Influence of silica nanospheres on the separation performance of thin film composite poly(piperazine-amide) nanofiltration membranes
•Poly(piperazine-amide)/silica nanocomposite NF membrane was firstly fabricated.•The addition of silica nanospheres can optimize NF-membrane separation performance.•The silica nanosphere introduced NF membrane exhibits good separation selectivity.•The silica nanosphere introduced NF membrane has sup...
Saved in:
Published in | Applied surface science Vol. 324; pp. 757 - 764 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Poly(piperazine-amide)/silica nanocomposite NF membrane was firstly fabricated.•The addition of silica nanospheres can optimize NF-membrane separation performance.•The silica nanosphere introduced NF membrane exhibits good separation selectivity.•The silica nanosphere introduced NF membrane has superior performance stability.
A novel thin film nanocomposite nanofiltration (TFNN) membrane was fabricated by introducing silica nanospheres (ca. 235±11nm) in the interfacial polymerization process of trimesoyl chloride (TMC) and piperazine (PIP) over polysulfone (PS) support for investigating the effect of silica nanofiller on the separation performance (i.e., permeability and salt rejection) of conventional thin film composite poly(piperazine-amide) nanofiltration (TFCN) membrane. The physicochemical characterization results show that all of the silica nanospheres are uniformly embedded on the surface of TFNN membrane. The introduction of silica nanospheres improves the hydrophilicity of the TFCN membrane and also causes its isoelectric point shift to a lower pH value. Moreover, the active poly(piperazine-amide) barrier layer of TFNN membrane (60.8±2.3nm) is thinner than that of the pristine TFCN membrane (72.1±2.5nm) as a control sample. The separation performance tests reveal that the addition of silica nanospheres can obviously elevate the salt rejection of the pristine TFCN membrane from 87.58±0.15 to 94.81±0.17% under 2000ppm of MgSO4 solution and 0.5MPa operating pressure, simultaneously accompanied by the increases of permeate flux from 19.36±0.75 to 22.65±0.68L/m2h. Additionally, compared with pristine TFCN membrane, the fabricated TFNN membrane has relatively low salt rejection (43.20±0.27%) in 0.5MPa operating pressure for 500ppm of NaCl aqueous solution, which demonstrates that the introduction of silica nanospheres can dramatically promote the divalent-ionic separation selectivity. Furthermore, the experimental results suggest that the nanocomposite TFNN membrane possesses stable filtration performance in the softening process of MgSO4 aqueous solution. The separation performance improvement should be attributed to the optimizations of microstructures and surface features of active barrier layer of TFNN membrane, caused by the addition of silica nanospheres. |
---|---|
AbstractList | •Poly(piperazine-amide)/silica nanocomposite NF membrane was firstly fabricated.•The addition of silica nanospheres can optimize NF-membrane separation performance.•The silica nanosphere introduced NF membrane exhibits good separation selectivity.•The silica nanosphere introduced NF membrane has superior performance stability.
A novel thin film nanocomposite nanofiltration (TFNN) membrane was fabricated by introducing silica nanospheres (ca. 235±11nm) in the interfacial polymerization process of trimesoyl chloride (TMC) and piperazine (PIP) over polysulfone (PS) support for investigating the effect of silica nanofiller on the separation performance (i.e., permeability and salt rejection) of conventional thin film composite poly(piperazine-amide) nanofiltration (TFCN) membrane. The physicochemical characterization results show that all of the silica nanospheres are uniformly embedded on the surface of TFNN membrane. The introduction of silica nanospheres improves the hydrophilicity of the TFCN membrane and also causes its isoelectric point shift to a lower pH value. Moreover, the active poly(piperazine-amide) barrier layer of TFNN membrane (60.8±2.3nm) is thinner than that of the pristine TFCN membrane (72.1±2.5nm) as a control sample. The separation performance tests reveal that the addition of silica nanospheres can obviously elevate the salt rejection of the pristine TFCN membrane from 87.58±0.15 to 94.81±0.17% under 2000ppm of MgSO4 solution and 0.5MPa operating pressure, simultaneously accompanied by the increases of permeate flux from 19.36±0.75 to 22.65±0.68L/m2h. Additionally, compared with pristine TFCN membrane, the fabricated TFNN membrane has relatively low salt rejection (43.20±0.27%) in 0.5MPa operating pressure for 500ppm of NaCl aqueous solution, which demonstrates that the introduction of silica nanospheres can dramatically promote the divalent-ionic separation selectivity. Furthermore, the experimental results suggest that the nanocomposite TFNN membrane possesses stable filtration performance in the softening process of MgSO4 aqueous solution. The separation performance improvement should be attributed to the optimizations of microstructures and surface features of active barrier layer of TFNN membrane, caused by the addition of silica nanospheres. A novel thin film nanocomposite nanofiltration (TFNN) membrane was fabricated by introducing silica nanospheres (ca. 235 plus or minus 11nm) in the interfacial polymerization process of trimesoyl chloride (TMC) and piperazine (PIP) over polysulfone (PS) support for investigating the effect of silica nanofiller on the separation performance (i.e., permeability and salt rejection) of conventional thin film composite poly(piperazine-amide) nanofiltration (TFCN) membrane. The physicochemical characterization results show that all of the silica nanospheres are uniformly embedded on the surface of TFNN membrane. The introduction of silica nanospheres improves the hydrophilicity of the TFCN membrane and also causes its isoelectric point shift to a lower pH value. Moreover, the active poly(piperazine-amide) barrier layer of TFNN membrane (60.8 plus or minus 2.3nm) is thinner than that of the pristine TFCN membrane (72.1 plus or minus 2.5nm) as a control sample. The separation performance tests reveal that the addition of silica nanospheres can obviously elevate the salt rejection of the pristine TFCN membrane from 87.58 plus or minus 0.15 to 94.81 plus or minus 0.17% under 2000ppm of MgSO4 solution and 0.5MPa operating pressure, simultaneously accompanied by the increases of permeate flux from 19.36 plus or minus 0.75 to 22.65 plus or minus 0.68L/m2 h. Additionally, compared with pristine TFCN membrane, the fabricated TFNN membrane has relatively low salt rejection (43.20 plus or minus 0.27%) in 0.5MPa operating pressure for 500ppm of NaCl aqueous solution, which demonstrates that the introduction of silica nanospheres can dramatically promote the divalent-ionic separation selectivity. Furthermore, the experimental results suggest that the nanocomposite TFNN membrane possesses stable filtration performance in the softening process of MgSO4 aqueous solution. The separation performance improvement should be attributed to the optimizations of microstructures and surface features of active barrier layer of TFNN membrane, caused by the addition of silica nanospheres. |
Author | Li, Qiang Guan, Yipeng Yu, Hui Song, Jie Pan, Xianhui Wu, Feiyang Zhang, Meng Wang, Yihua |
Author_xml | – sequence: 1 givenname: Qiang surname: Li fullname: Li, Qiang email: qiangli_chem@hotmail.com – sequence: 2 givenname: Yihua surname: Wang fullname: Wang, Yihua – sequence: 3 givenname: Jie surname: Song fullname: Song, Jie – sequence: 4 givenname: Yipeng surname: Guan fullname: Guan, Yipeng – sequence: 5 givenname: Hui surname: Yu fullname: Yu, Hui – sequence: 6 givenname: Xianhui surname: Pan fullname: Pan, Xianhui – sequence: 7 givenname: Feiyang surname: Wu fullname: Wu, Feiyang – sequence: 8 givenname: Meng surname: Zhang fullname: Zhang, Meng |
BookMark | eNqFkTtvFDEUhV0EiTz4BylchmImvvbsPCiQUAQkUiQaqC3Hc631asY2vl6kUPPD8Wa3oiCVZfl8R0efL9hZiAEZuwbRgoD-dteaRHuyrRTQtQCtUHDGzuvT1HRKybfsgmgnBMhxUOfsz0Nwyx6DRR4dJ794a3gwIVLaYkbiMfCyRU6YTDbF12vC7GJezYkpWx-488vKbVxTJF-Qp7g83yRfk-a3D9iY1c_4_qW3JsupaMX1KZuAdMXeOLMQvjudl-zHl8_f7-6bx29fH-4-PTa262Rp5tkpNfUojJxglAAGlRuVBTGMRnRWTt3GOoUbM3RCyt7A3E8jbqQFNAMIdclujr0px597pKJXTxaXpY6Ie9LQ90IMwwCqRj8cozZHooxOW19eZtf1ftEg9EG33umjbn3QrQF01V3h7h84Zb-a_Pwa9vGIYXXwy2PWZP3ha2af0RY9R___gr9RoqNQ |
CitedBy_id | crossref_primary_10_1039_C8TA03446J crossref_primary_10_1016_j_desal_2019_114125 crossref_primary_10_1016_j_seppur_2021_118383 crossref_primary_10_1016_j_ces_2024_120050 crossref_primary_10_1016_j_memsci_2017_09_046 crossref_primary_10_1016_j_seppur_2018_08_037 crossref_primary_10_1016_j_cej_2018_03_116 crossref_primary_10_1016_j_memsci_2019_117482 crossref_primary_10_1039_C7RA02374J crossref_primary_10_1016_j_memsci_2023_121635 crossref_primary_10_1016_j_desal_2017_12_012 crossref_primary_10_1002_app_47436 crossref_primary_10_1016_j_memsci_2017_05_062 crossref_primary_10_1016_j_jece_2017_07_008 crossref_primary_10_1016_j_seppur_2015_09_039 crossref_primary_10_1016_j_seppur_2016_04_024 crossref_primary_10_1039_D0TA11923G crossref_primary_10_1016_j_seppur_2024_128869 crossref_primary_10_1021_acs_est_8b02425 crossref_primary_10_1016_j_arabjc_2017_12_009 crossref_primary_10_1016_j_desal_2020_114857 crossref_primary_10_1016_j_desal_2022_115981 crossref_primary_10_1016_j_memsci_2020_118951 crossref_primary_10_1016_j_seppur_2021_119046 crossref_primary_10_3390_membranes11020104 crossref_primary_10_1016_j_chemosphere_2018_11_207 crossref_primary_10_1016_j_jece_2023_111013 crossref_primary_10_1016_j_seppur_2021_120390 crossref_primary_10_1039_C7RA11550D crossref_primary_10_1016_j_jenvman_2020_111299 crossref_primary_10_1016_j_psep_2022_11_036 crossref_primary_10_1016_j_apsusc_2016_12_228 crossref_primary_10_1016_j_desal_2022_116206 crossref_primary_10_1246_cl_151096 crossref_primary_10_1016_j_memsci_2019_117297 crossref_primary_10_1021_acsanm_0c02980 crossref_primary_10_1016_j_memsci_2017_05_075 crossref_primary_10_1021_acs_iecr_9b03456 crossref_primary_10_1016_j_desal_2023_116509 crossref_primary_10_1039_C5RA18640D crossref_primary_10_1016_j_memsci_2018_07_087 crossref_primary_10_1016_j_seppur_2024_129503 crossref_primary_10_1016_j_jcis_2016_09_035 crossref_primary_10_1016_j_jiec_2021_03_013 crossref_primary_10_1016_j_molliq_2019_112267 crossref_primary_10_1016_j_seppur_2020_117153 crossref_primary_10_5004_dwt_2017_20189 crossref_primary_10_1016_j_seppur_2021_120360 crossref_primary_10_1016_j_cej_2020_127976 crossref_primary_10_1016_j_desal_2015_06_002 crossref_primary_10_1016_j_jhazmat_2021_125446 crossref_primary_10_5004_dwt_2020_26445 crossref_primary_10_1016_j_polymertesting_2018_11_037 crossref_primary_10_1016_j_cherd_2020_11_016 crossref_primary_10_1016_j_seppur_2021_118567 crossref_primary_10_1016_j_seppur_2018_09_067 crossref_primary_10_1021_acsami_0c06417 crossref_primary_10_2139_ssrn_4112242 crossref_primary_10_1016_j_envres_2020_110215 crossref_primary_10_1016_j_apsusc_2017_11_007 crossref_primary_10_1002_admi_201701427 crossref_primary_10_1016_j_apsusc_2017_02_204 crossref_primary_10_1016_j_porgcoat_2019_105456 crossref_primary_10_1007_s42247_021_00254_x crossref_primary_10_1016_j_memsci_2020_118333 crossref_primary_10_1016_j_seppur_2019_05_018 crossref_primary_10_1007_s10570_023_05594_x crossref_primary_10_1016_j_polymer_2016_07_085 crossref_primary_10_1016_j_cej_2020_124019 crossref_primary_10_1080_10643389_2019_1664258 crossref_primary_10_1016_j_memsci_2022_120952 crossref_primary_10_1016_j_desal_2017_12_005 crossref_primary_10_1016_j_jenvman_2021_113363 crossref_primary_10_2139_ssrn_4158288 crossref_primary_10_1021_acsomega_9b01446 crossref_primary_10_1016_j_seppur_2023_126230 crossref_primary_10_1039_C9EW00227H crossref_primary_10_1021_acsami_1c17086 crossref_primary_10_1002_app_45268 crossref_primary_10_1016_j_dwt_2024_100815 crossref_primary_10_1016_j_cherd_2021_06_003 crossref_primary_10_1016_j_desal_2022_116227 crossref_primary_10_1016_j_jiec_2016_10_036 crossref_primary_10_1021_acsami_6b13761 crossref_primary_10_1007_s12221_016_6219_z crossref_primary_10_1007_s42247_021_00261_y |
Cites_doi | 10.1016/j.cej.2010.08.007 10.1016/j.memsci.2007.11.002 10.1016/j.memsci.2012.08.020 10.1016/j.memsci.2007.11.038 10.1016/S0011-9164(01)00114-X 10.1016/j.desal.2008.04.004 10.1016/j.desal.2008.04.003 10.1016/j.desal.2010.02.034 10.1016/j.memsci.2008.12.014 10.1016/j.desal.2012.06.015 10.1016/j.memsci.2005.10.039 10.1016/0021-9797(68)90272-5 10.1016/j.desal.2012.10.038 10.1016/j.memsci.2013.10.048 10.1016/j.desal.2013.08.021 10.1016/j.desal.2011.03.064 10.1016/j.memsci.2008.10.023 10.1021/es101569p 10.1016/j.desal.2006.03.004 10.1016/j.memsci.2014.05.047 10.1016/j.desal.2012.02.005 10.1016/j.memsci.2007.02.025 10.1016/j.jwpe.2014.05.001 10.1016/j.watres.2010.05.005 10.1016/j.apsusc.2011.06.059 10.1016/j.desal.2013.08.002 10.1088/0957-4484/22/29/292001 10.1016/j.memsci.2011.03.017 10.1016/j.memsci.2006.06.004 10.1016/j.memsci.2013.07.006 10.1016/j.desal.2010.06.008 10.1016/j.foodres.2011.04.046 10.1016/j.desal.2011.04.029 10.1016/j.desal.2013.03.004 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.apsusc.2014.11.031 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 764 |
ExternalDocumentID | 10_1016_j_apsusc_2014_11_031 S0169433214024969 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEZYN AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSH SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- SEW WUQ 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c442t-ddf3396e0a2918211ae3f83c1078a04c2945cf3e5a740226a1d698e52c1ea7103 |
IEDL.DBID | .~1 |
ISSN | 0169-4332 |
IngestDate | Mon Jul 21 11:25:29 EDT 2025 Tue Jul 01 01:09:27 EDT 2025 Thu Apr 24 22:58:42 EDT 2025 Fri Apr 11 03:01:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Interfacial polymerization Nanofiltration Nanocomposite membrane Separation performance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c442t-ddf3396e0a2918211ae3f83c1078a04c2945cf3e5a740226a1d698e52c1ea7103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1660077713 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1660077713 crossref_citationtrail_10_1016_j_apsusc_2014_11_031 crossref_primary_10_1016_j_apsusc_2014_11_031 elsevier_sciencedirect_doi_10_1016_j_apsusc_2014_11_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 2015-01-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied surface science |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Humplik, Lee, CO’Hern, Fellman, Baig, Hassan, Atieh, Rahman, Laoui, Karnik, Wang (bib0120) 2011; 22 Stöber, Fink (bib0145) 1968; 26 Ghosh, Jeong, Huang, Hoek (bib0170) 2008; 311 Jahanshahi, Rahimpour, Peyravi (bib0065) 2010; 257 Cissé, Vaillant, Pallet, Dornier (bib0025) 2011; 44 Hu, Xu, Chen (bib0140) 2012; 301 Xiang, Xie, Hoang, Zhang (bib0090) 2013; 315 Singh, Joshi, Trivedi, Devmurari, Rao, Ghosh (bib0085) 2006; 278 Misdan, Lau, Ismail, Matsuura (bib0080) 2013; 329 Fathizadeh, Aroujalian, Raisi (bib0110) 2011; 375 Liu, Yu, Zhou, Gao (bib0095) 2008; 310 Kwon, Leckie (bib0155) 2006; 282 Pan, Yan, Zhu, Li (bib0030) 2013; 317 Tang, Kwona, Leckie (bib0150) 2009; 242 Matsuura (bib0055) 2001; 134 Gur-Reznik, Koren-Menashe, Heller-Grossman, Rufel, Dosoretz (bib0035) 2011; 277 Hendrix, Koeckelberghs, Vankelecom (bib0070) 2014; 452 Li, Pan, Hou, Jin, Dai, Wang, Zhao, Liu (bib0160) 2012; 292 Jeong, Hoek, Yan, Subramani, Huang, Hurwitz, Ghosh, Jawor (bib0125) 2007; 294 Yin, Kim, Yang, Deng (bib0105) 2012; 423–424 Pendergast, Nygaard, Ghosh, Hoek (bib0115) 2010; 261 Hendrix, Vaneynde, Koeckelberghs, Vankelecom (bib0045) 2013; 447 Tang, Kwon, Leckie (bib0060) 2009; 242 Luo, Ding, Wan, Paullier, Jaffrin (bib0015) 2010; 163 Jadav, Singh (bib0130) 2009; 328 Garcia-Castello, Cassano, Criscuoli, Conidi, Drioli (bib0040) 2010; 44 Lind, Suk, Nguyen, Hoek (bib0165) 2010; 44 Fang, Shi, Wang (bib0010) 2014; 468 Song, Xu, Xu, Gao, Gao (bib0005) 2011; 276 Yoon, Hsiao, Chu (bib0075) 2009; 326 Roh, Greenberg, Khare (bib0175) 2006; 191 Jahanshahi, Rahimpour, Peyravi (bib0050) 2010; 257 Li, Li, Yu, Pan, Wang, Wang, Song (bib0135) 2013; 327 Kim, Yu, Deng (bib0100) 2011; 257 Zulaikha, Lau, Ismail, Jaafar (bib0020) 2014; 2 Humplik (10.1016/j.apsusc.2014.11.031_bib0120) 2011; 22 Kim (10.1016/j.apsusc.2014.11.031_bib0100) 2011; 257 Ghosh (10.1016/j.apsusc.2014.11.031_bib0170) 2008; 311 Yoon (10.1016/j.apsusc.2014.11.031_bib0075) 2009; 326 Cissé (10.1016/j.apsusc.2014.11.031_bib0025) 2011; 44 Hendrix (10.1016/j.apsusc.2014.11.031_bib0070) 2014; 452 Li (10.1016/j.apsusc.2014.11.031_bib0135) 2013; 327 Misdan (10.1016/j.apsusc.2014.11.031_bib0080) 2013; 329 Lind (10.1016/j.apsusc.2014.11.031_bib0165) 2010; 44 Matsuura (10.1016/j.apsusc.2014.11.031_bib0055) 2001; 134 Jadav (10.1016/j.apsusc.2014.11.031_bib0130) 2009; 328 Fang (10.1016/j.apsusc.2014.11.031_bib0010) 2014; 468 Pendergast (10.1016/j.apsusc.2014.11.031_bib0115) 2010; 261 Liu (10.1016/j.apsusc.2014.11.031_bib0095) 2008; 310 Tang (10.1016/j.apsusc.2014.11.031_bib0150) 2009; 242 Li (10.1016/j.apsusc.2014.11.031_bib0160) 2012; 292 Jahanshahi (10.1016/j.apsusc.2014.11.031_bib0050) 2010; 257 Kwon (10.1016/j.apsusc.2014.11.031_bib0155) 2006; 282 Yin (10.1016/j.apsusc.2014.11.031_bib0105) 2012; 423–424 Tang (10.1016/j.apsusc.2014.11.031_bib0060) 2009; 242 Fathizadeh (10.1016/j.apsusc.2014.11.031_bib0110) 2011; 375 Hendrix (10.1016/j.apsusc.2014.11.031_bib0045) 2013; 447 Song (10.1016/j.apsusc.2014.11.031_bib0005) 2011; 276 Hu (10.1016/j.apsusc.2014.11.031_bib0140) 2012; 301 Gur-Reznik (10.1016/j.apsusc.2014.11.031_bib0035) 2011; 277 Stöber (10.1016/j.apsusc.2014.11.031_bib0145) 1968; 26 Roh (10.1016/j.apsusc.2014.11.031_bib0175) 2006; 191 Zulaikha (10.1016/j.apsusc.2014.11.031_bib0020) 2014; 2 Jeong (10.1016/j.apsusc.2014.11.031_bib0125) 2007; 294 Singh (10.1016/j.apsusc.2014.11.031_bib0085) 2006; 278 Luo (10.1016/j.apsusc.2014.11.031_bib0015) 2010; 163 Garcia-Castello (10.1016/j.apsusc.2014.11.031_bib0040) 2010; 44 Pan (10.1016/j.apsusc.2014.11.031_bib0030) 2013; 317 Xiang (10.1016/j.apsusc.2014.11.031_bib0090) 2013; 315 Jahanshahi (10.1016/j.apsusc.2014.11.031_bib0065) 2010; 257 |
References_xml | – volume: 134 start-page: 47 year: 2001 end-page: 54 ident: bib0055 article-title: Progress in membrane science and technology for seawater desalination—a review publication-title: Desalination – volume: 282 start-page: 456 year: 2006 end-page: 464 ident: bib0155 article-title: Hypochlorite degradation of crosslinked polyamide membranes II. Changes in hydrogen bonding behavior and performance publication-title: J. Membr. Sci. – volume: 257 start-page: 9863 year: 2011 end-page: 9871 ident: bib0100 article-title: Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling publication-title: Appl. Surf. Sci. – volume: 329 start-page: 9 year: 2013 end-page: 18 ident: bib0080 article-title: Formation of thin film composite nanofiltration membrane: effect of polysulfone substrate characteristics publication-title: Desalination – volume: 163 start-page: 307 year: 2010 end-page: 316 ident: bib0015 article-title: Application of NF-RDM (nanofiltration rotating disk membrane) module under extreme hydraulic conditions for the treatment of dairy wastewater publication-title: Chem. Eng. J. – volume: 317 start-page: 127 year: 2013 end-page: 131 ident: bib0030 article-title: Concentration of coffee extract using nanofiltration membranes publication-title: Desalination – volume: 242 start-page: 168 year: 2009 end-page: 182 ident: bib0060 article-title: Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. II. Membrane physiochemical properties and their dependence on polyamide and coating layers publication-title: Desalination – volume: 277 start-page: 250 year: 2011 end-page: 256 ident: bib0035 article-title: Influence of seasonal and operating conditions on the rejection of pharmaceutical active compounds by RO and NF membranes publication-title: Desalination – volume: 44 start-page: 2607 year: 2011 end-page: 2614 ident: bib0025 article-title: Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract ( publication-title: Food Res. Int. – volume: 44 start-page: 3883 year: 2010 end-page: 3892 ident: bib0040 article-title: Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system publication-title: Water Res. – volume: 447 start-page: 96 year: 2013 end-page: 106 ident: bib0045 article-title: Synthesis of modified poly(ether ether ketone) polymer for the preparation of ultrafiltration and nanofiltration membranes via phase inversion publication-title: J. Membr. Sci. – volume: 22 start-page: 292001 year: 2011 end-page: 292019 ident: bib0120 article-title: Nanostructured materials for water desalination publication-title: Nanotechnology – volume: 301 start-page: 75 year: 2012 end-page: 81 ident: bib0140 article-title: Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization publication-title: Desalination – volume: 191 start-page: 279 year: 2006 end-page: 290 ident: bib0175 article-title: Synthesis and characterization of inter-facially polymerized polyamide thin films publication-title: Desalination – volume: 310 start-page: 289 year: 2008 end-page: 295 ident: bib0095 article-title: Study on the thin-film composite nanofiltration membrane for the removal of sulfate from concentrated salt aqueous: preparation and performance publication-title: J. Membr. Sci. – volume: 315 start-page: 156 year: 2013 end-page: 163 ident: bib0090 article-title: Effect of amine salt surfactants on the performance of thin film composite poly(piperazine-amide) nanofiltration membranes publication-title: Desalination – volume: 375 start-page: 88 year: 2011 end-page: 95 ident: bib0110 article-title: Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process publication-title: J. Membr. Sci. – volume: 276 start-page: 109 year: 2011 end-page: 116 ident: bib0005 article-title: Performance of UF–NF integrated membrane process for seawater softening publication-title: Desalination – volume: 468 start-page: 52 year: 2014 end-page: 61 ident: bib0010 article-title: Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability publication-title: J. Membr. Sci. – volume: 261 start-page: 255 year: 2010 end-page: 263 ident: bib0115 article-title: Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction publication-title: Desalination – volume: 257 start-page: 129 year: 2010 end-page: 136 ident: bib0050 article-title: Developing thin film composite poly(piperazine-amide) and poly(vinyl-alcohol), nanofiltration membranes publication-title: Desalination – volume: 2 start-page: 58 year: 2014 end-page: 62 ident: bib0020 article-title: Treatment of restaurant wastewater using ultrafiltration and nanofiltration membranes publication-title: J. Water Process Eng. – volume: 452 start-page: 241 year: 2014 end-page: 252 ident: bib0070 article-title: Study of phase inversion parameters for PEEK-based nanofiltration membranes publication-title: J. Membr. Sci. – volume: 278 start-page: 19 year: 2006 end-page: 25 ident: bib0085 article-title: Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions publication-title: J. Membr. Sci. – volume: 292 start-page: 9 year: 2012 end-page: 18 ident: bib0160 article-title: Exploring the dependence of bulk properties on surface chemistries and microstructures of commercially composite RO membranes by novel characterization approaches publication-title: Desalination – volume: 327 start-page: 24 year: 2013 end-page: 31 ident: bib0135 article-title: Effects of ordered mesoporous silica on the performances of composite nanofiltration membrane publication-title: Desalination – volume: 242 start-page: 149 year: 2009 end-page: 167 ident: bib0150 article-title: Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. I. FTIR and XPS characterization of polyamide and coating layer chemistry publication-title: Desalination – volume: 294 start-page: 1 year: 2007 end-page: 7 ident: bib0125 article-title: Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes publication-title: J. Membr. Sci. – volume: 257 start-page: 129 year: 2010 end-page: 136 ident: bib0065 article-title: Developing thin film composite poly(piperazine-amide) and poly(vinyl-alcohol) nanofiltration membranes publication-title: Desalination – volume: 326 start-page: 484 year: 2009 end-page: 492 ident: bib0075 article-title: High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds publication-title: J. Membr. Sci. – volume: 44 start-page: 8230 year: 2010 end-page: 8235 ident: bib0165 article-title: Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance publication-title: Environ. Sci. Technol. – volume: 311 start-page: 34 year: 2008 end-page: 45 ident: bib0170 article-title: Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties publication-title: J. Membr. Sci. – volume: 423–424 start-page: 238 year: 2012 end-page: 240 ident: bib0105 article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification publication-title: J. Membr. Sci. – volume: 26 start-page: 62 year: 1968 end-page: 69 ident: bib0145 article-title: Controlled growth of monodisperse silica spheres in the micron size range publication-title: J. Colloid Interf. Sci. – volume: 328 start-page: 257 year: 2009 end-page: 267 ident: bib0130 article-title: Synthesis of novel silica–polyamide nanocomposite membrane with enhanced properties publication-title: J. Membr. Sci. – volume: 163 start-page: 307 year: 2010 ident: 10.1016/j.apsusc.2014.11.031_bib0015 article-title: Application of NF-RDM (nanofiltration rotating disk membrane) module under extreme hydraulic conditions for the treatment of dairy wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.08.007 – volume: 310 start-page: 289 year: 2008 ident: 10.1016/j.apsusc.2014.11.031_bib0095 article-title: Study on the thin-film composite nanofiltration membrane for the removal of sulfate from concentrated salt aqueous: preparation and performance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.11.002 – volume: 423–424 start-page: 238 issue: 423 year: 2012 ident: 10.1016/j.apsusc.2014.11.031_bib0105 article-title: Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.08.020 – volume: 311 start-page: 34 year: 2008 ident: 10.1016/j.apsusc.2014.11.031_bib0170 article-title: Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.11.038 – volume: 134 start-page: 47 year: 2001 ident: 10.1016/j.apsusc.2014.11.031_bib0055 article-title: Progress in membrane science and technology for seawater desalination—a review publication-title: Desalination doi: 10.1016/S0011-9164(01)00114-X – volume: 242 start-page: 168 year: 2009 ident: 10.1016/j.apsusc.2014.11.031_bib0060 article-title: Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. II. Membrane physiochemical properties and their dependence on polyamide and coating layers publication-title: Desalination doi: 10.1016/j.desal.2008.04.004 – volume: 242 start-page: 149 year: 2009 ident: 10.1016/j.apsusc.2014.11.031_bib0150 article-title: Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes. I. FTIR and XPS characterization of polyamide and coating layer chemistry publication-title: Desalination doi: 10.1016/j.desal.2008.04.003 – volume: 257 start-page: 129 year: 2010 ident: 10.1016/j.apsusc.2014.11.031_bib0050 article-title: Developing thin film composite poly(piperazine-amide) and poly(vinyl-alcohol), nanofiltration membranes publication-title: Desalination doi: 10.1016/j.desal.2010.02.034 – volume: 328 start-page: 257 year: 2009 ident: 10.1016/j.apsusc.2014.11.031_bib0130 article-title: Synthesis of novel silica–polyamide nanocomposite membrane with enhanced properties publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.12.014 – volume: 301 start-page: 75 year: 2012 ident: 10.1016/j.apsusc.2014.11.031_bib0140 article-title: Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization publication-title: Desalination doi: 10.1016/j.desal.2012.06.015 – volume: 278 start-page: 19 year: 2006 ident: 10.1016/j.apsusc.2014.11.031_bib0085 article-title: Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2005.10.039 – volume: 26 start-page: 62 year: 1968 ident: 10.1016/j.apsusc.2014.11.031_bib0145 article-title: Controlled growth of monodisperse silica spheres in the micron size range publication-title: J. Colloid Interf. Sci. doi: 10.1016/0021-9797(68)90272-5 – volume: 315 start-page: 156 year: 2013 ident: 10.1016/j.apsusc.2014.11.031_bib0090 article-title: Effect of amine salt surfactants on the performance of thin film composite poly(piperazine-amide) nanofiltration membranes publication-title: Desalination doi: 10.1016/j.desal.2012.10.038 – volume: 452 start-page: 241 year: 2014 ident: 10.1016/j.apsusc.2014.11.031_bib0070 article-title: Study of phase inversion parameters for PEEK-based nanofiltration membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.10.048 – volume: 329 start-page: 9 year: 2013 ident: 10.1016/j.apsusc.2014.11.031_bib0080 article-title: Formation of thin film composite nanofiltration membrane: effect of polysulfone substrate characteristics publication-title: Desalination doi: 10.1016/j.desal.2013.08.021 – volume: 276 start-page: 109 year: 2011 ident: 10.1016/j.apsusc.2014.11.031_bib0005 article-title: Performance of UF–NF integrated membrane process for seawater softening publication-title: Desalination doi: 10.1016/j.desal.2011.03.064 – volume: 326 start-page: 484 year: 2009 ident: 10.1016/j.apsusc.2014.11.031_bib0075 article-title: High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2008.10.023 – volume: 44 start-page: 8230 year: 2010 ident: 10.1016/j.apsusc.2014.11.031_bib0165 article-title: Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance publication-title: Environ. Sci. Technol. doi: 10.1021/es101569p – volume: 191 start-page: 279 year: 2006 ident: 10.1016/j.apsusc.2014.11.031_bib0175 article-title: Synthesis and characterization of inter-facially polymerized polyamide thin films publication-title: Desalination doi: 10.1016/j.desal.2006.03.004 – volume: 468 start-page: 52 year: 2014 ident: 10.1016/j.apsusc.2014.11.031_bib0010 article-title: Mixed polyamide-based composite nanofiltration hollow fiber membranes with improved low-pressure water softening capability publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.05.047 – volume: 292 start-page: 9 year: 2012 ident: 10.1016/j.apsusc.2014.11.031_bib0160 article-title: Exploring the dependence of bulk properties on surface chemistries and microstructures of commercially composite RO membranes by novel characterization approaches publication-title: Desalination doi: 10.1016/j.desal.2012.02.005 – volume: 294 start-page: 1 year: 2007 ident: 10.1016/j.apsusc.2014.11.031_bib0125 article-title: Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2007.02.025 – volume: 2 start-page: 58 year: 2014 ident: 10.1016/j.apsusc.2014.11.031_bib0020 article-title: Treatment of restaurant wastewater using ultrafiltration and nanofiltration membranes publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2014.05.001 – volume: 44 start-page: 3883 year: 2010 ident: 10.1016/j.apsusc.2014.11.031_bib0040 article-title: Recovery and concentration of polyphenols from olive mill wastewaters by integrated membrane system publication-title: Water Res. doi: 10.1016/j.watres.2010.05.005 – volume: 257 start-page: 9863 year: 2011 ident: 10.1016/j.apsusc.2014.11.031_bib0100 article-title: Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2011.06.059 – volume: 327 start-page: 24 year: 2013 ident: 10.1016/j.apsusc.2014.11.031_bib0135 article-title: Effects of ordered mesoporous silica on the performances of composite nanofiltration membrane publication-title: Desalination doi: 10.1016/j.desal.2013.08.002 – volume: 257 start-page: 129 year: 2010 ident: 10.1016/j.apsusc.2014.11.031_bib0065 article-title: Developing thin film composite poly(piperazine-amide) and poly(vinyl-alcohol) nanofiltration membranes publication-title: Desalination doi: 10.1016/j.desal.2010.02.034 – volume: 22 start-page: 292001 year: 2011 ident: 10.1016/j.apsusc.2014.11.031_bib0120 article-title: Nanostructured materials for water desalination publication-title: Nanotechnology doi: 10.1088/0957-4484/22/29/292001 – volume: 375 start-page: 88 year: 2011 ident: 10.1016/j.apsusc.2014.11.031_bib0110 article-title: Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.03.017 – volume: 282 start-page: 456 year: 2006 ident: 10.1016/j.apsusc.2014.11.031_bib0155 article-title: Hypochlorite degradation of crosslinked polyamide membranes II. Changes in hydrogen bonding behavior and performance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2006.06.004 – volume: 447 start-page: 96 year: 2013 ident: 10.1016/j.apsusc.2014.11.031_bib0045 article-title: Synthesis of modified poly(ether ether ketone) polymer for the preparation of ultrafiltration and nanofiltration membranes via phase inversion publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2013.07.006 – volume: 261 start-page: 255 year: 2010 ident: 10.1016/j.apsusc.2014.11.031_bib0115 article-title: Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction publication-title: Desalination doi: 10.1016/j.desal.2010.06.008 – volume: 44 start-page: 2607 year: 2011 ident: 10.1016/j.apsusc.2014.11.031_bib0025 article-title: Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (Hibiscus sabdariffa L.) publication-title: Food Res. Int. doi: 10.1016/j.foodres.2011.04.046 – volume: 277 start-page: 250 year: 2011 ident: 10.1016/j.apsusc.2014.11.031_bib0035 article-title: Influence of seasonal and operating conditions on the rejection of pharmaceutical active compounds by RO and NF membranes publication-title: Desalination doi: 10.1016/j.desal.2011.04.029 – volume: 317 start-page: 127 year: 2013 ident: 10.1016/j.apsusc.2014.11.031_bib0030 article-title: Concentration of coffee extract using nanofiltration membranes publication-title: Desalination doi: 10.1016/j.desal.2013.03.004 |
SSID | ssj0012873 |
Score | 2.4431577 |
Snippet | •Poly(piperazine-amide)/silica nanocomposite NF membrane was firstly fabricated.•The addition of silica nanospheres can optimize NF-membrane separation... A novel thin film nanocomposite nanofiltration (TFNN) membrane was fabricated by introducing silica nanospheres (ca. 235 plus or minus 11nm) in the interfacial... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 757 |
SubjectTerms | Interfacial polymerization Membranes Nanocomposite membrane Nanofiltration Nanospheres Nanostructure Rejection Separation Separation performance Silicon dioxide Thin films |
Title | Influence of silica nanospheres on the separation performance of thin film composite poly(piperazine-amide) nanofiltration membranes |
URI | https://dx.doi.org/10.1016/j.apsusc.2014.11.031 https://www.proquest.com/docview/1660077713 |
Volume | 324 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvTSH0ldo-ggq5NAelF29bOsYQsMmJbm0gdyEVh5Rl13b1JtDLz31h3fGj7QJlECONiNhNOOZ-aSZT4wdpNK6pbJByCJGYVIMonDBiqUqlSzRgjJN_c7nF9ni0pxd2astdjz1wlBZ5ej7B5_ee-vxzWxczVlbVbMvxCNC7FsIERBDZNTEZ0xOVn7466bMA93vcMqMwtQdpKb2ub7GKyAS7YjIUJpD4vLU8n_h6Y6j7qPPyVP2ZEwb-dHwZc_YFtTP2c4_ZIIv2O_T6b4R3iTeVbQbx-tAXOCoF-h4U3PM9ngHA903PrZ_uwZozOZbVfNUrdacCs2pmgt426x-fmgrlOx5qEVYVyV87OdFyZFzl69hjagbveZLdnny6evxQox3LIhojNqIskxauwzmQTmEGlIG0KnQEVFhEeYmKmdsTBpsyHGZVRZkmbkCrIoSAmYnepdt100NrxgvdQ4OXJLGUmgMITNhDkVwSS9tgrjH9LS0Po4E5HQPxspPlWbf_aAQTwpBbOJRIXtM3IxqBwKOe-TzSWv-liF5jBH3jHw_KdnjP0YHJ7hwzXXnZUYs_jni-dcPnv0Ne4xPdti9ecu2Nz-u4R3mM5vlfm-w--zR0ennxcUfX3H4zQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQCHiqdoKWAkDnBwd_3KxseqotpC2wut1JvldcZq0G4Ske2hF078cGbyaAEJVeKYZGxFM_Y87JlvGHufCusWygYh8xiFSTGI3AUrFqpQssAVlGmqdz45zebn5vOFvdhgB2MtDKVVDrq_1-mdth7eTAZuTpqynHwlHBFC38IQAWOIzN1j9w1uX2pjsPfjJs8D9W9_zYzUVB6kxvq5LskrYCjaEpKhNHsE5qnlv-zTX5q6Mz-Hj9nW4Dfy_f7XnrANqJ6yR7-hCT5jP4_GhiO8Trwt6TiOV4HAwFEw0PK64uju8RZ6vG98bG7LBmjM-rKseCqXK06Z5pTOBbypl9cfmhIpOyBqEVZlAR-7eZFyAN3lK1hh2I1q8zk7P_x0djAXQ5MFEY1Ra1EUSWuXwTQoh7GGlAF0ynXEsDAPUxOVMzYmDTbMkM8qC7LIXA5WRQkB3RP9gm1WdQUvGS_0DBy4JFEMaBtDyEyYQh5c0gubIG4zPbLWxwGBnBphLP2YavbN9wLxJBAMTjwKZJuJm1FNj8BxB_1slJr_YyV5NBJ3jHw3CtnjJqObE2RcfdV6mRGM_wwD-p3_nv0tezA_Ozn2x0enX16xh_jF9kc5u2xz_f0KXqNzs1686RbvLwc3-ls |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+silica+nanospheres+on+the+separation+performance+of+thin+film+composite+poly%28piperazine-amide%29+nanofiltration+membranes&rft.jtitle=Applied+surface+science&rft.au=Li%2C+Qiang&rft.au=Wang%2C+Yihua&rft.au=Song%2C+Jie&rft.au=Guan%2C+Yipeng&rft.date=2015-01-01&rft.issn=0169-4332&rft.volume=324&rft.spage=757&rft.epage=764&rft_id=info:doi/10.1016%2Fj.apsusc.2014.11.031&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |