Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides

The synthesis and gas permeation properties of two 6FDA-dianhydride-based polyimides prepared from 2,6-diaminotriptycene (6FDA–DAT1) and its extended iptycene analog (6FDA–DAT2) are reported. The additional benzene ring on the extended triptycene moiety in 6FDA–DAT2 increases the free volume over 6F...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 490; pp. 321 - 327
Main Authors Alghunaimi, Fahd, Ghanem, Bader, Alaslai, Nasser, Swaidan, Raja, Litwiller, Eric, Pinnau, Ingo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The synthesis and gas permeation properties of two 6FDA-dianhydride-based polyimides prepared from 2,6-diaminotriptycene (6FDA–DAT1) and its extended iptycene analog (6FDA–DAT2) are reported. The additional benzene ring on the extended triptycene moiety in 6FDA–DAT2 increases the free volume over 6FDA–DAT1 and reduces the chain packing efficiency. The BET surface area based on nitrogen adsorption in 6FDA–DAT2 (450m2g−1) is ~40% greater than that of 6FDA–DAT1 (320m2g−1). 6FDA–DAT1 shows a CO2 permeability of 120 Barrer and CO2/CH4 selectivity of 38, whereas 6FDA–DAT2 exhibits a 75% increase in CO2 permeability to 210 Barrer coupled with a moderate decrease in selectivity (CO2/CH4=30). Interestingly, minimal physical aging was observed over 150 days for both polymers and attributed to the high internal free volume of the shape-persistent iptycene geometries. The aged polyimides maintained CO2/CH4 selectivities of 25–35 along with high CO2 permeabilities of 90–120 Barrer up to CO2 partial pressures of 10bar in an aggressive 50:50 CO2:CH4 mixed-gas feed, suggesting potential application in membranes for natural gas sweetening. [Display omitted] •Intrinsically microporous polyimides from triptycene and extended iptycene analog.•Additional ring causes increase in permeability with minor changes in selectivity.•Both polyimides demonstrate slight ~15% losses in permeability after 150 days.•Selectivites were stable after 150 days physical aging.•Plasticized at ~10bar CO2 partial pressure under 50:50 CO2/CH4 feed.
AbstractList The synthesis and gas permeation properties of two 6FDA-dianhydride-based polyimides prepared from 2,6-diaminotriptycene (6FDA–DAT1) and its extended iptycene analog (6FDA–DAT2) are reported. The additional benzene ring on the extended triptycene moiety in 6FDA–DAT2 increases the free volume over 6FDA–DAT1 and reduces the chain packing efficiency. The BET surface area based on nitrogen adsorption in 6FDA–DAT2 (450m²g⁻¹) is ~40% greater than that of 6FDA–DAT1 (320m²g⁻¹). 6FDA–DAT1 shows a CO2 permeability of 120 Barrer and CO2/CH4 selectivity of 38, whereas 6FDA–DAT2 exhibits a 75% increase in CO2 permeability to 210 Barrer coupled with a moderate decrease in selectivity (CO2/CH4=30). Interestingly, minimal physical aging was observed over 150 days for both polymers and attributed to the high internal free volume of the shape-persistent iptycene geometries. The aged polyimides maintained CO2/CH4 selectivities of 25–35 along with high CO2 permeabilities of 90–120 Barrer up to CO2 partial pressures of 10bar in an aggressive 50:50 CO2:CH4 mixed-gas feed, suggesting potential application in membranes for natural gas sweetening.
The synthesis and gas permeation properties of two 6FDA-dianhydride-based polyimides prepared from 2,6-diaminotriptycene (6FDA–DAT1) and its extended iptycene analog (6FDA–DAT2) are reported. The additional benzene ring on the extended triptycene moiety in 6FDA–DAT2 increases the free volume over 6FDA–DAT1 and reduces the chain packing efficiency. The BET surface area based on nitrogen adsorption in 6FDA–DAT2 (450m2g−1) is ~40% greater than that of 6FDA–DAT1 (320m2g−1). 6FDA–DAT1 shows a CO2 permeability of 120 Barrer and CO2/CH4 selectivity of 38, whereas 6FDA–DAT2 exhibits a 75% increase in CO2 permeability to 210 Barrer coupled with a moderate decrease in selectivity (CO2/CH4=30). Interestingly, minimal physical aging was observed over 150 days for both polymers and attributed to the high internal free volume of the shape-persistent iptycene geometries. The aged polyimides maintained CO2/CH4 selectivities of 25–35 along with high CO2 permeabilities of 90–120 Barrer up to CO2 partial pressures of 10bar in an aggressive 50:50 CO2:CH4 mixed-gas feed, suggesting potential application in membranes for natural gas sweetening. [Display omitted] •Intrinsically microporous polyimides from triptycene and extended iptycene analog.•Additional ring causes increase in permeability with minor changes in selectivity.•Both polyimides demonstrate slight ~15% losses in permeability after 150 days.•Selectivites were stable after 150 days physical aging.•Plasticized at ~10bar CO2 partial pressure under 50:50 CO2/CH4 feed.
Author Swaidan, Raja
Pinnau, Ingo
Ghanem, Bader
Litwiller, Eric
Alghunaimi, Fahd
Alaslai, Nasser
Author_xml – sequence: 1
  givenname: Fahd
  surname: Alghunaimi
  fullname: Alghunaimi, Fahd
– sequence: 2
  givenname: Bader
  surname: Ghanem
  fullname: Ghanem, Bader
– sequence: 3
  givenname: Nasser
  surname: Alaslai
  fullname: Alaslai, Nasser
– sequence: 4
  givenname: Raja
  surname: Swaidan
  fullname: Swaidan, Raja
– sequence: 5
  givenname: Eric
  surname: Litwiller
  fullname: Litwiller, Eric
– sequence: 6
  givenname: Ingo
  surname: Pinnau
  fullname: Pinnau, Ingo
BookMark eNqFkMtKBDEQRYMoOD7-wEWWbnpMOj2TtAtBxBcIbnQpoUwqWkN3uk1aYf7e6LhyoVBQm3Mvl7PHtuMQkbEjKeZSyOXJat5jnx3NayEXc1FOii02k0arSslabbOZUHpZaWXMLtvLeSWE1MK0M_Z0DZmPmHqEiYbIIXo-vq4zOeg4vFB84WMaCjARZj4ETuO0dhiRe4KeIlbPkNHznlzBhjS8l7qhW1NPHvMB2wnQZTz8-fvs8ery4eKmuru_vr04v6tc09RThV77xjV1aIwTOmi_gNYppbRSoIMDoxvTaFAaQkC5aI1etsYvRI0A2Oqg9tnxprdsfXvHPNmessOug4hlka2lKjKklKqgzQYte3NOGOyYqIe0tlLYL5t2ZTc27ZdNK8pJUWKnv2KOpm9lUwLq_gufbcJYHHwQJlsIjA49JXST9QP9XfAJGluXIA
CitedBy_id crossref_primary_10_1016_j_memsci_2021_119519
crossref_primary_10_1039_C9ME00099B
crossref_primary_10_1016_j_polymer_2016_08_075
crossref_primary_10_1002_sstr_202100049
crossref_primary_10_1016_j_polymer_2019_121854
crossref_primary_10_3390_polym16091198
crossref_primary_10_1016_j_seppur_2025_132333
crossref_primary_10_1021_acs_iecr_6b04946
crossref_primary_10_1016_j_seppur_2021_119513
crossref_primary_10_1016_j_reactfunctpolym_2017_09_002
crossref_primary_10_1002_cssc_201701491
crossref_primary_10_1016_j_seppur_2023_123690
crossref_primary_10_1021_acs_macromol_0c01321
crossref_primary_10_1016_j_memsci_2017_08_003
crossref_primary_10_1016_j_isci_2022_104441
crossref_primary_10_1016_j_memsci_2021_119244
crossref_primary_10_1021_acs_chemrev_7b00629
crossref_primary_10_1039_D0PY00594K
crossref_primary_10_1016_j_memsci_2021_119885
crossref_primary_10_3390_membranes12090904
crossref_primary_10_1016_j_memsci_2021_119604
crossref_primary_10_1016_j_mtnano_2018_11_003
crossref_primary_10_1134_S1811238221020016
crossref_primary_10_1002_aic_18471
crossref_primary_10_1016_j_seppur_2020_117088
crossref_primary_10_1016_j_polymer_2021_123988
crossref_primary_10_1021_acs_jpcc_5b11667
crossref_primary_10_1016_j_seppur_2021_118313
crossref_primary_10_1016_j_seppur_2025_132003
crossref_primary_10_1016_j_eurpolymj_2019_109262
crossref_primary_10_1016_j_memsci_2018_05_018
crossref_primary_10_1002_macp_201900047
crossref_primary_10_1016_j_jece_2024_114106
crossref_primary_10_1016_j_memsci_2015_12_057
crossref_primary_10_1016_j_memsci_2018_01_028
crossref_primary_10_1021_acs_chemrev_8b00091
crossref_primary_10_1016_j_polymer_2017_10_017
crossref_primary_10_1039_D3CS00235G
crossref_primary_10_1016_j_memsci_2025_123828
crossref_primary_10_1039_C5TC03391H
crossref_primary_10_3390_membranes9010003
crossref_primary_10_1016_j_memsci_2017_01_050
crossref_primary_10_1039_C7ME00017K
crossref_primary_10_1002_eem2_12843
crossref_primary_10_1016_j_memsci_2020_118825
crossref_primary_10_1360_TB_2023_0380
crossref_primary_10_1016_j_seppur_2022_122315
crossref_primary_10_1021_acs_jpcb_5b08842
crossref_primary_10_1021_acs_macromol_4c00255
crossref_primary_10_1002_marc_201700303
crossref_primary_10_1021_acs_chemmater_8b05359
crossref_primary_10_1134_S1811238220020010
crossref_primary_10_2139_ssrn_4128543
crossref_primary_10_1002_adma_202001132
crossref_primary_10_1016_j_memsci_2016_07_058
crossref_primary_10_1016_j_polymer_2021_123955
crossref_primary_10_1016_j_pmatsci_2024_101285
crossref_primary_10_1016_j_memsci_2019_05_003
crossref_primary_10_1016_j_seppur_2021_119535
crossref_primary_10_1039_C6EE00811A
crossref_primary_10_1002_pol_20200110
crossref_primary_10_1039_C6RA16393A
crossref_primary_10_1021_acsapm_8b00036
crossref_primary_10_1080_00219592_2023_2222000
crossref_primary_10_1002_adma_201700750
crossref_primary_10_1016_j_cej_2022_138513
crossref_primary_10_1016_j_pmatsci_2024_101324
crossref_primary_10_1007_s10118_023_3012_5
crossref_primary_10_1016_j_polymer_2017_06_006
crossref_primary_10_1016_j_pecs_2021_100903
crossref_primary_10_1002_pol_20210001
crossref_primary_10_1039_C7TA04015F
crossref_primary_10_1007_s11426_017_9058_x
crossref_primary_10_1021_acs_iecr_7b00540
crossref_primary_10_1016_j_seppur_2023_123725
crossref_primary_10_1021_acs_macromol_4c01199
crossref_primary_10_3390_polym11020361
crossref_primary_10_1021_acsomega_8b01975
crossref_primary_10_1177_0954008316685411
crossref_primary_10_1021_acsmacrolett_5b00439
crossref_primary_10_1002_macp_201600385
crossref_primary_10_1016_j_polymer_2016_03_063
crossref_primary_10_1016_j_seppur_2025_132302
crossref_primary_10_1016_j_polymer_2016_01_075
crossref_primary_10_1016_j_memsci_2025_123973
crossref_primary_10_1016_j_cjche_2018_07_010
crossref_primary_10_1016_j_memsci_2019_117512
crossref_primary_10_1016_j_memsci_2024_123673
crossref_primary_10_1016_j_fuel_2021_123085
crossref_primary_10_1016_j_orgel_2017_07_021
crossref_primary_10_1016_j_memsci_2025_123807
crossref_primary_10_1016_j_memsci_2023_122081
crossref_primary_10_1016_j_jcou_2018_03_009
crossref_primary_10_1016_j_polymer_2016_04_068
Cites_doi 10.1021/ma5017506
10.1039/C4TA00564C
10.1021/acsmacrolett.5b00009
10.1002/adma.201305783
10.1002/(SICI)1097-4628(19961226)62:13<2181::AID-APP1>3.0.CO;2-F
10.1021/ma901430q
10.1021/ma5009226
10.1039/b9py00319c
10.1021/ar800107v
10.1002/adma.200702400
10.1021/ma0343582
10.1002/marc.201000690
10.1021/ma101333p
10.1021/mz500184z
10.1016/j.memsci.2005.01.009
10.1016/j.memsci.2014.10.046
10.1021/ie071083w
10.1021/ma300549m
10.1016/S0376-7388(00)81262-4
10.1021/ma5007073
10.1016/j.memsci.2008.04.030
10.1002/marc.200700346
10.1021/ie0108088
10.1039/c3py00451a
10.1016/j.memsci.2012.01.047
10.1039/C4TA02303J
10.1021/ma060047q
10.1002/adma.201401328
10.1021/ma402033z
10.1134/S0965544110040043
10.1021/ma9921145
10.1002/adma.201306229
10.1016/0376-7388(93)85176-W
10.1126/science.1228032
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.memsci.2015.05.010
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3123
EndPage 327
ExternalDocumentID 10_1016_j_memsci_2015_05_010
S0376738815004214
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
7S9
L.6
ID FETCH-LOGICAL-c442t-ed7d4c42f48c07f7d5a9c333733a7fca874847a37affe15987698d502eaae97f3
IEDL.DBID .~1
ISSN 0376-7388
IngestDate Fri Jul 11 15:31:33 EDT 2025
Tue Jul 01 02:49:08 EDT 2025
Thu Apr 24 22:58:52 EDT 2025
Fri Feb 23 02:22:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Triptycene
Gas separation
Polyimides of intrinsic microporosity
Physical aging
Natural gas
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-ed7d4c42f48c07f7d5a9c333733a7fca874847a37affe15987698d502eaae97f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2131871113
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_2131871113
crossref_primary_10_1016_j_memsci_2015_05_010
crossref_citationtrail_10_1016_j_memsci_2015_05_010
elsevier_sciencedirect_doi_10_1016_j_memsci_2015_05_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-15
PublicationDateYYYYMMDD 2015-09-15
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of membrane science
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dorkenoo, Pfromm (bib29) 2000; 33
Ghanem, Swaidan, Ma, Litwiller, Pinnau (bib11) 2014; 26
Ma, Ghanem, Salines, Litwiller, Pinnau (bib17) 2015; 4
Baker, Lokhandwala (bib2) 2008; 47
Baker (bib1) 2002; 41
Ma, Salinas, Litwiller, Pinnau (bib18) 2013; 46
Wang, Wang, Zhang, Jin (bib20) 2014; 3
Bernardo, Drioli (bib3) 2010; 50
Wind, Sirard, Paul, Green, Johnston, Koros (bib33) 2003; 36
Ghanem, Swaidan, Litwiller, Pinnau (bib10) 2014; 26
Ghanem, McKeown, Budd, Al-Harbi, Fritsch, Heinrich, Starannikova, Tokarev, Yampolskii (bib12) 2009; 42
Cho, Park (bib24) 2011; 32
Ghanem, McKeown, Budd, Selbie, Fritsch (bib7) 2008; 20
Carta, Malpass-Evans, Croad, Rogan, Jansen, Bernardo, Bazzarelli, McKeown (bib6) 2013; 339
Rogan, Starannikova, Ryzhikh, Yampolskii, Bernardo, Bazzarelli, Jansen, McKeown (bib13) 2013; 4
Rogan, Malpass-Evans, Carta, Lee, Jansen, Bernardo, Clarizia, Tocci, Friess, Lanc, McKeown (bib16) 2014; 2
Carta, Croad, Malpass-Evans, Jansen, Bernardo, Clarizia, Friess, Lanč, McKeown (bib5) 2014; 26
Tsui, Paraskos, Torun, Swager, Thomas (bib26) 2006; 39
Ma, Swaidan, Belmabkhout, Zhu, Litwiller, Jouiad, Pinnau, Han (bib14) 2012; 45
Swaidan, Ghanem, Litwiller, Pinnau (bib31) 2014; 475
Vaughn, Koros, Johnson, Karvan (bib32) 2012; 401–402
Budd, McKeown (bib8) 2010; 1
Wiegand, Smith, Liu, Patterson, Freeman, Guo (bib25) 2014; 2
Swager (bib27) 2008; 41
Robeson (bib4) 2008; 320
Weber, Su, Antonietti, Thomas (bib19) 2007; 28
Pfromm (bib30) 2006
Houde, Krishnakumar, Charati, Stern (bib35) 1996; 62
Swaidan, Al-Saeedi, Ghanem, Litwiller, Pinnau (bib23) 2014; 47
Zhuang, Seong, Do, Jo, Cui, Lee, Lee, Guiver (bib22) 2014; 47
O’Brien, Koros, Barbari, Sanders (bib28) 1986; 29
Wang, Wang, Jin (bib21) 2014; 47
Sydlik, Chen, Swager (bib15) 2011; 44
Bhide, Stern (bib34) 1993; 81
Budd, Msayib, Tattershall, Ghanem, Reynolds, McKeown, Fritsch (bib9) 2005; 251
Rogan (10.1016/j.memsci.2015.05.010_bib13) 2013; 4
Houde (10.1016/j.memsci.2015.05.010_bib35) 1996; 62
Ghanem (10.1016/j.memsci.2015.05.010_bib7) 2008; 20
Ma (10.1016/j.memsci.2015.05.010_bib17) 2015; 4
Wang (10.1016/j.memsci.2015.05.010_bib20) 2014; 3
Robeson (10.1016/j.memsci.2015.05.010_bib4) 2008; 320
Wiegand (10.1016/j.memsci.2015.05.010_bib25) 2014; 2
Pfromm (10.1016/j.memsci.2015.05.010_bib30) 2006
Weber (10.1016/j.memsci.2015.05.010_bib19) 2007; 28
Ghanem (10.1016/j.memsci.2015.05.010_bib11) 2014; 26
Cho (10.1016/j.memsci.2015.05.010_bib24) 2011; 32
Budd (10.1016/j.memsci.2015.05.010_bib9) 2005; 251
Swaidan (10.1016/j.memsci.2015.05.010_bib23) 2014; 47
Swaidan (10.1016/j.memsci.2015.05.010_bib31) 2014; 475
Tsui (10.1016/j.memsci.2015.05.010_bib26) 2006; 39
Swager (10.1016/j.memsci.2015.05.010_bib27) 2008; 41
Bhide (10.1016/j.memsci.2015.05.010_bib34) 1993; 81
Vaughn (10.1016/j.memsci.2015.05.010_bib32) 2012; 401–402
Zhuang (10.1016/j.memsci.2015.05.010_bib22) 2014; 47
Baker (10.1016/j.memsci.2015.05.010_bib2) 2008; 47
Budd (10.1016/j.memsci.2015.05.010_bib8) 2010; 1
Sydlik (10.1016/j.memsci.2015.05.010_bib15) 2011; 44
Ma (10.1016/j.memsci.2015.05.010_bib18) 2013; 46
Ghanem (10.1016/j.memsci.2015.05.010_bib12) 2009; 42
Carta (10.1016/j.memsci.2015.05.010_bib5) 2014; 26
Ghanem (10.1016/j.memsci.2015.05.010_bib10) 2014; 26
Baker (10.1016/j.memsci.2015.05.010_bib1) 2002; 41
Ma (10.1016/j.memsci.2015.05.010_bib14) 2012; 45
Bernardo (10.1016/j.memsci.2015.05.010_bib3) 2010; 50
Carta (10.1016/j.memsci.2015.05.010_bib6) 2013; 339
Wang (10.1016/j.memsci.2015.05.010_bib21) 2014; 47
Wind (10.1016/j.memsci.2015.05.010_bib33) 2003; 36
Rogan (10.1016/j.memsci.2015.05.010_bib16) 2014; 2
O’Brien (10.1016/j.memsci.2015.05.010_bib28) 1986; 29
Dorkenoo (10.1016/j.memsci.2015.05.010_bib29) 2000; 33
References_xml – volume: 4
  start-page: 3813
  year: 2013
  end-page: 3820
  ident: bib13
  article-title: Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity
  publication-title: Polym. Chem.
– start-page: 293
  year: 2006
  end-page: 306
  ident: bib30
  article-title: The impact of physical aging of amorphous glassy polymers on gas separation membranes
  publication-title: In: Yuri Yampolskii, Ingo Pinnau, Benny Freeman (Eds.), Materials science of membranes for gas and vapor separation
– volume: 39
  start-page: 3350
  year: 2006
  end-page: 3358
  ident: bib26
  article-title: Minimization of internal molecular free volume: a mechanism for the simultaneous enhancement of polymer stiffness, strength, and ductility
  publication-title: Macromolecules
– volume: 47
  start-page: 5104
  year: 2014
  end-page: 5114
  ident: bib23
  article-title: Rational design of intrinsically ultra-microporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes
  publication-title: Macromolecules
– volume: 36
  start-page: 6433
  year: 2003
  end-page: 6441
  ident: bib33
  article-title: Carbon dioxide-induced plasticization of polyimide membranes:pseudo-equilibrium relationships of diffusion, sorption, and swelling
  publication-title: Macromolecules
– volume: 46
  start-page: 9618
  year: 2013
  end-page: 9624
  ident: bib18
  article-title: Novel spirobifluorene- and dibromospirobifluorene-based polyimides of intrinsic microporosity for gas separation applications
  publication-title: Macromolecules
– volume: 47
  start-page: 2109
  year: 2008
  end-page: 2121
  ident: bib2
  article-title: Natural gas processing with membranes: an overview
  publication-title: Ind. Eng. Chem. Res.
– volume: 1
  start-page: 63
  year: 2010
  end-page: 68
  ident: bib8
  article-title: Highly permeable polymers for gas separation membranes
  publication-title: Polym. Chem.
– volume: 2
  start-page: 13309
  year: 2014
  end-page: 13320
  ident: bib25
  article-title: Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes
  publication-title: J. Mater. Chem. A.
– volume: 50
  start-page: 271
  year: 2010
  end-page: 282
  ident: bib3
  article-title: Membrane gas separation progresses for process intensification strategy in the petrochemical industry
  publication-title: Petroleum chem.
– volume: 339
  start-page: 303
  year: 2013
  end-page: 307
  ident: bib6
  article-title: An efficient polymer molecular sieve for membrane gas separations
  publication-title: Science
– volume: 26
  start-page: 6696
  year: 2014
  end-page: 6700
  ident: bib11
  article-title: Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves
  publication-title: Adv. Mater.
– volume: 3
  start-page: 597
  year: 2014
  end-page: 601
  ident: bib20
  article-title: Tröger’s base-based microporous polyimide membranes for high-performance gas separation
  publication-title: ACS Macro Lett.
– volume: 26
  start-page: 3688
  year: 2014
  end-page: 3692
  ident: bib10
  article-title: Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation
  publication-title: Adv. Mater.
– volume: 29
  start-page: 229
  year: 1986
  end-page: 238
  ident: bib28
  article-title: A new technique for the measurement of multicomponent gas-transport through polymeric films
  publication-title: J. Membr. Sci.
– volume: 41
  start-page: 1393
  year: 2002
  end-page: 1411
  ident: bib1
  article-title: Future directions of membrane gas separation technology
  publication-title: Ind. Eng. Chem. Res.
– volume: 32
  start-page: 579
  year: 2011
  end-page: 586
  ident: bib24
  article-title: High performance polyimide with high internal free volume elements
  publication-title: Macromol. Rapid Commun.
– volume: 81
  start-page: 239
  year: 1993
  end-page: 252
  ident: bib34
  article-title: Membrane processes for the removal of acid gases from natural gas. II. Effects of operating conditions, economic parameters, and membrane properties
  publication-title: J. Membr. Sci
– volume: 28
  start-page: 1871
  year: 2007
  end-page: 1876
  ident: bib19
  article-title: Exploring polymers of intrinsic microporosity-microporous, soluble polyamide and polyimide
  publication-title: Macromol. Rapid Commun.
– volume: 33
  start-page: 3747
  year: 2000
  end-page: 3751
  ident: bib29
  article-title: Accelerated physical aging of thin poly[1-(trimethylsilyl)-1-propyne] films
  publication-title: Macromolecules
– volume: 4
  start-page: 231
  year: 2015
  end-page: 235
  ident: bib17
  article-title: Synthesis and effect of physical aging on gas transport properties of a microporous polyimide derived from a novel spirobifluorene-based dianhydride
  publication-title: ACS Macro Lett.
– volume: 47
  start-page: 7477
  year: 2014
  end-page: 7483
  ident: bib21
  article-title: Microporous polyimides with rationally designed chain structure achieving high performance for gas separation
  publication-title: Macromolecules
– volume: 320
  start-page: 390
  year: 2008
  end-page: 400
  ident: bib4
  article-title: The upper bound revisited
  publication-title: J. Membr. Sci.
– volume: 26
  start-page: 3526
  year: 2014
  end-page: 3531
  ident: bib5
  article-title: Triptycene induced enhancement of membrane gas selectivity for microporous Tröger’s base polymers
  publication-title: Adv. Mater.
– volume: 20
  start-page: 2766
  year: 2008
  end-page: 2771
  ident: bib7
  article-title: High-performance membranes from polyimides with intrinsic microporosity
  publication-title: Adv. Mater.
– volume: 475
  start-page: 571
  year: 2014
  end-page: 581
  ident: bib31
  article-title: Effects of hydroxyl-functionalization and thermal annealing on high pressure pure- and mixed-gas CO
  publication-title: J. Membr. Sci.
– volume: 251
  start-page: 263
  year: 2005
  end-page: 269
  ident: bib9
  article-title: Gas separation membranes from polymers of intrinsic microporosity
  publication-title: J. Membr. Sci.
– volume: 42
  start-page: 7881
  year: 2009
  end-page: 7888
  ident: bib12
  article-title: Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides
  publication-title: Macromolecules
– volume: 45
  start-page: 3841
  year: 2012
  end-page: 3849
  ident: bib14
  article-title: Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity
  publication-title: Macromolecules
– volume: 44
  start-page: 976
  year: 2011
  end-page: 980
  ident: bib15
  article-title: Triptycene polyimides: soluble polymers with high thermal stability and low refractive indices
  publication-title: Macromolecules
– volume: 62
  start-page: 2181
  year: 1996
  end-page: 2192
  ident: bib35
  article-title: Permeability of dense (homogeneous) cellulose acetate membranes to methane, carbon dioxide, and their mixtures at elevated pressures
  publication-title: J. Appl. Polym. Sci.
– volume: 47
  start-page: 3254
  year: 2014
  end-page: 3262
  ident: bib22
  article-title: Intrinsically microporous soluble polyimides incorporating Tro¨ger’s base for membrane gas separation
  publication-title: Macromolecules
– volume: 41
  start-page: 1181
  year: 2008
  end-page: 1189
  ident: bib27
  article-title: Iptycenes in the design of high performance polymers
  publication-title: Acc. Chem. Res.
– volume: 2
  start-page: 4874
  year: 2014
  end-page: 4877
  ident: bib16
  article-title: A highly permeable polyimide with enhanced selectivity for membrane gas separations
  publication-title: J. Mater. Chem. A.
– volume: 401–402
  start-page: 163
  year: 2012
  end-page: 174
  ident: bib32
  article-title: Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations
  publication-title: J. Membr. Sci.
– volume: 47
  start-page: 7477
  year: 2014
  ident: 10.1016/j.memsci.2015.05.010_bib21
  article-title: Microporous polyimides with rationally designed chain structure achieving high performance for gas separation
  publication-title: Macromolecules
  doi: 10.1021/ma5017506
– volume: 2
  start-page: 4874
  year: 2014
  ident: 10.1016/j.memsci.2015.05.010_bib16
  article-title: A highly permeable polyimide with enhanced selectivity for membrane gas separations
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C4TA00564C
– volume: 4
  start-page: 231
  year: 2015
  ident: 10.1016/j.memsci.2015.05.010_bib17
  article-title: Synthesis and effect of physical aging on gas transport properties of a microporous polyimide derived from a novel spirobifluorene-based dianhydride
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.5b00009
– volume: 26
  start-page: 3526
  year: 2014
  ident: 10.1016/j.memsci.2015.05.010_bib5
  article-title: Triptycene induced enhancement of membrane gas selectivity for microporous Tröger’s base polymers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305783
– volume: 62
  start-page: 2181
  year: 1996
  ident: 10.1016/j.memsci.2015.05.010_bib35
  article-title: Permeability of dense (homogeneous) cellulose acetate membranes to methane, carbon dioxide, and their mixtures at elevated pressures
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19961226)62:13<2181::AID-APP1>3.0.CO;2-F
– volume: 42
  start-page: 7881
  year: 2009
  ident: 10.1016/j.memsci.2015.05.010_bib12
  article-title: Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides
  publication-title: Macromolecules
  doi: 10.1021/ma901430q
– start-page: 293
  year: 2006
  ident: 10.1016/j.memsci.2015.05.010_bib30
  article-title: The impact of physical aging of amorphous glassy polymers on gas separation membranes
– volume: 47
  start-page: 5104
  year: 2014
  ident: 10.1016/j.memsci.2015.05.010_bib23
  article-title: Rational design of intrinsically ultra-microporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes
  publication-title: Macromolecules
  doi: 10.1021/ma5009226
– volume: 1
  start-page: 63
  year: 2010
  ident: 10.1016/j.memsci.2015.05.010_bib8
  article-title: Highly permeable polymers for gas separation membranes
  publication-title: Polym. Chem.
  doi: 10.1039/b9py00319c
– volume: 41
  start-page: 1181
  year: 2008
  ident: 10.1016/j.memsci.2015.05.010_bib27
  article-title: Iptycenes in the design of high performance polymers
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar800107v
– volume: 20
  start-page: 2766
  year: 2008
  ident: 10.1016/j.memsci.2015.05.010_bib7
  article-title: High-performance membranes from polyimides with intrinsic microporosity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702400
– volume: 36
  start-page: 6433
  year: 2003
  ident: 10.1016/j.memsci.2015.05.010_bib33
  article-title: Carbon dioxide-induced plasticization of polyimide membranes:pseudo-equilibrium relationships of diffusion, sorption, and swelling
  publication-title: Macromolecules
  doi: 10.1021/ma0343582
– volume: 32
  start-page: 579
  year: 2011
  ident: 10.1016/j.memsci.2015.05.010_bib24
  article-title: High performance polyimide with high internal free volume elements
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201000690
– volume: 44
  start-page: 976
  year: 2011
  ident: 10.1016/j.memsci.2015.05.010_bib15
  article-title: Triptycene polyimides: soluble polymers with high thermal stability and low refractive indices
  publication-title: Macromolecules
  doi: 10.1021/ma101333p
– volume: 3
  start-page: 597
  year: 2014
  ident: 10.1016/j.memsci.2015.05.010_bib20
  article-title: Tröger’s base-based microporous polyimide membranes for high-performance gas separation
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz500184z
– volume: 251
  start-page: 263
  year: 2005
  ident: 10.1016/j.memsci.2015.05.010_bib9
  article-title: Gas separation membranes from polymers of intrinsic microporosity
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.01.009
– volume: 475
  start-page: 571
  year: 2014
  ident: 10.1016/j.memsci.2015.05.010_bib31
  article-title: Effects of hydroxyl-functionalization and thermal annealing on high pressure pure- and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing dianhydrides
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.10.046
– volume: 47
  start-page: 2109
  year: 2008
  ident: 10.1016/j.memsci.2015.05.010_bib2
  article-title: Natural gas processing with membranes: an overview
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie071083w
– volume: 45
  start-page: 3841
  year: 2012
  ident: 10.1016/j.memsci.2015.05.010_bib14
  article-title: Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity
  publication-title: Macromolecules
  doi: 10.1021/ma300549m
– volume: 29
  start-page: 229
  year: 1986
  ident: 10.1016/j.memsci.2015.05.010_bib28
  article-title: A new technique for the measurement of multicomponent gas-transport through polymeric films
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)81262-4
– volume: 47
  start-page: 3254
  year: 2014
  ident: 10.1016/j.memsci.2015.05.010_bib22
  article-title: Intrinsically microporous soluble polyimides incorporating Tro¨ger’s base for membrane gas separation
  publication-title: Macromolecules
  doi: 10.1021/ma5007073
– volume: 320
  start-page: 390
  year: 2008
  ident: 10.1016/j.memsci.2015.05.010_bib4
  article-title: The upper bound revisited
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.04.030
– volume: 28
  start-page: 1871
  year: 2007
  ident: 10.1016/j.memsci.2015.05.010_bib19
  article-title: Exploring polymers of intrinsic microporosity-microporous, soluble polyamide and polyimide
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200700346
– volume: 41
  start-page: 1393
  year: 2002
  ident: 10.1016/j.memsci.2015.05.010_bib1
  article-title: Future directions of membrane gas separation technology
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0108088
– volume: 4
  start-page: 3813
  year: 2013
  ident: 10.1016/j.memsci.2015.05.010_bib13
  article-title: Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity
  publication-title: Polym. Chem.
  doi: 10.1039/c3py00451a
– volume: 401–402
  start-page: 163
  year: 2012
  ident: 10.1016/j.memsci.2015.05.010_bib32
  article-title: Effect of thermal annealing on a novel polyamide–imide polymer membrane for aggressive acid gas separations
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.01.047
– volume: 2
  start-page: 13309
  year: 2014
  ident: 10.1016/j.memsci.2015.05.010_bib25
  article-title: Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C4TA02303J
– volume: 39
  start-page: 3350
  year: 2006
  ident: 10.1016/j.memsci.2015.05.010_bib26
  article-title: Minimization of internal molecular free volume: a mechanism for the simultaneous enhancement of polymer stiffness, strength, and ductility
  publication-title: Macromolecules
  doi: 10.1021/ma060047q
– volume: 26
  start-page: 6696
  year: 2014
  ident: 10.1016/j.memsci.2015.05.010_bib11
  article-title: Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401328
– volume: 46
  start-page: 9618
  year: 2013
  ident: 10.1016/j.memsci.2015.05.010_bib18
  article-title: Novel spirobifluorene- and dibromospirobifluorene-based polyimides of intrinsic microporosity for gas separation applications
  publication-title: Macromolecules
  doi: 10.1021/ma402033z
– volume: 50
  start-page: 271
  year: 2010
  ident: 10.1016/j.memsci.2015.05.010_bib3
  article-title: Membrane gas separation progresses for process intensification strategy in the petrochemical industry
  publication-title: Petroleum chem.
  doi: 10.1134/S0965544110040043
– volume: 33
  start-page: 3747
  year: 2000
  ident: 10.1016/j.memsci.2015.05.010_bib29
  article-title: Accelerated physical aging of thin poly[1-(trimethylsilyl)-1-propyne] films
  publication-title: Macromolecules
  doi: 10.1021/ma9921145
– volume: 26
  start-page: 3688
  year: 2014
  ident: 10.1016/j.memsci.2015.05.010_bib10
  article-title: Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306229
– volume: 81
  start-page: 239
  year: 1993
  ident: 10.1016/j.memsci.2015.05.010_bib34
  article-title: Membrane processes for the removal of acid gases from natural gas. II. Effects of operating conditions, economic parameters, and membrane properties
  publication-title: J. Membr. Sci
  doi: 10.1016/0376-7388(93)85176-W
– volume: 339
  start-page: 303
  year: 2013
  ident: 10.1016/j.memsci.2015.05.010_bib6
  article-title: An efficient polymer molecular sieve for membrane gas separations
  publication-title: Science
  doi: 10.1126/science.1228032
SSID ssj0017089
Score 2.4804792
Snippet The synthesis and gas permeation properties of two 6FDA-dianhydride-based polyimides prepared from 2,6-diaminotriptycene (6FDA–DAT1) and its extended iptycene...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 321
SubjectTerms adsorption
artificial membranes
benzene
carbon dioxide
Gas separation
geometry
methane
moieties
Natural gas
nitrogen
permeability
Physical aging
Polyimides of intrinsic microporosity
polymers
porous media
surface area
Triptycene
Title Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides
URI https://dx.doi.org/10.1016/j.memsci.2015.05.010
https://www.proquest.com/docview/2131871113
Volume 490
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wTwWvcNkk37XFZXFfFvejCXiQkTQIrbrfoevDib3emD1FBBKGXlkkok8mXIfnyDSFngZtM5koya4NnEBScGRfHTMU2dK2Lur7acLsddYdjeT1JJkuk396FQVplg_01pldo3XzpNN7slNNp5y5CIRKRppDSQORVxaylVBjl5--fNI9YRVUZPDRmaN1en6s4XjM_g66R4JXU-p3Rb8vTD6CuVp_BBllv0kbaq_9skyz5YousfRET3CYPl-aFlgC0dRZITeFo2YwCrWoR0RJ33p9RQpXOAwW0eMsB6qjDy92FZ7iiOTpDih5k5fNX6G7-9DadTZ1_2SHjwcV9f8ia4gksl5IvmHfKyVzyINM8UkG5xGS5EEIJYVTITYoiosoIZULwkNMAKmapSyLujfGZCmKXLBfzwu8RykWWpDwEK6yUwsjMusR2cfaKlEuX7RPR-kznjbI4Frh40i2F7FHXntboaR3BE0f7hH22KmtljT_sVTsc-luEaAD_P1qetqOnYfLgiYgpPHhR8xggTQHci4N_935IVvENOSRxckSWF8-v_hgSlYU9qSLxhKz0rm6Gow9o_enP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_UgPnF9RvAat23STXuURV2fF13Yi4SkSWBlt1vW9bAXf7szfYgKIgg9tZNQJpMvQ_LlG0JOfaRTkUnBjPGOQVBETNswZDI0vmNs0HHlhtv9Q6fXFzeDeLBAus1dGKRV1thfYXqJ1vWbdu3NdjEcth8DFCLhSQIpDUQeFrNeEjB9sYzB2fsnzyOUQVkHD60Zmjf350qS19iNoW9keMWVgGfw2_r0A6nL5edynazVeSM9r35tgyy4fJOsflET3CLPV_qVFoC0VRpIdW5pUQ8DLYsR0QK33qeooUonngJczDPAOmrxdnfuGC5plo6Rowdp-eQNupuM5sPx0LrXbdK_vHjq9lhdPYFlQkQz5qy0IhORF0kWSC9trNOMcy4519JnOkEVUam51N47SGoAFtPExkHktHap9HyHLOaT3O0SGvE0TiLvDTdCcC1SY2PTwekL7hY2bRHe-ExltbQ4VrgYqYZD9qIqTyv0tArgCYMWYZ-tikpa4w972QyH-hYiCtD_j5YnzegpmD14JKJzB15UUQiYJgHv-d6_ez8my72n-zt1d_1wu09W8AsSSsL4gCzOpm_uELKWmTkqo_IDzH_rXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gas+permeation+and+physical+aging+properties+of+iptycene+diamine-based+microporous+polyimides&rft.jtitle=Journal+of+membrane+science&rft.au=Alghunaimi%2C+Fahd&rft.au=Ghanem%2C+Bader&rft.au=Alaslai%2C+Nasser&rft.au=Swaidan%2C+Raja&rft.date=2015-09-15&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.eissn=1873-3123&rft.volume=490&rft.spage=321&rft.epage=327&rft_id=info:doi/10.1016%2Fj.memsci.2015.05.010&rft.externalDocID=S0376738815004214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon