Influence of silica nanospheres on the separation performance of thin film composite poly(piperazine-amide) nanofiltration membranes

•Poly(piperazine-amide)/silica nanocomposite NF membrane was firstly fabricated.•The addition of silica nanospheres can optimize NF-membrane separation performance.•The silica nanosphere introduced NF membrane exhibits good separation selectivity.•The silica nanosphere introduced NF membrane has sup...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 324; pp. 757 - 764
Main Authors Li, Qiang, Wang, Yihua, Song, Jie, Guan, Yipeng, Yu, Hui, Pan, Xianhui, Wu, Feiyang, Zhang, Meng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Poly(piperazine-amide)/silica nanocomposite NF membrane was firstly fabricated.•The addition of silica nanospheres can optimize NF-membrane separation performance.•The silica nanosphere introduced NF membrane exhibits good separation selectivity.•The silica nanosphere introduced NF membrane has superior performance stability. A novel thin film nanocomposite nanofiltration (TFNN) membrane was fabricated by introducing silica nanospheres (ca. 235±11nm) in the interfacial polymerization process of trimesoyl chloride (TMC) and piperazine (PIP) over polysulfone (PS) support for investigating the effect of silica nanofiller on the separation performance (i.e., permeability and salt rejection) of conventional thin film composite poly(piperazine-amide) nanofiltration (TFCN) membrane. The physicochemical characterization results show that all of the silica nanospheres are uniformly embedded on the surface of TFNN membrane. The introduction of silica nanospheres improves the hydrophilicity of the TFCN membrane and also causes its isoelectric point shift to a lower pH value. Moreover, the active poly(piperazine-amide) barrier layer of TFNN membrane (60.8±2.3nm) is thinner than that of the pristine TFCN membrane (72.1±2.5nm) as a control sample. The separation performance tests reveal that the addition of silica nanospheres can obviously elevate the salt rejection of the pristine TFCN membrane from 87.58±0.15 to 94.81±0.17% under 2000ppm of MgSO4 solution and 0.5MPa operating pressure, simultaneously accompanied by the increases of permeate flux from 19.36±0.75 to 22.65±0.68L/m2h. Additionally, compared with pristine TFCN membrane, the fabricated TFNN membrane has relatively low salt rejection (43.20±0.27%) in 0.5MPa operating pressure for 500ppm of NaCl aqueous solution, which demonstrates that the introduction of silica nanospheres can dramatically promote the divalent-ionic separation selectivity. Furthermore, the experimental results suggest that the nanocomposite TFNN membrane possesses stable filtration performance in the softening process of MgSO4 aqueous solution. The separation performance improvement should be attributed to the optimizations of microstructures and surface features of active barrier layer of TFNN membrane, caused by the addition of silica nanospheres.
AbstractList •Poly(piperazine-amide)/silica nanocomposite NF membrane was firstly fabricated.•The addition of silica nanospheres can optimize NF-membrane separation performance.•The silica nanosphere introduced NF membrane exhibits good separation selectivity.•The silica nanosphere introduced NF membrane has superior performance stability. A novel thin film nanocomposite nanofiltration (TFNN) membrane was fabricated by introducing silica nanospheres (ca. 235±11nm) in the interfacial polymerization process of trimesoyl chloride (TMC) and piperazine (PIP) over polysulfone (PS) support for investigating the effect of silica nanofiller on the separation performance (i.e., permeability and salt rejection) of conventional thin film composite poly(piperazine-amide) nanofiltration (TFCN) membrane. The physicochemical characterization results show that all of the silica nanospheres are uniformly embedded on the surface of TFNN membrane. The introduction of silica nanospheres improves the hydrophilicity of the TFCN membrane and also causes its isoelectric point shift to a lower pH value. Moreover, the active poly(piperazine-amide) barrier layer of TFNN membrane (60.8±2.3nm) is thinner than that of the pristine TFCN membrane (72.1±2.5nm) as a control sample. The separation performance tests reveal that the addition of silica nanospheres can obviously elevate the salt rejection of the pristine TFCN membrane from 87.58±0.15 to 94.81±0.17% under 2000ppm of MgSO4 solution and 0.5MPa operating pressure, simultaneously accompanied by the increases of permeate flux from 19.36±0.75 to 22.65±0.68L/m2h. Additionally, compared with pristine TFCN membrane, the fabricated TFNN membrane has relatively low salt rejection (43.20±0.27%) in 0.5MPa operating pressure for 500ppm of NaCl aqueous solution, which demonstrates that the introduction of silica nanospheres can dramatically promote the divalent-ionic separation selectivity. Furthermore, the experimental results suggest that the nanocomposite TFNN membrane possesses stable filtration performance in the softening process of MgSO4 aqueous solution. The separation performance improvement should be attributed to the optimizations of microstructures and surface features of active barrier layer of TFNN membrane, caused by the addition of silica nanospheres.
A novel thin film nanocomposite nanofiltration (TFNN) membrane was fabricated by introducing silica nanospheres (ca. 235 plus or minus 11nm) in the interfacial polymerization process of trimesoyl chloride (TMC) and piperazine (PIP) over polysulfone (PS) support for investigating the effect of silica nanofiller on the separation performance (i.e., permeability and salt rejection) of conventional thin film composite poly(piperazine-amide) nanofiltration (TFCN) membrane. The physicochemical characterization results show that all of the silica nanospheres are uniformly embedded on the surface of TFNN membrane. The introduction of silica nanospheres improves the hydrophilicity of the TFCN membrane and also causes its isoelectric point shift to a lower pH value. Moreover, the active poly(piperazine-amide) barrier layer of TFNN membrane (60.8 plus or minus 2.3nm) is thinner than that of the pristine TFCN membrane (72.1 plus or minus 2.5nm) as a control sample. The separation performance tests reveal that the addition of silica nanospheres can obviously elevate the salt rejection of the pristine TFCN membrane from 87.58 plus or minus 0.15 to 94.81 plus or minus 0.17% under 2000ppm of MgSO4 solution and 0.5MPa operating pressure, simultaneously accompanied by the increases of permeate flux from 19.36 plus or minus 0.75 to 22.65 plus or minus 0.68L/m2 h. Additionally, compared with pristine TFCN membrane, the fabricated TFNN membrane has relatively low salt rejection (43.20 plus or minus 0.27%) in 0.5MPa operating pressure for 500ppm of NaCl aqueous solution, which demonstrates that the introduction of silica nanospheres can dramatically promote the divalent-ionic separation selectivity. Furthermore, the experimental results suggest that the nanocomposite TFNN membrane possesses stable filtration performance in the softening process of MgSO4 aqueous solution. The separation performance improvement should be attributed to the optimizations of microstructures and surface features of active barrier layer of TFNN membrane, caused by the addition of silica nanospheres.
Author Li, Qiang
Guan, Yipeng
Yu, Hui
Song, Jie
Pan, Xianhui
Wu, Feiyang
Zhang, Meng
Wang, Yihua
Author_xml – sequence: 1
  givenname: Qiang
  surname: Li
  fullname: Li, Qiang
  email: qiangli_chem@hotmail.com
– sequence: 2
  givenname: Yihua
  surname: Wang
  fullname: Wang, Yihua
– sequence: 3
  givenname: Jie
  surname: Song
  fullname: Song, Jie
– sequence: 4
  givenname: Yipeng
  surname: Guan
  fullname: Guan, Yipeng
– sequence: 5
  givenname: Hui
  surname: Yu
  fullname: Yu, Hui
– sequence: 6
  givenname: Xianhui
  surname: Pan
  fullname: Pan, Xianhui
– sequence: 7
  givenname: Feiyang
  surname: Wu
  fullname: Wu, Feiyang
– sequence: 8
  givenname: Meng
  surname: Zhang
  fullname: Zhang, Meng
BookMark eNqFkTtvFDEUhV0EiTz4BylchmImvvbsPCiQUAQkUiQaqC3Hc631asY2vl6kUPPD8Wa3oiCVZfl8R0efL9hZiAEZuwbRgoD-dteaRHuyrRTQtQCtUHDGzuvT1HRKybfsgmgnBMhxUOfsz0Nwyx6DRR4dJ794a3gwIVLaYkbiMfCyRU6YTDbF12vC7GJezYkpWx-488vKbVxTJF-Qp7g83yRfk-a3D9iY1c_4_qW3JsupaMX1KZuAdMXeOLMQvjudl-zHl8_f7-6bx29fH-4-PTa262Rp5tkpNfUojJxglAAGlRuVBTGMRnRWTt3GOoUbM3RCyt7A3E8jbqQFNAMIdclujr0px597pKJXTxaXpY6Ie9LQ90IMwwCqRj8cozZHooxOW19eZtf1ftEg9EG33umjbn3QrQF01V3h7h84Zb-a_Pwa9vGIYXXwy2PWZP3ha2af0RY9R___gr9RoqNQ
CitedBy_id crossref_primary_10_1039_C8TA03446J
crossref_primary_10_1016_j_desal_2019_114125
crossref_primary_10_1016_j_seppur_2021_118383
crossref_primary_10_1016_j_ces_2024_120050
crossref_primary_10_1016_j_memsci_2017_09_046
crossref_primary_10_1016_j_seppur_2018_08_037
crossref_primary_10_1016_j_cej_2018_03_116
crossref_primary_10_1016_j_memsci_2019_117482
crossref_primary_10_1039_C7RA02374J
crossref_primary_10_1016_j_memsci_2023_121635
crossref_primary_10_1016_j_desal_2017_12_012
crossref_primary_10_1002_app_47436
crossref_primary_10_1016_j_memsci_2017_05_062
crossref_primary_10_1016_j_jece_2017_07_008
crossref_primary_10_1016_j_seppur_2015_09_039
crossref_primary_10_1016_j_seppur_2016_04_024
crossref_primary_10_1039_D0TA11923G
crossref_primary_10_1016_j_seppur_2024_128869
crossref_primary_10_1021_acs_est_8b02425
crossref_primary_10_1016_j_arabjc_2017_12_009
crossref_primary_10_1016_j_desal_2020_114857
crossref_primary_10_1016_j_desal_2022_115981
crossref_primary_10_1016_j_memsci_2020_118951
crossref_primary_10_1016_j_seppur_2021_119046
crossref_primary_10_3390_membranes11020104
crossref_primary_10_1016_j_chemosphere_2018_11_207
crossref_primary_10_1016_j_jece_2023_111013
crossref_primary_10_1016_j_seppur_2021_120390
crossref_primary_10_1039_C7RA11550D
crossref_primary_10_1016_j_jenvman_2020_111299
crossref_primary_10_1016_j_psep_2022_11_036
crossref_primary_10_1016_j_apsusc_2016_12_228
crossref_primary_10_1016_j_desal_2022_116206
crossref_primary_10_1246_cl_151096
crossref_primary_10_1016_j_memsci_2019_117297
crossref_primary_10_1021_acsanm_0c02980
crossref_primary_10_1016_j_memsci_2017_05_075
crossref_primary_10_1021_acs_iecr_9b03456
crossref_primary_10_1016_j_desal_2023_116509
crossref_primary_10_1039_C5RA18640D
crossref_primary_10_1016_j_memsci_2018_07_087
crossref_primary_10_1016_j_seppur_2024_129503
crossref_primary_10_1016_j_jcis_2016_09_035
crossref_primary_10_1016_j_jiec_2021_03_013
crossref_primary_10_1016_j_molliq_2019_112267
crossref_primary_10_1016_j_seppur_2020_117153
crossref_primary_10_5004_dwt_2017_20189
crossref_primary_10_1016_j_seppur_2021_120360
crossref_primary_10_1016_j_cej_2020_127976
crossref_primary_10_1016_j_desal_2015_06_002
crossref_primary_10_1016_j_jhazmat_2021_125446
crossref_primary_10_5004_dwt_2020_26445
crossref_primary_10_1016_j_polymertesting_2018_11_037
crossref_primary_10_1016_j_cherd_2020_11_016
crossref_primary_10_1016_j_seppur_2021_118567
crossref_primary_10_1016_j_seppur_2018_09_067
crossref_primary_10_1021_acsami_0c06417
crossref_primary_10_2139_ssrn_4112242
crossref_primary_10_1016_j_envres_2020_110215
crossref_primary_10_1016_j_apsusc_2017_11_007
crossref_primary_10_1002_admi_201701427
crossref_primary_10_1016_j_apsusc_2017_02_204
crossref_primary_10_1016_j_porgcoat_2019_105456
crossref_primary_10_1007_s42247_021_00254_x
crossref_primary_10_1016_j_memsci_2020_118333
crossref_primary_10_1016_j_seppur_2019_05_018
crossref_primary_10_1007_s10570_023_05594_x
crossref_primary_10_1016_j_polymer_2016_07_085
crossref_primary_10_1016_j_cej_2020_124019
crossref_primary_10_1080_10643389_2019_1664258
crossref_primary_10_1016_j_memsci_2022_120952
crossref_primary_10_1016_j_desal_2017_12_005
crossref_primary_10_1016_j_jenvman_2021_113363
crossref_primary_10_2139_ssrn_4158288
crossref_primary_10_1021_acsomega_9b01446
crossref_primary_10_1016_j_seppur_2023_126230
crossref_primary_10_1039_C9EW00227H
crossref_primary_10_1021_acsami_1c17086
crossref_primary_10_1002_app_45268
crossref_primary_10_1016_j_dwt_2024_100815
crossref_primary_10_1016_j_cherd_2021_06_003
crossref_primary_10_1016_j_desal_2022_116227
crossref_primary_10_1016_j_jiec_2016_10_036
crossref_primary_10_1021_acsami_6b13761
crossref_primary_10_1007_s12221_016_6219_z
crossref_primary_10_1007_s42247_021_00261_y
Cites_doi 10.1016/j.cej.2010.08.007
10.1016/j.memsci.2007.11.002
10.1016/j.memsci.2012.08.020
10.1016/j.memsci.2007.11.038
10.1016/S0011-9164(01)00114-X
10.1016/j.desal.2008.04.004
10.1016/j.desal.2008.04.003
10.1016/j.desal.2010.02.034
10.1016/j.memsci.2008.12.014
10.1016/j.desal.2012.06.015
10.1016/j.memsci.2005.10.039
10.1016/0021-9797(68)90272-5
10.1016/j.desal.2012.10.038
10.1016/j.memsci.2013.10.048
10.1016/j.desal.2013.08.021
10.1016/j.desal.2011.03.064
10.1016/j.memsci.2008.10.023
10.1021/es101569p
10.1016/j.desal.2006.03.004
10.1016/j.memsci.2014.05.047
10.1016/j.desal.2012.02.005
10.1016/j.memsci.2007.02.025
10.1016/j.jwpe.2014.05.001
10.1016/j.watres.2010.05.005
10.1016/j.apsusc.2011.06.059
10.1016/j.desal.2013.08.002
10.1088/0957-4484/22/29/292001
10.1016/j.memsci.2011.03.017
10.1016/j.memsci.2006.06.004
10.1016/j.memsci.2013.07.006
10.1016/j.desal.2010.06.008
10.1016/j.foodres.2011.04.046
10.1016/j.desal.2011.04.029
10.1016/j.desal.2013.03.004
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.apsusc.2014.11.031
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 764
ExternalDocumentID 10_1016_j_apsusc_2014_11_031
S0169433214024969
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEZYN
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSH
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
SEW
WUQ
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c442t-ddf3396e0a2918211ae3f83c1078a04c2945cf3e5a740226a1d698e52c1ea7103
IEDL.DBID .~1
ISSN 0169-4332
IngestDate Mon Jul 21 11:25:29 EDT 2025
Tue Jul 01 01:09:27 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
Fri Apr 11 03:01:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Interfacial polymerization
Nanofiltration
Nanocomposite membrane
Separation performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c442t-ddf3396e0a2918211ae3f83c1078a04c2945cf3e5a740226a1d698e52c1ea7103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1660077713
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1660077713
crossref_citationtrail_10_1016_j_apsusc_2014_11_031
crossref_primary_10_1016_j_apsusc_2014_11_031
elsevier_sciencedirect_doi_10_1016_j_apsusc_2014_11_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied surface science
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Humplik, Lee, CO’Hern, Fellman, Baig, Hassan, Atieh, Rahman, Laoui, Karnik, Wang (bib0120) 2011; 22
Stöber, Fink (bib0145) 1968; 26
Ghosh, Jeong, Huang, Hoek (bib0170) 2008; 311
Jahanshahi, Rahimpour, Peyravi (bib0065) 2010; 257
Cissé, Vaillant, Pallet, Dornier (bib0025) 2011; 44
Hu, Xu, Chen (bib0140) 2012; 301
Xiang, Xie, Hoang, Zhang (bib0090) 2013; 315
Singh, Joshi, Trivedi, Devmurari, Rao, Ghosh (bib0085) 2006; 278
Misdan, Lau, Ismail, Matsuura (bib0080) 2013; 329
Fathizadeh, Aroujalian, Raisi (bib0110) 2011; 375
Liu, Yu, Zhou, Gao (bib0095) 2008; 310
Kwon, Leckie (bib0155) 2006; 282
Pan, Yan, Zhu, Li (bib0030) 2013; 317
Tang, Kwona, Leckie (bib0150) 2009; 242
Matsuura (bib0055) 2001; 134
Gur-Reznik, Koren-Menashe, Heller-Grossman, Rufel, Dosoretz (bib0035) 2011; 277
Hendrix, Koeckelberghs, Vankelecom (bib0070) 2014; 452
Li, Pan, Hou, Jin, Dai, Wang, Zhao, Liu (bib0160) 2012; 292
Jeong, Hoek, Yan, Subramani, Huang, Hurwitz, Ghosh, Jawor (bib0125) 2007; 294
Yin, Kim, Yang, Deng (bib0105) 2012; 423–424
Pendergast, Nygaard, Ghosh, Hoek (bib0115) 2010; 261
Hendrix, Vaneynde, Koeckelberghs, Vankelecom (bib0045) 2013; 447
Tang, Kwon, Leckie (bib0060) 2009; 242
Luo, Ding, Wan, Paullier, Jaffrin (bib0015) 2010; 163
Jadav, Singh (bib0130) 2009; 328
Garcia-Castello, Cassano, Criscuoli, Conidi, Drioli (bib0040) 2010; 44
Lind, Suk, Nguyen, Hoek (bib0165) 2010; 44
Fang, Shi, Wang (bib0010) 2014; 468
Song, Xu, Xu, Gao, Gao (bib0005) 2011; 276
Yoon, Hsiao, Chu (bib0075) 2009; 326
Roh, Greenberg, Khare (bib0175) 2006; 191
Jahanshahi, Rahimpour, Peyravi (bib0050) 2010; 257
Li, Li, Yu, Pan, Wang, Wang, Song (bib0135) 2013; 327
Kim, Yu, Deng (bib0100) 2011; 257
Zulaikha, Lau, Ismail, Jaafar (bib0020) 2014; 2
Humplik (10.1016/j.apsusc.2014.11.031_bib0120) 2011; 22
Kim (10.1016/j.apsusc.2014.11.031_bib0100) 2011; 257
Ghosh (10.1016/j.apsusc.2014.11.031_bib0170) 2008; 311
Yoon (10.1016/j.apsusc.2014.11.031_bib0075) 2009; 326
Cissé (10.1016/j.apsusc.2014.11.031_bib0025) 2011; 44
Hendrix (10.1016/j.apsusc.2014.11.031_bib0070) 2014; 452
Li (10.1016/j.apsusc.2014.11.031_bib0135) 2013; 327
Misdan (10.1016/j.apsusc.2014.11.031_bib0080) 2013; 329
Lind (10.1016/j.apsusc.2014.11.031_bib0165) 2010; 44
Matsuura (10.1016/j.apsusc.2014.11.031_bib0055) 2001; 134
Jadav (10.1016/j.apsusc.2014.11.031_bib0130) 2009; 328
Fang (10.1016/j.apsusc.2014.11.031_bib0010) 2014; 468
Pendergast (10.1016/j.apsusc.2014.11.031_bib0115) 2010; 261
Liu (10.1016/j.apsusc.2014.11.031_bib0095) 2008; 310
Tang (10.1016/j.apsusc.2014.11.031_bib0150) 2009; 242
Li (10.1016/j.apsusc.2014.11.031_bib0160) 2012; 292
Jahanshahi (10.1016/j.apsusc.2014.11.031_bib0050) 2010; 257
Kwon (10.1016/j.apsusc.2014.11.031_bib0155) 2006; 282
Yin (10.1016/j.apsusc.2014.11.031_bib0105) 2012; 423–424
Tang (10.1016/j.apsusc.2014.11.031_bib0060) 2009; 242
Fathizadeh (10.1016/j.apsusc.2014.11.031_bib0110) 2011; 375
Hendrix (10.1016/j.apsusc.2014.11.031_bib0045) 2013; 447
Song (10.1016/j.apsusc.2014.11.031_bib0005) 2011; 276
Hu (10.1016/j.apsusc.2014.11.031_bib0140) 2012; 301
Gur-Reznik (10.1016/j.apsusc.2014.11.031_bib0035) 2011; 277
Stöber (10.1016/j.apsusc.2014.11.031_bib0145) 1968; 26
Roh (10.1016/j.apsusc.2014.11.031_bib0175) 2006; 191
Zulaikha (10.1016/j.apsusc.2014.11.031_bib0020) 2014; 2
Jeong (10.1016/j.apsusc.2014.11.031_bib0125) 2007; 294
Singh (10.1016/j.apsusc.2014.11.031_bib0085) 2006; 278
Luo (10.1016/j.apsusc.2014.11.031_bib0015) 2010; 163
Garcia-Castello (10.1016/j.apsusc.2014.11.031_bib0040) 2010; 44
Pan (10.1016/j.apsusc.2014.11.031_bib0030) 2013; 317
Xiang (10.1016/j.apsusc.2014.11.031_bib0090) 2013; 315
Jahanshahi (10.1016/j.apsusc.2014.11.031_bib0065) 2010; 257
References_xml – volume: 134
  start-page: 47
  year: 2001
  end-page: 54
  ident: bib0055
  article-title: Progress in membrane science and technology for seawater desalination—a review
  publication-title: Desalination
– volume: 282
  start-page: 456
  year: 2006
  end-page: 464
  ident: bib0155
  article-title: Hypochlorite degradation of crosslinked polyamide membranes II. Changes in hydrogen bonding behavior and performance
  publication-title: J. Membr. Sci.
– volume: 257
  start-page: 9863
  year: 2011
  end-page: 9871
  ident: bib0100
  article-title: Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling
  publication-title: Appl. Surf. Sci.
– volume: 329
  start-page: 9
  year: 2013
  end-page: 18
  ident: bib0080
  article-title: Formation of thin film composite nanofiltration membrane: effect of polysulfone substrate characteristics
  publication-title: Desalination
– volume: 163
  start-page: 307
  year: 2010
  end-page: 316
  ident: bib0015
  article-title: Application of NF-RDM (nanofiltration rotating disk membrane) module under extreme hydraulic conditions for the treatment of dairy wastewater
  publication-title: Chem. Eng. J.
– volume: 317
  start-page: 127
  year: 2013
  end-page: 131
  ident: bib0030
  article-title: Concentration of coffee extract using nanofiltration membranes
  publication-title: Desalination
– volume: 242
  start-page: 168
  year: 2009
  end-page: 182
  ident: bib0060
  article-title: Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. II. Membrane physiochemical properties and their dependence on polyamide and coating layers
  publication-title: Desalination
– volume: 277
  start-page: 250
  year: 2011
  end-page: 256
  ident: bib0035
  article-title: Influence of seasonal and operating conditions on the rejection of pharmaceutical active compounds by RO and NF membranes
  publication-title: Desalination
– volume: 44
  start-page: 2607
  year: 2011
  end-page: 2614
  ident: bib0025
  article-title: Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (
  publication-title: Food Res. Int.
– volume: 44
  start-page: 3883
  year: 2010
  end-page: 3892
  ident: bib0040
  article-title: Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system
  publication-title: Water Res.
– volume: 447
  start-page: 96
  year: 2013
  end-page: 106
  ident: bib0045
  article-title: Synthesis of modified poly(ether ether ketone) polymer for the preparation of ultrafiltration and nanofiltration membranes via phase inversion
  publication-title: J. Membr. Sci.
– volume: 22
  start-page: 292001
  year: 2011
  end-page: 292019
  ident: bib0120
  article-title: Nanostructured materials for water desalination
  publication-title: Nanotechnology
– volume: 301
  start-page: 75
  year: 2012
  end-page: 81
  ident: bib0140
  article-title: Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization
  publication-title: Desalination
– volume: 191
  start-page: 279
  year: 2006
  end-page: 290
  ident: bib0175
  article-title: Synthesis and characterization of inter-facially polymerized polyamide thin films
  publication-title: Desalination
– volume: 310
  start-page: 289
  year: 2008
  end-page: 295
  ident: bib0095
  article-title: Study on the thin-film composite nanofiltration membrane for the removal of sulfate from concentrated salt aqueous: preparation and performance
  publication-title: J. Membr. Sci.
– volume: 315
  start-page: 156
  year: 2013
  end-page: 163
  ident: bib0090
  article-title: Effect of amine salt surfactants on the performance of thin film composite poly(piperazine-amide) nanofiltration membranes
  publication-title: Desalination
– volume: 375
  start-page: 88
  year: 2011
  end-page: 95
  ident: bib0110
  article-title: Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process
  publication-title: J. Membr. Sci.
– volume: 276
  start-page: 109
  year: 2011
  end-page: 116
  ident: bib0005
  article-title: Performance of UF–NF integrated membrane process for seawater softening
  publication-title: Desalination
– volume: 468
  start-page: 52
  year: 2014
  end-page: 61
  ident: bib0010
  article-title: Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability
  publication-title: J. Membr. Sci.
– volume: 261
  start-page: 255
  year: 2010
  end-page: 263
  ident: bib0115
  article-title: Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction
  publication-title: Desalination
– volume: 257
  start-page: 129
  year: 2010
  end-page: 136
  ident: bib0050
  article-title: Developing thin film composite poly(piperazine-amide) and poly(vinyl-alcohol), nanofiltration membranes
  publication-title: Desalination
– volume: 2
  start-page: 58
  year: 2014
  end-page: 62
  ident: bib0020
  article-title: Treatment of restaurant wastewater using ultrafiltration and nanofiltration membranes
  publication-title: J. Water Process Eng.
– volume: 452
  start-page: 241
  year: 2014
  end-page: 252
  ident: bib0070
  article-title: Study of phase inversion parameters for PEEK-based nanofiltration membranes
  publication-title: J. Membr. Sci.
– volume: 278
  start-page: 19
  year: 2006
  end-page: 25
  ident: bib0085
  article-title: Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions
  publication-title: J. Membr. Sci.
– volume: 292
  start-page: 9
  year: 2012
  end-page: 18
  ident: bib0160
  article-title: Exploring the dependence of bulk properties on surface chemistries and microstructures of commercially composite RO membranes by novel characterization approaches
  publication-title: Desalination
– volume: 327
  start-page: 24
  year: 2013
  end-page: 31
  ident: bib0135
  article-title: Effects of ordered mesoporous silica on the performances of composite nanofiltration membrane
  publication-title: Desalination
– volume: 242
  start-page: 149
  year: 2009
  end-page: 167
  ident: bib0150
  article-title: Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. I. FTIR and XPS characterization of polyamide and coating layer chemistry
  publication-title: Desalination
– volume: 294
  start-page: 1
  year: 2007
  end-page: 7
  ident: bib0125
  article-title: Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes
  publication-title: J. Membr. Sci.
– volume: 257
  start-page: 129
  year: 2010
  end-page: 136
  ident: bib0065
  article-title: Developing thin film composite poly(piperazine-amide) and poly(vinyl-alcohol) nanofiltration membranes
  publication-title: Desalination
– volume: 326
  start-page: 484
  year: 2009
  end-page: 492
  ident: bib0075
  article-title: High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds
  publication-title: J. Membr. Sci.
– volume: 44
  start-page: 8230
  year: 2010
  end-page: 8235
  ident: bib0165
  article-title: Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance
  publication-title: Environ. Sci. Technol.
– volume: 311
  start-page: 34
  year: 2008
  end-page: 45
  ident: bib0170
  article-title: Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties
  publication-title: J. Membr. Sci.
– volume: 423–424
  start-page: 238
  year: 2012
  end-page: 240
  ident: bib0105
  article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification
  publication-title: J. Membr. Sci.
– volume: 26
  start-page: 62
  year: 1968
  end-page: 69
  ident: bib0145
  article-title: Controlled growth of monodisperse silica spheres in the micron size range
  publication-title: J. Colloid Interf. Sci.
– volume: 328
  start-page: 257
  year: 2009
  end-page: 267
  ident: bib0130
  article-title: Synthesis of novel silica–polyamide nanocomposite membrane with enhanced properties
  publication-title: J. Membr. Sci.
– volume: 163
  start-page: 307
  year: 2010
  ident: 10.1016/j.apsusc.2014.11.031_bib0015
  article-title: Application of NF-RDM (nanofiltration rotating disk membrane) module under extreme hydraulic conditions for the treatment of dairy wastewater
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.08.007
– volume: 310
  start-page: 289
  year: 2008
  ident: 10.1016/j.apsusc.2014.11.031_bib0095
  article-title: Study on the thin-film composite nanofiltration membrane for the removal of sulfate from concentrated salt aqueous: preparation and performance
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.11.002
– volume: 423–424
  start-page: 238
  issue: 423
  year: 2012
  ident: 10.1016/j.apsusc.2014.11.031_bib0105
  article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.08.020
– volume: 311
  start-page: 34
  year: 2008
  ident: 10.1016/j.apsusc.2014.11.031_bib0170
  article-title: Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.11.038
– volume: 134
  start-page: 47
  year: 2001
  ident: 10.1016/j.apsusc.2014.11.031_bib0055
  article-title: Progress in membrane science and technology for seawater desalination—a review
  publication-title: Desalination
  doi: 10.1016/S0011-9164(01)00114-X
– volume: 242
  start-page: 168
  year: 2009
  ident: 10.1016/j.apsusc.2014.11.031_bib0060
  article-title: Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. II. Membrane physiochemical properties and their dependence on polyamide and coating layers
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.04.004
– volume: 242
  start-page: 149
  year: 2009
  ident: 10.1016/j.apsusc.2014.11.031_bib0150
  article-title: Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. I. FTIR and XPS characterization of polyamide and coating layer chemistry
  publication-title: Desalination
  doi: 10.1016/j.desal.2008.04.003
– volume: 257
  start-page: 129
  year: 2010
  ident: 10.1016/j.apsusc.2014.11.031_bib0050
  article-title: Developing thin film composite poly(piperazine-amide) and poly(vinyl-alcohol), nanofiltration membranes
  publication-title: Desalination
  doi: 10.1016/j.desal.2010.02.034
– volume: 328
  start-page: 257
  year: 2009
  ident: 10.1016/j.apsusc.2014.11.031_bib0130
  article-title: Synthesis of novel silica–polyamide nanocomposite membrane with enhanced properties
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.12.014
– volume: 301
  start-page: 75
  year: 2012
  ident: 10.1016/j.apsusc.2014.11.031_bib0140
  article-title: Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.06.015
– volume: 278
  start-page: 19
  year: 2006
  ident: 10.1016/j.apsusc.2014.11.031_bib0085
  article-title: Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2005.10.039
– volume: 26
  start-page: 62
  year: 1968
  ident: 10.1016/j.apsusc.2014.11.031_bib0145
  article-title: Controlled growth of monodisperse silica spheres in the micron size range
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/0021-9797(68)90272-5
– volume: 315
  start-page: 156
  year: 2013
  ident: 10.1016/j.apsusc.2014.11.031_bib0090
  article-title: Effect of amine salt surfactants on the performance of thin film composite poly(piperazine-amide) nanofiltration membranes
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.10.038
– volume: 452
  start-page: 241
  year: 2014
  ident: 10.1016/j.apsusc.2014.11.031_bib0070
  article-title: Study of phase inversion parameters for PEEK-based nanofiltration membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.10.048
– volume: 329
  start-page: 9
  year: 2013
  ident: 10.1016/j.apsusc.2014.11.031_bib0080
  article-title: Formation of thin film composite nanofiltration membrane: effect of polysulfone substrate characteristics
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.08.021
– volume: 276
  start-page: 109
  year: 2011
  ident: 10.1016/j.apsusc.2014.11.031_bib0005
  article-title: Performance of UF–NF integrated membrane process for seawater softening
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.03.064
– volume: 326
  start-page: 484
  year: 2009
  ident: 10.1016/j.apsusc.2014.11.031_bib0075
  article-title: High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2008.10.023
– volume: 44
  start-page: 8230
  year: 2010
  ident: 10.1016/j.apsusc.2014.11.031_bib0165
  article-title: Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101569p
– volume: 191
  start-page: 279
  year: 2006
  ident: 10.1016/j.apsusc.2014.11.031_bib0175
  article-title: Synthesis and characterization of inter-facially polymerized polyamide thin films
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.03.004
– volume: 468
  start-page: 52
  year: 2014
  ident: 10.1016/j.apsusc.2014.11.031_bib0010
  article-title: Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.05.047
– volume: 292
  start-page: 9
  year: 2012
  ident: 10.1016/j.apsusc.2014.11.031_bib0160
  article-title: Exploring the dependence of bulk properties on surface chemistries and microstructures of commercially composite RO membranes by novel characterization approaches
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.02.005
– volume: 294
  start-page: 1
  year: 2007
  ident: 10.1016/j.apsusc.2014.11.031_bib0125
  article-title: Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2007.02.025
– volume: 2
  start-page: 58
  year: 2014
  ident: 10.1016/j.apsusc.2014.11.031_bib0020
  article-title: Treatment of restaurant wastewater using ultrafiltration and nanofiltration membranes
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2014.05.001
– volume: 44
  start-page: 3883
  year: 2010
  ident: 10.1016/j.apsusc.2014.11.031_bib0040
  article-title: Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.05.005
– volume: 257
  start-page: 9863
  year: 2011
  ident: 10.1016/j.apsusc.2014.11.031_bib0100
  article-title: Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2011.06.059
– volume: 327
  start-page: 24
  year: 2013
  ident: 10.1016/j.apsusc.2014.11.031_bib0135
  article-title: Effects of ordered mesoporous silica on the performances of composite nanofiltration membrane
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.08.002
– volume: 257
  start-page: 129
  year: 2010
  ident: 10.1016/j.apsusc.2014.11.031_bib0065
  article-title: Developing thin film composite poly(piperazine-amide) and poly(vinyl-alcohol) nanofiltration membranes
  publication-title: Desalination
  doi: 10.1016/j.desal.2010.02.034
– volume: 22
  start-page: 292001
  year: 2011
  ident: 10.1016/j.apsusc.2014.11.031_bib0120
  article-title: Nanostructured materials for water desalination
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/29/292001
– volume: 375
  start-page: 88
  year: 2011
  ident: 10.1016/j.apsusc.2014.11.031_bib0110
  article-title: Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.03.017
– volume: 282
  start-page: 456
  year: 2006
  ident: 10.1016/j.apsusc.2014.11.031_bib0155
  article-title: Hypochlorite degradation of crosslinked polyamide membranes II. Changes in hydrogen bonding behavior and performance
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2006.06.004
– volume: 447
  start-page: 96
  year: 2013
  ident: 10.1016/j.apsusc.2014.11.031_bib0045
  article-title: Synthesis of modified poly(ether ether ketone) polymer for the preparation of ultrafiltration and nanofiltration membranes via phase inversion
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2013.07.006
– volume: 261
  start-page: 255
  year: 2010
  ident: 10.1016/j.apsusc.2014.11.031_bib0115
  article-title: Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction
  publication-title: Desalination
  doi: 10.1016/j.desal.2010.06.008
– volume: 44
  start-page: 2607
  year: 2011
  ident: 10.1016/j.apsusc.2014.11.031_bib0025
  article-title: Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (Hibiscus sabdariffa L.)
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2011.04.046
– volume: 277
  start-page: 250
  year: 2011
  ident: 10.1016/j.apsusc.2014.11.031_bib0035
  article-title: Influence of seasonal and operating conditions on the rejection of pharmaceutical active compounds by RO and NF membranes
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.04.029
– volume: 317
  start-page: 127
  year: 2013
  ident: 10.1016/j.apsusc.2014.11.031_bib0030
  article-title: Concentration of coffee extract using nanofiltration membranes
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.03.004
SSID ssj0012873
Score 2.4431577
Snippet •Poly(piperazine-amide)/silica nanocomposite NF membrane was firstly fabricated.•The addition of silica nanospheres can optimize NF-membrane separation...
A novel thin film nanocomposite nanofiltration (TFNN) membrane was fabricated by introducing silica nanospheres (ca. 235 plus or minus 11nm) in the interfacial...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 757
SubjectTerms Interfacial polymerization
Membranes
Nanocomposite membrane
Nanofiltration
Nanospheres
Nanostructure
Rejection
Separation
Separation performance
Silicon dioxide
Thin films
Title Influence of silica nanospheres on the separation performance of thin film composite poly(piperazine-amide) nanofiltration membranes
URI https://dx.doi.org/10.1016/j.apsusc.2014.11.031
https://www.proquest.com/docview/1660077713
Volume 324
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvTSH0ldo-ggq5NAelF29bOsYQsMmJbm0gdyEVh5Rl13b1JtDLz31h3fGj7QJlECONiNhNOOZ-aSZT4wdpNK6pbJByCJGYVIMonDBiqUqlSzRgjJN_c7nF9ni0pxd2astdjz1wlBZ5ej7B5_ee-vxzWxczVlbVbMvxCNC7FsIERBDZNTEZ0xOVn7466bMA93vcMqMwtQdpKb2ub7GKyAS7YjIUJpD4vLU8n_h6Y6j7qPPyVP2ZEwb-dHwZc_YFtTP2c4_ZIIv2O_T6b4R3iTeVbQbx-tAXOCoF-h4U3PM9ngHA903PrZ_uwZozOZbVfNUrdacCs2pmgt426x-fmgrlOx5qEVYVyV87OdFyZFzl69hjagbveZLdnny6evxQox3LIhojNqIskxauwzmQTmEGlIG0KnQEVFhEeYmKmdsTBpsyHGZVRZkmbkCrIoSAmYnepdt100NrxgvdQ4OXJLGUmgMITNhDkVwSS9tgrjH9LS0Po4E5HQPxspPlWbf_aAQTwpBbOJRIXtM3IxqBwKOe-TzSWv-liF5jBH3jHw_KdnjP0YHJ7hwzXXnZUYs_jni-dcPnv0Ne4xPdti9ecu2Nz-u4R3mM5vlfm-w--zR0ennxcUfX3H4zQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQCHiqdoKWAkDnBwd_3KxseqotpC2wut1JvldcZq0G4Ske2hF078cGbyaAEJVeKYZGxFM_Y87JlvGHufCusWygYh8xiFSTGI3AUrFqpQssAVlGmqdz45zebn5vOFvdhgB2MtDKVVDrq_1-mdth7eTAZuTpqynHwlHBFC38IQAWOIzN1j9w1uX2pjsPfjJs8D9W9_zYzUVB6kxvq5LskrYCjaEpKhNHsE5qnlv-zTX5q6Mz-Hj9nW4Dfy_f7XnrANqJ6yR7-hCT5jP4_GhiO8Trwt6TiOV4HAwFEw0PK64uju8RZ6vG98bG7LBmjM-rKseCqXK06Z5pTOBbypl9cfmhIpOyBqEVZlAR-7eZFyAN3lK1hh2I1q8zk7P_x0djAXQ5MFEY1Ra1EUSWuXwTQoh7GGlAF0ynXEsDAPUxOVMzYmDTbMkM8qC7LIXA5WRQkB3RP9gm1WdQUvGS_0DBy4JFEMaBtDyEyYQh5c0gubIG4zPbLWxwGBnBphLP2YavbN9wLxJBAMTjwKZJuJm1FNj8BxB_1slJr_YyV5NBJ3jHw3CtnjJqObE2RcfdV6mRGM_wwD-p3_nv0tezA_Ozn2x0enX16xh_jF9kc5u2xz_f0KXqNzs1686RbvLwc3-ls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+silica+nanospheres+on+the+separation+performance+of+thin+film+composite+poly%28piperazine-amide%29+nanofiltration+membranes&rft.jtitle=Applied+surface+science&rft.au=Li%2C+Qiang&rft.au=Wang%2C+Yihua&rft.au=Song%2C+Jie&rft.au=Guan%2C+Yipeng&rft.date=2015-01-01&rft.issn=0169-4332&rft.volume=324&rft.spage=757&rft.epage=764&rft_id=info:doi/10.1016%2Fj.apsusc.2014.11.031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon