0922
10.1038/nrm2002
10.1101/cshperspect.a016857
10.1146/annurev.cellbio.042308.113327
ContentType Journal Article
Copyright Copyright © 2020 Ueda, Tamura and Mima. 2020 Ueda, Tamura and Mima
Copyright_xml – notice: Copyright © 2020 Ueda, Tamura and Mima. 2020 Ueda, Tamura and Mima
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fcell.2020.577342
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2296-634X
EndPage 577342
ExternalDocumentID oai_doaj_org_article_33a358bc83564272a4c0725fadb9d3d7
10_3389_fcell_2020_577342
GrantInformation_xml – fundername: Ministry of Education, Culture, Sports, Science and Technology
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
IHW
ISR
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c442t-f36e8120ab05a8acda89cda7708d732f3deb076ed0859af2150818623327be293
IEDL.DBID RPM
ISSN 2296-634X
IngestDate Tue Oct 22 15:14:12 EDT 2024
Tue Sep 17 21:04:22 EDT 2024
Fri Oct 25 12:27:51 EDT 2024
Thu Sep 26 16:28:59 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-f36e8120ab05a8acda89cda7708d732f3deb076ed0859af2150818623327be293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Rutilio A. Fratti, University of Illinois at Urbana-Champaign, United States
Reviewed by: Christopher Stroupe, University of Virginia, United States; Christopher L. Brett, Concordia University, Canada
This article was submitted to Membrane Traffic, a section of the journal Frontiers in Cell and Developmental Biology
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7554592/
PMID 33102484
PQID 2454411657
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_33a358bc83564272a4c0725fadb9d3d7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7554592
proquest_miscellaneous_2454411657
crossref_primary_10_3389_fcell_2020_577342
PublicationCentury 2000
PublicationDate 2020-09-30
PublicationDateYYYYMMDD 2020-09-30
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-30
  day: 30
PublicationDecade 2020
PublicationTitle Frontiers in cell and developmental biology
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Cheung (B9) 2016; 4
Cai (B6) 2005; 171
Pfeffer (B39) 1999; 1
Ho (B17) 2015; 26
Rossi (B47) 2020; 219
Erickson (B12) 2009; 11
Klumperman (B24) 2014; 6
Thomas (B60) 2019; 48
Nagle (B32) 2000; 1469
Pylypenko (B43) 2018; 9
Lo (B27) 2012; 19
Sapperstein (B50) 1995; 92
Witkos (B67) 2016; 3
Furukawa (B13) 2014; 4
Zink (B72) 2009; 17
Guo (B15) 1999; 18
Khan (B23) 2013; 21
Pérez-Victoria (B38) 2008; 19
Yu (B70) 2010; 26
Drin (B11) 2008; 320
Izawa (B21) 2012; 287
Ho (B18) 2016; 17
Li (B26) 2014; 111
Inoshita (B20) 2017; 292
McNew (B29) 2000; 407
Stroupe (B55) 2009; 106
Conibear (B10) 2000; 11
Parlati (B36) 2002; 99
Stenmark (B54) 2009; 10
TerBush (B59) 1996; 15
Mima (B30) 2018; 10
Cheung (B8) 2015; 4
Price (B42) 2000; 148
Jahn (B22) 2006; 7
Murray (B31) 2016; 537
Sapperstein (B49) 1996; 132
Yang (B69) 2018; 293
Taniguchi (B58) 2020; 29
Waters (B65) 2000; 1
Kuhlee (B25) 2015; 589
Ungermann (B62) 1998; 396
Mayer (B28) 1997; 136
Bonifacino (B3) 2004; 116
Hutagalung (B19) 2011; 91
Prakash (B40) 2019; 123
Sacher (B48) 2001; 7
Shestakova (B52) 2006; 7
Zolov (B73) 2005; 168
Barlowe (B2) 1997; 139
Hickey (B16) 2010; 21
Cao (B7) 1998; 17
Wong (B68) 2014; 346
Spang (B53) 2016; 4
Gillingham (B14) 2019; 59
Ali (B1) 2004; 117
Waters (B66) 1999; 11
Ngo (B35) 2020; 124
Neale (B34) 2020; 118
Segawa (B51) 2019; 294
Reilly (B44) 2001; 12
Brunet (B4) 2014; 15
Pérez-Victoria (B37) 2009; 29
Vance (B64) 2015; 16
Ren (B45) 2009; 139
van Meer (B63) 2008; 9
Zerial (B71) 2001; 2
Nair (B33) 2011; 146
Cai (B5) 2007; 445
Ungar (B61) 2002; 157
Takamori (B56) 2006; 127
Tamura (B57) 2014; 3
Rojas (B46) 2012; 196
Prakash (B41) 2016; 110
References_xml – volume: 1
  start-page: E17
  year: 1999
  ident: B39
  article-title: Transport-vesicle targeting: tethers before SNAREs.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/8967
  contributor:
    fullname: Pfeffer
– volume: 589
  start-page: 2487
  year: 2015
  ident: B25
  article-title: Functional homologies in vesicle tethering.
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2015.06.001
  contributor:
    fullname: Kuhlee
– volume: 132
  start-page: 755
  year: 1996
  ident: B49
  article-title: Assembly of the ER to Golgi SNARE complex requires Uso1p.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.132.5.755
  contributor:
    fullname: Sapperstein
– volume: 1469
  start-page: 159
  year: 2000
  ident: B32
  article-title: Structure of lipid bilayers.
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4157(00)00016-2
  contributor:
    fullname: Nagle
– volume: 537
  start-page: 107
  year: 2016
  ident: B31
  article-title: An endosomal tether undergoes an entropic collapse to bring vesicles together.
  publication-title: Nature
  doi: 10.1038/nature19326
  contributor:
    fullname: Murray
– volume: 9
  start-page: 22
  year: 2018
  ident: B43
  article-title: Rab GTPases and their interacting protein partners: structural insights into Rab functional diversity.
  publication-title: Small GTPases
  doi: 10.1080/21541248.2017.1336191
  contributor:
    fullname: Pylypenko
– volume: 3
  year: 2016
  ident: B67
  article-title: The golgin family of coiled-coil tethering proteins.
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2015.00086
  contributor:
    fullname: Witkos
– volume: 139
  start-page: 1119
  year: 2009
  ident: B45
  article-title: A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.002
  contributor:
    fullname: Ren
– volume: 17
  start-page: 403
  year: 2009
  ident: B72
  article-title: A link between ER tethering and COP-I vesicle uncoating.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.07.012
  contributor:
    fullname: Zink
– volume: 91
  start-page: 119
  year: 2011
  ident: B19
  article-title: Role of Rab GTPases in membrane traffic and cell physiology.
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00059.2009
  contributor:
    fullname: Hutagalung
– volume: 48
  start-page: 100
  year: 2019
  ident: B60
  article-title: A steric gating mechanism dictates the substrate specificity of a Rab-GEF.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2018.11.013
  contributor:
    fullname: Thomas
– volume: 171
  start-page: 823
  year: 2005
  ident: B6
  article-title: Mutants in trs120 disrupt traffic from the early endosome to the late Golgi.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200505145
  contributor:
    fullname: Cai
– volume: 4
  year: 2016
  ident: B9
  article-title: Transport vesicle tethering at the trans golgi network: coiled coil proteins in action.
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2016.00018
  contributor:
    fullname: Cheung
– volume: 4
  year: 2015
  ident: B8
  article-title: Protein flexibility is required for vesicle tethering at the Golgi.
  publication-title: eLife
  doi: 10.7554/eLife.12790
  contributor:
    fullname: Cheung
– volume: 294
  start-page: 7722
  year: 2019
  ident: B51
  article-title: Homotypic and heterotypic trans-assembly of human Rab-family small GTPases in reconstituted membrane tethering.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.ra119.007947
  contributor:
    fullname: Segawa
– volume: 21
  start-page: 1284
  year: 2013
  ident: B23
  article-title: Structural biology of Arf and Rab GTPases’ effector recruitment and specificity.
  publication-title: Structure
  doi: 10.1016/j.str.2013.06.016
  contributor:
    fullname: Khan
– volume: 157
  start-page: 405
  year: 2002
  ident: B61
  article-title: Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200202016
  contributor:
    fullname: Ungar
– volume: 11
  start-page: 305
  year: 2000
  ident: B10
  article-title: Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.11.1.305
  contributor:
    fullname: Conibear
– volume: 196
  start-page: 189
  year: 2012
  ident: B46
  article-title: The Ras protein superfamily: evolutionary tree and role of conserved amino acids.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201103008
  contributor:
    fullname: Rojas
– volume: 4
  year: 2014
  ident: B13
  article-title: Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion.
  publication-title: Sci. Rep.
  doi: 10.1038/srep04277
  contributor:
    fullname: Furukawa
– volume: 29
  start-page: 5251
  year: 2009
  ident: B37
  article-title: Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network.
  publication-title: Mol. Cell Biol.
  doi: 10.1128/mcb.00495-09
  contributor:
    fullname: Pérez-Victoria
– volume: 445
  start-page: 941
  year: 2007
  ident: B5
  article-title: TRAPPI tethers COPII vesicles by binding the coat subunit Sec23.
  publication-title: Nature
  doi: 10.1038/nature05527
  contributor:
    fullname: Cai
– volume: 59
  start-page: 140
  year: 2019
  ident: B14
  article-title: Transport carrier tethering - how vesicles are captured by organelles.
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2019.04.010
  contributor:
    fullname: Gillingham
– volume: 7
  start-page: 191
  year: 2006
  ident: B52
  article-title: COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation.
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2005.00376.x
  contributor:
    fullname: Shestakova
– volume: 124
  start-page: 5434
  year: 2020
  ident: B35
  article-title: How anionic lipids affect spatiotemporal properties of KRAS4B on model membranes.
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c02642
  contributor:
    fullname: Ngo
– volume: 110
  start-page: 1125
  year: 2016
  ident: B41
  article-title: Oncogenic K-Ras Binds to an anionic membrane in two distinct orientations: a molecular dynamics analysis.
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.01.019
  contributor:
    fullname: Prakash
– volume: 7
  start-page: 433
  year: 2001
  ident: B48
  article-title: TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport.
  publication-title: Mol. Cell
  doi: 10.1016/s1097-2765(01)00190-3
  contributor:
    fullname: Sacher
– volume: 10
  start-page: 543
  year: 2018
  ident: B30
  article-title: Reconstitution of membrane tethering mediated by Rab-family small GTPases.
  publication-title: Biophys. Rev.
  doi: 10.1007/s12551-017-0358-3
  contributor:
    fullname: Mima
– volume: 346
  year: 2014
  ident: B68
  article-title: The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins.
  publication-title: Science
  doi: 10.1126/science.1256898
  contributor:
    fullname: Wong
– volume: 11
  start-page: 32
  year: 2009
  ident: B12
  article-title: Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy.
  publication-title: Biol. Proced. Online
  doi: 10.1007/s12575-009-9008-x
  contributor:
    fullname: Erickson
– volume: 292
  start-page: 18500
  year: 2017
  ident: B20
  article-title: Human Rab small GTPase- and class V myosin-mediated membrane tethering in a chemically defined reconstitution system.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m117.811356
  contributor:
    fullname: Inoshita
– volume: 136
  start-page: 307
  year: 1997
  ident: B28
  article-title: Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF).
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.136.2.307
  contributor:
    fullname: Mayer
– volume: 17
  start-page: 2156
  year: 1998
  ident: B7
  article-title: Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins.
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.8.2156
  contributor:
    fullname: Cao
– volume: 139
  start-page: 1097
  year: 1997
  ident: B2
  article-title: Coupled ER to Golgi transport reconstituted with purified cytosolic proteins.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.139.5.1097
  contributor:
    fullname: Barlowe
– volume: 146
  start-page: 290
  year: 2011
  ident: B33
  article-title: SNARE proteins are required for macroautophagy.
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.022
  contributor:
    fullname: Nair
– volume: 19
  start-page: 40
  year: 2012
  ident: B27
  article-title: Intrinsic tethering activity of endosomal Rab proteins.
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2162
  contributor:
    fullname: Lo
– volume: 99
  start-page: 5424
  year: 2002
  ident: B36
  article-title: Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.082100899
  contributor:
    fullname: Parlati
– volume: 106
  start-page: 17626
  year: 2009
  ident: B55
  article-title: Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0903801106
  contributor:
    fullname: Stroupe
– volume: 9
  start-page: 112
  year: 2008
  ident: B63
  article-title: Membrane lipids: where they are and how they behave.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2330
  contributor:
    fullname: van Meer
– volume: 293
  start-page: 6230
  year: 2018
  ident: B69
  article-title: Phospholipid subcellular localization and dynamics.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.r117.000582
  contributor:
    fullname: Yang
– volume: 11
  start-page: 453
  year: 1999
  ident: B66
  article-title: Membrane tethering in intracellular transport.
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/s0955-0674(99)80065-9
  contributor:
    fullname: Waters
– volume: 396
  start-page: 543
  year: 1998
  ident: B62
  article-title: Defining the functions of trans-SNARE pairs.
  publication-title: Nature
  doi: 10.1038/25069
  contributor:
    fullname: Ungermann
– volume: 29
  start-page: 1387
  year: 2020
  ident: B58
  article-title: Curvature-sensitive trans-assembly of human Atg8-family proteins in autophagy-related membrane tethering.
  publication-title: Prot. Sci.
  doi: 10.1002/pro.3828
  contributor:
    fullname: Taniguchi
– volume: 116
  start-page: 153
  year: 2004
  ident: B3
  article-title: The mechanisms of vesicle budding and fusion.
  publication-title: Cell
  doi: 10.1016/s0092-8674(03)01079-1
  contributor:
    fullname: Bonifacino
– volume: 219
  year: 2020
  ident: B47
  article-title: Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201904161
  contributor:
    fullname: Rossi
– volume: 118
  start-page: 1129
  year: 2020
  ident: B34
  article-title: The plasma membrane as a competitive inhibitor and positive allosteric modulator of KRas4B signaling.
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2019.12.039
  contributor:
    fullname: Neale
– volume: 15
  start-page: 6483
  year: 1996
  ident: B59
  article-title: The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae.
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb01039.x
  contributor:
    fullname: TerBush
– volume: 117
  start-page: 6401
  year: 2004
  ident: B1
  article-title: Multiple regions contribute to membrane targeting of Rab GTPases.
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.01542
  contributor:
    fullname: Ali
– volume: 287
  start-page: 3445
  year: 2012
  ident: B21
  article-title: Distinct contributions of vacuolar Qabc- and R-SNARE proteins to membrane fusion specificity.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m111.307439
  contributor:
    fullname: Izawa
– volume: 2
  start-page: 107
  year: 2001
  ident: B71
  article-title: Rab proteins as membrane organizers.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/35052055
  contributor:
    fullname: Zerial
– volume: 17
  start-page: 1078
  year: 2016
  ident: B18
  article-title: The HOPS/Class C Vps complex tethers high-curvature membranes via a direct protein-membrane interaction.
  publication-title: Traffic
  doi: 10.1111/tra.12421
  contributor:
    fullname: Ho
– volume: 16
  start-page: 1
  year: 2015
  ident: B64
  article-title: Phospholipid synthesis and transport in mammalian cells.
  publication-title: Traffic
  doi: 10.1111/tra.12230
  contributor:
    fullname: Vance
– volume: 3
  start-page: 1108
  year: 2014
  ident: B57
  article-title: Membrane-anchored human Rab GTPases directly mediate membrane tethering in vitro.
  publication-title: Biol. Open
  doi: 10.1242/bio.20149340
  contributor:
    fullname: Tamura
– volume: 123
  start-page: 8644
  year: 2019
  ident: B40
  article-title: Probing the conformational and energy landscapes of KRAS membrane orientation.
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.9b05796
  contributor:
    fullname: Prakash
– volume: 1
  start-page: 588
  year: 2000
  ident: B65
  article-title: Membrane tethering and fusion in the secretory and endocytic pathways.
  publication-title: Traffic
  doi: 10.1034/j.1600-0854.2000.010802.x
  contributor:
    fullname: Waters
– volume: 407
  start-page: 153
  year: 2000
  ident: B29
  article-title: Compartmental specificity of cellular membrane fusion encoded in SNARE proteins.
  publication-title: Nature
  doi: 10.1038/35025000
  contributor:
    fullname: McNew
– volume: 12
  start-page: 3783
  year: 2001
  ident: B44
  article-title: Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.12.12.3783
  contributor:
    fullname: Reilly
– volume: 320
  start-page: 670
  year: 2008
  ident: B11
  article-title: Asymmetric tethering of flat and curved lipid membranes by a golgin.
  publication-title: Science
  doi: 10.1126/science.1155821
  contributor:
    fullname: Drin
– volume: 18
  start-page: 1071
  year: 1999
  ident: B15
  article-title: The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis.
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.4.1071
  contributor:
    fullname: Guo
– volume: 15
  start-page: 1282
  year: 2014
  ident: B4
  article-title: Are all multisubunit tethering complexes bona fide tethers?
  publication-title: Traffic
  doi: 10.1111/tra.12200
  contributor:
    fullname: Brunet
– volume: 19
  start-page: 2350
  year: 2008
  ident: B38
  article-title: Requirement of the human GARP complex for mannose 6-phosphate-receptor-dependent sorting of cathepsin D to lysosomes.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e07-11-1189
  contributor:
    fullname: Pérez-Victoria
– volume: 10
  start-page: 513
  year: 2009
  ident: B54
  article-title: Rab GTPases as coordinators of vesicle traffic.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2728
  contributor:
    fullname: Stenmark
– volume: 4
  year: 2016
  ident: B53
  article-title: Membrane tethering complexes in the endosomal system.
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2016.00035
  contributor:
    fullname: Spang
– volume: 111
  start-page: 2572
  year: 2014
  ident: B26
  article-title: The role of the hypervariable C-terminal domain in Rab GTPases membrane targeting.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1313655111
  contributor:
    fullname: Li
– volume: 21
  start-page: 2297
  year: 2010
  ident: B16
  article-title: HOPS initiates vacuole docking by tethering membranes before trans-SNARE complex assembly.
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e10-01-0044
  contributor:
    fullname: Hickey
– volume: 168
  start-page: 747
  year: 2005
  ident: B73
  article-title: Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200412003
  contributor:
    fullname: Zolov
– volume: 148
  start-page: 1231
  year: 2000
  ident: B42
  article-title: The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.148.6.1231
  contributor:
    fullname: Price
– volume: 127
  start-page: 831
  year: 2006
  ident: B56
  article-title: Molecular anatomy of a trafficking organelle.
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.030
  contributor:
    fullname: Takamori
– volume: 92
  start-page: 522
  year: 1995
  ident: B50
  article-title: p115 is a general vesicular transport factor related to the yeast endoplasmic reticulum to Golgi transport factor Uso1p.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.92.2.522
  contributor:
    fullname: Sapperstein
– volume: 26
  start-page: 2655
  year: 2015
  ident: B17
  article-title: The HOPS/class C Vps complex tethers membranes by binding to one Rab GTPase in each apposed membrane.
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e14-04-0922
  contributor:
    fullname: Ho
– volume: 7
  start-page: 631
  year: 2006
  ident: B22
  article-title: SNAREs–engines for membrane fusion.
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2002
  contributor:
    fullname: Jahn
– volume: 6
  year: 2014
  ident: B24
  article-title: The complex ultrastructure of the endolysosomal system.
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a016857
  contributor:
    fullname: Klumperman
– volume: 26
  start-page: 137
  year: 2010
  ident: B70
  article-title: Tethering factors as organizers of intracellular vesicular traffic.
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.042308.113327
  contributor:
    fullname: Yu
SSID ssj0001257583
Score 2.1997526
Snippet Membrane tethering is a crucial step to determine the spatiotemporal specificity of secretory and endocytic trafficking pathways in all eukaryotic endomembrane...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 577342
SubjectTerms Cell and Developmental Biology
hypervariable region
membrane tethering
membrane trafficking
Rab GTPase
reconstitution
small GTPase
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9swGLamSpN2mfgYojCQkXaaFOr4I06OwChl0iYERerNsmN7VGpTtJZD__3eNy6oOe3CJYfEiZ3nTeLncd4PQr5J72pppc04zy0KFPgOKldkeVHmUmtMT9I6yP4uRo_y50RNtkp9oU9YSg-cgBsIYYUqXQ1MAaiy5lbWTHMVrXeVFz7FkbNqS0yl1RWgIaVIvzFBhVWDiAvhoAc5O1daC8k7E1Gbr79DMrsukltzznCHfN6QRXqRBrlLPoRmj3xM5SPX-2T6K8xB7DaBjkOK4_tD7xZIgtd0Eem9dVmqa0Ef5nY2ozfjO5izlvR2SX-ECPTSU7emcCa9ysbJKWZGRyBMsVzQFGOq6H1Af-XlF_I4vB5fjbJN6YSslpKvsiiKAFM3s44pW9ra27KCjdas9FrwKHxwTBfBY34zGzlmhc9B3AjBtQtAAQ5Ir1k04ZBQpHhRRMVLBteuHEhmjM8VugazMMv65PsrjuY5ZcgwoCwQdNOCbhB0k0Dvk0tE-q0hJrdud4DJzcbk5n8m75OzVzsZeBmwD4B68bI0XGJJtbxQ0EZ3DNjpsXukmT61abU1MCtV8aP3GOIx-YR3nRxLvpLe6u9LOAH2snKn7YP6D7cG7Dg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBYhIdBLaZuUbl-okFPBiayHZR9KaNOmm0JLSHZhb0aypHRhYyfrDWT_fWYsb4khh158sPXAI0vzffLoG0IOpLOVNNIknKcGCQqsg8pmSZrlqdQa5Um6ANk_2Xgqf83UbIts0lv1BmyfpHaYT2q6XBze366PYcJ_QcYJ_vYo4B43UD3ODpXWQsKKvMMlEHWM5OvRftxyAWzSCXNyXmRJJuQs_ud8upWBp-oE_QcodBhD-cgpnb4gz3s0Sb_G4X9Jtnz9iuzG_JLrPTL_7a-BDdeeTnw86HdFzxtEyWvaBHphbBITX9DLa7NY0J-Tc3BqLT1r6XcfAH86atcUatKTZBKjZhZ0DMwV8wnN8dAVvfAY0Nzuk-npj8nJOOlzKySVlHyVBJF58O3MWKZMbipn8gIuWrPcacGDcN4ynXmHAmgmcJSNT4H9CMG19YARXpPtuqn9G0IRAwYRFM8ZtF1Y4NR4gFfoSuWWGTYinzd2LG-ihEYJ1AONXnZGL9HoZTT6iHxDS_8riOrX3Y1meVX2kwmqGgFtV4AegT5pbmTFNFfBOFs44fSIfNqMUwmzBfsAUzd3bckl5lxLMwVl9GAABz0On9Tzv53utgbopQr-9j9af0ee4UvFwJL3ZHu1vPMfAL2s7Mfum3wAr_Pr2g
  priority: 102
  providerName: Scholars Portal
Title Membrane Tethering Potency of Rab-Family Small GTPases Is Defined by the C-Terminal Hypervariable Regions
URI https://search.proquest.com/docview/2454411657
https://pubmed.ncbi.nlm.nih.gov/PMC7554592
https://doaj.org/article/33a358bc83564272a4c0725fadb9d3d7
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBa7C4VeSp80fSwq9FRwIuthycc27TYtpIRtFvZmJEvaBhJ72WQP-fedkZKyvvbig62HPRp7vk-eByEfpXettNIWnJcWCQp8B5WrirIypdQa05MkB9lf1exK_rxW1ydEHWNhktN-61bjbr0Zd6s_ybfydtNOjn5ik8V8qsEGqppPTskpKOgDip43VgCBGJH_YAIBqycR98CBCnI2VloLiRVsBMAaLo0cmKOUtX8ANYeOkg8sz8VT8uQAGennfGvPyEnonpNHuYjk_gVZzcMGKG8X6DLkaL4buugRCu9pH-mldUWubkF_b-x6Tb8vF2C5tvTHln4NEUCmp25PoSedFsvsGrOmM6CnWDRohZFV9DKg1_L2Jbm6-LaczopDAYWilZLviiiqAAacWceUNbb11tRw0JoZrwWPwgfHdBU8ZjmzkWNu-BIojhBcuwBA4BU56_ouvCYUgV4UUXHDYOzaAXHGKF2hW2Ucs2xEPh3l2NzmPBkN8AuUf5Pk36D8myz_EfmCkv7XEFNcpxP93U1zWGjoagWM3QJEBI6kuZUt01xF613thdcj8uG4Tg28EjgHiLq_3zZcYmG1slLQRg8WcDDj8AroWkqufdCtN__d8y15jI-afUrekbPd3X14D8Bl584T4YfjXJrzpLR_AQL07sk
link.rule.ids 230,315,730,783,787,867,888,2109,24330,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGEILLNH6JMgZG4oSU1vGPODlCt9HBOlUjk3az7MQeldpkWrtD_3vei1u0XLnkkNhO8mznfZ_z-T1CvsjaVdJKm3CeWiQo8B1ULkvSLE-l1hiepBPIXmaTa_nzRt3sEbXbC9OJ9is3HzaL5bCZ_-m0lXfLarTTiY1m07EGH6gKPnpCnsJ8ZfIRSY9LK4BBchH_YQIFK0YBV8GBDHI2VFoLiTlsBAAbLnPZc0hd3P4e2OxLJR_5nrNDcrAFjfRbfLiXZM83r8izmEZy85rMp34JpLfxtPRxP98tnbUIhje0DfTKuiTmt6C_l3axoD_KGfiuFT1f0RMfAGbW1G0o1KTjpIzimAWdAEHFtEFz3FtFrzzqlldvyPXZaTmeJNsUCkklJV8nQWQeXDizjimb26q2eQEHrVlea8GDqL1jOvM1xjmzgWN0-BRIjhBcOw9Q4C3Zb9rGvyMUoV4QQfGcQduFA-qM-3SFrlTumGUD8nVnR3MXI2UYYBhof9PZ36D9TbT_gHxHS_8riEGuuxPt_a3ZdjVUtQLargAkAkvS3MqKaa6CrV1Ri1oPyOddPxmYFHgPMHX7sDJcYmq1NFNQRvc6sHfH_hUYbV147e3oev_fNT-R55NyemEuzi9_HZEX-NpRYfKB7K_vH_wxwJi1-9gN2r9-ofBQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgCMRl4qdWfhqJE1Iax3bi5AgdpQM2VaOTdrPs2B6V2qRau0P_-70Xt6i5cskhsZ3k2c77Pufze4R8ls7W0kiTcJ4ZJCjwHcxtkWRFmUmlMDxJJ5C9KCZX8ud1fn2Q6qsT7dd2PmwWy2Ez_9tpK1fLOt3rxNLp-UiBD8wrnq5cSB-SRzBnWXFA1OPyCuCQUsT_mEDDqjTgSjgQQs6GuVJCYh4bAeCGy1L2nFIXu78HOPtyyQP_M35GjnfAkX6ND_icPPDNC_I4ppLcviTzc78E4tt4OvNxT98NnbYIiLe0DfTS2CTmuKB_lmaxoD9mU_Bfa3q2pqc-ANR01G4p1KSjZBYFMgs6AZKKqYPmuL-KXnrULq9fkavx99lokuzSKCS1lHyTBFF4cOPMWJab0tTOlBUclGKlU4IH4bxlqvAOY52ZwDFCfAZERwiurAc48JocNW3jTwhFuBdEyHnJoO3KAn3GvbpC1XlpmWED8mVvR72K0TI0sAy0v-7sr9H-Otp_QL6hpf8VxEDX3Yn29kbvuhuqGgFt1wAUgSkpbmTNFM-DcbZywqkB-bTvJw0TA-8Bpm7v1ppLTK-WFTmUUb0O7N2xfwVGXBdiezfC3vx3zY_kyfR0rH-fXfx6S57iW0eRyTtytLm98-8ByWzsh27M3gP4xfFj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Membrane+Tethering+Potency+of+Rab-Family+Small+GTPases+Is+Defined+by+the+C-Terminal+Hypervariable+Regions&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Ueda%2C+Sanae&rft.au=Tamura%2C+Naoki&rft.au=Mima%2C+Joji&rft.date=2020-09-30&rft.issn=2296-634X&rft.eissn=2296-634X&rft.volume=8&rft.spage=577342&rft.epage=577342&rft_id=info:doi/10.3389%2Ffcell.2020.577342&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon